WorldWideScience

Sample records for high piezoelectric properties

  1. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  2. Structure-Property Study of Piezoelectricity in Polyimides

    Science.gov (United States)

    Ounaies, Zoubeida; Park, Cheol; Harrison, Joycelyn S.; Smith, Joseph G.; Hinkley, Jeffrey

    1999-01-01

    High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.

  3. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  4. Piezoelectric properties and thermal stabilities of cobalt-modified potassium bismuth titanate

    International Nuclear Information System (INIS)

    Guo, Zhen-Lei; Wang, Chun-Ming; Zhao, Tian-Long; Yu, Si-Long; Cao, Zhao-Peng

    2013-01-01

    The cobalt-modified potassium bismuth titanate (K 0.5 Bi 4.5 Ti 4 O 15 , KBT) piezoelectric ceramics have been prepared using conventional solid–state reaction. X-ray diffraction analysis revealed that the cobalt-modified KBT ceramics have a pure four-layer (m = 4) Aurivillius-type structure. The dielectric, ferroelectric, and piezoelectric properties of cobalt-modified KBT ceramics were investigated in detail. The piezoelectric activities of KBT ceramics were significantly improved by the cobalt modification. The reasons for piezoelectric activities enhancement with cobalt modification were given. The piezoelectric coefficient d 33 and Curie temperature T c for the 5 mol% cobalt-modified KBT ceramics (KBT-Co5) were found to be 28 pC/N and 575 °C, respectively. The DC resistivity, frequency constants (N p and N t ), and electromechanical properties at elevated temperature were investigated, indicating the cobalt-modified KBT piezoelectric ceramics possess stable piezoelectric properties up to 500 °C. The results show the cobalt-modified KBT ceramics are potential materials for high temperature piezoelectric applications. - Highlights: • We examine the piezoelectric properties of the cobalt-modified K 0.5 Bi 4.5 Ti 4 O 15 . • A high level of piezoelectric activities (d 33 = 28 pC/N) are obtained. • High Curie temperature (T c = 575 °C) is acquired for the optimal composition. • The Co-modified K 0.5 Bi 4.5 Ti 4 O 15 is promising as high temperature materials

  5. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles

    International Nuclear Information System (INIS)

    Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao

    2015-01-01

    Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)

  6. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 -Based Lead-Free Ceramics.

    Science.gov (United States)

    Li, Peng; Zhai, Jiwei; Shen, Bo; Zhang, Shujun; Li, Xiaolong; Zhu, Fangyuan; Zhang, Xingmin

    2018-02-01

    High-performance lead-free piezoelectric materials are in great demand for next-generation electronic devices to meet the requirement of environmentally sustainable society. Here, ultrahigh piezoelectric properties with piezoelectric coefficients (d 33 ≈700 pC N -1 , d 33 * ≈980 pm V -1 ) and planar electromechanical coupling factor (k p ≈76%) are achieved in highly textured (K,Na)NbO 3 (KNN)-based ceramics. The excellent piezoelectric properties can be explained by the strong anisotropic feature, optimized engineered domain configuration in the textured ceramics, and facilitated polarization rotation induced by the intermediate phase. In addition, the nanodomain structures with decreased domain wall energy and increased domain wall mobility also contribute to the ultrahigh piezoelectric properties. This work not only demonstrates the tremendous potential of KNN-based ceramics to replace lead-based piezoelectrics but also provides a good strategy to design high-performance piezoelectrics by controlling appropriate phase and crystallographic orientation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  8. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  9. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  10. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT–ionomer composites

    International Nuclear Information System (INIS)

    James, N K; Lafont, U; Van der Zwaag, S; Groen, W A

    2014-01-01

    Piezoelectric ceramic–polymer composites with 0–3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT–Zn ionomer and PZT–EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT–Zn ionomer composites have better piezoelectric properties compared to PZT–EMAA composites. The static and fatigue properties of the composites were investigated. The PZT–Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing. (paper)

  11. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    Science.gov (United States)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  12. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    Science.gov (United States)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  13. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  14. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  15. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  16. The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites

    International Nuclear Information System (INIS)

    Andrews, C; Lin, Y; Sodano, H A

    2010-01-01

    Piezoelectric materials offer exceptional sensing and actuation properties; however, they are prone to breakage and difficult to apply on curved surfaces in their monolithic form. One method of alleviating these issues is through the use of 0–3 nanocomposites, which are formed by embedding piezoelectric particles into a polymer matrix. Material of this class offers certain advantages over monolithic materials; however, it has seen little use due to its low coupling. Here we develop micromechanics and finite element models to study the electroelastic properties of an active nanocomposite, as a function of the aspect ratio and alignment of the piezoelectric filler. Our results show that the aspect ratio is critical for achieving high electromechanical coupling, and with an increase from 1 to 10 at 30% volume fraction of piezoelectric filler the coupling can increase to 60 times its initial value and achieve a bulk composite coupling as high as 90% for a pure PZT-7A piezoelectric constituent

  17. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.; Wang, Chun-Ming

    2009-01-01

    The piezoelectric, dielectric, and electromechanical properties of the (KCe) co-substituted calcium bismuth niobate (CaBi 2 Nb 2 O 9 , CBN) were investigated. The piezoelectric activities of CBN ceramics were significantly enhanced and the dielectric loss tan δ decreased by (KCe) substitution. The Ca 0.9 (KCe) 0.05 Bi 2 Nb 2 O 9 ceramics possess the optimal piezoelectric properties, and the piezoelectric coefficient (d 33 ), Curie temperature (T C ), and electromechanical coupling factors (k p and k t ) were found to be 16 pC/N, 868 C, 8.6%, and 23.8%, respectively. The excellent dielectric and electromechanical spectra, together with the high piezoelectric activities and ultrahigh Curie temperature, make CBN ceramics promising candidates for high temperature piezoelectric applications. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electronic property measurements for piezoelectric ceramics. Technical notes

    International Nuclear Information System (INIS)

    Cain, M.; Stewart, M.; Gee, M.

    1998-01-01

    A series of measurement notes are presented, with emphasis placed on the technical nature of the testing methodology, for the determination of key electronic properties for piezoelectric ceramic materials that are used as sensors and actuators. The report is segmented into 'sections' that may be read independently from the rest of the report. The following measurement issues are discussed: Polarisation/Electric field (PE) loop measurements including a discussion of commercial and an in-house constructed system that measures PE loops; Dielectric measurements at low and high stress application, including some thermal and stress dependency modelling of piezo materials properties, developed at NPL; Strain measurement techniques developed at CMMT; Charge measurement techniques suitable for PE loop and other data acquisition; PE loop measurement and software analysis developed at CMMT and Manchester University. The primary objective of this report is to provide a framework on which the remainder of the testing procedures are to be developed for measurements of piezoelectric properties at high stress and stress rate. These procedures will be the subject of a future publication. (author)

  19. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung

    2012-01-01

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li 2 CO 3 was added in excess to (Na 0.49 K 0.45 Li 0.06 )NbO 3 , and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li 2 CO 3 were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li 2 CO 3 , and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li 2 CO 3 , the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  20. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Woong; Lee, Sung-Chan; Kim, Min-Soo; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2012-09-15

    Through the low-temperature sintering method, a sintered body with excellent characteristics was produced in an eco-friendly niobate-based piezoelectric ceramic, whose application was low in expectation due to poor sinterability. Li{sub 2}CO{sub 3} was added in excess to (Na{sub 0.49}K{sub 0.45}Li{sub 0.06})NbO{sub 3}, and ceramics were manufactured using a commercial sintering method. Then, the sinterability and the piezoelectric properties of the specimens containing varying amounts of Li{sub 2}CO{sub 3} were investigated. The microstructure demonstrated the typical abnormal grain growth tendencies with the addition of Li{sub 2}CO{sub 3}, and this was explained through changes in the critical driving force in the interface reaction-controlled nucleation and growth theory. When the specimen had been sintered at 1000 .deg. C for 4 hours in air after the addition of 1.5 mol% Li{sub 2}CO{sub 3}, the sintered body showed outstanding characteristics with a piezoelectric coefficient of 180 pC/N, an electromechanical coupling coefficient of 0.32, and a dielectric constant of 975. These results showed that eco-friendly niobate-based ceramics, whose use in applications was expected to be difficult in spite of their excellent properties, could be used to produce piezoelectric materials with outstanding properties through a commercial low-temperature sintering method using additives.

  1. Study of dielectric and piezoelectric properties of CNT reinforced PZT-PVA 0-3 composite

    Science.gov (United States)

    Vyas, Prince; Prajapat, Rampratap; Manmeeta, Saxena, Dhiraj

    2016-05-01

    Ferroelectric ceramic/polymer composites have the compliance of polymers which overcome the problems of brittleness in ceramics. By imbedding piezoelectric ceramic powder into a polymer matrix, 0-3 composites with good mechanical properties and high dielectric breakdown strength can be developed. The obtained composites of 0-3 connectivity exhibit the piezoelectric properties of ceramics and flexibility, strength and lightness of polymer. These composites can be used in vibration sensing and transducer applications specially as piezoelectric sensors. A potential way to improve piezoelectric& dielectric properties of theses composites is by inclusion of another conductive phase in these composites as reported in the literature. In present work, we prepared PZT-PVA 0-3 composites with 60% ceramic volume fraction reinforced with CNTs with volume ranging from 0 to 1.5 vol%. These CNT reinforced composites were obtained using hot press method with thickness of 200 µm having 0-3 conductivity. These composites were poled applying DC voltage. Dielectric properties of these samples were obtained in a wide frequency range (100 Hz to 1 Mhz) at room temperature. The piezoelectric properties of these composites were analyzed by measuring piezoelectric charge constants (d33). The dielectric and piezoelectric properties of these composites were studied as a function of CNT volume content. In these reinforced composites, CNTs act as a conductive filler dispersed in the matrix which in turn facilitates poling and results in an increase of the piezoelectric properties of the composite due to formation of percolation path through the composites. With a CNT content of 0.3 vol.% in PZT/PVA/CNTs, an increase of 61.3 % was observed in piezoelectric strain factors (d33). In these CNT reinforced composites, a substantial increase (approx. 67%) was also observed in dielectric constant and approximately 89% increase was observed in dielectric loss factor. Results so obtained are in the good

  2. Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu

    2008-01-01

    The effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi 1/2 Na 1/2 )Ti 1-x (Zn 1/3 Nb 2/3 ) x O 3 (BNTZN-100x) lead-free piezoelectric ceramics was investigated. X-ray diffraction analysis shows that the materials are mono-perovskite phase. The morphotropic phase boundary (MPB) of BNTZN-100x ceramics between rhombohedral and tetragonal locates in the range of 0.5% ≤ x ≤ 2.0%. Temperature dependence of dielectric constant shows that these compounds are relaxor ferroelectrics. The compositions near the MPB exhibit relatively high piezoelectric properties. The piezoelectric constant (d 33 ) and the electromechanical coupling factor (k t ) show the maximum values of d 33 = 97 pC N -1 and k t = 0.46 at x = 2.0% and x = 1.0%, respectively. The BNTZN-100x ceramics are good candidate for use as ultrasonic transducer ceramics for high anisotropic with high k t value and low k p value

  3. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  4. Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites

    International Nuclear Information System (INIS)

    Huang Haitao; Zhou, L.M.

    2004-01-01

    We use a micromechanics approach to study the magnetoelectric (ME) properties of the piezoelectric/magnetostrictive composite with a 2-2 laminate structure and a 3-1 fibrous structure. It is found that the 3-1 composite has a higher ME coefficient than the 2-2 one, if the volume ratio of piezoelectric material is the same. The reason is that the 3-1 fibrous composite makes use of the longitudinal piezoelectric response and the piezoelectric voltage constant g 33 is 2-3 times that of g 31 . Generally, a smaller volume ratio of the piezoelectric material will generate a higher ME response. The tensile stress at the piezoelectric/magnetostrictive interface of the 3-1 fibrous composite, however, could be high enough to induce plastic deformation or microcracks, which leads to a ME coefficient lower than the theoretically predicted one

  5. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO{sub 2} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar, E-mail: ddse@uohyd.ernet.in [School of Engineering Sciences & Technology, University of Hyderabad, Hyderabad 500046 (India)

    2016-05-06

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT – 0.08 wt.%CeO{sub 2} lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO{sub 2} dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resulted in high piezoelectric charge coefficient d{sub 33} ~ 670pC/N, high electromechanical coupling coefficient k{sub p} ~ 60% and piezoelectric voltage coefficient g{sub 33} ~ 14 mV.m/N for BCZT – 0.08wt.% CeO{sub 2} ceramics.

  6. High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  7. Piezoelectric properties of PbTiO(3) thin films characterized with piezoresponse force and high resolution transmission electron microscopy

    NARCIS (Netherlands)

    Morelli, A.; Venkatesan, Sriram; Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2009-01-01

    In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics

  8. Phase coexistence and high piezoelectric properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 ceramics

    International Nuclear Information System (INIS)

    Wu Ling; Zhang Jialiang; Shao Shoufu; Zheng Peng; Wang Chunlei

    2008-01-01

    Lead-free (K x Na 1-x ) 0.96 Li 0.04 Nb 0.80 Ta 0.20 O 3 ceramics with x = 0.10-0.70 were prepared by the conventional solid-state reaction technique. The influence of the K/Na ratio on the microstructure, crystallographic structure, phase transition and piezoelectric properties was investigated. It has been disclosed that the phase transition temperature T O-T drastically decreases with x in the narrow compositional range of x 0.30-0.40 and the phase coexistence of the orthorhombic structure and the tetragonal structure occurs near x = 0.40. The ceramics with x = 0.40 shows high piezoelectric properties (d 33 = 254 pC N -1 , k p = 51.5%, k t = 49.4% and k 33 = 66.6%, respectively) with low dielectric loss (tan δ 1.5%) and weak temperature dependence between 10 and 85 deg. C. In particular, the piezoelectric properties remain almost unchanged in the thermal ageing test from -125 to 300 deg. C. Therefore, this ceramic is considered to be a very promising lead-free piezoelectric material for practical applications. The relation of piezoelectric properties with morphotropic phase boundary and polymorphic phase transition was discussed

  9. Progress in engineering high strain lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Leontsev, Serhiy O; Eitel, Richard E

    2010-01-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. (topical review)

  10. Progress in engineering high strain lead-free piezoelectric ceramics

    Science.gov (United States)

    Leontsev, Serhiy O; Eitel, Richard E

    2010-01-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343

  11. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  12. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  13. Electrical properties of a piezoelectric transformer for an AC-DC converter

    International Nuclear Information System (INIS)

    Park, Yong-Wook

    2010-01-01

    The electrical properties of a ring/dot piezoelectric transformer were analyzed for applications as an AC-DC converter using the step-down behavior of a piezoelectric transformer. The ring/dot piezoelectric transformer was prepared using Pb(Mn 1/3 Nb 2/3 )O 3 and Pb(Zn 1/3 Nb 2/3 )O 3 modified Pb(Zr,Ti)O 3 ceramics sintered at a relatively low temperature of 930 .deg. C for 90 min. When the transformer was matched with a load resistance of 1000 Ω, it transferred a maximum power of 27 W. The maximum power was produced at a dc output voltage of 30 V and a matching load resistance of 1000 Ω. While the manufactured ring/dot piezoelectric transformer released the maximum power at a resonance frequency of 71 kHz, the available frequency bandwidth was about 1 kHz at most due to strong frequency dependence of the piezoelectric transformer. The output dc current was highly improved up to 905 mA because no anisotropy of poling direction existed in the ring/dot piezoelectric transformer. Under a commercial input of 220 V ac , AC-DC converter successfully produced 27 W at 30 V dc and 905 mA.

  14. Piezoelectric and dielectric properties of polymer-ceramic composites for sensors

    NARCIS (Netherlands)

    James, N.K.

    2015-01-01

    The main objective of this PhD thesis is to develop new routes and concepts for manufacturing piezoelectric ceramic-polymer composites with adequate piezoelectric properties while retaining ease of manufacturing and mechanical flexibility and explore new possibilities to maximize especially the

  15. Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites

    Science.gov (United States)

    Sundar, Udhay

    Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second

  16. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration

    Science.gov (United States)

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-01

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  17. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  18. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    Science.gov (United States)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  19. Effect of outer hair cell piezoelectricity on high-frequency receptor potentials.

    Science.gov (United States)

    Spector, Alexander A; Brownell, William E; Popel, Aleksander S

    2003-01-01

    The low-pass voltage response of outer hair cells predicted by conventional equivalent circuit analysis would preclude the active force production at high frequencies. We have found that the band pass characteristics can be improved by introducing the piezoelectric properties of the cell wall. In contrast to the conventional analysis, the receptor potential does not tend to zero and at any frequency is greater than a limiting value. In addition, the phase shift between the transduction current and receptor potential tends to zero. The piezoelectric properties cause an additional, strain-dependent, displacement current in the cell wall. The wall strain is estimated on the basis of a model of the cell deformation in the organ of Corti. The limiting value of the receptor potential depends on the ratio of a parameter determined by the piezoelectric coefficients and the strain to the membrane capacitance. In short cells, we have found that for the low-frequency value of about 2-3 mV and the strain level of 0.1% the receptor potential can reach 0.4 mV throughout the whole frequency range. In long cells, we have found that the effect of the piezoelectric properties is much weaker. These results are consistent with major features of the cochlear amplifier.

  20. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  1. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  2. A classical mechanics model for the interpretation of piezoelectric property data

    International Nuclear Information System (INIS)

    Bell, Andrew J.

    2015-01-01

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s E , dielectric permittivity ε X , and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s E and ε X and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations

  3. A classical mechanics model for the interpretation of piezoelectric property data

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk [Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-12-14

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.

  4. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering

    International Nuclear Information System (INIS)

    Du Hongliang; Li Zhimin; Tang Fusheng; Qu Shaobo; Pei Zhibin; Zhou Wancheng

    2006-01-01

    Lead-free piezoelectric ceramics (K 0.5 Na 0.5 )NbO 3 (abbreviated as KNN) with the relative density of 97.6% have been synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics with different sintering temperature and heating rate was analyzed. Results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of heating rate and sintering temperature on microstructure and piezoelectric properties of KNN ceramics was investigated. The densification behavior and piezoelectric properties of KNN ceramics were enhanced by improving heating rate and sintering temperature. Pure KNN ceramics sintered at 1120 deg. C with heating rate of 5 deg. C/min showed optimized densification and piezoelectric properties (ρ = 4.4 g/cm 3 , d 33 = 120 pC/N -1 , k p = 0.40 and T c = 400 deg. C). The results show that KNN is a promising candidate for lead-free piezoelectric ceramics

  5. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N, E-mail: swada@yamanashi.ac.jp [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan)

    2011-10-29

    Porous potassium niobate (KNbO{sub 3}, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  6. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    International Nuclear Information System (INIS)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N

    2011-01-01

    Porous potassium niobate (KNbO 3 , KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  7. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Energy Technology Data Exchange (ETDEWEB)

    Parali, Levent, E-mail: levent.parali@cbu.edu.tr [Department of Electronics and Automation, Celal Bayar University, Manisa (Turkey); Şabikoğlu, İsrafil [Department of Physics, Celal Bayar University, Manisa (Turkey); Kurbanov, Mirza A. [Institute of Physics, Academy of Sciences of Azerbaijan, Baku (Azerbaijan)

    2014-11-01

    Highlights: • We prepared hybrid structured piezocomposites. • We examine thermostimulated depolarization of piezocomposites. • We examine frequency characteristic of piezocomposites with SiO{sub 2} and BaTiO{sub 3}. • The piezocomposites can be used in acoustic applications at 5 Hz–40 kHz. - Abstract: A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO{sub 3}, SiO{sub 2} to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO{sub 3} or SiO{sub 2}), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT–PVDF) and the hybrid structure (PZT–PVDF–BaTiO{sub 3}) composite are compared. The d{sub 33} value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d{sub 33} value and the coupling factor of the hybrid structure (PZT–HDPE–SiO{sub 2}) have exhibited about 68 and 52% increase according to microstructure composite (PZT–HDPE), respectively.

  8. Investigation of the structure and properties of (KxNa1-x)NbO3-based piezoelectric ceramics using both conventional and high-throughput experimentation (HTE) methods

    International Nuclear Information System (INIS)

    Mgbemere, Henry Ekene

    2012-01-01

    The structure and properties of (K x Na 1-x )NbO 3 lead-free piezoelectric ceramics was investigated in this work. Both the conventional mixed-oxide ceramics synthesis route and the high-throughput experimentation (HTE) approaches were employed for the synthesis. Structural characterization was carried out with synchrotron X-rays while the electrical properties were characterized with techniques (dielectric measurement, hysteresis measurements, impedance measurements etc). Both isovalent and aliovalent elements (Ta, Sb, Li) were used to dope (K x Na 1-x )NbO 3 ceramics in order to improve its piezoelectric properties and sinterability.

  9. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  10. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  11. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  12. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    Science.gov (United States)

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  13. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    Science.gov (United States)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V-1 compared to 2.17 pm V-1 for AlN on polyimide and 4.0 pm V-1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  14. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    Science.gov (United States)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  15. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  16. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  17. Development of High Performance Piezoelectric Polyimides

    Science.gov (United States)

    Simpson, Joycelyn O.; St.Clair, Terry L.; Welch, Sharon S.

    1996-01-01

    In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.

  18. TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics

    Science.gov (United States)

    Leontsev, Serhiy O.; Eitel, Richard E.

    2010-08-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.

  19. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    International Nuclear Information System (INIS)

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  20. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    Science.gov (United States)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  1. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  2. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  3. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  4. Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Vidhi [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Ghosh, S.K., E-mail: saritghosh@gmail.com [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Hussain, Ali [School of Advanced Materials Engineering, Changwon National University, Gyeong-Nam, 641-773 (Korea, Republic of); Rout, S.K., E-mail: skrout@bitmesra.ac.in [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India)

    2016-07-25

    Lead free niobium modified piezoelectric ceramics Bi{sub 0.5}Na{sub 0.25}K{sub 0.25}Nb{sub x}Ti{sub 1-x}O{sub 3} (BNKT) (x = 0.0, 0.015 and 0.025) compositions along with their structural and opto-electrical properties are investigated. At room temperature Rietveld refinement analysis on x-ray diffraction data revealed the evidence of tetragonal (P4mm) + cubic (Pm3m) mixed phases at 0.015Nb-BNKT composition and at higher niobium concentration it moves towards cubic phase. Presence of local disorder controls the Raman active vibrational modes along with excitation and emission spectra in these materials. The temperature dependence dielectric constant is investigated in the frequency range of 1 kHz–100 kHz. The broadening of dielectric peak and frequency dependence behavior indicated a relaxor property in these materials. Induced A-site vacancies and coexistence of tetragonal-pseudocubic phases lower the depolarization temperature (T{sub d}) with niobium concentration. The structural mix phases have been correlated with the piezoelectric coefficients and the composition x = 0.015 depicts the better piezoelectric properties amongst the studied compositions which is endorsed to the mixed symmetry of tetragonal and cubic phases. - Highlights: • Coexistence of polar and non-polar phases in Nb doped BNKT materials. • Structural instability and lattice disorder controls the opto-electrical properties. • Broadening and shifting of dielectric peaks highlighted the relaxor behavior. • High value of ferroelectric and piezoelectric coefficients at x = 0.015 composition.

  5. Piezoelectric properties of zinc oxide nanowires: an ab initio study.

    Science.gov (United States)

    Korir, K K; Cicero, G; Catellani, A

    2013-11-29

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material.

  6. Piezoelectric properties of zinc oxide nanowires: an ab initio study

    International Nuclear Information System (INIS)

    Korir, K K; Cicero, G; Catellani, A

    2013-01-01

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material. (paper)

  7. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  8. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  9. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  10. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-08-01

    Full Text Available Piezoelectric lead zirconatetitanate (PZT/polymer composites were prepared by two typical polymer matrixes using the hot-press method. The micromorphology, microstructure, dielectric properties, and piezoelectric properties of the PZT/polymer composites were characterized and investigated. The results showed that when the condition of frequency is 103 Hz, the dielectric and piezoelectric properties of PZT/poly(vinylidene fluoride were both better than that of PZT/polyvinyl chloride (PVC. When the volume fraction of PZT was 50%, PZT/PVDF prepared by the hot-press method had better comprehensive electric property.

  11. Atomistic configurational effects on piezoelectric properties of La3Ta0.5Ga5.5O14 and a new piezoelectric crystal design

    International Nuclear Information System (INIS)

    Chung, Chan-Yeup; Yaokawa, Ritsuko; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2011-01-01

    Single crystalline langatate (LTG, La 3 Ta 0.5 Ga 5.5 O 14 ) has been widely used as a sensor material in high temperature applications because of its thermally stable piezoelectric properties. In this research, to elucidate the relationship between piezoelectric tensors and local ionic configurations, first-principles calculations based on density functional perturbation theory (DFPT) were performed on various local ionic structures. The results indicate that two independent relaxed-ion piezoelectric coefficients, e 11 and e 14 , increased with increases in La (3e) -O and Ta (1a) -O distances or decreases in Ga (3f,2d) -O distances. Thus, to obtain high piezoelectric constants in this crystal, ions larger than La 3+ should be incorporated at 3e sites to open the distance between 3e ions and oxygen ions, and ions smaller than Ga 3+ should be introduced at 2d and 3f sites to reduce the distance between Ga and O ions. Finally, from this design rule, a new crystal, BTAS (Ba 3 TaAl 3 Si 2 O 14 ), which belongs to the same P321 group, is proposed. The calculated relaxed-ion piezoelectric coefficient e 11 of BTAS was 17.7% higher than the coefficient of a LTG crystal. This significant increase confirms BTAS as a useful new piezo-material, especially in applications where there is also a need to reduce the use of more expensive elements.

  12. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  13. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  14. Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators.

    Science.gov (United States)

    Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun; Seung, Wanchul; Lee, Jong Seok; Lee, Jaichan; Kim, Sang-Woo

    2017-08-01

    Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal-boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS 2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal-stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe 2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe 2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)-grown WSe 2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD-grown WSe 2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe 2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe 2 for which the device performance becomes degraded above a strain of 0.63%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recent developments in piezoelectric ceramic materials and deterioration of their properties

    International Nuclear Information System (INIS)

    Pasha, R.A.; Khan, M.Z.

    2006-01-01

    There has been growing interest in recent years in piezoelectric ceramic materials because of their excellent dielectric, sensing, actuating and efficient process control applications. Lead Zirconate Titanate (PZT), Barium Titanate (BaTi O/sub 3/) and Lead Metaniobate (PbNb/sub 2/ O/sub 6/) and PVDF Polymers and generally favored as smart sensing materials. These materials are being used in critical engineering systems and smart structure. Fatigue failure due to electrical and thermal shocking is a major issue in degradation of these materials. Lot of work has been done in this area but still various issues need to investigate. Recent developments and current issues in piezoelectric materials and deterioration of their properties in different working conditions are discussed. The development of Finite Element codes incorporating smart material element has provided an opportunity to solve some practical problems. The new piezoelectric finite element capability available in some commercial package like ANSYS makes it convenient to perform static dynamic and thermal analysis for the fully coupled piezoelectric and structural response. Researchers have a great scope to uncover the various properties of these smart materials in different environmental conditions. In present work an overall review of the title is presented. (author)

  16. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    Science.gov (United States)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  17. The design and fabrication of highly piezoelectric polymeric composites and their use in responsive devices

    Science.gov (United States)

    Baur, Cary Allen

    In this work, novel approaches to the design of highly piezoelectric and flexible polymer composites were explored. Diverging from past work focused on the addition of piezoelectric particles into polymer matrices, this research explores the ability to increase the piezoelectric performance of a host polymer through the incorporation of charge via polarizable, organic particles. The ability to insert charge into polymers, known as electrets, is well documented but widely considered impractical because of the low lifetime and temperature resistance of the inserted charge. Through the addition of particles that are polarizable, charge can be inserted into a system in a stable manner that results in highly charged materials with long lifetimes. Here, carbon structures, such as Buckminsterfullerenes (C60) and single-walled nanotubes (SWNTs), were composited into poly(vinylidene difluoride) at very low loading levels (0.05-0.25 wt%), resulting in the ability to insert stable charge into the system. We show that these highly charged systems can result in a doubling of the piezoelectric response of the host polymer when optimized. The low amount of nanoparticle filler required to improve these materials allows for the advantageous properties of the polymer matrix such as flexibility and compliance to be preserved, enabling highly piezoelectric and flexible system. This dissertation outlines research efforts towards the design and fabrication of 1) polymer composites with high piezoelectric response, 2) piezoelectric composites with increased operating temperatures, 3) motion control devices that incorporate piezoelectric materials and shape memory polymers, and 4) artificial muscles with piezoelectric polymers. The piezoelectric polymer composites developed in this work have potential to be utilized as highly efficient, flexible energy harvesters that can be used to capture ambient energy from environmental vibrations and motion from the human body. As actuators, these

  18. Tubular fluoropolymer arrays with high piezoelectric response

    Science.gov (United States)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz

    2018-01-01

    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  19. Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics

    DEFF Research Database (Denmark)

    Yap, Emily W.; Glaum, Julia; Oddershede, Jette

    2018-01-01

    The ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) ceramics were measured as a function of porosity. Porous BCZT ceramics were fabricated using the sacrificial fugitive technique. Two different pore morphologies were induced by adding polymeric microspheres...... and fibres as the pore-forming agents. Increasing porosity led to decreasing ferroelectric and piezoelectric properties due to a reduction of polarisable BCZT ceramic available. With the benefit of being a lead-free piezoelectric material, porous BCZT ceramics may be considered for acoustic impedance...

  20. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    Science.gov (United States)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-08

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  1. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  2. Piezoelectric and mechanical properties of structured PZT–epoxy composites

    NARCIS (Netherlands)

    Kunnamkuzhakkal James, N.; Van den Ende, D.; Lafont, U.; Van der Zwaag, S.; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  3. Depolarization temperature and piezoelectric properties of Na1/2 ...

    Indian Academy of Sciences (India)

    1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a morphotropic ...

  4. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  5. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    Science.gov (United States)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  6. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun, E-mail: lijuna@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Yang [Department of chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Guo, Ruyan; Bhalla, Amar S. [Multifunctional Electronic Materials and Device Research Lab, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio 78249 (United States)

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  7. Depolarization temperature and piezoelectric properties of TiO3 ...

    Indian Academy of Sciences (India)

    WINTEC

    2TiO3–Na1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a ...

  8. Energy harvesting from high-rise buildings by a piezoelectric harvester device

    International Nuclear Information System (INIS)

    Xie, X.D.; Wang, Q.; Wang, S.J.

    2015-01-01

    A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters. - Highlights: • A new piezoelectric technology in energy harvesting from high-rise buildings is introduced. • A new mathematics model to calculate the energy harvested by the piezoelectric device is developed. • A novel efficient design of the piezoelectric harvester device in provided. • An electric power up to 432 MW under a seismic excitation at a frequency of 30 rad/s is achieved.

  9. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite

    Indian Academy of Sciences (India)

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements ...

  10. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measure-.

  11. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    Science.gov (United States)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  12. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  13. Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Wang Yuanyu; Wu Jiagang; Xiao Dingquan; Zhang Bin; Wu Wenjuan; Shi Wei; Zhu Jianguo

    2008-01-01

    0.995[(K 0.50 Na 0.50 ) 0.94 Li 0.06 ]NbO 3 -0.005AETiO 3 (AE=Ca, Sr, Mg, Ba) lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AETiO 3 and poling temperature on the electrical properties of the ceramics were carefully studied, and the temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the ceramics with Li and CaTiO 3 possess the pure phase, Li and AETiO 3 improves the electrical properties of the pure (K 0.50 Na 0.50 )NbO 3 ceramics, the poling temperature near tetragonal and orthorhombic phase transition will enhance the piezoelectric properties of the ceramics and the KNLN-CT ceramics exhibit good temperature stability of electrical properties for tetragonal and orthorhombic phase transition below room temperature. The KNLN-CT ceramics exhibit relatively good properties: d 33 = 172 pC N -1 , k p = 0.43, tan δ = 0.032, ε r = 771 and T c = 465 deg. C. As a result, the KNLN-CT ceramic is promising candidate material for piezoelectric devices.

  14. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  15. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  16. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  17. A FEM-based method to determine the complex material properties of piezoelectric disks.

    Science.gov (United States)

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  18. Nanoconfinement: an effective way to enhance PVDF piezoelectric properties.

    Science.gov (United States)

    Cauda, Valentina; Stassi, Stefano; Bejtka, Katarzyna; Canavese, Giancarlo

    2013-07-10

    The dimensional confinement and oriented crystallization are both key factors in determining the piezoelectric properties of a polymeric nanostructured material. Here we prepare arrays of one-dimensional polymeric nanowires showing piezoelectric features by template-wetting two distinct polymers into anodic porous alumina (APA) membranes. In particular, poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride-trifluoroethylene), PVTF, are obtained in commercially available APA, showing a final diameter of about 200 nm and several micrometers in length, reflecting the templating matrix features. We show that the crystallization of both polymers into a ferroelectric phase is directed by the nanotemplate confinement. Interestingly, the PVDF nanowires mainly crystallize into the β-phase in the nanoporous matrix, whereas the reference thin film of PVDF crystallizes in the α nonpolar phase. In the case of the PVTF nanowires, needle-like crystals oriented perpendicularly to the APA channel walls are observed, giving insight on the molecular orientation of the polymer within the nanowire structure. A remarkable piezoelectric behavior of both 1-D polymeric nanowires is observed, upon recording ferroelectric polarization, hysteresis, and displacement loops. In particular, an outstanding piezoelectric effect is observed for the PVDF nanowires with respect to the polymeric thin film, considering that no poling was carried out. Current versus voltage (I-V) characteristics showed a consistent switching behavior of the ferroelectric polar domains, thus revealing the importance of the confined and oriented crystallization of the polymer in monodimensional nanoarchitectures.

  19. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  20. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Science.gov (United States)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  1. Electrical Properties of Low Temperature Sintering Step-Down Multilayer Piezoelectric Transformer

    Science.gov (United States)

    Yoo, Juhyun; Kim, Kookjin; Jeong, Yeongho

    2007-06-01

    The multilayer structured ceramic transformers were sintered at the low temperature of 940 °C and manufactured with the size of 27 × 27 × 2.2 mm3, respectively, using 0.07Pb(Mn1/3Nb2/3)O3-0.06Pb(Zn1/3Nb2/3)O3-0.87Pb(Zr0.48Ti0.52)O3 (A-type) and 0.07Pb(Mn1/3Nb2/3)O3-0.10Pb(Ni1/3Nb2/3)O3-0.83Pb(Zr0.48Ti0.52)O3 (B-type) composition ceramics. And then, their electrical properties were investigated according to the variations of frequency and load resistance. The voltage step-up ratio of the transformers showed the maximum values at the vicinity of 69 kHz. At the load resistance of 100 Ω, A-type and B-type piezoelectric transformers showed the temperature rises of about 21 °C at the output power of 15 and 18 W, respectively. At B-type transformer with high effective electromechanical coupling factor (keff) and high piezoelectric constant (d33), lower temperature increase was relatively appeared.

  2. Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Han Han

    2015-12-01

    Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.

  3. Erratum to: Elastic and piezoelectric properties, sound velocity and ...

    Indian Academy of Sciences (India)

    Erratum to: Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) BBi compound under pressure. S DAOUD1,∗, N BIOUD2 and N LEBGAA2. 1Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj, 34000, Algeria. 2Laboratoire d'Optoélectronique & Composants, Université ...

  4. High-Throughput Investigation of a Lead-Free AlN-Based Piezoelectric Material, (Mg,Hf)xAl1-xN.

    Science.gov (United States)

    Nguyen, Hung H; Oguchi, Hiroyuki; Van Minh, Le; Kuwano, Hiroki

    2017-06-12

    We conducted a high-throughput investigation of the fundamental properties of (Mg,Hf) x Al 1-x N thin films (0 piezoelectric materials. For the high-throughput investigation, we prepared composition-gradient (Mg,Hf) x Al 1-x N films grown on a Si(100) substrate at 600 °C by cosputtering AlN and MgHf targets. To measure the properties of the various compositions at different positions within a single sample, we used characterization techniques with spatial resolution. X-ray diffraction (XRD) with a beam spot diameter of 1.0 mm verified that Mg and Hf had substituted into the Al sites and caused an elongation of the c-axis of AlN from 5.00 Å for x = 0 to 5.11 Å for x = 0.24. In addition, the uniaxial crystal orientation and high crystallinity required for piezoelectric materials to be used as application devices were confirmed. The piezoelectric response microscope indicated that this c-axis elongation increased the piezoelectric coefficient almost linearly from 1.48 pm/V for x = 0 to 5.19 pm/V for x = 0.24. The dielectric constants of (Mg,Hf) x Al 1-x N were investigated using parallel plate capacitor structures with ∼0.07 mm 2 electrodes and showed a slight increase by substitution. These results verified that (Mg,Hf) x Al 1-x N is a promising material for piezoelectric-based application devices, especially for vibrational energy harvesters.

  5. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  6. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  7. Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications

    International Nuclear Information System (INIS)

    Jackson, Nathan; Keeney, Lynette; Mathewson, Alan

    2013-01-01

    The development of a CMOS compatible flexible piezoelectric material is desired for numerous applications and in particular for biomedical MEMS devices. Aluminum nitride (AlN) is the most commonly used CMOS compatible piezoelectric material, which is typically deposited on Si in order to enhance the c-axis (002) crystal orientation which gives AlN its high piezoelectric properties. This paper reports on the successful deposition of AlN on polyimide (PI-2611) material. The AlN deposited has a FWHM (002) value of 5.1° and a piezoelectric d 33 value of 1.12 pm V −1 , and SEM images show high quality columnar grains. The highly crystalline AlN material is due to the semi-crystalline properties of the polyimide film used. Cytotoxicity testing showed the AlN/polyimide material to be non-toxic to 3T3 cells and primary neurons. Surface properties of the AlN/polyimide film were evaluated as they have a significant effect on the adhesion of cells to the film. The results show neurons adhering to the AlN surface. The results of this paper show the characterization of a new flexible-CMOS and biocompatible AlN/polyimide material for MEMS devices with improved crystallinity and piezoelectric properties. (paper)

  8. Fatigue and retention properties of shape memory piezoelectric actuator with non-180° domain switching

    International Nuclear Information System (INIS)

    Kadota, Y; Morita, T

    2012-01-01

    A shape memory piezoelectric actuator can maintain a piezoelectric displacement without an operating voltage. It has two stable strain states at zero voltage: a poled state and a depoled state. The driving principle of the shape memory piezoelectric actuator is based on reorientation of the non-180° domains in the ferroelectric materials. In this study, a unimorph shape memory piezoelectric actuator with a soft lead zirconate titanate was fabricated. The fatigue and retention properties of this shape memory piezoelectric actuator were investigated. The fatigue behavior of the actuator in the early stages is considered to be closely related to the domain stabilization process. Continuous cycle fatigue tests revealed that the shape memory piezoelectric actuator continues to operate even after 10 6 cycles. Retention measurements revealed that the depoled state of the actuator was more stable than the poled state. The drift in the actuator displacement over one year was estimated to be less than 10% of the initial shape memory displacement. (paper)

  9. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  10. Polarization Stability of Amorphous Piezoelectric Polyimides

    Science.gov (United States)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  11. Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering.

    Science.gov (United States)

    Liu, Yingchun; Chang, Yunfei; Li, Fei; Yang, Bin; Sun, Yuan; Wu, Jie; Zhang, Shantao; Wang, Ruixue; Cao, Wenwu

    2017-09-06

    Both low strain hysteresis and high piezoelectric performance are required for practical applications in precisely controlled piezoelectric devices and systems. Unfortunately, enhanced piezoelectric properties were usually obtained with the presence of a large strain hysteresis in BaTiO 3 (BT)-based piezoceramics. In this work, we propose to integrate crystallographic texturing and domain engineering strategies into BT-based ceramics to resolve this challenge. [001] c grain-oriented (Ba 0.94 Ca 0.06 )(Ti 0.95 Zr 0.05 )O 3 (BCTZ) ceramics with a texture degree as high as 98.6% were synthesized by templated grain growth. A very high piezoelectric coefficient (d 33 ) of 755 pC/N, and an extremely large piezoelectric strain coefficient (d 33 * = 2027 pm/V) along with an ultralow strain hysteresis (H s ) of 4.1% were simultaneously achieved in BT-based systems for the first time, which are among the best values ever reported on both lead-free and lead-based piezoceramics. The exceptionally high piezoelectric response is mainly from the reversible contribution, and can be ascribed to the piezoelectric anisotropy, the favorable domain configuration, and the formation of smaller sized domains in the BCTZ textured ceramics. This study paves a new pathway to develop lead-free piezoelectrics with both low strain hysteresis and high piezoelectric coefficient. More importantly, it represents a very exciting discovery with potential application of BT-based ceramics in high-precision piezoelectric actuators.

  12. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  13. Experimental measurements and finite element models of High Displacement Piezoelectric Actuators.

    Science.gov (United States)

    Camargo, Gilberto; Ashford, Gevale; Naco, Eris; Usher, Tim

    2004-03-01

    Piezoelectric actuators have many applications including morphable wing technology and piezoelectric transformers. A Piezoelectric ceramic is a material that will move when a voltage is applied and conversely produces a charge when a pressure is applied. In our study, we examine THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor) actuators (Thunder TM is a trademark of FACE International Corporation.) Thunder actuators are constructed by bonding thin PZT piezoelectric ceramics to metal sheets. We will present physical measurements of piezoelectric actuators, as well as measurements of the displacements due to applied voltages. In our studies we used a laser micrometer to measure the dimensional characteristics of four sizes of THUNDER actuators including TH-8R, TH-9R, TH-10R, and finally the TH-11R. We also developed computer models using a commercial fine element modeling package (FEM) known as ANSYS6.0®. This software enables us to construct our models controlling such attributes as exact dimensions of the three layers of the piezoelectric actuator, the material properties of each element, the type of load that is to be applied as well as the manner in which the layers are bonded together. The computer model compares favorably with the experimental results. Acknowledgements: NASA Grant No. 0051-0078 Department of Defense (DoD) Control No.ISP02-EUG15

  14. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Liping Shi

    2015-04-01

    Full Text Available Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient of piezoelectric actuators. These data from theoretical and experimental research show the following: (1 The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2 Under external field, E n ( ex = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3 According to the piezoelectric strain S i ( 1 , piezoelectric displacement D m ( 2 and piezoelectric strain S i ( 3 of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric

  15. Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence.

    Science.gov (United States)

    Wu, Bo; Wu, Haijun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Pennycook, Stephen J

    2016-11-30

    Because of growing environmental concerns, the development of lead-free piezoelectric materials with enhanced properties has become of great interest. Here, we report a giant piezoelectric coefficient (d 33 ) of 550 pC/N and a high Curie temperature (T C ) of 237 °C in (1-x-y)K 1-w Na w Nb 1-z Sb z O 3- xBiFeO 3- yBi 0.5 Na 0.5 ZrO 3 (KN w NS z -xBF-yBNZ) ceramics by optimizing x, y, z, and w. Atomic-resolution polarization mapping by Z-contrast imaging reveals the intimate coexistence of rhombohedral (R) and tetragonal (T) phases inside nanodomains, that is, a structural origin for the R-T phase boundary in the present KNN system. Hence, the physical origin of high piezoelectric performance can be attributed to a nearly vanishing polarization anisotropy and thus low domain wall energy, facilitating easy polarization rotation between different states under an external field.

  16. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  17. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  18. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  19. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  20. Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity.

    Science.gov (United States)

    Jha, Pardeep K; Jha, Priyanka A; Singh, Prabhakar; Ranjan, Rajeev; Dwivedi, R K

    2017-10-04

    BiFeO 3 (BFO) systems co-modified with Ti, Sm and Sm-Ti have been investigated for piezoelectricity together with dielectric and multiferroic properties. Structural studies revealed the coexistence of orthorhombic and rhombohedral (R3c) phases for x > 0.12. Impurity phases were shown to have hardly any effect on the remanent magnetization, which rather depends on the Fe-O-Fe bond angle. The dielectric loss was reduced considerably by substitution. A correlation between the piezoelectric coefficient and tetragonality was observed in these samples. BFO co-substituted with Sm-Ti exhibited a high piezoelectric coefficient with better ferroic properties, which revealed a unique combination of green piezoelectricity and multiferroicity.

  1. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios.

    Science.gov (United States)

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk; Bharadwaja, Srowthi N; Zhang, Dongshe; Zheng, Haixing

    2009-05-08

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol-gel solution to PZT powder in the composite solution. Both the remanent polarization, P(r), and transverse piezoelectric coefficient, e(31,) (f), increase with increasing proportion of the sol-gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm(2), a dielectric constant of 450 (at 1 kHz), and e(31,) (f) = -2.8 C/m(2). Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm(2), a dielectric constant of 1250 (at 1 kHz) and e(31,) (f) = -5.8 C/m(2).

  2. Giant piezoelectricity on Si for hyperactive MEMS.

    Science.gov (United States)

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  3. Ferroelectric materials for piezoelectric actuators by optimal design

    International Nuclear Information System (INIS)

    Jayachandran, K.P.; Guedes, J.M.; Rodrigues, H.C.

    2011-01-01

    Research highlights: → Microstructure optimization of ferroelectric materials by stochastic optimization. → Polycrystalline ferroelectrics possess better piezo actuation than single crystals. → Randomness of the grain orientations would enhance the overall piezoelectricity. - Abstract: Optimization methods provide a systematic means of designing heterogeneous materials with tailored properties and microstructures focussing on a specific objective. An optimization procedure incorporating a continuum modeling is used in this work to identify the ideal orientation distribution of ferroelectrics (FEs) for application in piezoelectric actuators. Piezoelectric actuation is dictated primarily by the piezoelectric strain coefficients d iμ . Crystallographic orientation is inextricably related to the piezoelectric properties of FEs. This suggests that piezoelectric properties can be tailored by a proper choice of the parameters which control the orientation distribution. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Stochastic optimization combined with a generalized Monte Carlo scheme is used to optimize the objective functions, the effective piezoelectric coefficients d 31 and d 15 . The procedure is applied to heterogeneous, polycrystalline, FE ceramics which are essentially an aggregate of variously oriented grains (crystallites). Global piezoelectric properties are calculated using the homogenization method at each grain configuration chosen by the optimization algorithm. Optimal design variables and microstructure that would generate polycrystalline configurations that multiply the macroscopic piezoelectricity are identified.

  4. A first-principles study of the piezoelectric properties of Niobium and Tantalum Pentoxides

    Directory of Open Access Journals (Sweden)

    Olga M. Giraldo-Giraldo

    2017-09-01

    Full Text Available Nb2O5 and Ta2O5 are wide-bandgap semiconductor oxides that have attracted great interest in recent years due to their technological applications, such as in electronics, telecommunications or photocatalysis. Because of this, we present a study based on firstprinciples calculations of the piezoelectric properties of the Z and β phases of Ta2O5 as well as the Z and P phases of Nb2O5 by using the Density Functional Theory and the Generalized Gradient Approximation with PBEsol parameterization. Once the equilibrium geometry was determined for each of these phases, we made a calculation using the linear response theory to determine the piezoelectric tensor associated with each phase. We discovered that the Z phase of both compounds presents good piezoelectric response. Additionally, β-Ta2O5 does not show such response.

  5. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  6. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  7. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  8. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  9. Spectroscopic studies on (Ba,Ca)(Ti,Zr)O3 ferroelectric ceramics with high piezoelectric coefficients

    International Nuclear Information System (INIS)

    Archana Kumar; Sreenivas, K.

    2013-01-01

    In recent year non lead-based multi component ceramics consisting Ba(Ti 0.8 Zr 0.2 )O 3- (Ba 0.7 Ca 0.3 )TiO 3 have been found to exhibit high piezoelectric coefficients comparable to those of PZT, and there is a lot interest to understand nature of phase transition in these novel compositions. In the present study 0.5Ba(Ti 0.8 Zr 0.2 )O 3- 0.5(Ba 0.7 Ca 0.3 )TiO 3 ceramic composition calcinated and sintered at different temperatures has been investigated. The ceramics are prepared from the raw powders and reacted by a solid state reaction method. Spectroscopic methods including DTA/TGA, FTIR and Raman spectroscopy been used to understand the changes occurring in the chemical and structural properties during processing. The nature of polymorphic phase transition has been studied through the temperature dependent Raman spectroscopy. The de-poling characteristics with temperature have been studied to assess their usefulness for high temperature transducer applications, and their ferroelectric properties have been studied. This new composition exhibits high piezoelectric (d 33 ), and the transition temperature is low around 120℃. (author)

  10. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  11. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  13. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  14. Piezoelectricity in polymers

    International Nuclear Information System (INIS)

    Kepler, R.G.; Anderson, R.A.

    1980-01-01

    Piezoelectricity and related properties of polymers are reviewed. After presenting a historical overview of the field, the mathematical basis of piezo- and pyroelectricity is summarized. We show how the experimentally measured quantities are related to the changes in polarization and point out the serious inequlity between direct and converse piezoelectric coefficients in polymers. Theoretical models of the various origins of piezo- and pyroelectricity, which include piezoelectricity due to inhomogeneous material properties and strains, are reviewed. Relaxational effects are also considered. Experimental techniques are examined and the results for different materials are presented. Because of the considerable work in recent years polyimylidene fluoride, this polymer receives the majority of the attention. The numerous applications of piezo-and pyroelectric polymers are mentioned. This article concludes with a discussion of the possible role of piezo- and pyroelectricity in biological system

  15. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    Science.gov (United States)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational

  16. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  17. Effect Of Electric Field Induced Texture On The Properties Of Piezoelectric Lead Zirconate Titanate

    International Nuclear Information System (INIS)

    Alkoy, S.

    2010-01-01

    Texturing a polycrystalline piezoelectric ceramic provide single-crystal like properties without experiencing any difficulties of single crystal growth process. This study reports a method to obtain texture in PbZr 0 .5Ti 0 .5O 3 ceramics by application of an electric field during gelation of a gelcast slurry. Gelcasting provides a means to lock the particles aligned under the application of a high electric field via gelation and this alignment in green body was retained after sintering. Monomer, cross linker and dispersant were dissolved in DI water and PZT powder was dispersed in this premix. Iniator and catalyzer were added to the slurry. An electric field was applied to the slurry for 30 min during gelation. XRD pattern of sintered samples indicates that PZT develops a tetragonal symmetry as a result of E-field applied during gelation. Dielectric constants and piezoelectric d 3 3 coefficients along and perpendicular to E-field are 1070 and 450 and 390 and 280 pC/N, respectively.

  18. Elastic, piezoelectric and dielectric properties of La3Ga5.5Nb0.5O14 crystals

    International Nuclear Information System (INIS)

    Sil'vestrova, I.M.; Pisarevskij, Yu.V.; Kaminskij, A.A.; Mill', B.V.

    1987-01-01

    The results of investigation into piezoelectric, electric, acoustic and dielectric properties of monocrystals of niobium lanthanum gallate La 3 Ga 5.5 Nb 0.5 O 14 at room temperature are presented. It is concluded that niobium lanthanum gallate belongs to moderate strong piezoelectrics with a comparatively low level of acoustic losses up to hypersound frequencies

  19. Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data

    DEFF Research Database (Denmark)

    Araujo, A.; Soares, C.; Herskovits, J.

    2002-01-01

    With the increasing use of surface bonded piezoelectric sensors and actuators in laminated structures, rises the need for knowing accurate values for the resulting properties of these structures. The properties obtained through manufacturer data are in most of the cases not enough to predict...... the structural behaviour and implement efficient control algorithms for active noise and vibration control. To address this issue we propose a discrete finite element model, associated to gradient optimisation and to an inverse method using experimental vibration data to carry out the identification...... of electromechanical properties in composite plate specimens with surface bonded piezoelectric patches or layers. The properties to be determined are the elastic and piezoelectric constants of the structure's constituent materials. (C) 2002 Elsevier Science Ltd. All rights reserved....

  20. The structure and piezoelectric properties of (Ca1-xSrx)Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Zheng Liaoying; Li Guorong; Zhang Wangzhong; Chen, Daren; Yin Qinrui

    2003-01-01

    In this paper, the structure and piezoelectric properties of (Ca 1-x Sr x )Bi 4 Ti 4 O 15 ceramics (x=0-1.0) are investigated. The formation of single orthorhombic phase is verified by XRD. The dependence of dielectric and piezoelectric properties on x is also determined. The results show that the excellent properties could be found in the composition of x=0.4. In that composition, d 33 =14.9, T C =677 deg. C and the DC resistivity is decuplely higher than that of BST (SrBi 4 Ti 4 O 15 ) and CBT (CaBi 4 Ti 4 O 15 )

  1. Influences of donor dopants on the properties of PZT-PMS-PZN piezoelectric ceramics sintered at low temperatures

    International Nuclear Information System (INIS)

    Yoon, Seokjin; Choi, Jiwon; Choi, Jooyoung; Wan, Dandan; Li, Qian; Yang, Ying

    2010-01-01

    0.90Pb(Zr 0.48 Ti 0.52 )O 3 -0.05Pb(Mn 1/3 Sb 2/3 )O 3 -0.05Pb(Zn 1/3 Nb 2/3 )O 3 quaternary piezoelectric ceramics with CuO added were synthesized by using a conventional method at low sintering temperatures. CuO additive, 1.0 wt%, significantly improves the sinterability of 0.90PZT-0.05PMS-0.05PZN ceramics, lowering the sintering temperature to 900 .deg. C and showing moderate electrical properties: d 33 = 306 pC/N, Q m = 997, k p = 53.6%, tanδ = 0.50%, and ε T 33 = 1351. To obtain more optimal piezoelectric properties, we selected Bi 2 O 3 and Nb 2 O 5 as donor dopants to introduce a softening effect. The crystal structure, micro-morphology and electrical properties were studied in terms of the Bi 2 O 3 and the Nb 2 O 5 contents. Our study demonstrates that Bi 2 O 3 is very effective in improving the piezoelectric properties, causing a significant enhancement in d 33 and k p values. Particularly, 0.75-wt%-Bi 2 O 3 -added 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics show excellent electrical properties: d 33 = 363 pC/N, Q m = 851, k p = 59.3%, tanδ = 0.38%, and ε T 33 = 1596. On the other hand, the effect of Nb 2 O 5 on the piezoelectric properties is very complicated, 0.50 wt% Nb 2 O 5 doped 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics have a remarkable improvement in k p value and maintain good electrical properties: d 33 = 300 pC/N, Q m = 971, k p = 58.4%, tanδ = 0.36%, and ε T 33 = 1332.

  2. Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics

    International Nuclear Information System (INIS)

    Jain, Rajni; Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    The effect of poling on the structural, dielectric, and piezoelectric properties has been investigated for sol-gel-derived strontium bismuth tantalate (SBT) [Sr 1-x Bi 2+2x/3 Ta 2 O 9 ] ceramics with x=0.0,0.15,0.30,0.45. The dielectric and ferroelectric properties are found to improve with increase in x up to 0.3. Beyond x>0.3 the properties are found to degrade due to the limited solid solubility and the presence of a mixed phase of bismuth tantalate (BiTaO 4 ) is detected with x=0.45. Poling treatment reduces the dielectric dispersion and dielectric loss in the frequency range (0.1-100 kHz). The resonance and antiresonance frequencies increase with increase in x (x=0-0.30), and the corresponding minimum impedance decreases. The measured coupling coefficients (k p ) are small (0.0967-0.1) for x=0-0.30, and the electromechanical quality factor (Q m =915) is a maximum for the Sr 0.7 Bi 2.2 Ta 2 O 9 composition (x=0.30). The estimated piezoelectric charge coefficient (d 31 ) and piezoelectric voltage coefficient (g 31 ) are 5.2 pC/N and 5.8x10 -3 V m/N, respectively. The positive values of d 31 and g 31 and the low dielectric permittivity of SBT yield a high value for the hydrostatic coefficients, despite the low charge coefficient of d 33 =24 pC/N. The maximum values of charge coefficient (d h =34 pC/N) and voltage coefficient (g h =39x10 -3 V m/N) are obtained for Sr 0.7 Bi 2.2 Ta 2 O 9 composition, and the estimated hydrostatic figure of merit (d h g h x10 -15 =1215 m 2 /N) is high

  3. Relation of the external mechanical stress to the properties of piezoelectric materials for energy harvesting

    Science.gov (United States)

    Jeong, Soon-Jong; Kim, Min-Soo; Lee, Dae-Su; Song, Jae-Sung; Cho, Kyung-Ho

    2013-12-01

    We investigated the piezoelectric properties and the generation of voltage and power under the mechanical compressive loads for three types of piezoelectric ceramics 0.2Pb(Mg1/3Nb2/3)O3-0.8Pb(Zr0.475Ti0.525)O3 (soft-PZT), 0.1Pb(Mg1/3Sb2/3)O3- 0.9Pb(Zr0.475Ti0.525)O3 (hard-PZT) and [0.675Pb(Mg1/3Nb2/3)O3-0.35PbTiO3]+5 wt% BaTiO3 (textured-PMNT). The piezoelectric d 33 coefficients of all specimens increased with increasing compressive load. The generated voltage and power showed a linear relation and square relation to the applied stress, respectively. These results were larger than those calculated using the simple piezoelectric equation due to the non-linear characteristics of the ceramics, so they were evaluated with a simple model based on a non-linear relation.

  4. Enhancement of the piezoelectric properties of sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) through modification with cobalt

    International Nuclear Information System (INIS)

    Wang Chunming; Wang Jinfeng; Zheng Limei; Zhao Minglei; Wang Chunlei

    2010-01-01

    The dielectric, piezoelectric, and electromechanical properties of B-site cobalt-modified sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) piezoelectric ceramics were investigated. The piezoelectric properties of NLBT ceramics can be enhanced by cobalt modifications. The NLBT ceramics modified with 0.2 wt.% cobalt trioxide (NLBT-C4) possess good piezoelectric properties, with piezoelectric coefficient d 33 of 27 pC/N, electromechanical coupling factors (k p and k t ) of 6.5% and 28.5%, and mechanical quality factor Q m (k p mode) of 3400. The Curie temperature T c of cobalt-modified NLBT ceramics was found to slightly higher than that of pure NLBT ceramics. A large dielectric abnormity in dielectric loss tan δ was observed in NLBT ceramics, which can be significantly suppressed by cobalt modification. Thermal annealing studies presented the cobalt-modified NLBT ceramics possess stable piezoelectric properties.

  5. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    Science.gov (United States)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  6. High-throughput density functional calculations to optimize properties and interfacial chemistry of piezoelectric materials

    Science.gov (United States)

    Barr, Jordan A.; Lin, Fang-Yin; Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.

    2018-02-01

    High-throughput density functional theory calculations are conducted to search through 1572 A B O3 compounds to find a potential replacement material for lead zirconate titanate (PZT) that exhibits the same excellent piezoelectric properties as PZT and lacks both its use of the toxic element lead (Pb) and the formation of secondary alloy phases with platinum (Pt) electrodes. The first screening criterion employed a search through the Materials Project database to find A -B combinations that do not form ternary compounds with Pt. The second screening criterion aimed to eliminate potential candidates through first-principles calculations of their electronic structure, in which compounds with a band gap of 0.25 eV or higher were retained. Third, thermodynamic stability calculations were used to compare the candidates in a Pt environment to compounds already calculated to be stable within the Materials Project. Formation energies below or equal to 100 meV/atom were considered to be thermodynamically stable. The fourth screening criterion employed lattice misfit to identify those candidate perovskites that have low misfit with the Pt electrode and high misfit of potential secondary phases that can be formed when Pt alloys with the different A and B components. To aid in the final analysis, dynamic stability calculations were used to determine those perovskites that have dynamic instabilities that favor the ferroelectric distortion. Analysis of the data finds three perovskites warranting further investigation: CsNb O3 , RbNb O3 , and CsTa O3 .

  7. Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators

    Science.gov (United States)

    Martín-Sánchez, Javier; Trotta, Rinaldo; Mariscal, Antonio; Serna, Rosalía; Piredda, Giovanni; Stroj, Sandra; Edlinger, Johannes; Schimpf, Christian; Aberl, Johannes; Lettner, Thomas; Wildmann, Johannes; Huang, Huiying; Yuan, Xueyong; Ziss, Dorian; Stangl, Julian; Rastelli, Armando

    2018-01-01

    The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots (QDs) embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. It is shown that unprocessed piezoelectric substrates (monolithic actuators) allow to obtain a certain degree of control over the nanomaterials’ emission properties such as their emission energy, fine-structure-splitting in self-assembled InAs QDs and semiconductor 2D materials, upconversion phenomena in BaTiO3 thin films or piezotronic effects in ZnS:Mn films and InAs QDs. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary QDs. Future research directions and prospects are discussed.

  8. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  9. Pressure-sensing properties of single-walled carbon nanotubes covered with a corona-poled piezoelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ikawa, Takeshi; Tabata, Hiroshi, E-mail: tabata@eei.eng.osaka-u.ac.jp; Yoshizawa, Takeshi; Utaka, Ken; Kubo, Osamu; Katayama, Mitsuhiro [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-07-18

    Single-walled carbon nanotubes (SWNTs) have been studied extensively as sensing elements for chemical and biochemical sensors because of their excellent electrical properties, their ultrahigh ratio of surface area to volume, and the consequent extremely high sensitivity of their surface to the surrounding environment. The extremely high sensitivity indicates that SWNTs can operate as excellent transducers when combined with piezoelectric materials. In this paper, we present a touch sensor based on SWNT thin-film transistors (SWNT-TFTs) covered with a thin film of the piezoelectric polymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Devices were fabricated by spin-coating a P(VDF-TrFE) layer on an SWNT-TFT, which was followed by in situ corona poling to polarize the P(VDF-TrFE) layer. We studied the effect of the corona polarity on the device characteristics and revealed that poling with a negative corona discharge induced a large amount of hole doping in the SWNTs and improved the touch-sensing performance of the devices, while a positive discharge had a negligible effect. The poled devices exhibited regular, stable, and positive drain current modulation in response to intermittent pressing, and the response was proportional to the magnitude of the applied pressure, suggesting that it was caused by the piezoelectric effect of the polarized P(VDF-TrFE) layer. Furthermore, we also fabricated a device using horizontally aligned SWNTs with a lower SWNT density as an alternative transducer to an SWNT thin film, which demonstrated sensitivity as high as 70%/MPa.

  10. Advances in Piezoelectric Systems: An Application-Based Approach

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel

    with their low manufacturing costs and high robustness has enabled wide-spread usage in applications ranging from simple spark lighters or pressure sensors to much more complicated energy harvesting systems and piezoelectric transformers. One governing property of piezoelectric devices is the existence....... These three distinct behaviors encountered in any piezoelectric device represents the ba- sis of discussion in the thesis. Therefore the present PhD dissertation is an application-based approach to researching all three behaviors individually, while nding solutions to the challenges encountered along the way...... bidirectional operation of a self-oscillating converter. Feasibility of using the converter in an MRI scanner is demonstrated. The third and nal behavior researched is the resistive behavior. This is widely encountered since most piezoelectric motors, ultrasonic baths and some energy harvesting systems operate...

  11. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  12. Piezoelectric properties of electrospun nanofibers of BaTiO3

    International Nuclear Information System (INIS)

    Carvalho, L.F.R.M.; Melo, G.F.; Goncalves, A.M.; Eiras, J.A.; Bretas, R.E.S.

    2016-01-01

    BaTiO3 nanofibers were produced by the electrospinning method from a mixture of a solution of the precursors Ba (CH_3COO)_2 and [(CH_3)_2CHO]_4Ti in acetic acid and a solution of poly(vinylpyrrolidone) in ethanol. A voltage of 10 kV and a working distance of 4.6 cm were used for the electrospinning, at controlled room temperature and humidity of 21 °C and 60% respectively. Nanofibers as spun were dried in air on an air-circulating oven at 100 °C for one hour to remove residual solvent and were subsequently calcined at 750 °C during 2 h. The morphology, crystallographic structure and piezoelectric properties of the nanofibers were analyzed by scanning electron microscopy (SEM), X-ray angle (WAXS) and Piezoresponse Force Microscopy (PFM), respectively. The average diameter of the nanofibers was 414 nm with an aspect ratio of 40. By PFM, there was strong evidence that the nanofibers had piezoelectric activity. (author)

  13. Theoretical analysis of dynamic property for piezoelectric cantilever triple-layer benders with large piezoelectric and electromechanical coupling coefficients

    Directory of Open Access Journals (Sweden)

    Li Jiao Gong

    2016-09-01

    Full Text Available Ferroelectric single crystals, such as PZN-PT, provide novel prospects in piezoelectric bending devices such as actuators, sensors or energy harvesters because of their extraordinarily large piezoelectric coefficients. However, large errors may occur in some analyses on electromechanical behaviors using the conventional models. We find the bending rigidity of piezoelectric composited bender is affected not only by thickness, width and the modulus of elasticity of the different layers but also electromechanical coupling coefficients (EMCCs of the piezoelectric material and the larger EMCCs mean more marked effect. This paper focuses on the derivation of the applied input excitation and output response characteristics in the circular frequency domain for piezoelectric cantilever triple-layer benders (PCTBs, taking into account the secondary piezoelectric effect. Analytic dynamic descriptions of such actuators and transducers are obtained. Based on the presented models dynamic features of PCTB composed of PZN-8%PT are calculated, and numerical results coincide with simulations using the finite element method (FEM.

  14. GEOMETRIC PROPERTIES OF A MECHANICAL FORWARD MOTION COMPENSATION SYSTEM CONTROLLED BY A PIEZOELECTRIC DRIVE

    Directory of Open Access Journals (Sweden)

    F. Collette

    2012-07-01

    Full Text Available Forward Motion Compensation (FMC systems have been designed to ensure the radiometric quality of motion acquisition in airborne cameras. If the radiometric benefits of FMC have been acknowledged, what are its effects on the geometrical properties of the camera? This paper demonstrates that FMC significantly improves geometrical properties of a camera. Aspects of FMC theory are discussed, with a focus on the near-lossless implementation of this technology into digital aerial camera systems. Among mechanical FMC technologies, the piezoelectric drive is proving to excel in dynamic positioning in both accuracy and repeatability. The patented piezoelectric drive integrated into Optech aerial camera systems allows for continuous and precise sensor motion to ensure exact compensation of the aircraft's forward motion. This paper presents findings that demonstrate the validity of this assertion. The paper also discusses the physical principles involved in motion acquisition. Equations are included that define the motion effect at image level and illustrate how FMC acts to prevent motion effects. The residual motion effect or compensation error is formulated and a practical computation applied to the more restrictive camera case. The assessment concludes that, in the range of airborne camera utilization, the mechanical FMC technique is free of "visible" error at both human eye and computer assessment level. Lastly, the paper proceeds to a detailed technical discussion of piezoelectric drives and why they have proven to be so effective as nanopositioning devices for optical applications. The effectiveness of the patented piezoelectric drives used to achieve FMC in Optech cameras is conclusively demonstrated.

  15. Finite element modeling of piezoelectric elements with complex electrode configuration

    International Nuclear Information System (INIS)

    Paradies, R; Schläpfer, B

    2009-01-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  16. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  17. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  18. Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.

    2010-02-01

    Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.

  19. Modeling and Experimental Analysis of Piezoelectric Shakers for High-Frequency Calibration of Accelerometers

    International Nuclear Information System (INIS)

    Vogl, Gregory W.; Harper, Kari K.; Payne, Bev

    2010-01-01

    Piezoelectric shakers have been developed and used at the National Institute of Standards and Technology (NIST) for decades for high-frequency calibration of accelerometers. Recently, NIST researchers built new piezoelectric shakers in the hopes of reducing the uncertainties in the calibrations of accelerometers while extending the calibration frequency range beyond 20 kHz. The ability to build and measure piezoelectric shakers invites modeling of these systems in order to improve their design for increased performance, which includes a sinusoidal motion with lower distortion, lower cross-axial motion, and an increased frequency range. In this paper, we present a model of piezoelectric shakers and match it to experimental data. The equations of motion for all masses are solved along with the coupled state equations for the piezoelectric actuator. Finally, additional electrical elements like inductors, capacitors, and resistors are added to the piezoelectric actuator for matching of experimental and theoretical frequency responses.

  20. Thermoelastic expansion vs. piezoelectricity for high-frequency, 2-D arrays.

    Science.gov (United States)

    Buma, Takashi; Spisar, Monica; O'Donnell, Matthew

    2003-08-01

    Optical generation using the thermoelastic effect has traditionally suffered from low conversion efficiency. We previously demonstrated increased efficiency of nearly 20 dB with an optical absorbing layer consisting of a mixture of polydimethylsiloxane (PDMS) and carbon black spin coated onto a glass microscope slide. In this paper we show that the radiated power from a black PDMS film is comparable to a 20 MHz piezoelectric two-dimensional (2-D) array element. Furthermore, we predict that a thermoelastic array element can produce similar acoustic power levels compared to ideal piezoelectric 2-D array elements at frequencies in the 100 MHz regime. We believe these results show that thermoelastic generation of ultrasound is a promising alternative to piezoelectricity for high-frequency, 2-D arrays.

  1. High temperature dielectric and ferroelectric properties of La-modified PbTiO3 nanoceramics

    International Nuclear Information System (INIS)

    Shukla, Archana; Shukla, Namrata; Choudhary, R.N.P.

    2016-01-01

    Ferroelectric materials with high Curie temperature (higher than 300 °C) are highly desirable to construct transducers for high-temperature piezoelectric applications. Among the ferroelectric materials, PbTiO 3 (PT) is considered to be one of the most promising materials. However, the fabrication of high density pure PT ceramics is very difficult because of the highly anisotropy, which limited the use in piezoelectric transducers. Usually, substitutions towards A or B-site of PT may reduce the high anisotropy. The present work reports the experimental investigations on the effect of lanthanum (La 3+ ) substitution on the structural, dielectric and piezoelectric properties of lead titanate (PT) ceramic at high-temperature (RT ∼ 600°C)

  2. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    Science.gov (United States)

    Patterson, Eric Andrew

    be demonstrated that while some Pb-free materials show severe property degradation under cyclic loading, other materials such as BNT-BKT-BZT essentially exhibit fatigue- free piezoelectric properties with chemical doping or other modifications. Based on these results, these new Pb-free materials have great potential for use in piezoelectric applications requiring a large number of drive cycles such as MEMS devices or high frequency actuators.

  3. Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device

    Science.gov (United States)

    Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda

    2017-11-01

    In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.

  4. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the

  5. Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts.

    Science.gov (United States)

    Yang, Song-Ling; Chen, Shih-Ming; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan

    2013-02-01

    CuO is doped into (Na(0.5)K(0.5))NbO(3) (NKN) ceramics to improve the piezoelectric properties and thus obtain a piezoelectric transformer (PT) with high output power. In X-ray diffraction patterns, the diffraction angles of the CuO-doped NKN ceramics shift to lower values because of an expansion of the lattice volume, thus inducing oxygen vacancies and enhancing the mechanical quality factor. A homogeneous microstructure is obtained when NKN is subjected to CuO doping, leading to improved electrical properties. PTs with different electrode areas are fabricated using the CuO-doped NKN ceramics. Considering the efficiency, voltage gain, and temperature rise of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm are combined with the circuit design for driving a 13-W T5 fluorescent lamp. A temperature rise of 6°C and a total efficiency of 82.4% (PT and circuit) are obtained using the present PTs.

  6. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  7. Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region.

    Science.gov (United States)

    Seshadri, Shruti B; Nolan, Michelle M; Tutuncu, Goknur; Forrester, Jennifer S; Sapper, Eva; Esteves, Giovanni; Granzow, Torsten; Thomas, Pam A; Nino, Juan C; Rojac, Tadej; Jones, Jacob L

    2018-03-07

    Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.

  8. A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites

    International Nuclear Information System (INIS)

    Ahmad, Zeeshan; Prasad, Ashutosh; Prasad, K.

    2009-01-01

    The present study addresses the problem of quantitative prediction of effective relative permittivity, dielectric loss factor, piezoelectric charge coefficient, and Young's modulus of PZT/PVDF diphasic ceramic-polymer composite as a function of volume fraction of PZT in the different compositions. Theoretical results for effective relative permittivity derived from several dielectric mixture equations like those of Knott, Rother-Lichtenecker, Bruggeman, Maxwell-Wagner-Webmann-Skipetrov or Dias-Dasgupta, Furukawa, Lewin, Wiener, Jayasundere-Smith, Modified Cule-Torquato, Taylor, Poon-Shin and Rao et al. were fitted to the experimental data taken from previous works of Yamada et al. Similarly, the results for effective piezoelectric coefficient and Young's modulus, derived from different appropriate equations were fitted to the corresponding experimental data taken from the literature. The study revealed that only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation and Rao equation for dielectric and piezoelectric properties while the four new equations developed in the present study of elastic property (Young's modulus) well fitted the corresponding experimental results. Further, the acceptable data put to various regression analyses showed that in most of the cases the third order polynomial regression analysis provided more acceptable fits.

  9. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi_4Ti_4O_1_5)

    International Nuclear Information System (INIS)

    Zhao, Tian-Long; Wang, Chun-Ming; Wang, Chun-Lei; Wang, Yi-Ming; Dong, Shuxiang

    2015-01-01

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d_3_3 of 14 pC/N and T_c of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi_4Ti_4O_1_5, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co_2O_3) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d_3_3 and Curie temperature T_c of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  10. Piezoelectric ceramic implants: in vivo results.

    Science.gov (United States)

    Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W

    1981-01-01

    The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.

  11. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    Science.gov (United States)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs

  12. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  13. Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abazari, M; Safari, A [Glenn Howatt Electroceramics Laboratories, Department of Materials Science and Engineering, Rutgers-The state University of New Jersey, Piscataway, NJ 08854 (United States); Choi, T; Cheong, S-W [Rutgers Center for Emergent Materials, Department of Physics and Astronomy, Rutgers-The state University of New Jersey, Piscataway, NJ 08854 (United States)

    2010-01-20

    We report the observation of domain structure and piezoelectric properties of pure and Mn-doped (K{sub 0.44},Na{sub 0.52},Li{sub 0.04})(Nb{sub 0.84},Ta{sub 0.1},Sb{sub 0.06})O{sub 3} (KNN-LT-LS) thin films on SrTiO{sub 3} substrates. It is revealed that, using piezoresponse force microscopy, ferroelectric domain structure in such 500 nm thin films comprised of primarily 180{sup 0} domains. This was in accordance with the tetragonal structure of the films, confirmed by relative permittivity measurements and x-ray diffraction patterns. Effective piezoelectric coefficient (d{sub 33}) of the films were calculated using piezoelectric displacement curves and shown to be {approx}53 pm V{sup -1} for pure KNN-LT-LS thin films. This value is among the highest values reported for an epitaxial lead-free thin film and shows a great potential for KNN-LT-LS to serve as an alternative to PZT thin films in future applications.

  14. Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films

    Science.gov (United States)

    Abazari, M.; Choi, T.; Cheong, S.-W.; Safari, A.

    2010-01-01

    We report the observation of domain structure and piezoelectric properties of pure and Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrates. It is revealed that, using piezoresponse force microscopy, ferroelectric domain structure in such 500 nm thin films comprised of primarily 180° domains. This was in accordance with the tetragonal structure of the films, confirmed by relative permittivity measurements and x-ray diffraction patterns. Effective piezoelectric coefficient (d33) of the films were calculated using piezoelectric displacement curves and shown to be ~53 pm V-1 for pure KNN-LT-LS thin films. This value is among the highest values reported for an epitaxial lead-free thin film and shows a great potential for KNN-LT-LS to serve as an alternative to PZT thin films in future applications.

  15. Photothermoacoustic effect in solids with piezoelectric detection

    International Nuclear Information System (INIS)

    Kozachenko, V. V.; Kucherov, I.Ya.

    2004-01-01

    Full text: In the last few years, a growing interest has been expressed in studies of substances in different aggregate states which were performed with the help of the photothermoacoustic PTA effect. Main in this method is use of thermal waves as the carrier of the information about properties of explored substance. The excitation of thermal waves is carried out, as a rule, by modulated light flux. A specific feature of the PTA effect is the dependence of the information obtained from it on the method used for detecting thermal waves. One of the most sensitive methods for detecting a PTA signal is the piezoelectric method. For studies of solids, the PTA effect in plates offers considerable promise. In this work, PTA effect in a solid-piezoelectric layered structure is studied theoretically and experimentally. The layered plate consisting of an isotropic solid and piezoelectric crystal of a class 6 mm (or piezoelectric ceramics) is considered. The surface of a solid body is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. Expressions for the potential difference U across an arbitrary layer of piezoelectric transducer are derived. The solid bodies with various optical and thermal properties for cases of one-layer and two-layer piezoelectric transducer are analyzed. In particular, is shown, that for the case two-layer piezoelectric transducer, in the high-frequency region, the amplitude ratio U 1 / U 2 the tangent of the phase difference tg(Δφ) of signals taken from individual layers of the transducer depend almost linearly on the inverse square root of the frequency f -1/2 . With use of these features, the new method of definition of some elastic and thermal parameters of solid bodies offered. An experiment is performed with samples Cu, Fe

  16. Piezoelectric properties and thermal stability of (Na0.53K0.47-xAgx)Nb1-xSbxO3 ceramics

    International Nuclear Information System (INIS)

    Zheng, Limei; Wang, Jinfeng; Wang, Chunming; Gai, Zhigang; Wu, Qingzao; Zhang, Rui

    2011-01-01

    Many (K 1-x Na x )NbO 3 (KNN)-based ceramics with high piezoelectric performance exhibit undesirable strong temperature dependence due to the orthorhombic-tetragonal polymorphic phase transition near room temperature. In order to improve the temperature stability of the ceramics, many additives have been added into the KNN-based ceramics to shift T O-T down to below room temperature. Contrary to the previous approach (Na 0.53 K 0.47-x Ag x )Nb 1-x Sb x O 3 (NKANS) ceramics with T O-T well above room temperature have been prepared by a conventional solid-state reaction method. The density and the electrical properties are effectively improved by the addition of AgSbO 3 , and optimum piezoelectric properties are found in the ceramics with 0.05 ≤ x ≤ 0.07, with maximum k p ∝ 0.46 for NKANS5 and maximum d 33 ∝ 199 pC/N for NKANS7. More importantly, k p remains virtually almost unchanged up to the T O-T temperature (≥100 C), indicating that the NKANS ceramics exhibit a much improved piezoelectric thermal stability. The analyses suggest that both the high T O-T value and diffuse orthorhombic-tetragonal phase transition should be responsible for the good temperature stability. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Design, Simulation and Experimental Evaluation of Tri-Phasic Piezoelectric Composite Transducers

    Science.gov (United States)

    Tamez, Juan Pedro

    Piezoelectric ceramics exhibit excellent piezoelectric and dielectric properties that is the basis of practically all transducers and piezoelectric devices, but their inherent properties, such as brittleness, non-ductility and poor shapeability may limit their applications in areas such as vibration sensing, impact detection, structural health monitoring and other reinforced structures and energy harvesting. To compensate for such limitations, the 1-3 piezoelectric composites transducers have become the material of choice for many high performance ultrasound transducers since it was invented in the late 1970's [ref. Newnham/Cross]. Extensive studies on 1-3 composites have been performed since then to improve the performance of a transducer by modifying their electromechanical coupling, bandwidth, quality factor, and flexibility and by reducing or eliminating the cross talk, i.e., induced noise between the active piezoelectric elements, especially in high power and low frequency applications. These fundamental issues, their possible solutions and their wide impact underline the motivation of the current work in this dissertation report. The motivation for this dissertation was to study and provide a foundation to designing multiphasic piezoelectric transducers that could be useful for multitude of applications. The goal was to improve the 1-3 diphasic composite transducer by eliminating the cross talk between the active piezoelectric elements while maintaining and improving the figures of merit of the design. To achieve the ultimate goal, the steps outlined below were followed: i. Understanding the theoretical and mathematical modeling for tri-phasic piezoelectric composite. ii. Implement Finite Element Analysis (FEA) and simulations of tri-phasic piezoelectric composites where the different active piezoelectric material PZT-5H and PMN-30%PT is surrounded by a vacuum phase that is enclosed by a hexagonal polymer walls. iii. Propose a redesign of the tri

  18. Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.

    Science.gov (United States)

    Bilgunde, Prathamesh N; Bond, Leonard J

    2018-07-01

    Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Characterization of Piezoelectric Energy Harvesting MEMS

    Science.gov (United States)

    2015-12-01

    of previously fabricated MEMS piezoelectric energy harvesters and use the results to optimize an advanced finite element model to be used in...possibilities of using solar power and the piezoelectric effect to harvest energy [12]. The design goal was to develop an energy harvester with a resonant... The piezoelectric properties of AlN are also relatively constant over a wide range of temperatures [7]. AlN was further characterized

  20. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  1. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    International Nuclear Information System (INIS)

    Dutta, Soma; Antony Jeyaseelan, A.; Sruthi, S.

    2014-01-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb 0.92 La 0.08 (Zr 0.52 Ti 0.48 ) 0.98 O 3 was grown preferentially along (111) direction on Pt/SiO 2 /Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm 2 and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d 33,f ) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e 31,f ) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d 33,f and e 31,f coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m 2 respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d 33 value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e 31,f of PLZT film is reported for the first time

  2. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2013-01-01

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2K and in a high magnetic field of at least 0.5T. This piezoelectric switch shows very low insertion loss of less than -0.1dB within a bandwidth of 100MHz when operated at 4.2K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  3. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas, E-mail: thomas.kaltenbacher@cern.ch [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria); Caspers, Fritz; Doser, Michael [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Kellerbauer, Alban [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Pribyl, Wolfgang [Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria)

    2013-11-21

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2 K and in a high magnetic field of at least 0.5 T. This piezoelectric switch shows very low insertion loss of less than −0.1 dB within a bandwidth of 100 MHz when operated at 4.2 K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  4. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals.

    Science.gov (United States)

    Liu, Xia; Ma, Jing; Wu, Xiaoming; Lin, Liwei; Wang, Xiaohong

    2017-02-28

    Piezoelectricity in macromolecule polymers has been gaining immense attention, particularly for applications in biocompatible, implantable, and flexible electronic devices. This paper introduces core-shell-structured piezoelectric polyvinylidene fluoride (PVDF) nanofibers chemically wrapped by graphene oxide (GO) lamellae (PVDF/GO nanofibers), in which the polar β-phase nanocrystals are formed and uniaxially self-oriented by the synergistic effect of mechanical stretching, high-voltage alignment, and chemical interactions. The β-phase orientation of the PVDF/GO nanofibers along their axes is observed at atomic scale through high resolution transmission electron microscopy, and the β-phase content is found to be 88.5%. The piezoelectric properties of the PVDF/GO nanofibers are investigated in terms of piezoresponse mapping, local hysteresis loops, and polarization reversal by advanced piezoresponse force microscopy. The PVDF/GO nanofibers show a desirable out-of-plane piezoelectric constant (d 33 ) of -93.75 pm V -1 (at 1.0 wt % GO addition), which is 426% higher than that of the conventional pure PVDF nanofibers. The mechanism behind this dramatic enhancement in piezoelectricity is elucidated by three-dimensional molecular modeling.

  5. Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Takeshi; Miyabuchi, Hiroki; Ashida, Atsushi; Fujimura, Norifumi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 (Japan); Murakami, Syuichi, E-mail: tyoshi@pe.osakafu-u.ac.jp [Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka, 594-1157 (Japan)

    2011-10-29

    Direct piezoelectric effect of Pb(Zr,Ti)O{sub 3} (PZT) thin films was investigated to discuss the application of ferroelectric films to vibration energy harvesting. From the model of the piezoelectric vibration energy harvester, it was found that the figure of merit (FOM) is proportional of the square of the effective transverse piezoelectric coefficient e{sub 31,f}. The e{sub 31,f} coefficient of PZT films were measured by substrate bending method. Furthermore, it was found that the e{sub 31,f} coefficient increases with increasing strain, which is favourable for the vibration energy harvesting.

  6. Nanoscans of piezoelectric activity using an atomic force microscope

    International Nuclear Information System (INIS)

    Zheng, Z.; Guy, I.L.; Butcher, K.S.A.; Tansley, T.L.

    2002-01-01

    Full text: Any crystal which lacks a centre of symmetry is piezoelectric. This includes all of the ferroelectric crystals used in photonics and virtually all compound semiconductors. Such crystals, when grown in thin film form invariably exist in a strained state and thus possess internal piezoelectric fields which can affect their electronic properties. A knowledge of the piezoelectric properties of such crystals is thus important in understanding how they behave in practical devices. It also provides a tool for analysing the crystal structure of such materials. Using an atomic force microscope (AFM) as a probe of piezoelectric activity allows the study of variations in crystal structure on a nanoscale. The AFM piezoelectric technique has been used by several groups to study structures of ceramic materials with large piezoelectric coefficients, intended for applications in piezoelectric actuators. In the AFM method, a driving signal of a few volts at a frequency well below the AFM tip resonance, is applied to a sample of the material mounted in the AFM. This voltage causes the sample dimensions to change in ways determined by the piezoelectric properties of the sample. The AFM signal thus contains the normal surface profile information and an additional component generated by the piezoelectric vibrations of the sample. A lockin amplifier is used to separate the piezoelectric signal from the normal AFM surface profile signal. The result is the simultaneous acquisition of the surface profile and a piezoelectric map of the surface of the material under study. We will present results showing the results of such measurements in materials such as lithium niobate and gallium nitride. These materials have piezoelectric coefficients which are much lower than those of materials to which the technique has normally been applied

  7. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  8. The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field

    International Nuclear Information System (INIS)

    Weaver, P M; Cain, M G; Stewart, M; Anson, A; Franks, J; Lipscomb, I P; McBride, J W; Zheng, D; Swingler, J

    2012-01-01

    Prolonged operation of piezoelectric ceramic devices under high dc electric fields promotes leakage currents between the electrodes. This paper investigates the effects of ceramic porosity, edge conduction and electrode materials and geometry in the development of low resistance conduction paths through the ceramic. Localized changes in the ceramic structure and corresponding microscopic breakdown sites are shown to be associated with leakage currents and breakdown processes resulting from prolonged operation in harsh environments. The role of barrier coatings in mitigating the effects of humidity is studied, and results are presented on improved performance using composite diamond-like carbon/polymer coatings. In contrast to the changes in the electrical properties of the ceramic, the measurements of the piezoelectric properties showed no significant effect of humidity. (paper)

  9. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    Science.gov (United States)

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  10. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  11. Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3 ceramics under controlled low oxygen partial pressure and their properties

    Science.gov (United States)

    Noritake, Kouta; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2018-02-01

    Reduction-resistant lead-free (Ba,Ca)(Ti,Sn)O3 piezoceramics with high piezoelectric constants were fabricated by optimizing the amount of Li2CO3 added. Oxygen partial pressure was controlled during the sintering of (Ba,Ca)(Ti,Sn)O3 ceramics in a reducing atmosphere using H2-CO2 gas. Enhanced grain growth and a high-polarization state after poling treatment were achieved by adding Li2CO3. Optimizing the amount of Li2CO3 added to (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics sintered under a low oxygen partial pressure resulted in improved piezoelectric properties while maintaining the high sintered density. The prepared Li2CO3-added ceramic samples had homogeneous microstructures with a uniform dispersion of each major constituent element. However, the residual Li content in the 3 mol % Li2CO3-added (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics after sintering was less than 0.3 mol %. Sintered bodies of this ceramic prepared in a CO2 (1.5%)-H2 (0.3%)/Ar reducing atmosphere (PO2 = 10-8 atm at 1350 °C), exhibited sufficient electrical resistivity and a piezoelectric constant (d 33) exceeding 500 pC/N. The piezoelectric properties of this nonreducible ceramic were comparable or superior to those of the same ceramic sintered in air.

  12. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit

    Science.gov (United States)

    Wu, Wenzhuo

    2016-03-01

    Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed. 51 11700-21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology 26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs’ figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

  13. Density variation and piezoelectric properties of Ba (Ti1− xSnx) O3 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Density variation and piezoelectric properties of Ba(Ti1−Sn)O3 ceramics prepared from nanocrystalline powders ... The density variation of the ceramics with sintering temperature has been studied by sintering the samples at different temperatures.

  14. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-10-01

    Full Text Available For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was

  15. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  16. Theoretical Analysis of the Dynamic Properties of a 2-2 Cement-Based Piezoelectric Dual-Layer Stacked Sensor under Impact Load.

    Science.gov (United States)

    Zhang, Taotao; Liao, Yangchao; Zhang, Keping; Chen, Jun

    2017-05-04

    Cement-based piezoelectric materials are widely used due to the fact that compared with common smart materials, they overcome the defects of structure-incompatibility and frequency inconsistency with a concrete structure. However, the present understanding of the mechanical behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic characteristics under impact load are of importance, for example, for studying the anti-collision properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper, an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate the impact load and verify the theory, three types of loads, including atransient step load, isosceles triangle load and haversine wave load, are considered and the comparisons between the theoretical results, Li's results and numerical results are presented by using the control variate method and good agreement is found. Furthermore, the influences of several parameters were discussed and other conclusions about this sensor are also given. This should prove very helpful for the design and optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

  17. Effects Of Spontaneous And Piezoelectric Polarization On The Electronic Properties Of AlGaN/GaN Heterostructures

    International Nuclear Information System (INIS)

    Demir, M.

    2010-01-01

    Nitride containing semiconductors and their alloys are used to produce hetero structures where materials with different energy gaps are grown on top of each other so that quantum wells capable of holding free electrons in two dimensions are formed. The carriers in the wells are free to move along the hetero interface but their motion in the direction of growth is restricted. While the density of electron gas depends on the doping concentration and the dimensions of the hetero structure among others, another important parameter that determines the electron density is the spontaneous polarization in the material and piezoelectric polarization near the hetero interface. Polarization is so effective that in some cases it is possible to get electron concentrations as high as 10 1 2-10 1 3 cm - 2 even in the absence of any intentional doping. In this study the electronic properties of an AlGaN/GaN structure is investigated by solving the Poisson/Schroedinger equation self-consistently in the modulation doped hetero structure. The effect of spacer, doping concentration, dimensions of the structure and temperature and especially the spontaneous and piezoelectric polarizations on the electronic properties are investigated.

  18. Enhanced piezoelectric operation of NiO/GaN heterojunction generator by suppressed internal carrier screening

    International Nuclear Information System (INIS)

    Jeong, Dae Kyung; Kang, Jin-Ho; Ryu, Sang-Wan; Ha, Jun-Seok

    2017-01-01

    A NiO/GaN heterojunction piezoelectric generator was fabricated, and the improvement in device performance was analyzed. The electrical properties of NiO were varied by regulating the gas environment during sputtering. An optimized NiO layer was adopted for high piezoelectric voltage generation. Internal carrier screening was revealed to be the dominant mechanism degrading the piezoelectric performance, necessitating the suppression of carrier screening. The highly resistive NiO layer was advantageous in the suppression of carrier transport across the junction that screened the piezoelectric field. The maximum piezoelectric voltage and current density values obtained were 7.55 V and 1.14 µ A cm −2 , respectively. The power obtained was sufficient to operate a light-emitting diode combined with a charging circuit. (paper)

  19. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    Science.gov (United States)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  20. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Soma, E-mail: som@nal.res.in; Antony Jeyaseelan, A.; Sruthi, S.

    2014-07-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb{sub 0.92}La{sub 0.08}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.98}O{sub 3} was grown preferentially along (111) direction on Pt/SiO{sub 2}/Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm{sup 2} and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d{sub 33,f}) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e{sub 31,f}) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d{sub 33,f} and e{sub 31,f} coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m{sup 2} respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d{sub 33} value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e{sub 31,f} of PLZT film is reported for the first time.

  1. BIOMINERALOGICAL INVESTIGATION OF APATITE PIEZOELECTRICITY

    Directory of Open Access Journals (Sweden)

    M. Pawlikowski

    2016-01-01

    Full Text Available Investigation of apatite piezoelectricity was conducted in order to assess piezoelectric properties of bone. In the first stage, mineralogical analysis of different apatite crystals, regarding their purity and fitness for the experiments was performed. After the crystals had been chosen, 0.8 mm-thick plates were cut, perpendicular and parallel to the crystallographic Z axis. The plates were then polished and dusted with gold. Electrodes were attached to the opposite surfaces of the plates with conductive glue. So prepared plates were hooked up to the EEG machine used for measuring electrical activity in the brain. The plates were then gently tapped to observe and register currents generated in them. Acquired data was processed by subtracting from the resulting graphs those generated by a hand movement, without tapping the plate. Results indicate that apatite plates have weak piezoelectric properties. Observed phenomenon may be translated to bone apatite, which would explain, at least partially, piezoelectric properties of bone. Acquired results suggest that there is a relation between the mechanical workload of bones (bone apatite and theirelectrical properties. Considering the massive internal surface of bones, they may be treated as a kind of internal “antenna” reacting not only to mechanical stimuli, but to changes in electromagnetic field as well. Observed phenomena no doubt significantly influence the biological processes occurring in bones and the whole human body.

  2. Piezoelectricity in K1−xNaxNbO3: First-principles calculation

    International Nuclear Information System (INIS)

    Li Qiang; Zhang Rui; Lv Tian-Quan; Zheng Li-Mei

    2015-01-01

    The piezoelectric properties of K 1−x Na x NbO 3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K 1−x Na x NbO 3 , the total energy, piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K 1−x Na x NbO 3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d 33 of orthorhombic K 0.5 Na 0.5 NbO 3 reaches a maximum value. The rotated maximum of is found to be along the 50° direction away from the spontaneous polarization (close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K 0.5 Na 0.5 NbO 3 becomes easier compared with orthorhombic KNbO 3 , which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary. (paper)

  3. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    Science.gov (United States)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  4. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3.

    Science.gov (United States)

    Roscow, James I; Topolov, Vitaly Yu; Bowen, Christopher R; Taylor, John; Panich, Anatoly E

    2016-01-01

    This work demonstrates the potential of porous BaTiO 3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO 3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α  = 0.30-0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3-0 composite and a 'composite in composite' model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients [Formula: see text]. It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy [Formula: see text] at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit [Formula: see text] [Formula: see text]. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties.

  5. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  6. Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective piezoelectric medium

    Science.gov (United States)

    Pertsev, N. A.; Zembilgotov, A. G.; Waser, R.

    1998-08-01

    The effective dielectric, piezoelectric, and elastic constants of polycrystalline ferroelectric materials are calculated from single-crystal data by an advanced method of effective medium, which takes into account the piezoelectric interactions between grains in full measure. For bulk BaTiO3 and PbTiO3 polarized ceramics, the dependences of material constants on the remanent polarization are reported. Dielectric and elastic constants are computed also for unpolarized c- and a-textured ferroelectric thin films deposited on cubic or amorphous substrates. It is found that the dielectric properties of BaTiO3 and PbTiO3 polycrystalline thin films strongly depend on the type of crystal texture. The influence of two-dimensional clamping by the substrate on the dielectric and piezoelectric responses of polarized films is described quantitatively and shown to be especially important for the piezoelectric charge coefficient of BaTiO3 films.

  7. Fundamentals of piezoelectric sensorics mechanical, dielectric, and thermodynamical properties of piezoelectric materials

    CERN Document Server

    Tichý, Jan; Kittinger, Erwin; Prívratská, Jana; Privatska, Jana; Janovec, Vaclav

    2010-01-01

    This book presents the physics of piezoleletric sensors in a straight-forward and easy-to-grasp way, from the fundamentals of phenomenological crystal physics through more complex concepts, to its explanation of several important piezoelectric materials.

  8. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Chen Heng; Wang Yonglin

    2006-01-01

    Porous lead zirconate titanate (PZT) ceramics were fabricated by adding polymethyl methacrylate (PMMA) and the effects of sintering behavior on their microstructure and piezoelectric properties were investigated. The porosity of PZT ceramics decreased with an increase in the sintering temperature at a fixed PMMA addition. The dielectric constant (ε), longitudinal piezoelectric coefficient (d 33 ) and hydrostatic figures of merit (d h g h ) of 34% porous PZT ceramics increased with an increase in sintering temperature from 1050 to 1300 deg. C. When sintered at 1300 deg. C, longitudinal piezoelectric coefficient of 34% porous PZT ceramic was very close to that of 95% dense PZT ceramics, while the hydrostatic figures of merit of 34% porous PZT ceramics is about fifteen times more than that of 95% dense PZT ceramics. Compared with PZT-polymer composites, the dielectric constant of 34% porous PZT sintered at 1300 deg. C is much higher, which can be more efficient to resist the interference in receiving sensitivities caused by loading effect of the cable

  9. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    International Nuclear Information System (INIS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-01-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients η S and η T , based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  10. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tian-Long [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Lei; Wang, Yi-Ming [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Dong, Shuxiang [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2015-11-15

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d{sub 33} of 14 pC/N and T{sub c} of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15}, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co{sub 2}O{sub 3}) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d{sub 33} and Curie temperature T{sub c} of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  11. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    Science.gov (United States)

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  12. High precision optical measurement of displacement and simultaneous determinations of piezoelectric coefficients

    Science.gov (United States)

    Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar

    2016-09-01

    PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.

  13. Lead-free piezoelectrics based on potassium-sodium niobate with giant d(33).

    Science.gov (United States)

    Zhang, Binyu; Wu, Jiagang; Cheng, Xiaojing; Wang, Xiaopeng; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2013-08-28

    High-performance lead-free piezoelectrics (d33 > 400 pC/N) based on 0.96(K0.5Na0.5)0.95Li0.05Nb1-xSbxO3-0.04BaZrO3 with the rhombohedral-tetragonal (R-T) phase boundary have been designed and prepared. The R-T phase boundary lies the composition range of 0.04 ≤ x ≤ 0.07, and the dielectric and piezoelectric properties of the ceramics with the compositions near the phase boundary are significantly enhanced. In addition, the ceramic with x = 0.07 has a giant d33 of ~425 pC/N, which is comparable to that (~416 pC/N) of textured KNN-based ceramics (Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Nature 2004, 432, 84). The underlying physical mechanisms for enhanced piezoelectric properties are addressed. We believe that the material system is the most promising lead-free piezoelectric candidates for the practical applications.

  14. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  15. Theoretical Analysis of the Dynamic Properties of a 2-2 Cement-Based Piezoelectric Dual-Layer Stacked Sensor under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2017-05-01

    Full Text Available Cement-based piezoelectric materials are widely used due to the fact that compared with common smart materials, they overcome the defects of structure-incompatibility and frequency inconsistency with a concrete structure. However, the present understanding of the mechanical behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic characteristics under impact load are of importance, for example, for studying the anti-collision properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper, an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate the impact load and verify the theory, three types of loads, including atransient step load, isosceles triangle load and haversine wave load, are considered and the comparisons between the theoretical results, Li’s results and numerical results are presented by using the control variate method and good agreement is found. Furthermore, the influences of several parameters were discussed and other conclusions about this sensor are also given. This should prove very helpful for the design and optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

  16. Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control

    Science.gov (United States)

    Chen, Huanbei; Zhai, Jiwei

    2012-08-01

    Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.

  17. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    Science.gov (United States)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  18. High-frequency performance for a spiral-shaped piezoelectric bimorph

    Science.gov (United States)

    Huang, Fang Sheng; Feng, Zhi Hua; Ma, Yu Ting; Pan, Qiao Sheng; Zhang, Lian Sheng; Liu, Yong Bin; He, Liang Guo

    2018-04-01

    Piezoelectric cantilever is suitable as an actuator for micro-flapping-wing aircraft. Higher resonant frequency brings about stronger flight energy, and the flight amplitude can be compensated by displacement-amplification mechanism, such as lever. To obtain a higher resonant frequency, straight piezoelectric bimorph was rolled into spiral-shaped piezoelectric bimorph with identical effective length in this study, which is verified in COMSOL simulations. Simulation results show that compared with the straight piezoelectric bimorph, the spiral-shaped piezoelectric bimorph with two turns has higher inherent frequencies (from 204.79 Hz to 504.84 Hz in terms of axial oscillation mode, and from 319.77 Hz to 704.48 Hz in terms of tangential torsional mode). The spiral-shaped piezoelectric bimorph is fabricated by a precise laser cutting process and consists of two turns with effective length of 60 mm, width of 2.5 mm, and thickness of 1.6 mm, respectively. With the excitation voltage of 100 Vpp applying an electric field across the thickness of the bimorph, the tip displacement of the actuator in the axial oscillation and tangential torsional modes are 85 μm and 15 μm, respectively.

  19. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  20. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

    Science.gov (United States)

    Wu, Wenzhuo; Wang, Lei; Li, Yilei; Zhang, Fan; Lin, Long; Niu, Simiao; Chenet, Daniel; Zhang, Xian; Hao, Yufeng; Heinz, Tony F; Hone, James; Wang, Zhong Lin

    2014-10-23

    The piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. Here we report the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. A single monolayer flake strained by 0.53% generates a peak output of 15 mV and 20 pA, corresponding to a power density of 2 mW m(-2) and a 5.08% mechanical-to-electrical energy conversion efficiency. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90°. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. The coupling between piezoelectricity and semiconducting properties in two-dimensional nanomaterials may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.

  1. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  2. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering

    International Nuclear Information System (INIS)

    Dubois, Marc-Alexandre; Muralt, Paul

    2001-01-01

    Polycrystalline aluminum nitride thin films were deposited onto platinum, aluminum, and titanium electrodes by reactive magnetron sputtering in the pulsed direct current mode. The films exhibited all a columnar microstructure and a c-axis texture. The built-in stress and the piezoelectric properties of these films were studied as a function of both the processing conditions and the electrode material. Stress was found to be very much dependent on the growth conditions, and values ranging from strong compression to high tension were observed. The piezoelectric d 33,f coefficient was shown to rely on substrate quality and ionic bombardment: The nucleation surface must be stable with regard to the nitrogen plasma and present a hexagonal symmetry and, on the other hand, enough energy must be delivered to the growing film through ionic bombardment. [copyright] 2001 American Institute of Physics

  3. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  4. Piezoelectric photothermal study of the optical properties of microcrystalline silicon near the bandgap

    International Nuclear Information System (INIS)

    Fukuyama, A.; Sakamoto, S.; Sonoda, S.; Wang, P.; Sakai, K.; Ikari, T.

    2006-01-01

    The optical absorption spectra of hydrogenated microcrystalline silicon (μc-Si:H) films deposited on glass and transparent conductive oxide (TCO) covered glass substrates were measured by using the piezoelectric photothermal (PPT) technique. The effects of the deposition rate on the optical absorption of μc-Si:H thin films were investigated from the nonradiative transition point of view. It was found that increasing the deposition rate resulted in a decrease of optical absorption and a shift of effective energy gap to the higher photon energy side. These changes in the optical properties of μc-Si:H cause the decrease of the number of carriers optically generated by absorbing sunlight, and results in a reduction in the photovoltaic conversion efficiency of the solar cells for high deposition rate samples. The usefulness of the PPT method for investigating the optical properties of thin and transparent μc-Si:H films was also demonstrated

  5. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  6. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  7. Piezoelectric Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} crystal: crystal growth, piezoelectric and acoustic properties

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry; Emelin, Evgenii [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); National University of Science and Technology MISiS, Moscow (Russian Federation); Ortega, Luc [Univ. Paris-Sud, CNRS, UMR 8502, Laboratoire de Physique des Solides, Orsay Cedex (France); Plotitcyna, Olga; Irzhak, Dmitry [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); Erko, Alexei; Zizak, Ivo; Vadilonga, Simone [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Berlin (Germany); Buzanov, Oleg [FOMOS Materials Co., Moscow (Russian Federation); Leitenberger, Wolfram [Universitaet Potsdam Institut fuer Physik, Potsdam (Germany)

    2016-08-15

    Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{sub 11} and d{sub 14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/+36 {sup circle} -cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties. (orig.)

  8. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  9. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    Science.gov (United States)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  10. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  11. Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu; Li Weizhou

    2008-01-01

    The (0.82 - x)Bi 0.5 Na 0.5 TiO 3 -0.18Bi 0.5 K 0.5 TiO 3 -xBiFeO 3 (x = 0-0.07) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of BiFeO 3 addition on microstructure and electrical properties of the ceramics was investigated. The specimens with x ≤ 0.05 maintained a rhombohedral-tetragonal phase coexistence and changed into a rhombohedral phase when x > 0.05 in crystal structure. The addition of BiFeO 3 caused a promoted grain growth. All the specimens reveal a low-frequency dielectric dispersion in the frequency range of 40-1 MHz. The piezoelectric constant d 33 and the electromechanical coupling factor k p show an obvious improvement by the addition of small amount of BiFeO 3 , which shows optimum values of d 33 = 170 pC/N and k p = 0.366 at x = 0.03. Contrary to the enhancement of piezoelectric properties, Q m decreases with increasing BiFeO 3 content. The mechanisms of intrinsic and extrinsic contributions to the dielectric and piezoelectric responses have been proposed. Intrinsic contributions are from the relative ion/cation shift that preserves the ferroelectric crystal structure. The remaining extrinsic contributions are from the domain-wall motion and point defects

  12. A review of piezoelectric polymers as functional materials for electromechanical transducers

    International Nuclear Information System (INIS)

    Ramadan, Khaled S; Evoy, S; Sameoto, D

    2014-01-01

    Polymer based MEMS and microfluidic devices have the advantages of mechanical flexibility, lower fabrication cost and faster processing over silicon based ones. Also, many polymer materials are considered biocompatible and can be used in biological applications. A valuable class of polymers for microfabricated devices is piezoelectric functional polymers. In addition to the normal advantages of polymers, piezoelectric polymers can be directly used as an active material in different transduction applications. This paper gives an overview of piezoelectric polymers based on their operating principle. This includes three main categories: bulk piezoelectric polymers, piezocomposites and voided charged polymers. State-of-the-art piezopolymers of each category are presented with a focus on fabrication techniques and material properties. A comparison between the different piezoelectric polymers and common inorganic piezoelectric materials (PZT, ZnO, AlN and PMN–PT) is also provided in terms of piezoelectric properties. The use of piezopolymers in different electromechanical devices is also presented. This includes tactile sensors, energy harvesters, acoustic transducers and inertial sensors. (topical review)

  13. A high power ZnO thin film piezoelectric generator

    Science.gov (United States)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  14. Acoustics of the piezo-electric pressure probe

    Science.gov (United States)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  15. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    Science.gov (United States)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  16. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates.

    Science.gov (United States)

    Nguyen, Minh D; Houwman, Evert P; Rijnders, Guus

    2017-10-10

    Thin films of PbZr 0 . 52 Ti 0 . 48 O 3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca 2 Nb 3 O 10 nanosheets as growth template and using LaNiO 3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain and ultra-low strain hysteresis. The observed increase of the piezoelectric coefficient with increasing film thickness is attributed to the reduction of clamping, because of the increasingly less dense columnar microstructure (more separation between the grains) with across the film thickness. A very large piezoelectric coefficient (490 pm/V) and a high piezoelectric strain (~0.9%) are obtained in 4-µm-thick film under an applied electric field of 200 kV/cm, which is several times larger than in usual PZT ceramics. Further very low strain hysteresis (H≈2-4%) is observed in 4 to 5 µm thick films. These belong to the best values demonstrated so far in piezoelectric films. Fatigue testing shows that the piezoelectric properties are stable up to 10 10 cycles. The growth of high quality PZT films with very large strain and piezoelectric coefficients, very low hysteresis and with long-term stability on a technologically important substrate as glass is of great significance for the development of practical piezo driven microelectromechanical actuator systems.

  17. Robust piezoelectric composites for energy harvesting in high-strain environments

    NARCIS (Netherlands)

    Ende, D.A. van der; Groen, W.A.; Zwaag, S. van der

    2013-01-01

    High-strain environments, such as are found in automobile tires, provide deformation energy that can be harvested using piezoelectric materials, for instance, for powering electronics such as wireless sensors. Despite numerous efforts, none of the present devices easily satisfy the stringent

  18. A study of principle and testing of piezoelectric transformer

    International Nuclear Information System (INIS)

    Liu Weiyue; Wang Yanfang; Huang Yihua; Shi Jun

    2002-01-01

    The operating principle and structure of a kind of piezoelectric transformer which can be used in a particle accelerator are investigated. The properties of piezoelectric transformer are tested through equivalent circuit combined with experiment

  19. Enhanced active piezoelectric 0-3 nanocomposites fabricated through electrospun nanowires

    International Nuclear Information System (INIS)

    Feenstra, Joel; Sodano, Henry A.

    2008-01-01

    The use of monolithic piezoceramic materials in sensing and actuation applications has become quite common over the past decade. However, these materials have several properties that limit their application in practical systems. These materials are very brittle due to the ceramic nature of the monolithic material, making them vulnerable to accidental breakage during handling and bonding procedures. In addition, they have very poor ability to conform to curved surfaces and result in large add-on mass associated with using a typically lead-based ceramic. These limitations have motivated the development of alternative methods of applying the piezoceramic material, including piezoceramic fiber composites and piezoelectric 0-3 composites (also known as piezoelectric paint). Piezoelectric paint is desirable because it can be spayed or painted on and can be used with abnormal surfaces. However, the piezoelectric paint developed in prior studies has resulted in low coupling, limiting its application. In order to increase the coupling of the piezoelectric paint, this effort has investigated the use of piezoelectric nanowires rather than spherical piezoelectric particle, which are difficult to strain when embedded in a polymer matrix. The piezoceramic wires were electrospun from a barium titanate (BaTiO 3 ) sol gel to produce fibers with 500-1000 nm diameters and subsequently calcinated to acquire perovskite BaTiO 3 . An active nanocomposite paint was formed using the resulting piezoelectric wires and was compared to the same paint with piezoelectric nanoparticles. The results show that the piezoceramic wires produce 0-3 nanocomposites with as high as 300% increase in electromechanical coupling

  20. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation.

    Science.gov (United States)

    Damaraju, Sita M; Shen, Yueyang; Elele, Ezinwa; Khusid, Boris; Eshghinejad, Ahmad; Li, Jiangyu; Jaffe, Michael; Arinzeh, Treena Livingston

    2017-12-01

    The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High Accuracy Piezoelectric Kinemometer; Cinemometro piezoelectrico de alta exactitud (VUAE)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Martinez, F. J.; Frutos, J. de; Pastor, C.; Vazquez Rodriguez, M.

    2012-07-01

    We have developed a portable computerized and low consumption, our system is called High Accuracy Piezoelectric Kinemometer measurement, herein VUAE. By the high accuracy obtained by VUAE it make able to use the VUAE to obtain references measurements of system for measuring Speeds in Vehicles. Therefore VUAE could be used how reference equipment to estimate the error of installed kinemometers. The VUAE was created with n (n=2) pairs of ultrasonic transmitter-receiver, herein E-Rult. The transmitters used in the n couples E-Rult generate n ultrasonic barriers and receivers receive the echoes when the vehicle crosses the barriers. Digital processing of the echoes signals let us to obtain acceptable signals. Later, by mean of cross correlation technics is possible make a highly exact estimation of speed of the vehicle. The log of the moments of interception and the distance between each of the n ultrasounds allows for a highly exact estimation of speed of the vehicle. VUAE speed measurements were compared to a speed reference system based on piezoelectric cables. (Author) 11 refs.

  2. Simulation and parallel connection of step-down piezoelectric transformers

    International Nuclear Information System (INIS)

    Thang, Vo Viet; Kim, In Sung; Jeong, Soon Jong; Kim, Min Soo; Song, Jae Sung

    2012-01-01

    Piezoelectric transformers have been used widely in electronic circuits due to advantages such as high efficiency, miniaturization and no flammability; however the output power has been limited. For overcoming this drawback, some research has recently been focused on connections between piezoelectric transformers. Based on these operations, the output power has been improved compared to the single operation. Parallel operation of step-down piezoelectric transformers is presented in this paper. An important factor affecting the parallel operation of piezoelectric transformer was the resonance frequency, and a small difference in resonance frequencies was obtained with transformers having the same dimensions and fabricating processes. The piezoelectric transformers were found to operate in first radial mode at a frequency of 68 kHz. An equivalent circuit was used to investigate parallel driving of piezoelectric transformers and then to compare the result with experimental observations. The electrical characteristics, including the output voltage, output power and efficient were measured at a matching resistive load. Effects of frequency on the step-down ratio and of the input voltage on the power properties in the simulation were similar to the experimental results. The output power of the parallel operation was 35 W at a load of 50 Ω and an input voltage of 100 V; the temperature rise was 30 .deg. C and the efficiency was 88%.

  3. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Directory of Open Access Journals (Sweden)

    Michael Smith

    2017-07-01

    Full Text Available Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM, we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  4. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    Science.gov (United States)

    Smith, Michael; Calahorra, Yonatan; Jing, Qingshen; Kar-Narayan, Sohini

    2017-07-01

    Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA) nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM), we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  5. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  6. Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect

    Directory of Open Access Journals (Sweden)

    Bian Tian

    2016-09-01

    Full Text Available In order to meet the requirements of cable fault detection, a new structure of piezoelectric accelerometer was designed and analyzed in detail. The structure was composed of a seismic mass, two sensitive beams, and two added beams. Then, simulations including the maximum stress, natural frequency, and output voltage were carried out. Moreover, comparisons with traditional structures of piezoelectric accelerometer were made. To verify which vibration mode is the dominant one on the acceleration and the space between the mass and glass, mode analysis and deflection analysis were carried out. Fabricated on an n-type single crystal silicon wafer, the sensor chips were wire-bonged to printed circuit boards (PCBs and simply packaged for experiments. Finally, a vibration test was conducted. The results show that the proposed piezoelectric accelerometer has high sensitivity, low resonance frequency, and low transverse effect.

  7. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Baraskar, Bharat G.; Kakade, S. G.; Kambale, R. C., E-mail: rckambale@gmail.com; Kolekar, Y. D., E-mail: ydk@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, India 411 007 (India); James, A. R. [Defence Metallurgical Research Laboratory, Kanchanbagh P.O., Hyderabad, India - 500 058 (India)

    2016-05-23

    The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization current density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.

  8. Phase transition characteristics and associated piezoelectricity of potassium-sodium niobate lead-free ceramics.

    Science.gov (United States)

    Wang, Yuanyu; Hu, Liang; Zhang, Qilong; Yang, Hui

    2015-08-14

    To achieve high piezoelectric activity and a wide sintering temperature range, the ceramic system concerning (1 - x)(K(0.48)Na(0.52))(Nb(0.96)Sb(0.04))O(3)-x[Bi(0.5)(Na(0.7)Ag(0.3))(0.5)](0.90) Zn(0.10)ZrO(3) was designed, and the rhombohedral-tetragonal (R-T) phase boundary can drive a high d(33). Phase transition characteristics as well as their effects on the electrical properties were investigated systematically. The R-T coexistence phase boundary (0.04 ≤ x ≤ 0.05) can be driven via modification with BNAZZ, and has been confirmed by XRD and temperature-dependent dielectric constants as well as Raman analysis, and the ceramics possess enhanced piezoelectric properties (d(33) ∼ 425 pC N(-1) and k(p) ∼ 0.43) and a high unipolar strain (∼0.3%). In addition, a wide sintering temperature range of 1050-1080 °C can warrant a large d(33) of 400-430 pC N(-1), which can benefit practical applications. As a result, the addition of BNAZZ is an effective method to improve the electrical properties (piezoelectricity and strain) and sintering behavior of potassium-sodium niobate ceramics.

  9. Electrical Properties and Power Considerations of a Piezoelectric Actuator

    Science.gov (United States)

    Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.

    1999-01-01

    This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.

  10. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  11. Hydrogen and fluorine co-decorated silicene: A first principles study of piezoelectric properties

    International Nuclear Information System (INIS)

    Noor-A-Alam, Mohammad; Kim, Hye Jung; Shin, Young-Han

    2015-01-01

    A low-buckled silicene monolayer being centrosymmetric like graphene, in contrast to a piezoelectric hexagonal boron nitride (h-BN), is not intrinsically piezoelectric. However, based on first principles calculations, we show that chemical co-decoration of hydrogen (H) and fluorine (F) on opposite sides of silicene (i.e., one side is decorated with H, while the other one is with F) breaks the centrosymmetry. Redistributing the charge density due to the electronegativity difference between the atoms, non-centrosymmetric co-decoration induces an out-of-plane dipolar polarization and concomitant piezoelectricity into non-piezoelectric silicene monolayer. Our piezoelectric coefficients are comparable with other known two-dimensional piezoelectric materials (e.g., hydrofluorinated graphene/h-BN) and some bulk semiconductors, such as wurtzite GaN and wurtzite BN. Moreover, because of silicene's lower elastic constants compared to graphene or h-BN, piezoelectric strain constants are found significantly larger than those of hydrofluorinated graphene/h-BN. We also predict that a wide range of band gaps with an average of 2.52 eV can be opened in a low-buckled gapless semi-metallic silicene monolayer by co-decoration of H and F atoms on the surface

  12. Piezoelectric microvalve for precise control of gas flow at high pressure

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    We present a normally open piezoelectric actuated micro valve, based on the novel concept of micro and fine machining technology. This new design allows a wide controllable range for high flow at a high pressure difference between inlet and outlet. This promising combination of micro and fine

  13. Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films.

    Science.gov (United States)

    Wang, Zhihong; Lau, Gih Keong; Zhu, Weiguang; Chao, Chen

    2006-01-01

    This paper presents both theoretical and numerical analyses of the piezoelectric and dielectric responses of a highly idealized film-on-substrate system, namely, a polarized ferroelectric film perfectly bonded to an elastic silicon substrate. It shows that both effective dielectric and piezoelectric properties of the films change with the size and configuration of the test capacitor. There exists a critical electrode size that is smaller than the diameter of the commonly used substrate. The effective film properties converge to their respective constrained values as capacitor size increases to the critical size. If capacitor size is smaller than the critical size, the surface displacement at the top electrode deviates from the net thickness change in response to an applied voltage because the film is deformable at the film/substrate interface. The constrained properties of the films depend only on those of bulk ferroelectrics but are independent of film thickness and substrate properties. The finding of the critical capacitor size together with analytical expressions of the constrained properties makes it possible to realize consistent measurement of piezoelectric and dielectric properties of films. A surface scanning technique is recommended to measure the profile of piezoresponses of the film so that the constrained properties of the film can be identified accurately.

  14. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  15. Effects of criticality and disorder on piezoelectric properties of ferroelectrics

    International Nuclear Information System (INIS)

    Porta, Marcel; Lookman, Turab; Saxena, Avadh

    2010-01-01

    The piezoelectric response of BaTiO 3 is studied in the vicinity of the cubic to tetragonal phase transition, as a function of temperature and the applied electric field in the polar direction. We also investigate the influence of disorder. In the clean limit we obtain the divergence of the piezoelectric tensor at the critical point. The effect of a small amount of disorder is to translate the critical point in the temperature-electric field phase diagram. For large values of the disorder, the paraelectric to ferroelectric phase transition becomes diffuse but a maximum of the piezoelectric tensor is still obtained even though the divergence of the piezoelectric response is lost. These results are in agreement with experimental observations for the relaxor ferroelectric Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 . We use a Ginzburg-Landau model which explicitly includes the coupling of the polarization to the strain, the electrostatic interaction between polarizations, and a quenched random compressional stress field generated by point defects. The strain field and its associated elastic energy are written in terms of the stress field and the electric polarization by energy minimization subject to elastic compatibility.

  16. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    International Nuclear Information System (INIS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L

    2011-01-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180 0 domain wall motion under electrical and mechanical poling loads. To distinguish between 180 0 and non-180 0 domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180 0 domains.

  17. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  18. Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua

    2018-03-01

    Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.

  19. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    Science.gov (United States)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  20. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  1. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  2. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  3. Pulsed laser deposited Pb(Zr,Ti)O3 thin films with excellent piezoelectric and mechanical properties

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    We present for the first time the combined measured piezoelectric and mechanical properties of epitaxial, (110) oriented Pb(ZrxTi1-x) (PZT) thin films grown on microfabricated silicon cantilevers using pulsed laser deposition (PLD, x=0.4, 0.52, 0.6 and 0.8). The grown PZT thin films develop a strong

  4. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Jacob L. Jones

    2010-03-01

    Full Text Available Piezoelectrics have widespread use in today’s sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [ZrxTi1-x] O3 (PZT,are comprised of more than 60 weight percent lead (Pb. Dueto its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO3, Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, Na0.5K0.5NbO3, and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided.

  5. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  6. Applications of piezoelectric materials in oilfield services.

    Science.gov (United States)

    Goujon, Nicolas; Hori, Hiroshi; Liang, Kenneth K; Sinha, Bikash K

    2012-09-01

    Piezoelectric materials are used in many applications in the oilfield services industry. Four illustrative examples are given in this paper: marine seismic survey, precision pressure measurement, sonic logging-while-drilling, and ultrasonic bore-hole imaging. In marine seismics, piezoelectric hydrophones are deployed on a massive scale in a relatively benign environment. Hence, unit cost and device reliability are major considerations. The remaining three applications take place downhole in a characteristically harsh environment with high temperature and high pressure among other factors. The number of piezoelectric devices involved is generally small but otherwise highly valued. The selection of piezoelectric materials is limited, and the devices have to be engineered to withstand the operating conditions. With the global demand for energy increasing in the foreseeable future, the search for hydrocarbon resources is reaching into deeper and hotter wells. There is, therefore, a continuing and pressing need for high-temperature and high-coupling piezoelectric materials.

  7. Structural Origins of Silk Piezoelectricity.

    Science.gov (United States)

    Yucel, Tuna; Cebe, Peggy; Kaplan, David L

    2011-02-22

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of λ= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, β-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(β)∝ e(2.5) (λ)), the concomitant increasing degree of orientation of β-sheet crystals detected via WAXD (FWHM = 0.22° for λ= 2.7), and the improvement in silk piezoelectricity (d(14)∝ e(2.4) (λ)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75°) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the β-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, β-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein.

  8. Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La0.9Ce0.1MnO3 thin films

    International Nuclear Information System (INIS)

    Zheng, R.K.; Dong, S.N.; Wu, Y.Q.; Zhu, Q.X.; Wang, Y.; Chan, H.L.W.; Li, X.M.; Luo, H.S.; Li, X.G.

    2012-01-01

    The authors constructed multiferroic structures by growing La 0.9 Ce 0.1 MnO 3 (LCEMO) thin films on piezoelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 –0.32PbTiO 3 (PMN-PT) single-crystal substrates. Due to the efficient elastic coupling at the interface, the electric-field-induced piezoelectric strain in PMN-PT substrates is effectively transferred to LCEMO films and thus, leads to a decrease in the resistance and an increase in the magnetoresistance of the films. Particularly, it was found that the resistance-strain coefficient [(ΔR/R) film /(Δε zz ) film ] of the LCEMO film was considerably enhanced by the application of magnetic fields, demonstrating strong coupling between the lattice and the spin degrees of freedom. (ΔR/R) film /(Δε zz ) film at 122 K was enhanced by ∼ 28.8% by a magnetic field of 1.2 T. An analysis of the overall results demonstrates that the phase separation is crucial to understand strain-mediated modulation of electronic transport properties of manganite film/PMN-PT multiferroic structures. - Highlights: ► La 0.9 Ce 0.1 Mn O3 films were epitaxially grown on piezoelectric single crystals. ► Piezoelectric strain influences the electronic transport properties of films. ► Magnetic field enhances the piezoelectric strain effect. ► Phase separation is crucial to understand the piezoelectric strain effect.

  9. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  10. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  11. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  12. Preparation and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Ni Haimin; Luo Laihui; Li Weiping; Zhu Yuejin; Luo Haosu

    2011-01-01

    Research highlights: → Bi 0.47 Na 0.47 Ba 0.06 TiO 3 -KNbO 3 ceramics exhibit excellent piezoelectric properties. → The optimized properties of the ceramics: d 33 = 195 pC/N; k t = 58.9; Q m = 113; E c = 19.5 kV/cm. → KNbO 3 has diffused into the Bi 0.47 Na 0.47 Ba 0.06 TiO 3 lattices to form a new solid solution. → Macro-micro domain switching occurs at depolarization temperature T d . - Abstract: Lead-free (1 - x)Bi 0.47 Na 0.47 Ba 0.06 TiO 3 -xKNbO 3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO 3 (KN) has diffused into Bi 0.47 Na 0.47 Ba 0.06 TiO 3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d 33 = 195 pC/N; electromechanical coupling factor, k t = 58.9 and k p = 29.3%; mechanical quality factor, Q m = 113; remnant polarization, P r = 41.8 μC/cm 2 ; coercive field, E c = 19.5 kV/cm.

  13. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

    Science.gov (United States)

    Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J.

    2017-12-01

    We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

  14. In-situ poling and structurization of piezoelectric particulate composites.

    Science.gov (United States)

    Khanbareh, H; van der Zwaag, S; Groen, W A

    2017-11-01

    Composites of lead zirconate titanate particles in an epoxy matrix are prepared in the form of 0-3 and quasi 1-3 with different ceramic volume contents from 10% to 50%. Two different processing routes are tested. Firstly a conventional dielectrophoretic structuring is used to induce a chain-like particle configuration, followed by curing the matrix and poling at a high temperature and under a high voltage. Secondly a simultaneous combination of dielectrophoresis and poling is applied at room temperature while the polymer is in the liquid state followed by subsequent curing. This new processing route is practiced in an uncured thermoset system while the polymer matrix still possess a relatively high electrical conductivity. Composites with different degrees of alignment are produced by altering the magnitude of the applied electric field. A significant improvement in piezoelectric properties of quasi 1-3 composites can be achieved by a combination of dielectrophoretic alignment of the ceramic particles and poling process. It has been observed that the degree of structuring as well as the functional properties of the in-situ structured and poled composites enhance significantly compared to those of the conventionally manufactured structured composites. Improving the alignment quality enhances the piezoelectric properties of the particulate composites.

  15. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  16. Shape-Memory PVDF Exhibiting Switchable Piezoelectricity.

    Science.gov (United States)

    Hoeher, Robin; Raidt, Thomas; Novak, Nikola; Katzenberg, Frank; Tiller, Joerg C

    2015-12-01

    In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%. Programming upon rolling induces the transformation from the nonelectroactive α-phase to the piezoelectric β-phase. The highest β-phase content is found to be 83% for a programming strain of 200% affording a d33 value of -30 pm V(-1). This is in good accordance with literature known values for piezoelectric properties. Thermal triggering this material does not only result in a shape change but also renders the material nonelectroactive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  18. Fabrication and calibration of a piezoelectric nanocomposite paint

    Science.gov (United States)

    Osho, Samuel; Wu, Nan; Aramfard, Mohammad; Deng, Chuang; Ojo, Olanrewaju

    2018-03-01

    A new liquid form piezoelectric nanocomposite paint material is fabricated with possible applications as dynamic strain sensors and/or piezoelectric transducers. The applied coating is in the form of low-cost paint, which is flexible and bonds strongly on a metallic surface after drying out via the solvent-casting method. The nanocomposite is produced by an ultrasonic mixture of varying percentages of zinc oxide (ZnO) nanoparticle water dispersion, poly vinyl acetate glue (PVA) and carbon nanotubes (CNTs). ZnO nanoparticles are used as the piezoelectric sensing elements in a PVA matrix of the paint, while CNTs are introduced as robust bridge of ZnO particles enhancing the piezoelectricity and material properties. Transmission electron microscopy (TEM) images confirmed the linkages of ZnO nanoparticles in the composite by CNTs. Through piezoelectricity calibration, the optimum mixing ratio with the highest piezoelectricity is 78.1 wt% ZnO, 19.5 wt% PVA glue and 2.4 wt% multi-wall carbon nanotubes (MWCNTs). Through nanoindentation tests for the characterization of the mechanical properties of the nano-composite paint, it is found that Young’s modulus and hardness reached a threshold point in the increment in the addition of CNTs to the paint before showing signs of decline. Detailed analysis and explanation of the calibration results and physical phenomenon are provided. The stable paint material is ready to be applied on rough area of engineering structures as sensor and transducer.

  19. Piezoelectric Resonance Defined High Performance Sensors and Modulators

    Science.gov (United States)

    2016-05-30

    19.00 20.00 30.00 Received Paper 3.00 Juan P. Tamez, Amar Bhalla, Ruyan Guo. Design and Simulation of 100 kHz and 200 kHz Tri-Phasic PZT Piezoelectric...electrooptic coefficient r_51 of tetragonal potassium lithium tantalate niobate K_095Li_005Ta_040Nb_060O_3 single crystal, Optical Materials Express, (11...Experimental Studies on Tri- Phasic PZT Piezoelectric Transducer, Ferroelectrics, (12 2014): 0. doi: 10.1080/00150193.2014.974472 Jun Li, Yang Li

  20. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  1. Flexible Piezoelectric Generators by Using the Bending Motion Method of Direct-Grown-PZT Nanoparticles on Carbon Nanotubes.

    Science.gov (United States)

    Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Lim, Jongsun; Bu, Sang Don

    2017-10-07

    Recently, composite-type nanogenerators (NGs) formed from piezoelectric nanostructures and multi-walled carbon nanotubes (CNTs), have become one of the excellent candidates for future energy harvesting because of their ability to apply the excellent electrical and mechanical properties of CNTs. However, the synthesis of NG devices with a high proportion of piezoelectric materials and a low polymer content, such as of polydimethylsiloxane (PDMS), continues to be problematic. In this work, high-piezoelectric-material-content flexible films produced from Pb(Zr,Ti)O₃ (PZT)-atomically-interconnected CNTs and polytetrafluoroethylene (PTFE) are presented. Various physical and chemical characterization techniques are employed to examine the morphology and structure of the materials. The direct growth of the piezoelectric material on the CNTs, by stirring the PZT and CNT mixed solution, results in various positive effects, such as a high-quality dispersion in the polymer matrix and addition of flexoelectricity to piezoelectricity, resulting in the enhancement of the output voltage by an external mechanical force. The NGs repeatedly generate an output voltage of 0.15 V. These results present a significant step toward the application of NGs using piezoelectric nanocomposite materials.

  2. Flexible Piezoelectric Generators by Using the Bending Motion Method of Direct-Grown-PZT Nanoparticles on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jin Kyu Han

    2017-10-01

    Full Text Available Recently, composite-type nanogenerators (NGs formed from piezoelectric nanostructures and multi-walled carbon nanotubes (CNTs, have become one of the excellent candidates for future energy harvesting because of their ability to apply the excellent electrical and mechanical properties of CNTs. However, the synthesis of NG devices with a high proportion of piezoelectric materials and a low polymer content, such as of polydimethylsiloxane (PDMS, continues to be problematic. In this work, high-piezoelectric-material-content flexible films produced from Pb(Zr,TiO3 (PZT-atomically-interconnected CNTs and polytetrafluoroethylene (PTFE are presented. Various physical and chemical characterization techniques are employed to examine the morphology and structure of the materials. The direct growth of the piezoelectric material on the CNTs, by stirring the PZT and CNT mixed solution, results in various positive effects, such as a high-quality dispersion in the polymer matrix and addition of flexoelectricity to piezoelectricity, resulting in the enhancement of the output voltage by an external mechanical force. The NGs repeatedly generate an output voltage of 0.15 V. These results present a significant step toward the application of NGs using piezoelectric nanocomposite materials.

  3. Magnetoelectric effect in structures which consist from ferrimagnetic and piezoelectric components

    International Nuclear Information System (INIS)

    Koronovs'kij, V.Je.

    2007-01-01

    Magnetoelectric (ME) properties of the structure which consists from mechanically connected magnetostriction and piezoelectric plates were investigated on example of the yttrium-ferrite-garnet (YIG) - piezoelectric. The laser polarimeter is using

  4. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-01-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d 33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d 33 above the permittivity peak, T m , show that the BLT ceramic has relaxor-like behavior

  5. A Diagram of the Structure Evolution of Pb(Zn1/3Nb2/3 O3-9%PbTiO3 Relaxor Ferroelectric Crystals with Excellent Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2017-05-01

    Full Text Available Piezoelectric properties are of significant importance to medical ultrasound, actuators, sensors, and countless other device applications. The mechanism of piezoelectric properties can be deeply understood in light of structure evolutions. In this paper, we report a diagram of the structure evolutions of Pb(Zn1/3Nb2/30.91Ti0.09O3 (PZN-9PT crystals with excellent piezoelectric properties among orthorhombic, tetragonal, and cubic phases, with a temperature increasing from room temperature to 220 °C. Through fitting the temperature-dependent XRD curves with Gauss and Lorenz functions, we obtained the evolutions of the content ratio of three kinds of phases (orthorhombic, tetragonal and cubic and the lattice parameters of the PZN-9PT system with the changes of temperature. The XRD fitting results together with Raman and dielectric spectra show that the phase transitions of PZN-9PT are a typical continuous evolution process. Additionally, resonance and anti-resonance spectra show the excellent piezoelectric properties of these crystals, which probably originate from the nano twin domains, as demonstrated by TEM images. Of particular attention is that the thickness electromechanical coupling factor kt is up to 72%.

  6. Electromechanical response of (2–2) layered piezoelectric composites

    International Nuclear Information System (INIS)

    Kar-Gupta, Ronit; Venkatesh, T A

    2013-01-01

    Analytical and finite element models are developed to systematically characterize the effects of phase volume fraction and the relative orientations of the poling directions in two phases on the effective elastic, dielectric and piezoelectric properties of layered piezoelectric composites. Four classes of layered piezoelectric composites are identified based on the relative orientation of the poling directions in the two piezoelectric phases. Upon verifying that the results of the finite model compare well with that of analytical models for select layered composite systems, the finite element model is extended to characterize the electromechanical response of all four classes of piezoelectric composites. It is generally observed that the electromechanical properties of the layered composite along a direction perpendicular to the layer interface is largely influenced by the properties of the ‘softer’ phase whereas the in-plane response is modulated more by the ‘rule-of-mixtures’ theory. It is also observed that variations in the poling directions of the constituents can significantly influence the symmetry of the composite with composites that belong to Classes II and III (where the poling directions of the two phases are orthogonal to each other) exhibiting a relatively lower degree of material symmetry while the composites that belong to Classes I and IV (where the poling directions of the two phases are parallel to each other) exhibit a higher order symmetry. Furthermore, the best combination of figures of merit, i.e., enhanced coupling constant and reduced acoustic impedance, in a direction parallel to the layer interface is exhibited by Class I and Class II types of composite (where the piezoelectrically stiffer phase is poled along the layer interface). (paper)

  7. Piezoelectric paint: characterization for further applications

    International Nuclear Information System (INIS)

    Yang, C; Fritzen, C-P

    2012-01-01

    Piezoelectric paint is a very attractive piezoelectric composite in many fields, such as non-destructive testing, or structural health monitoring. However, there are still many obstacles which restrict the real application of it. One of the main problems is that piezoelectric paint lacks a standard fabrication procedure, thus characterization is needed before use. The work presented here explores the characterization of piezoelectric paint. It starts with fabrication of samples with certain piezoelectric powder weight percentages. The microstructures of the samples are investigated by a scanning electron microscope; the results indicate that the fabrication method can produce high quality samples. This is followed by measurements of Young’s modulus and sensitivity. The piezoelectric charge constant d 31 is then deduced from the experimental data; the results agree well with a published result, which validates the effectiveness of the fabrication and characterization method. The characterized piezoelectric paint can expand its applications into different fields and therefore becomes a more promising and competitive smart material. (paper)

  8. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Du Hongliang; Zhou Wancheng; Luo Fa; Zhu Dongmei; Qu Shaobo; Li Ye; Pei Zhibin

    2008-01-01

    Lead-free ceramics (1 - x)(K 0.5 Na 0.5 )NbO 3 -x(Bi 0.5 K 0.5 )TiO 3 [(1 - x)KNN-xBKT] were synthesized by conventional solid-state sintering. The phase structure, microstructure and electrical properties of (1 - x)KNN-xBKT ceramics were investigated. At room temperature, the polymorphic phase transition (from the orthorhombic to the tetragonal phase) (PPT) was identified at x = 0.02 by the analysis of x-ray diffraction patterns and dielectric spectroscopy. Enhanced electrical properties (d 33 = 251 pC N -1 , k p = 0.49, k t = 0.50, ε 33 T / ε 0 =1260, tan δ = 0.03 and T C = 376 deg. C) were obtained in the ceramics with x = 0.02 owing to the formation of the PPT at 70 deg. C and the selection of an optimum poling temperature. The related mechanisms for high piezoelectric properties in (1 - x)KNN-xBKT (x = 0.02) ceramics were discussed. In addition, the results confirmed that the selection of the optimum poling temperature was an effective way to further improve the piezoelectric properties of KNN-based ceramics. The enhanced properties were comparable to those of hard Pb(Zr, Ti)O 3 ceramics and indicated that the (1 - x)KNN-xBKT (x = 0.02) ceramic was a promising lead-free piezoelectric candidate material for actuator and transducer applications

  9. UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Zeng, D.W.; Xie, C.S.; Li, K.; Chan, H.L.W.; Choy, C.L.; Yung, K.C.

    2004-01-01

    UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO 2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO 2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1-3 and concentric-ring 2-2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d 33 meter. Both composites show high piezoelectric properties. (orig.)

  10. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    Science.gov (United States)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  11. Enhanced Piezoelectric Response of AlN via CrN Alloying

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun; Mangum, John; Zakutayev, Andriy; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the CrxAl1-xN system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in CrxAl1-xN alloys is the increase of the internal parameter u of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that CrxAl1-xN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that CrxAl1-xN is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position CrxAl1-xN as a prime piezoelectric material for applications such as resonators and acoustic wave generators.

  12. Enhanced Piezoelectric Response of AlN via CrN Alloying

    Science.gov (United States)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun; Mangum, John; Zakutayev, Andriy; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the Crx Al1 -x N system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Crx Al1 -x N alloys is the increase of the internal parameter u of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that Crx Al1 -x N has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Crx Al1 -x N is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position Crx Al1 -x N as a prime piezoelectric material for applications such as resonators and acoustic wave generators.

  13. Piezoelectric properties enhanced of Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with charge neutrality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Pinyang, E-mail: fpy_2000@163.com [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Xi, Zengzhe; Long, Wei; Li, Xiaojuan [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Li, Jin [Northwest Institute For Non-ferrous Metal Research, Xi’an 710016 (China)

    2013-09-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T{sub c} ∼590 °C and d{sub 33} ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr{sub 0.6−x}(LiCe){sub x/2.5}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9}(SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} (SBNBN) ceramic and the maximum of piezoelectric coefficient d{sub 33} of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T{sub c} ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed.

  14. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    Science.gov (United States)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  15. Ultrahigh piezoelectricity in ferroelectric ceramics by design

    Science.gov (United States)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun

    2018-03-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  16. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  17. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter; Gall, Brady B. [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Dale, Gregory E. [High Power Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  18. Fabrication and Characterization of Aligned Flexible Lead-Free Piezoelectric Nanofibers for Wearable Device Applications

    Directory of Open Access Journals (Sweden)

    Sang Hyun Ji

    2018-03-01

    Full Text Available Flexible lead-free piezoelectric nanofibers, based on BNT-ST (0.78Bi0.5Na0.5TiO3-0.22SrTiO3 ceramic and poly(vinylidene fluoride-trifluoroethylene (PVDF-TrFE copolymers, were fabricated by an electrospinning method and the effects of the degree of alignment in the nanofibers on the piezoelectric characteristics were investigated. The microstructure of the lead-free piezoelectric nanofibers was observed by field emission scanning electron microscope (FE-SEM and the orientation was analyzed by fast Fourier transform (FFT images. X-ray diffraction (XRD analysis confirmed that the phase was not changed by the electrospinning process and maintained a perovskite phase. Polarization-electric field (P-E loops and piezoresponse force microscopy (PFM were used to investigate the piezoelectric properties of the piezoelectric nanofibers, according to the degree of alignment—the well aligned piezoelectric nanofibers had higher piezoelectric properties. Furthermore, the output voltage of the aligned lead-free piezoelectric nanofibers was measured according to the vibration frequency and the bending motion and the aligned piezoelectric nanofibers with a collector rotation speed of 1500 rpm performed the best.

  19. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  20. Preisach model of hysteresis for the Piezoelectric Actuator Drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a precise piezoelectric motor generating high-torque rotary motion, which employs piezoelectric stack actuators in a wobblestyle actuation to generate rotation. The piezoelectric stacked ceramics used as the basis for motion in the motor suffer from...

  1. Monitoring of bone healing by piezoelectric-EMI method

    Science.gov (United States)

    Mazlina, M. H.; Sarpinah, Bibi; Tawie, Rudy; Daho, Claira Dalislone; Annuar, Ishak

    2016-02-01

    Smart Piezoelectric devices which have excellent piezoelectric properties have been employed for various sensor and actuators applications. The work presented here is an attempt to demonstrate the feasibility of bone healing monitoring by using piezoelectric-electromechanical impedance (EMI) method that have several advantages such as low cost, portable, light weight and simplicity in measurement. A Piezoelectric sensor (PZT) has been widely used in damage detection of various structures including concrete, pipes and bones due to their unique sensing and actuating properties. The EMI technique has emerged as a universal Structural Health Monitoring (SHM) tool suitable for almost all engineering materials and structures. The method used for this proposed study consists of put healing agent in the host structure in particular cracks bone to be monitored by PZT-needle sensor which is embedded to the host structure. The measurements were taken in the frequency range between 0.04 to 100 kHz at 1 kHz interval using AD5933 evaluation board. The signals retrieved from the AD5933 evaluation board, were quantify and analyse to obtain Root Mean Square Deviation (RMSD) percentage value. Measurements were taken every hour for 12 hours. The result from the study shows the feasibility of the piezoelectric-EMI method to effectively detect changes during bone-cracks healing process until the cracks bone is fully recovered.

  2. Growth and characterization of lead-free (K,Na)NbO3-based piezoelectric single crystals

    International Nuclear Information System (INIS)

    Liu, Hairui

    2016-01-01

    Lead-free piezoelectric materials have received increasing attention in the last decade, driven by environmental issues and health concerns. Of considerable interest is the (K,Na)NbO 3 (KNN)-based system, which possesses a relatively high Curie temperature and good piezoelectric properties. Abundant publications on KNN-based polycrystalline ceramics increased the interest in studying their single-crystalline form, based on two major concerns. The first concern refers to the negative role of grain interactions on the electromechanical response. The second concern deals with domain engineering. The relationship between external electric field direction, crystallographic orientation, and spontaneous polarization vectors for a specific structure can be more readily established in single crystals and thus offers a pathway for an in-depth understanding of fundamental mechanism and potential applications. The exciting enhancement of both piezoelectric and ferroelectric response in lead-based single crystals also encourages the further exploration of KNN-based piezoelectric crystals, as they possess the same perovskite structure. The main goal of this thesis is to find possible approaches for improved electromechanical properties in KNN-based piezoelectric single crystals. In Chapter 2, the current development of KNN-based single crystals as piezoelectrics is reviewed, following a short introduction of fundamental knowledge on piezoelectrics and ferroelectrics. Both submerged-seed solution growth and top-seeded solution growth techniques were employed to produce single crystals, as described detailed in Chapter 3. Emphasis is subsequently placed on issues of the crystal growth process, effective methods to enhance electrical properties, and crystallographic orientation-dependent electrical properties in Li-, Ta-, and/or Sb-substituted KNN single crystals. The main conclusions from the crystal growth aspect are presented in Chapter 4 and can be summarized as follows: (i

  3. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls

    Czech Academy of Sciences Publication Activity Database

    Ondrejkovič, Petr; Márton, Pavel; Guennou, Mael; Setter, N.; Hlinka, Jiří

    2013-01-01

    Roč. 88, č. 2 (2013), "024114-1"-"024114-9" ISSN 1098-0121 Grant - others:7th Framework Programme(XE) 268058 Institutional support: RVO:68378271 Keywords : piezoelectric properties * charged domain walls * domain structure * twinned ferroelectric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.88.024114

  4. Preparation and electrical properties of MoO{sub 3}-modified SrBi{sub 2}Nb{sub 2}O{sub 9}-based lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhongran, E-mail: ruiqingchu@sohu.com [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Chu, Ruiqing, E-mail: rqchu@lcu.edu.cn [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Xu, Zhijun; Hao, Jigong; Wei, Denghu; Cheng, Renfei [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Li, Guorong [The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2016-05-05

    Lead-free piezoelectric ceramics, SrBi{sub 2}(Nb{sub 1-x}Mo{sub x}){sub 2}O{sub 9} (SBNM-x), were prepared by a conventional solid-state reaction method. The crystal structure, microstructure and electrical properties were systematically investigated. The X-ray diffraction analysis suggested that the substitution formed layered perovskite structure. Plate-like morphology of the grains which is characteristic for layer-structure Aurivillius compounds was clearly observed for all the samples. The excellent electrical properties (e.g., d{sub 33}∼18 pC/N, 2P{sub r}∼20.34 μC/cm{sup 2}) and a high Curie temperature (e.g., T{sub c}∼458 °C) are simultaneously obtained in the ceramics with x = 0.12. Additionally, thermal annealing studies indicated that piezoelectric constant (d{sub 33}) of SBNM-0.12 ceramic remains almost unchanged (16 pC/N, only decrease by 12%) at temperatures below 400 °C, demonstrating that the Mo-modified SBN-based ceramics are the promising candidates for high-temperature applications. - Highlights: • Higher valent cation Mo{sup 6+} substituted for B-site Nb{sup 5+} in the perovskite layers ions. • The piezoelectric constant (d{sub 33}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 18 pC/N. • The remnant polarization (2P{sub r}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 20.34 μC cm{sup −2}. • SBNM-x ceramics show good temperature stability for high temperature applications.

  5. Effect of electrical conductivity on the polarization behaviour and pyroelectric, piezoelectric property prediction of 0-3 ferroelectric composites

    International Nuclear Information System (INIS)

    Wei Nian; Zhang Duanming; Yang Fengxia; Han Xiangyun; Zhong Zhicheng; Zheng Keyu

    2007-01-01

    We have investigated the effect of electrical conductivity of the constituents on the poling behaviour of the ceramic inclusions in 0-3 ferroelectric composites which comprise a dilute suspension of spherical particles uniformly distributed in the matrix material. A new model for the pyroelectric and piezoelectric properties in terms of the poling conditions (poling field and poling time) has been developed to include electrical conductivity. Simulated results show that conductivity plays an important role in the poling process. Properly increasing the conductivity of the matrix σ m can enhance the polarization in the ceramic inclusion of the composite P i , thereby making the poling of the composite more efficient. In contrast, higher conductivity of the ceramic inclusion σ i results in lower polarization P i , which is unfavourable to the poling of the composite. These results provide insights into the observed behaviour of 0-3 composites. The model predicts the pyroelectric and piezoelectric properties under different poling conditions, which agree well with the corresponding experimental data

  6. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  7. Piezoelectric ceramic material, containing PbNb2O6, K2Nb2O6

    International Nuclear Information System (INIS)

    Fesenko, E.G.; Filip'ev, V.S.; Razumovskaya, O.N.; Cherner, Ya.E.; Rudkovskaya, L.M.; Zav'yalov, V.P.; Molchanova, R.A.; Kryshtop, V.G.; Panich, A.E.; Servuli, V.A.

    1984-01-01

    A new piezoelectric ceramic material including PbNb 2 O 6 , K 2 Nb 2 O 6 is prepared. Above the new material contains Nb 2 O 5 . The invention relates to piezotechnique. The principal advantage of this material for acoustic converters is high anisotropy of piezoelectric properties as well as high Curie temperature (T C =539-553 deg C). The composition containing 93.96 mole% PbNb 2 O 6 ; 2.48 mole% K 2 Nb 2 O 6 and 3.56 mole% Nb 2 O 5 has optimum content of parameters

  8. Piezoelectric evaluation of ion beam etched Pb(Zr,Ti)O3 thin films by piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Legrand, C.; Da Costa, A.; Desfeux, R.; Soyer, C.; Remiens, D.

    2007-01-01

    The evolution of piezoelectric properties of Pb(Zr,Ti)O 3 (PZT) thin films after ion beam etching have been investigated at the nanoscale level by piezoelectric force microscopy. A comparison of the piezoelectric properties on etched and unetched films is realized. Piezoelectric contrasts imaging evidences a modification of the domain architecture at the film surface. Local piezoelectric hysteresis loops measurements on grains indicate that the coercive voltage for switching is much higher for the etched films (2.3 V) compared to the unetched ones (1.0 V) while the average piezoelectric activity is slightly lower. The results are explained in terms of grain-damaging during etching and domain-wall pinning

  9. Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System

    Directory of Open Access Journals (Sweden)

    Alberto Moure

    2018-01-01

    Full Text Available According to the EU-Directives 2002/95/EC, 2002/96/EC, lead-based piezoceramics must be substituted in the future with more environmentally friendly alternatives, only when a reliable alternative is found. This is why an increasing interest has grown in the research community to find lead free piezoelectric materials that fulfil the requirements for this substitution. Different families of compounds have been shown to be possible candidates for this use, such as bismuth and niobates based perovskites, pyrochlores, etc. However, a material with piezoelectric coefficients similar to those of PZT (lead zirconate titanate, Pb[ZrxTi1-x]O3 has not been yet found. Besides, each of these families has its specific characteristics in terms of remnant polarization, coercive field or application temperature. Thus, the choice of each material should be made according to the specific needs of the application. In this sense, Aurivillius-type structure materials (also known as Bismuth Layered Structure Ferroelectrics, BLSF can take advantage of their specific properties for uses as Lead Free Piezoelectric systems. Some of them have a high Curie temperature, which make them good candidates to be used as high temperature piezoelectrics; high coercive fields, which facilitates their use as actuators; or a high switching fatigue resistance, which can be useful for future applications as Ferroelectric Random Access Memories (FERAM.

  10. Strong piezoelectricity in bioinspired peptide nanotubes.

    Science.gov (United States)

    Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil

    2010-02-23

    We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.

  11. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    Science.gov (United States)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  12. Peritubular dentin lacks piezoelectricity.

    Science.gov (United States)

    Habelitz, S; Rodriguez, B J; Marshall, S J; Marshall, G W; Kalinin, S V; Gruverman, A

    2007-09-01

    Dentin is a mesenchymal tissue, and, as such, is based on a collagenous matrix that is reinforced by apatite mineral. Collagen fibrils show piezoelectricity, a phenomenon that is used by piezoresponse force microscopy (PFM) to obtain high-resolution images. We applied PFM to image human dentin with 10-nm resolution, and to test the hypothesis that zones of piezoactivity, indicating the presence of collagen fibrils, can be distinguished in dentin. Piezoelectricity was observed by PFM in the dentin intertubular matrix, while the peritubular dentin remained without response. High-resolution imaging of chemically treated intertubular dentin attributed the piezoelectric effect to individual collagen fibrils that differed in the signal strength, depending on the fibril orientation. This study supports the hypothesis that peritubular dentin is a non-collagenous tissue and is thus an exception among mineralized tissues that derive from the mesenchyme.

  13. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  14. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators

    Science.gov (United States)

    Shin, Sung-Ho; Kwon, Yang Hyeog; Lee, Min Hyung; Jung, Joo-Yun; Seol, Jae Hun; Nah, Junghyo

    2016-01-01

    We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07185b

  15. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.

    Science.gov (United States)

    Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C

    2010-12-01

    Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

  16. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 and CuO Addition

    Science.gov (United States)

    Guan, Shibo; Yang, Huabin; Chen, Guangcong; Zhang, Rui

    2018-02-01

    A new lead-free piezoelectric ceramic, 0.67BiFeO3-0.33BaTiO3-xBi(Zn0.5Ti0.5) O3 + 0.0035MnO2 + 0.004CuO, was prepared through the solid-state reaction route. The ceramic was sintered in the 950-990°C range. In this paper, the crystal structure of the sample is pure perovskite structure with a pseudo-cubic structure in the range of x = 0-0.05, and does not change greatly with the increase of x. The grain size increases first and then decreases with the increase of x. The addition of Bi(Zn0.5Ti0.5) O3(BZT) promoted the grain growth of the sample. The piezoelectric constant reached the maximum value of d 33 = 188 pC/N, electromechanical coupling coefficient k p = 0.301 and the remanent polarization P r = 61.20 μC/cm2 at x = 0.03. It has a high Curie temperature of T c = 420°C. On the other hand, the depolarization temperature reaches the maximum value, T d = 426°C, at x = 0. A small amount of BZT doping can improve the piezoelectric, dielectric, and ferroelectric properties of the samples. Therefore, this material can be considered as a promising lead-free piezoelectric ceramic material in the application field of high-temperature materials.

  17. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    Directory of Open Access Journals (Sweden)

    Li Gu

    2016-06-01

    Full Text Available The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential.

  19. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  20. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    Science.gov (United States)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  1. Piezoelectric coefficients and spontaneous polarization of ScAlN

    International Nuclear Information System (INIS)

    Caro, Miguel A; Laurila, Tomi; Zhang, Siyuan; Moram, Michelle A; Riekkinen, Tommi; Ylilammi, Markku; Molarius, Jyrki; Lopez-Acevedo, Olga

    2015-01-01

    We present a computational study of spontaneous polarization and piezoelectricity in Sc x Al 1−x N alloys in the compositional range from x = 0 to x = 0.5, obtained in the context of density functional theory and the Berry-phase theory of electric polarization using large periodic supercells. We report composition-dependent values of piezoelectric coefficients e ij , piezoelectric moduli d ij and elastic constants C ij . The theoretical findings are complemented with experimental measurement of e 33 for a series of sputtered ScAlN films carried out with a piezoelectric resonator. The rapid increase with Sc content of the piezoelectric response reported in previous studies is confirmed for the available data. A detailed description of the full methodology required to calculate the piezoelectric properties of ScAlN, with application to other complex alloys, is presented. In particular, we find that the large amount of internal strain present in ScAlN and its intricate relation with electric polarization make configurational sampling and the use of large supercells at different compositions necessary in order to accurately derive the piezoelectric response of the material. (paper)

  2. Development of a piezoelectric bone substitute material

    International Nuclear Information System (INIS)

    Al-Bader, Yousef A.

    2000-01-01

    The thesis deals with the preparation and testing of ceramic compositions to be used as bone substitute. The proposed composition consisted of calcium enriched calcium phosphate, kaolin and barium titanate in different ratios. The homogeneous powder mixture was dry pressed at different pressures and fired at temperatures up to 1350 degC for different soaking times. The physical properties of the fired compacts that were tested are bulk density and porosity. These were determined as function of pressing pressure, firing temperature and soaking time for different compositions. The mechanical properties investigated were the ultimate compressive strength and Young's modulus, which were determined for different compositions and forming pressures. The electrical properties investigated were D.C. characteristics (resistivity) and A.C. characteristics (A.C. resistivity, dielectric constant, dielectric loss and loss tangent). The piezoelectric behaviour of the fired compacts was investigated and the piezoelectric coefficient (d) in the axial direction was obtained as a function of the percent barium titanate added. The development of piezoelectricity when barium titanate is added was interpreted, using XRD, as due to the formation of barium titanate silicate. Compositions determined as having properties comparable to those of natural bone, were tested for in vitro solubility in pure water and saline solution. The results obtained showed that the selected composition (containing 15% kaolin, 10% barium titanate, pressed at 35 MPa and fired at 1350 degC for two hours) has properties comparable to those of dry bone and a reasonable in vitro solubility. (author)

  3. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  4. Growth and characterization of lead-free (K,Na)NbO{sub 3}-based piezoelectric single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui

    2016-10-19

    Lead-free piezoelectric materials have received increasing attention in the last decade, driven by environmental issues and health concerns. Of considerable interest is the (K,Na)NbO{sub 3} (KNN)-based system, which possesses a relatively high Curie temperature and good piezoelectric properties. Abundant publications on KNN-based polycrystalline ceramics increased the interest in studying their single-crystalline form, based on two major concerns. The first concern refers to the negative role of grain interactions on the electromechanical response. The second concern deals with domain engineering. The relationship between external electric field direction, crystallographic orientation, and spontaneous polarization vectors for a specific structure can be more readily established in single crystals and thus offers a pathway for an in-depth understanding of fundamental mechanism and potential applications. The exciting enhancement of both piezoelectric and ferroelectric response in lead-based single crystals also encourages the further exploration of KNN-based piezoelectric crystals, as they possess the same perovskite structure. The main goal of this thesis is to find possible approaches for improved electromechanical properties in KNN-based piezoelectric single crystals. In Chapter 2, the current development of KNN-based single crystals as piezoelectrics is reviewed, following a short introduction of fundamental knowledge on piezoelectrics and ferroelectrics. Both submerged-seed solution growth and top-seeded solution growth techniques were employed to produce single crystals, as described detailed in Chapter 3. Emphasis is subsequently placed on issues of the crystal growth process, effective methods to enhance electrical properties, and crystallographic orientation-dependent electrical properties in Li-, Ta-, and/or Sb-substituted KNN single crystals. The main conclusions from the crystal growth aspect are presented in Chapter 4 and can be summarized as follows

  5. Piezoelectric Templates – New Views on Biomineralization and Biomimetics

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V−1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  6. Wafer-scale integration of piezoelectric actuation capabilities in nanoelectromechanical systems resonators

    OpenAIRE

    DEZEST, Denis; MATHIEU, Fabrice; MAZENQ, Laurent; SOYER, Caroline; COSTECALDE, Jean; REMIENS, Denis; THOMAS, Olivier; DEÜ, Jean-François; NICU, Liviu

    2013-01-01

    In this work, we demonstrate the integration of piezoelectric actuation means on arrays of nanocantilevers at the wafer scale. We use lead titanate zirconate (PZT) as piezoelectric material mainly because of its excellent actuation properties even when geometrically constrained at extreme scale

  7. Effect of garment design on piezoelectricity harvesting from joint movement

    International Nuclear Information System (INIS)

    Yang, Jin-Hee; Cho, Hyun-Seung; Park, Seon-Hyung; Song, Seung-Hwan; Yun, Kwang-Seok; Lee, Joo Hyeon

    2016-01-01

    The harvesting of piezoelectricity through the human body involves the conversion of mechanical energy, mostly generated by the repeated movements of the body, to electrical energy, irrespective of the time and location. In this research, it was expected that the garment design would play an important role in increasing the efficiency of piezoelectricity scavenged in a garment because the mechanical deformation imposed on the energy harvester could increase through an optimal design configuration for the garment parts supporting a piezoelectricity harvester. With this expectation, this research aimed to analyze the effect of the clothing factors, and that of human factors on the efficiency of piezoelectricity harvesting through clothing in joint movements. These analyses resulted in that the efficiency of the piezoelectricity harvesting was affected from both two clothing factors, tightness level depending upon the property of the textile material and design configuration of the garment part supporting the piezoelectricity harvesting. Among the three proposed designs of the garment part supporting the piezoelectricity harvesting, ‘reinforced 3D module design,’ which maximized the value of radius in the piezoelectricity harvester, showed the highest efficiency across all areas of the joints in the human body. The two human factors, frequency of movement and body part, affected the efficiency of the piezoelectricity harvesting as well. (paper)

  8. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  9. Optimization of the piezoelectric response of 0–3 composites: a modeling approach

    International Nuclear Information System (INIS)

    Chambion, B; Goujon, L; Badie, L; Mugnier, Y; Barthod, C; Galez, C; Wiebel, S; Venet, C

    2011-01-01

    Finite element modeling is used in this study to optimize the electromechanical behavior of 0–3 composites according to the material properties of their constituents. Our modeling approach considers an 'extended' 2D representative volume element (RVE) with randomly dispersed piezoelectric particles. A variable distribution of their polarization axes is also implemented because a full periodic arrangement of fillers and a unique poling orientation are unrealistic in practice. Comparisons with a simpler RVE and with an analytical model based on the Mori–Tanaka approach are performed as a function of the particle concentration for the elastic, dielectric and piezoelectric homogenized properties. An optimization of the piezoelectric response of 0–3 composites according to material considerations is then computed, allowing it to be shown that the piezoelectric strain coefficient is not the only relevant parameter and that lead-free piezoelectric fillers such as LiNbO 3 and ZnO are competitive alternatives. Finally, the piezoelectric responses of 0–3 composites with different filler arrangements are quantitatively compared to 1–3 composites and to the corresponding bulk material

  10. The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2011-01-01

    We report on the optimisation of a recently developed high performance 0-3 piezoelectric composite comprising of the piezoelectric Lead Zirconate Titanate (PZT) powder and a liquid crystalline thermosetting matrix polymer (LCT). The matrix polymer is a liquid crystalline polymer comprising of an

  11. Cost Effective Growth of High Temperature Piezoelectrics for Adaptive Flow Control Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies, Inc. in collaboration with The Pennsylvania State University propose to develop new families of high temperature piezoelectric materials for...

  12. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    Science.gov (United States)

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  13. LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence.

    Science.gov (United States)

    Tu, Dong; Xu, Chao-Nan; Yoshida, Akihito; Fujihala, Masayoshi; Hirotsu, Jou; Zheng, Xu-Guang

    2017-06-01

    Red-emitting piezoluminescence (elasticoluminescence) is achieved by doping rare earth Pr 3+ into the well-known piezoelectric matrix, LiNbO 3 . By precisely tuning the Li/Nb ratio in nonstoichiometric Li x NbO 3 :Pr 3+ , a material that exhibits an unusually high piezoluminescence intensity, which far exceeds that of any well-known piezoelectric material, is produced. Li x NbO 3 :Pr 3+ shows excellent strain sensitivity at the lowest strain level, with no threshold for stress sensing. These multipiezo properties of sensitive piezoluminescence in a piezoelectric matrix are ideal for microstress sensing, damage diagnosis, electro-mechano-optical energy conversion, and multifunctional control in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    Science.gov (United States)

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  15. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    International Nuclear Information System (INIS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach. (paper)

  16. Design optimization of PVDF-based piezoelectric energy harvesters

    Directory of Open Access Journals (Sweden)

    Jundong Song

    2017-09-01

    Full Text Available Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.

  17. Design of interleaved multilayer rosen type piezoelectric transformer for high voltage dc/dc applications

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Meyer, Kaspar Sinding

    2012-01-01

    Research and development within piezoelectric transformer (PT) based converters are rapidly increasing as the technology is maturing and starts to prove its capabilities. Especially for high voltage and high step-up applications, PT based converters have demonstrated good performance and DC...

  18. KNN–NTK composite lead-free piezoelectric ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K. [NGK SPARK PLUG Co., Ltd., 2808 Iwasaki, Komaki, Aichi 485-8510 (Japan)

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  19. Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets

    Directory of Open Access Journals (Sweden)

    Lev Eppelbaum

    2017-09-01

    Full Text Available The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts. Differences in piezoelectric properties between the studied targets and host media determine the possibilities of the piezoelectric/seismoelectric method application. Over a long time, an interpretation of obtained data is carried out by the use of methods developed in seismic prospecting. Examination of nature of piezoelectric/seismoelectric anomalies observed in subsurface indicates that these may be related (mainly to electric potential field. In this paper, it is shown that quantitative analysis of piezoelectric/seismoelectric anomalies may be performed by the advanced and reliable methodologies developed in magnetic prospecting. Some examples from mining geophysics (Russia and ancient metallurgical site (Israel confirm applicability of the suggested approach.

  20. Al{sub 4}SiC{sub 4} wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O. [Fonctions Optiques pour les Technologies de l’Information, FOTON UMR 6082, CNRS, INSA de Rennes, 35708 Rennes (France); Modreanu, M. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Chaussende, D.; Sarigiannidou, E.; Chaix-Pluchery, O. [LMGP, CNRS, Université Grenoble Alpes, 38000 Grenoble (France)

    2015-12-01

    New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.

  1. State-of-the-art piezoelectric transformer-based switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    Inductorless switch mode power supplies based on piezoelectric transformers are used to replace conventional transformers in high power density switch mode power supplies. Even though piezoelectric-based converters exhibit a high d egree of nonlinearity, it is desirable to use piezoelectric transfo...... discusses power supplies with the trend evaluation of piezoelectric transformer-based converter topologies and control methods. The challenges of piezoelectric transformers regarding soft switching capability and nonlinearity are addressed. This paper can be used as a guideline f or choosing a proper...... topology of piezoelectric-based switch mode power supply and a control method for the required application....

  2. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}) Nb{sub 0.8}Ta{sub 0.2}O{sub 3} lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenlong, E-mail: yangwenlong1983@163.com; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}){sub 1−3x}La{sub x}Nb{sub 0.8}Ta{sub 0.2}O{sub 3} (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La{sup 3+} concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d{sub 33}=215pC/N, k{sub p}=42.8%and Q{sub m}=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La{sup 3+}-doped KNLTN.

  3. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains

    Science.gov (United States)

    2017-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756

  4. Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects

    Science.gov (United States)

    Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku

    2015-10-01

    We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.

  5. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric actuators constructed with the "smart material" PZT offer many potential advantages for use in NASA cryo-valve missions relative to conventional...

  6. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  7. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  8. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  9. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  10. Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers.

    Science.gov (United States)

    Nakhmanson, S M; Nardelli, M Buongiorno; Bernholc, J

    2004-03-19

    Highly piezoelectric and pyroelectric phases of boron-nitrogen-based polymers have been designed from first principles. They offer excellent electrical and structural properties, with up to 100% improvement in the piezoelectic response and an enhanced thermal stability with respect to polyvinylidene fluoride (PVDF). Since methods for their synthesis are readily available, these polymers are extremely promising for numerous technological applications, rivaling the properties of ferroelectric ceramics and superseding PVDF-based materials in high-performance devices.

  11. Piezoelectric effect in CdTe/CdMnTe and CdTe/CdZnTe quantum wells

    International Nuclear Information System (INIS)

    Andre, Regis

    1994-01-01

    Materials with zinc-blende type structure are piezoelectric: any strain along a polar axis generates an electrical polarisation. Strained quantum wells of cubic II-VI or III-V semiconductors, grown along [111] or [112] axis, exhibit a strong built-in piezo-electric field (100 kV/cm for 1% strains). Such structures are very promising for applications to optical modulation, but it is necessary to study first the physical properties of piezoelectric heterostructures before they can be used in optical devices. For this purpose, we have performed an optical study of strained CdTe/CdMnTe or CdTe/CdZnTe quantum wells coherently grown by molecular beam epitaxy on [111] or [112] oriented substrates. Effects of piezoelectric field on optical and electronic properties of quantum wells have been analyzed in terms of the envelop function model, taking into account the effects of biaxial strains for [hhk] growth axis. Moreover, we have proposed an original way of measuring piezoelectric field in strained quantum wells, and we have used this method to show that CdTe exhibits strong non-linearities for piezoelectric field versus strain. This effect has never been mentioned before. We have also performed measurements of the piezoelectric coefficient e14 under high hydrostatic pressure inducing strains up to 2%, which shows that part of the non-linear effect is a volume effect. We have also studied the effects of the piezoelectric field on excitons in quantum wells. The binding energy decreases slightly when the electric field increases, but the oscillator strength, for the fundamental transition, decreases dramatically with the overlap of the envelope wavefunctions of electrons and holes. We have performed a modelization of an exciton in a piezoelectric quantum well using two variational parameters. This model provides an accurate calculation of excitonic absorption. Our experimental and theoretical results are in very good agreement, without any fitting parameters, for a large

  12. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Science.gov (United States)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  13. Fabrication and modelling of 3-3 piezoelectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Andrew John

    2002-07-01

    Three-dimensional modelling of a 3-3 piezoelectric structure was carried out using ANSYS finite element modelling software. Hydrophone figures of merit were calculated for structures with increasing amounts of interconnecting porosity. In addition to air being the second phase, polymer fillers were added to the three dimensional model in order to observe the effect of polymer Young's modulus and Poisson's ratio on the piezoelectric response of the composite material. Results show that increasing the porosity has the effect of improving the hydrostatic piezoelectric properties for applications such as low frequency hydrophones. The optimum amount of porosity depends on the figure of merit to be maximised. In order to validate model predictions, porous piezoelectric structures were fabricated by either the BurPS (Burnt out Polymer Spheres) method or polymer foam reticulation. Corresponding measurements of piezoelectric coefficients were carried out on the porous samples. Experimental results confirmed finite element modelling predictions. PZT-porosity composites and PZT-polymer composites were produced exhibiting superior hydrostatic strain constant (d{sub h}), hydrostatic voltage constant (g{sub h}) and hydrostatic figure of merit (d{sub h}g{sub h}) compared to that of dense PZT. (author)

  14. On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen He

    2017-10-01

    Full Text Available Flexoelectricity is a novel kind of electromechanical coupling phenomenon that is prevalent in all solid dielectrics and usually of vital importance in nanostructures and soft materials. Although the fundamental theory of flexoelectric solids and related beam or plate theories were extensively studied in recent years, the coupling effect of flexoelectricity and piezoelectricity in piezoelectric nanostructures has not been completely clarified yet. In the present work, a geometrically nonlinear piezoelectric plate model is established with a focus on the coupling effect. The constitutive equations for piezoelectric plates are derived under both the electrically short-circuit and open-circuit conditions. It is found that due to the coupling between flexoelectricity and piezoelectricity, stretching-bending coupling stiffness arises in the homogeneous plate and its specific value relies on the applied electrical boundary conditions. The effects of the flexoelectric-piezoelectric coupling on the effective mechanical behavior and the electromechanical behavior of nanobeams and nanoplates are also discussed. The developed model and presented results are expected to benefit the design and analysis of piezoelectric and flexoelectric devices and systems.

  15. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures

    International Nuclear Information System (INIS)

    Choi, Dukhyun; Kim, Eok Su; Kim, Tae Sang; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min; Lee, Keun Young; Lee, Kang Hyuck; Kim, Sang-Woo

    2010-01-01

    In this work, we report a flexible hybrid nanoarchitecture that can be utilized as both an energy harvester and a touch sensor on a single platform without any cross-talk problems. Based on the electron transport and piezoelectric properties of a zinc oxide (ZnO) nanostructured thin film, a hybrid cell was designed and the total thickness was below 500 nm on a plastic substrate. Piezoelectric touch signals were demonstrated under independent and simultaneous operations with respect to photo-induced charges. Different levels of piezoelectric output signals from different magnitudes of touching pressures suggest new user-interface functions from our hybrid cell. From a signal controller, the decoupled performance of a hybrid cell as an energy harvester and a touch sensor was confirmed. Our hybrid approach does not require additional assembly processes for such multiplex systems of an energy harvester and a touch sensor since we utilize the coupled material properties of ZnO and output signal processing. Furthermore, the hybrid cell can provide a multi-type energy harvester by both solar and mechanical touching energies.

  16. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    , modulation schemes, LEDs and LED driving conditions are analyzed. A prototype radial mode PT optimized for ZVS (Zero Voltage Switching) is designed. FEM (Final Element Method) and measurements validates the PT design. A prototype PT based AC/DC converter operating from european mains is proposed......This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits...

  17. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  18. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  19. Magnetocaloric piezoelectric composites for energy harvesting

    International Nuclear Information System (INIS)

    Cleveland, Michael; Liang, Hong

    2012-01-01

    Magnetocaloric alloy, Gd 5 Si 2 Ge 2 , was developed into a composite with the poly(vinylidene fluoride) (PVDF) piezoelectric polymer. This multifunctional material possesses unique properties that are suitable for energy conversion and harvesting. Experimental approaches include using an arc melting technique to synthesize the Gd 5 Si 2 Ge 2 (GSG) alloy and the spinning casting method to fabricate the composite. The materials were characterized using various techniques at different length scales. These include atomic force microscopy (AFM), optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The results indicated that the phase transformation of the magnetocaloric material close to its Curie temperature induced a significant increase in power generation in the piezoelectric polymer. The power output of a laminated structure was 1.1 mW, more than 200 thousand times higher than the piezoelectric materials alone (5.1 nW). (technical note)

  20. Circular Piezoelectric Accelerometer for High Band Width Application

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Larsen, Jack; Lou-Møller, Rasmus

    2009-01-01

    An uniaxial bulk-micromachined piezoelectric MEMS accelerometer intended for high bandwidth application is fabricated and characterized. A circular seismic mass (radius = 1200 ¿m) is suspended by a 20 ¿m thick annular silicon membrane (radius = 1800 ¿m). A 24 ¿m PZT screen printed thick film...... is used as the sensing material on top of the silicon membrane. Accelerations in the out of plane direction induce a force on the seismic mass bending the membrane and a potential difference is measured in the out of plane direction of the stressed PZT. A resonance frequency of 23.50 kHz, a charge...

  1. Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators.

    Science.gov (United States)

    Lee, Byoung-Sun; Park, Boongik; Yang, Ho-Sung; Han, Jin Woo; Choong, Chweelin; Bae, Jihyun; Lee, Kihwan; Yu, Woong-Ryeol; Jeong, Unyong; Chung, U-In; Park, Jong-Jin; Kim, Ohyun

    2014-03-12

    We report the effects of various substrates and substrate thicknesses on electrospun poly(vinylidene fluoride) (PVDF)-nanofiber-based energy harvesters. The electrospun PVDF nanofibers showed an average diameter of 84.6 ± 23.5 nm. A high relative β-phase fraction (85.2%) was achieved by applying high voltage during electrospinning. The prepared PVDF nanofibers thus generated considerable piezoelectric potential in accordance with the sound-driven mechanical vibrations of the substrates. Slide glass, poly(ethylene terephthalate), poly(ethylene naphthalate), and paper substrates were used to investigate the effects of the intrinsic and extrinsic substrate properties on the piezoelectricity of the energy harvesters. The thinnest paper substrate (66 μm) with a moderate Young's modulus showed the highest voltage output (0.4885 V). We used high-performance 76, 66, and 33 μm thick papers to determine the effect of paper thickness on the output voltage. The thinnest paper substrate resulted in the highest voltage output (0.7781 V), and the numerical analyses of the sound-driven mechanical deformation strongly support the hypothesis that substrate thickness has a considerable effect on piezoelectric performance.

  2. Characterization of Piezoelectric Actuators for Flow Control over a Wing

    Science.gov (United States)

    Mossi, Karla M.; Bryant, Robert G.

    2004-01-01

    During the past decade, piezoelectric actuators as the active element in synthetic jets demonstrated that they could significantly enhance the overall lift on an airfoil. However, durability, system weight, size, and power have limited their use outside a laboratory. These problems are not trivial, since piezoelectric actuators are physically brittle and display limited displacement. The objective of this study is to characterize the relevant properties for the design of a synthetic jet utilizing three types of piezoelectric actuators as mechanical diaphragms, Radial Field Diaphragms, Thunders, and Bimorphs so that the shape cavity volume does not exceed 147.5 cubic centimeters on a 7centimeter x 7centimeter aerial coverage. These piezoelectric elements were selected because of their geometry, and overall free-displacement. Each actuator was affixed about its perimeter in a cavity, and relevant parameters such as clamped displacement variations with voltage and frequency, air velocities produced through an aperture, and sound pressure levels produced by the piezoelectric diaphragms were measured.

  3. Effect of antimony substitution for niobium on the crystal structure, piezoelectric and dielectric properties of (K0.5Na0.5)NbO3 ceramics

    DEFF Research Database (Denmark)

    Mgbemere, H E; Schneider, G A; Stegk, Tobias

    2010-01-01

    The effect of antimony (Sb) substitution for niobium (Nb) on potassium sodium niobate (KNN) ceramic was investigated with respect to the densification behaviour at different sintering temperatures, microstructure and electrical properties. A small amount of Sb5+ was added while simultaneously...... temperature. The dielectric loss slightly increases with increasing Sb5+ content up to 200°C. There was an improvement in the piezoelectric properties with ≤ 6 mol% Sb content while optimum properties were obtained with 4 mol% (KP = 0.46, Qm = 6.2, NP = 2296)....... lowering the amount of Nb5+ and in this study of the (K0.5Na0.5)(Nb1-xSbx)O3 system, x content was varied from 0 to 14 mol%. Our results show that Sb5+ slightly increased the optimum sintering temperature for KNN but above 8 mol%, its resistivity and piezoelectric properties decreased. As the amount of Sb5...

  4. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  5. A piezoelectric transformer

    Science.gov (United States)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  6. High power Co3O4/ZnO p–n type piezoelectric transducer

    International Nuclear Information System (INIS)

    Hu, Yuh-Chung; Lee, Tsung-Han; Chang, Pei-Zen; Su, Pei-Chen

    2015-01-01

    Enhancing the output power of piezoelectric transducer is essential in order to supply sufficient and sustainable power to wireless sensor nodes or electronic devices. In this work, a Co 3 O 4 /ZnO p–n type power piezoelectric transducer which can be operated at low frequencies has been developed by utilizing n-type semiconducting zinc oxide (ZnO) and p-type semiconducting tricobalt tetroxide (Co 3 O 4 ). We utilize ZnO to be the piezoelectric transducer and build a multi-layer (Au/Co 3 O 4 /ZnO/Ti) thin film structure. The ZnO thin film with preferred orientation along the (002) plane was deposited under optimized deposition conditions on the flexible titanium (Ti) foil with thickness of 80 μm. The Co 3 O 4 /ZnO interface forms a p–n junction and increases the difference in Fermi levels between the two electrodes, resulting in the great enhancement of output power. The measured output power of the p–n type piezoelectric transducer with optimal resistance of 100 kΩ is 10.4 μW at low operating frequency of 37 Hz, which is 10.9 times of output power of ZnO piezoelectric transducers. - Highlights: • Deposited zinc oxide performed good piezoelectric coefficient. • ZnO thin film with preferred orientation along the (002) plane was deposited. • A p–n type piezoelectric transducer with enhanced output power was fabricated. • 10.9 times increment in output power was obtained. • Increase of difference in Fermi level and p–n junction formation was explained

  7. Printing Multistrain Bacterial Patterns with a Piezoelectric Inkjet Printer

    Science.gov (United States)

    Merrin, Jack; Leibler, Stanislas; Chuang, John S.

    2007-01-01

    Many studies involving interacting microorganisms would benefit from simple devices able to deposit cells in precisely defined patterns. We describe an inexpensive bacterial piezoelectric inkjet printer (adapted from the design of the POSaM oligonucleotide microarrayer) that can be used to “print out” different strains of bacteria or chemicals in small droplets onto a flat surface at high resolution. The capabilities of this device are demonstrated by printing ordered arrays comprising two bacterial strains labeled with different fluorescent proteins. We also characterized several properties of this piezoelectric printer, such as the droplet volume (of the order of tens of pl), the distribution of number of cells in each droplet, and the dependence of droplet volume on printing frequency. We established the limits of the printing resolution, and determined that the printed viability of Escherichia coli exceeded 98.5%. PMID:17653283

  8. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting

    Science.gov (United States)

    Roscow, J. I.; Zhang, Y.; Kraśny, M. J.; Lewis, R. W. C.; Taylor, J.; Bowen, C. R.

    2018-06-01

    Energy harvesting is an important developing technology for a new generation of self-powered sensor networks. This paper demonstrates the significant improvement in the piezoelectric energy harvesting performance of barium titanate by forming highly aligned porosity using freeze casting. Firstly, a finite element model demonstrating the effect of pore morphology and angle with respect to poling field on the poling behaviour of porous ferroelectrics was developed. A second model was then developed to understand the influence of microstructure-property relationships on the poling behaviour of porous freeze cast ferroelectric materials and their resultant piezoelectric and energy harvesting properties. To compare with model predictions, porous barium titanate was fabricated using freeze casting to form highly aligned microstructures with excellent longitudinal piezoelectric strain coefficients, d 33. The freeze cast barium titanate with 45 vol.% porosity had a d 33  =  134.5 pC N‑1 compared to d 33  =  144.5 pC N‑1 for dense barium titanate. The d 33 coefficients of the freeze cast materials were also higher than materials with uniformly distributed spherical porosity due to improved poling of the aligned microstructures, as predicted by the models. Both model and experimental data indicated that introducing porosity provides a large reduction in the permittivity () of barium titanate, which leads to a substantial increase in energy harvesting figure of merit, , with a maximum of 3.79 pm2 N‑1 for barium titanate with 45 vol.% porosity, compared to only 1.40 pm2 N‑1 for dense barium titanate. Dense and porous barium titanate materials were then used to harvest energy from a mechanical excitation by rectification and storage of the piezoelectric charge on a capacitor. The porous barium titanate charged the capacitor to a voltage of 234 mV compared to 96 mV for the dense material, indicating a 2.4-fold increase that was similar to that

  9. Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2010-12-01

    Full Text Available Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3 thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,NaNbO3 ceramics, from which reasonable piezoelectric performance was achieved.

  10. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    Science.gov (United States)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  11. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  12. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    Science.gov (United States)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  13. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation

    Science.gov (United States)

    Yan, Peng; Zhang, Yangming

    2018-06-01

    High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.

  14. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  15. A database to enable discovery and design of piezoelectric materials

    Science.gov (United States)

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described. PMID:26451252

  16. A database to enable discovery and design of piezoelectric materials.

    Science.gov (United States)

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described.

  17. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  18. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  19. Exact analysis of two kinds of piezoelectric actuator

    International Nuclear Information System (INIS)

    Han Rong; Shi Zhifei

    2008-01-01

    Two kinds of piezoelectric hollow cylinder actuator are studied in this paper. One is the expansion actuator and the other is the contraction actuator. Using the Airy stress function method, the analytical solutions of these two kinds of actuators are obtained based on the theory of piezo-elasticity. The solutions are compared with numerical results and good agreement is found. Inherent properties of these two kinds of piezoelectric cylinder actuator are presented and discussed. Findings have applications in the field of micromechanics and microengineering

  20. Engineered piezoelectricity in graphene.

    Science.gov (United States)

    Ong, Mitchell T; Reed, Evan J

    2012-02-28

    We discover that piezoelectric effects can be engineered into nonpiezoelectric graphene through the selective surface adsorption of atoms. Our calculations show that doping a single sheet of graphene with atoms on one side results in the generation of piezoelectricity by breaking inversion symmetry. Despite their 2D nature, piezoelectric magnitudes are found to be comparable to those in 3D piezoelectric materials. Our results elucidate a designer piezoelectric phenomenon, unique to the nanoscale, that has potential to bring dynamical control to nanoscale electromechanical devices.

  1. High Performance Lead--free Piezoelectric Materials

    OpenAIRE

    Gupta, Shashaank

    2013-01-01

    Piezoelectric materials find applications in number of devices requiring inter-conversion of mechanical and electrical energy.  These devices include different types of sensors, actuators and energy harvesting devices. A number of lead-based perovskite compositions (PZT, PMN-PT, PZN-PT etc.) have dominated the field in last few decades owing to their giant piezoresponse and convenient application relevant tunability. With increasing environmental concerns, in the last one decade, focus has be...

  2. Piezoelectric materials selection for sensor applications using finite element and multiple attribute decision-making approaches

    Directory of Open Access Journals (Sweden)

    Anuruddh Kumar

    2015-03-01

    Full Text Available This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E, piezoelectric stress constants (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based sensor applications. An analytic hierarchy process (AHP is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3–LiSbO3 (KNN–LS materials family is important for sensor application. Young's modulus (E is most influencing material's property followed by piezoelectric constant (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based piezoelectric sensor applications.

  3. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  4. Strong piezoelectric anisotropy d15/d33 in ⟨111⟩ textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics

    Science.gov (United States)

    Yan, Yongke; Priya, Shashank

    2015-08-01

    The shear mode piezoelectric properties of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramic with 72% ⟨111⟩ texture were investigated. The piezoelectric anisotropic factor d15/d33 was as high as 8.5 in ⟨111⟩ textured ceramic as compared to 2.0 in random counterpart. The high d15/d33 indicates the "rotator" ferroelectric characteristics of PMN-PZT system and suggests that the large shear piezoelectric response contributes towards the high longitudinal piezoelectric response (d33) in non-polar direction (d33 = 1100 pC/N in ⟨001⟩ textured ceramic vs. d33 = 112 pC/N in ⟨111⟩ textured ceramic).

  5. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  6. Note: Motor-piezoelectricity coupling driven high temperature fatigue device.

    Science.gov (United States)

    Ma, Z C; Du, X J; Zhao, H W; Ma, X X; Jiang, D Y; Liu, Y; Ren, L Q

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  7. Piezoelectric MEMS sensors: state-of-the-art and perspectives

    International Nuclear Information System (INIS)

    Tadigadapa, S; Mateti, K

    2009-01-01

    Over the past two decades, several advances have been made in micromachined sensors and actuators. As the field of microelectromechanical systems (MEMS) has advanced, a clear need for the integration of materials other than silicon and its compounds into micromachined transducers has emerged. Piezoelectric materials are high energy density materials that scale very favorably upon miniaturization and that has led to an ever-growing interest in piezoelectric films for MEMS applications. At this time, piezoelectric aluminum-nitride-based film bulk acoustic resonators (FBAR) have already been successfully commercialized. Future innovations and improvements in inertial sensors for navigation, high-frequency crystal oscillators and filters for wireless applications, microactuators for RF applications, chip-scale chemical analysis systems and countless other applications hinge upon the successful miniaturization of components and integration of piezoelectrics and metals into these systems. In this article, a comprehensive review of micromachined piezoelectric transducer technology will be presented. Piezoelectric materials in bulk and thin film forms will be reviewed and fabrication techniques for the integration of these materials for microsensor applications will be presented. Recent advances in various piezoelectric microsensors will be presented through specific examples. This review will conclude with a critical assessment of the future trends and promise of this technology. (topical review)

  8. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  9. Thermal stabilities of electromechanical properties in cobalt-modified strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Cao, Zhao-Peng; Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn; Fu, Qing-Wei; Yin, De-Fu; Tian, Hu-He

    2016-07-25

    Bismuth layer-structured ferroelectric (BLSF) strontium bismuth titanate (SrBi{sub 4}Ti{sub 4}O{sub 15}, SBT) ceramic oxides with B-site cobalt substitutions have been synthesized using conventional solid–state reaction. The dielectric, piezoelectric, and ferroelectric properties of cobalt-modified SBT are investigated in detail. The results indicate that cobalt is very effective in promoting the piezoelectric performance of SBT. The SBT modified with 3 mol% Co{sup 3+} (SBT-3Co) exhibits the optimized piezoelectric properties, with a piezoelectric constant d{sub 33} of 28 pC/N, which is the highest value among the modified SBT-based piezoelectric ceramics ever reported. The temperature-dependent electrical impedance, resonance frequencies, and electromechanical coupling factors (k{sub p} and k{sub t}) reveal that the cobalt-modified SBT ceramics have good thermal stabilities of electromechanical properties up to 300 °C. These results demonstrate that the cobalt-modified SBT ceramics are promising materials for high temperature piezoelectric sensors applications. - Graphical abstract: The manuscript deals with the thermal stabilities of piezoelectric properties of cobalt-modified SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) ceramics. The 3 mol% Co{sup 3+} modified SBT (SBT-3Co) ceramics exhibit a piezoelectric constant d{sub 33} of 28 pC/N and a Curie temperature T{sub c} of 528 °C. The SBT-3Co ceramics have good thermal stabilities of electromechanical properties up to 300 °C. - Highlights: • A high level of piezoelectric performance (d{sub 33}∼28 pC/N)is obtained. • High Curie temperature (T{sub c}∼528 °C) is acquired for the optimal composition. • The SBT-3Co exhibits good thermal stabilities of electromechanical properties. • The Co-modified SrBi{sub 4}Ti{sub 4}O{sub 15} is promising as high temperature piezoelectric material.

  10. Piezoelectric response and electrical properties of Pb(Zr1-xTix)O3 thin films: The role of imprint and composition

    Science.gov (United States)

    Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.

    2017-10-01

    The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.

  11. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  12. Large piezoelectricity in electric-field modified single crystals of SrTiO3

    Science.gov (United States)

    Khanbabaee, B.; Mehner, E.; Richter, C.; Hanzig, J.; Zschornak, M.; Pietsch, U.; Stöcker, H.; Leisegang, T.; Meyer, D. C.; Gorfman, S.

    2016-11-01

    Defect engineering is an effective and powerful tool to control the existing material properties and produce completely new ones, which are symmetry-forbidden in a defect-free crystal. For example, the application of a static electric field to a single crystal of SrTiO3 forms a strained near-surface layer through the migration of oxygen vacancies out of the area beneath the positively charged electrode. While it was previously shown that this near-surface phase holds pyroelectric properties, which are symmetry-forbidden in centrosymmetric bulk SrTiO3, this paper reports that the same phase is strongly piezoelectric. We demonstrate the piezoelectricity of this phase through stroboscopic time-resolved X-ray diffraction under alternating electric field and show that the effective piezoelectric coefficient d33 ranges between 60 and 100 pC/N. The possible atomistic origins of the piezoelectric activity are discussed as a coupling between the electrostrictive effect and spontaneous polarization of this near-surface phase.

  13. An improved resonantly driven piezoelectric gas pump

    International Nuclear Information System (INIS)

    Wu, Yue; Liu, Yong; Liu, Jianfang; Jiao, Xiaoyang; Yang, Zhigang; Wang, Long

    2013-01-01

    Piezoelectric pumps have the potential to be used in a variety of applications, such as in air circulation and compression. However, piezoelectric membrane pumps do not have enough driving capacity, and the heat induced during the direct contact between the driving part and the gas medium cannot be dissipated smoothly. When the gas is blocked, the piezoelectric vibrator generates heat quickly, which may eventually lead to damage. Resonantly driven piezoelectric stack pumps have high performance but no price advantage. In this situation, a novel, resonantly driven piezoelectric gas pump with annular bimorph as the driver is presented. In the study, the working principle of the novel pump was analyzed, the vibration mechanics model was determined, and the displacement amplified theory was studied. The outcome indicates that the displacement amplification factor is related with the original displacement provided by the piezoelectric bimorph. In addition, the displacement amplification effect is related to the stiffness of the spring lamination, adjustment spring, and piezoelectric vibrator, as well as to the systematic damping factor and the driving frequency. The experimental prototypes of the proposed pump were designed, and the displacement amplification effect and gas output performance were measured. At 70 V of sinusoidal AC driving voltage, the improved pump amplified the piezoelectric vibrator displacement by 4.2 times, the maximum gas output flow rate reached 1685 ml/min, and the temperature of the bimorph remained normal after 2000 hours of operation when the gas medium was blocked.

  14. Morphotropic NaNbO{sub 3}-BaTiO{sub 3}-CaZrO{sub 3} lead-free ceramics with temperature-insensitive piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn, E-mail: rzzuo@hotmail.com; Qi, He; Fu, Jian [Institute of Electro Ceramics and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009 (China)

    2016-07-11

    A morphotropic NaNbO{sub 3}-based lead-free ceramic was reported to have temperature-insensitive piezoelectric and electromechanical properties (d{sub 33} = 231 pC/N, k{sub p} = 35%, T{sub c} = 148 °C, and low-hysteresis strain ∼0.15%) in a relatively wide temperature range. This was fundamentally ascribed to the finding of a composition-axis vertical morphotropic phase boundary in which coexisting ferroelectric phases are only compositionally driven and thermally insensitive. Both phase coexistence and nano-scaled domain morphology deserved well enhanced electrical properties, as evidenced by means of synchrotron x-ray diffraction and transmission electron microscopy. Our study suggests that the current lead-free ceramic would be a very promising piezoelectric material for actuator and sensor applications.

  15. Comparative analysis of the planar capacitor and IDT piezoelectric thin-film micro-actuator models

    International Nuclear Information System (INIS)

    Myers, Oliver J; Anjanappa, M; Freidhoff, Carl B

    2011-01-01

    A comparison of the analysis of similarly developed microactuators is presented. Accurate modeling and simulation techniques are vital for piezoelectrically actuated microactuators. Coupling analytical and numerical modeling techniques with variational design parameters, accurate performance predictions can be realized. Axi-symmetric two-dimensional and three-dimensional static deflection and harmonic models of a planar capacitor actuator are presented. Planar capacitor samples were modeled as unimorph diaphragms with sandwiched piezoelectric material. The harmonic frequencies were calculated numerically and compared well to predicted values and deformations. The finite element modeling reflects the impact of the d 31 piezoelectric constant. Two-dimensional axi-symmetric models of circularly interdigitated piezoelectrically membranes are also presented. The models include the piezoelectric material and properties, the membrane materials and properties, and incorporates various design considerations of the model. These models also include the electro-mechanical coupling for piezoelectric actuation and highlight a novel approach to take advantage of the higher d 33 piezoelectric coupling coefficient. Performance is evaluated for varying parameters such as electrode pitch, electrode width, and piezoelectric material thickness. The models also showed that several of the design parameters were naturally coupled. The static numerical models correlate well with the maximum static deflection of the experimental devices. Finally, this paper deals with the development of numerical harmonic models of piezoelectrically actuated planar capacitor and interdigitated diaphragms. The models were able to closely predict the first two harmonics, conservatively predict the third through sixth harmonics and predict the estimated values of center deflection using plate theory. Harmonic frequency and deflection simulations need further correlation by conducting extensive iterative

  16. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  17. Improvements of ModalMax High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodard, Stanley E.

    2005-01-01

    ModalMax audio speakers have been enhanced by innovative means of tailoring the vibration response of thin piezoelectric plates to produce a high-fidelity audio response. The ModalMax audio speakers are 1 mm in thickness. The device completely supplants the need to have a separate driver and speaker cone. ModalMax speakers can perform the same applications of cone speakers, but unlike cone speakers, ModalMax speakers can function in harsh environments such as high humidity or extreme wetness. New design features allow the speakers to be completely submersed in salt water, making them well suited for maritime applications. The sound produced from the ModalMax audio speakers has sound spatial resolution that is readily discernable for headset users.

  18. Deflection of Cross-Ply Composite Laminates Induced by Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Chi-Sheng Lin

    2010-01-01

    Full Text Available The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.

  19. Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers

    Science.gov (United States)

    Bashash, Saeid; Jalili, Nader

    2006-03-01

    Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.

  20. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  1. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.

    Science.gov (United States)

    Starr, Matthew B; Wang, Xudong

    2013-01-01

    Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H₂ production behaviors of an oscillating piezoelectric Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO₃, PbTiO₃, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects.

  2. Performance of a piezoelectric energy harvester in actual rain

    International Nuclear Information System (INIS)

    Wong, Voon-Kean; Ho, Jee-Hou; Chai, Ai-Bao

    2017-01-01

    When raindrops impact on the surface of a piezoelectric beam, strain energy produced by the impinging raindrop will be converted to harvestable electrical energy by the piezoelectric layers in a cantilever beam. The novelty of this study is to investigate the performance of the harvester in actual rain and provide practical insights on implementation. The influences of rain parameters such as rain rate, rainfall depth, raindrop count, and drop size distribution (DSD) are discussed in this study. The raindrops accumulated on the surface of the piezoelectric beam will form a water layer. It is described using added mass coefficient in this study. In an actual rain experiment, a piezoelectric beam with surface area of 0.0018 m 2 is able to produce 2076 μJ of energy over a duration of 301 min. The energy generation of a raindrop impact piezoelectric energy harvester is highly dependent on the rain rate. Due to the inconsistency of the energy generation, the piezoelectric energy harvester would require an integration of suitable energy storage device for continuous operation. Nevertheless, this work shows the feasibility of harvesting raindrop energy using a piezoelectric beam. - Highlights: • The performance of a piezoelectric rain energy harvester is tested in actual rain. • The energy generation is highly dependent on the rain rate. • Practical insights on the implementation of the harvester are discussed. • A total energy of 2076 μJ is generated over a duration of 301 min.

  3. Reflection of electromagnetic wave from the boundary of the piezoelectric half-space with cubic symmetry

    Science.gov (United States)

    Berberyan, A. Kh; Garakov, V. G.

    2018-04-01

    A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].

  4. Control of piezoelectricity in amino acids by supramolecular packing

    Science.gov (United States)

    Guerin, Sarah; Stapleton, Aimee; Chovan, Drahomir; Mouras, Rabah; Gleeson, Matthew; McKeown, Cian; Noor, Mohamed Radzi; Silien, Christophe; Rhen, Fernando M. F.; Kholkin, Andrei L.; Liu, Ning; Soulimane, Tewfik; Tofail, Syed A. M.; Thompson, Damien

    2018-02-01

    Piezoelectricity, the linear relationship between stress and induced electrical charge, has attracted recent interest due to its manifestation in biological molecules such as synthetic polypeptides or amino acid crystals, including gamma (γ) glycine. It has also been demonstrated in bone, collagen, elastin and the synthetic bone mineral hydroxyapatite. Piezoelectric coefficients exhibited by these biological materials are generally low, typically in the range of 0.1-10 pm V-1, limiting technological applications. Guided by quantum mechanical calculations we have measured a high shear piezoelectricity (178 pm V-1) in the amino acid crystal beta (β) glycine, which is of similar magnitude to barium titanate or lead zirconate titanate. Our calculations show that the high piezoelectric coefficients originate from an efficient packing of the molecules along certain crystallographic planes and directions. The highest predicted piezoelectric voltage constant for β-glycine crystals is 8 V mN-1, which is an order of magnitude larger than the voltage generated by any currently used ceramic or polymer.

  5. Control of piezoelectricity in amino acids by supramolecular packing.

    Science.gov (United States)

    Guerin, Sarah; Stapleton, Aimee; Chovan, Drahomir; Mouras, Rabah; Gleeson, Matthew; McKeown, Cian; Noor, Mohamed Radzi; Silien, Christophe; Rhen, Fernando M F; Kholkin, Andrei L; Liu, Ning; Soulimane, Tewfik; Tofail, Syed A M; Thompson, Damien

    2018-02-01

    Piezoelectricity, the linear relationship between stress and induced electrical charge, has attracted recent interest due to its manifestation in biological molecules such as synthetic polypeptides or amino acid crystals, including gamma (γ) glycine. It has also been demonstrated in bone, collagen, elastin and the synthetic bone mineral hydroxyapatite. Piezoelectric coefficients exhibited by these biological materials are generally low, typically in the range of 0.1-10 pm V -1 , limiting technological applications. Guided by quantum mechanical calculations we have measured a high shear piezoelectricity (178 pm V -1 ) in the amino acid crystal beta (β) glycine, which is of similar magnitude to barium titanate or lead zirconate titanate. Our calculations show that the high piezoelectric coefficients originate from an efficient packing of the molecules along certain crystallographic planes and directions. The highest predicted piezoelectric voltage constant for β-glycine crystals is 8 V mN -1 , which is an order of magnitude larger than the voltage generated by any currently used ceramic or polymer.

  6. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects

    International Nuclear Information System (INIS)

    Hosseini-Hashemi, Shahrokh; Nahas, Iman; Fakher, Mahmood; Nazemnezhad, Reza

    2014-01-01

    In this study, the nonlinear free vibration of piezoelectric nanobeams incorporating surface effects (surface elasticity, surface tension, and surface density) is studied. The governing equation of the piezoelectric nanobeam is derived within the framework of Euler–Bernoulli beam theory with the von Kármán geometric nonlinearity. In order to satisfy the balance conditions between the nanobeam bulk and its surfaces, the component of the bulk stress, σ zz , is assumed to vary linearly through the nanobeam thickness. An exact solution is obtained for the natural frequencies of a simply supported piezoelectric nanobeam in terms of the Jacobi elliptic functions using the free vibration mode shape of the corresponding linear problem. Then, the influences of the surface effects and the piezoelectric field on the nonlinear free vibration of nanobeams made of aluminum and silicon with positive and negative surface elasticity, respectively, have been studied for various properties of the piezoelectric field, various nanobeam sizes and amplitude ratios. It is observed that if the Young’s modulus of a nanobeam is lower, the effect of the piezoelectric field on the frequency ratios (FRs) of the nanobeam will be greater. In addition, it is seen that by increasing the nanobeam length so that the nanobeam cross section is set to be constant, the surface effects and the piezoelectric field with negative voltage values increases the FRs, whereas it is the other way around when the nanobeam cross section is assumed to be dependent on the length of the nanobeam. (paper)

  8. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    International Nuclear Information System (INIS)

    Ray, M C

    2010-01-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e 31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503)

  9. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption

    Science.gov (United States)

    Rahimabady, Mojtaba; Statharas, Eleftherios Christos; Yao, Kui; Sharifzadeh Mirshekarloo, Meysam; Chen, Shuting; Tay, Francis Eng Hock

    2017-12-01

    A concept of hybrid local piezoelectric and electrical conductive functions for improving airborne sound absorption is proposed and demonstrated in composite foam made of porous polar polyvinylidene fluoride (PVDF) mixed with conductive single-walled carbon nanotube (SWCNT). According to our hybrid material function design, the local piezoelectric effect in the PVDF matrix with the polar structure and the electrical resistive loss of SWCNT enhanced sound energy conversion to electrical energy and subsequently to thermal energy, respectively, in addition to the other known sound absorption mechanisms in a porous material. It is found that the overall energy conversion and hence the sound absorption performance are maximized when the concentration of the SWCNT is around the conductivity percolation threshold. For the optimal composition of PVDF/5 wt. % SWCNT, a sound reduction coefficient of larger than 0.58 has been obtained, with a high sound absorption coefficient higher than 50% at 600 Hz, showing their great values for passive noise mitigation even at a low frequency.

  10. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Sakamoto Walter Katsumi

    2001-01-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  11. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Directory of Open Access Journals (Sweden)

    Yiin-Kuen Fuh

    2017-07-01

    Full Text Available In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS. A new integration of print circuit board (PCB technology-based piezoelectric generator (PG concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  12. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Science.gov (United States)

    Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu

    2017-07-01

    In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  13. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi 4 Ti 4 O 15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 deg. C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (T c =790 deg. C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures ( 33 ). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  14. LEAD-FREE BNKT PIEZOELECTRIC ACTUATOR

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2016-03-01

    Full Text Available An actuator is a device that converts input energy into mechanical energy. According to various types of input energy, various actuators have been advanced. Displacement in the electromagnetic, hydraulic and pneumatic actuators achieve by moving a piston via electromagnetic force or pressure, however the piezoelectric actuator (piezoceramic plates displace directly. Therefore, accuracy and speed in the piezoelectric device are higher than other types of actuators. In the present work, the high-field electromechanical response of high-quality (1−x(Bi 0.5Na0.5TiO3–x(Bi0.5K0.5TiO3 samples abbreviated to BNKTx with x = 0.18, 0.20, 0.22 and 0.24 ceramic materials across its MPB was investigated. The piezoelectrics and actuation characteristics were characterized. Ourresults indicate that x = 0.20, indeed, constitutes the best choice for the MPB composition in the system. Maximum of remanent polarization (37.5 μC cm−2 was obtained for x=0.20. High-field electromechanical responses were also obtained for BNKT0.20 samples. This material exhibited giant field induced strains of 0.13% under 1 kV mm -1 at room temperature.

  15. Low-Temperature Co-Fired Unipoled Multilayer Piezoelectric Transformers.

    Science.gov (United States)

    Gao, Xiangyu; Yan, Yongke; Carazo, Alfredo Vazquez; Dong, Shuxiang; Priya, Shashank

    2018-03-01

    The reliability of piezoelectric transformers (PTs) is dependent upon the quality of fabrication technique as any heterogeneity, prestress, or misalignment can lead to spurious response. In this paper, unipoled multilayer PTs were investigated focusing on high-power composition and co-firing profile in order to provide low-temperature synthesized high-quality device measured in terms of efficiency and power density. The addition of 0.2 wt% CuO into Pb 0.98 Sr 0.02 (Mg 1/3 Nb 2/3 ) 0.06 (Mn 1/3 Nb 2/3 ) 0.06 (Zr 0.48 Ti 0.52 ) 0.88 O 3 (PMMnN-PZT) reduces the co-firing temperature from 1240 °C to 930 °C, which allows the use of Ag/Pd inner electrode instead of noble Pt inner electrode. Low-temperature synthesized material was found to exhibit excellent piezoelectric properties ( , , %, pC/N, and °C). The performance of the PT co-fired with Ag/Pd electrode at 930 °C was similar to that co-fired at 1240 °C with Pt electrode (25% reduction in sintering temperature). Both high- and low-temperature synthesized PTs demonstrated 5-W output power with >90% efficiency and 11.5 W/cm 3 power density.

  16. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Directory of Open Access Journals (Sweden)

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  17. Progress in Dual (Piezoelectric-Magnetostrictive Phase Magnetoelectric Sintered Composites

    Directory of Open Access Journals (Sweden)

    Rashed Adnan Islam

    2012-01-01

    Full Text Available The primary aims of this review article are (a to develop the fundamental understanding of ME behavior in perovskite piezoelectric-spinel magnetostrictive composite systems, (b to identify the role of composition, microstructural variables, phase transformations, composite geometry, and postsintering heat treatment on ME coefficient, and (c to synthesize, characterize, and utilize the high ME coefficient composite. The desired range of ME coefficient in the sintered composite is 0.5–1 V/cm⋅Oe. The studies showed that the soft piezoelectric phase quantified by smaller elastic modulus, large grain size of piezoelectric phase (~1 μm, and layered structures yields higher magnitude of ME coefficient. It is also found that postsintering thermal treatment such as annealing and aging alters the magnitude of magnetization providing an increase in the magnitude of ME coefficient. A trilayer composite was synthesized using pressure-assisted sintering with soft phase [0.9 PZT–0.1 PZN] having grain size larger than 1 μm and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494 mV/cm⋅Oe after sintering and annealing, respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525 mV/cm⋅Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782 mV/cm⋅Oe. Piezoelectric grain texturing and nanoparticulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm⋅Oe, respectively. Nanoparticulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry, and properties is

  18. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stable operation of a high-power piezoelectric transformer comprising two identical bolt-clamped Langevin-type transducers and a stepped horn

    Science.gov (United States)

    Adachi, Kazunari; Suzuki, Kohei; Shibamata, Yuki

    2018-06-01

    We previously developed a 100 W piezoelectric transformer comprising two identical bolt-clamped Langevin-type transducers (BLTs) and a stepped horn whose cross-sectional area ratio determines the specified step-up voltage transformation ratio. Unlike conventional piezoelectric transformers, this transformer is driven at a frequency quite near its mechanical resonance, and thus can be mechanically held firmly at its clearly identified vibratory node without mechanical energy loss. However, it has been revealed that the high-power operation of the transformer often becomes very unstable owing to the “jumping and dropping” phenomena first found by Takahashi and Hirose [Jpn. J. Appl. Phys. 31, 3055 (1992)]. To avoid this instability, we have investigated the peculiar phenomena, and found that they can be attributed to a heavily distorted electric field inside the piezoelectric ceramic disks of the BLT on the primary side of the transformer being driven by a low-impedance voltage source near the mechanical resonance. The resultant concentration of the electric field leads to the local reversal of piezoelectric polarization in every half period of the vibration, viz., the instability. Consequently, we have developed a scheme for the steady high-power operation of this type of piezoelectric transformer and examined its validity experimentally. The method has eventually improved the linearity and power transfer efficiency of the transformer significantly.

  20. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  1. Study on the piezoelectric behavior and structural changes of strontium doped PZT

    International Nuclear Information System (INIS)

    Silva, M.S. da; Lemos, L.; Souza, E.F.; Cavalheiro, A.A.; Longo, E.; Zaghete, M.A.

    2014-01-01

    Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. The powders were doped with 0.0, 0.2, 0.4 and 0.6 mol% of Sr 2+ and the effects of Sr 2+ additions on piezoelectric properties and on the phase constitution were investigated by XRD. The percentages of tetragonal and rhombohedral phases were calculated through Rietveld refinement. The results indicated that addition of Sr 2+ ions in the amount of 0.4 mol% in the ceramic structure maximally increase the values of piezoelectric parameter to d 33 = 289 μC/N and K p = 0.43. The values found for the piezoelectric properties were among the highest at the concentration of 0.4 mol% of strontium and this composition showed the highest structural change from the rhombohedral to the tetragonal phase perovskita. (author)

  2. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate

    International Nuclear Information System (INIS)

    Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph.; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S.

    2004-01-01

    Titanium-rich PZT solid solutions were studied under high pressure by neutron and x-ray diffraction, Raman spectroscopy and dielectric measurements. The results show that high pressure stabilizes the ferroelectric monoclinic phases, which are proposed to be responsible for the high piezoelectric properties characteristic of the morphotropic composition PbZr 0.52 Ti 0.48 O 3 . Pressure may thus be used to tune the morphotropic phase boundary in the composition-pressure plane to include a wide range of titanium-rich PZT compositions

  3. Cryogenic Rotary Piezoelectric Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of high frequency oscillation of high force precision ceramic elements. The high power oscillations are converted to...

  4. Energy harvesting “3-D knitted spacer” based piezoelectric textiles

    Science.gov (United States)

    Anand, S.; Soin, N.; Shah, T. H.; Siores, E.

    2016-07-01

    The piezoelectric effect in Poly(vinylidene fluoride), PVDF, was discovered over four decades ago and since then, significant work has been carried out aiming at the production of high p-phase fibres and their integration into fabric structures for energy harvesting. However, little work has been done in the area of production of “true piezoelectric fabric structures” based on flexible polymeric materials such as PVDF. In this work, we demonstrate “3-D knitted spacer” technology based all-fibre piezoelectric fabrics as power generators and energy harvesters. The knitted single-structure piezoelectric generator consists of high p-phase (~80%) piezoelectric PVDF monofilaments as the spacer yarn interconnected between silver (Ag) coated polyamide multifilament yarn layers acting as the top and bottom electrodes. The novel and unique textile structure provides an output power density in the range of 1.105.10 gWcm-2 at applied impact pressures in the range of 0.02-0.10 MPa, thus providing significantly higher power outputs and efficiencies over the existing 2-D woven and nonwoven piezoelectric structures. The high energy efficiency, mechanical durability and comfort of the soft, flexible and all-fibre based power generator is highly attractive for a variety of potential applications such as wearable electronic systems and energy harvesters charged from ambient environment or by human movement.

  5. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    Science.gov (United States)

    Ahn, C. W.; Y Lee, S.; Lee, H. J.; Ullah, A.; Bae, J. S.; Jeong, E. D.; Choi, J. S.; Park, B. H.; Kim, I. W.

    2009-11-01

    We have fabricated K0.5Na0.5NbO3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V-1, which is comparable to that of polycrystalline PZT thin films.

  6. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    International Nuclear Information System (INIS)

    Ahn, C W; Bae, J S; Jeong, E D; Lee, S Y; Lee, H J; Ullah, A; Kim, I W; Choi, J S; Park, B H

    2009-01-01

    We have fabricated K 0.5 Na 0.5 NbO 3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V -1 , which is comparable to that of polycrystalline PZT thin films.

  7. Lead-free piezoelectric KNN-BZ-BNT films with a vertical morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2015-07-01

    Full Text Available The lead-free piezoelectric 0.915K0.5Na0.5NbO3-0.075BaZrO3-0.01Bi0.5Na0.5TiO3 (0.915KNN-0.075BZ-0.01BNT films were prepared by a chemical solution deposition method. The films possess a pure rhomobohedral perovskite phase and a dense surface without crack. The temperature-dependent dielectric properties of the specimens manifest that only phase transition from ferroelectric to paraelectric phase occurred and the Curie temperature is 217 oC. The temperature stability of ferroelectric phase was also supported by the stable piezoelectric properties of the films. These results suggest that the slope of the morphotropic phase boundary (MPB for the solid solution formed with the KNN and BZ in the films should be vertical. The voltage-induced polarization switching, and a distinct piezo-response suggested that the 0.915 KNN-0.075BZ-0.01BNT films show good piezoelectric properties.

  8. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.

    Science.gov (United States)

    Weitzel, Erik K; Tasker, Ron; Brownell, William E

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  9. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...

  10. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  11. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao

    2017-01-01

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142

  12. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  13. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  14. Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes.

    Science.gov (United States)

    Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Michael C; Peng, Hailin; Lai, Keji

    2017-09-13

    Piezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In 2 Se 3 nanoflakes. The noncentrosymmetric R3m symmetry of the α-In 2 Se 3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In 2 Se 3 nanoflakes with thicknesses down to ∼10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In 2 Se 3 , one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  15. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Babu, I; Hendrix, M M R M; De With, G

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  16. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  17. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    International Nuclear Information System (INIS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  18. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    Science.gov (United States)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  19. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    Science.gov (United States)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  20. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...

  1. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    Science.gov (United States)

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  2. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    Directory of Open Access Journals (Sweden)

    Mao-Hsiung Chiang

    2010-03-01

    Full Text Available This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm and nanometer accuracy (20 nm. In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  3. A theory of piezoelectric laminates

    International Nuclear Information System (INIS)

    Giangreco, E.

    1997-01-01

    A theory of piezoelectric laminates is rationally derived from the three-dimensional Voigt theory of piezoelectricity. The present theory is a generalization to piezoelectric laminates of the Reissner-Mindlin-type layer-wise theory of elastic laminates. Both a differential formulation and a variational formulation of the piezoelectric laminate problem are presented. The proposed theory is adopted in the analysis of simple problems, in order to verify its effectiveness. The results it provides turn out to be in good agreement with the results supplied by the Voigt theory of piezoelectricity

  4. Vertical comb drive actuator for the measurement of piezoelectric coefficients in small-scale systems

    International Nuclear Information System (INIS)

    Wooldridge, J; Muniz-Piniella, A; Stewart, M; Shean, T A V; Weaver, P M; Cain, M G

    2013-01-01

    A micro-electro-mechanical systems (MEMS) vertical levitation comb drive actuator has been created for the measurement of piezoelectric coefficients in thin/thick films or piezoelectrically active micro-scale components of other MEMS devices. The device exerts a dynamic force of 33 μN at an applied voltage of 100 V. The charge developed on the piezoelectric test device is measured using a charge sensitive pre-amplifier and lock-in technique, enabling measurements down to 1×10 −5 pC. The system was tested with ten different piezoelectric samples with coefficients in the range 70–1375 pC N −1 and showed a good correlation (r = 0.9997) to measurements performed with macroscopic applied stresses, and piezoelectric impedance resonance techniques. The measurement of the direct piezoelectric effect in micro- and nano-scale piezo-materials has been made possible using MEMS processing technology. This new application of a MEMS metrology device has been developed and fully characterized in order to accurately evaluate the functional properties of piezoelectric materials at the scale required in micro- to nano-scale applications. (paper)

  5. Cryogenic Rotary Piezoelectric Motor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of converting the high-frequency oscillation of high-force, precision ceramic elements into useful continuous motion....

  6. Electrical admittance of piezoelectric parallelepipeds: application to tensorial characterization of piezoceramics

    Directory of Open Access Journals (Sweden)

    O. Diallo

    2014-01-01

    Full Text Available This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.

  7. Electrical admittance of piezoelectric parallelepipeds: application to tensorial characterization of piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, O.; Bavencoffe, M.; Feuillard, G. [Laboratoire GREMAN UMR CNRS 7347. École Nationale d’Ingénieurs du Val de Loire Université François Rabelais de Tours 3 Rue de la Chocolaterie BP 3410 41034 BLOIS CEDEX France (France); Clezio, E. Le; Delaunay, T. [Institut d’Electronique du Sud UMR CNRS 5214 IES - MIRA case 082Université Montpellier 2 Place Eugène Bataillon 34095 MONTPELLIER CEDEX 5 France (France)

    2014-01-15

    This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.

  8. Mathematical model and characteristic analysis of hybrid photovoltaic/piezoelectric actuation mechanism

    Science.gov (United States)

    Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan

    2016-12-01

    Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.

  9. Fabrication of polypeptide-based piezoelectric composite polymer film

    International Nuclear Information System (INIS)

    Farrar, Dawnielle; West, James E.; Busch-Vishniac, Ilene J.; Yu, Seungju M.

    2008-01-01

    A new class of molecular composite piezoelectric material was produced by simultaneous poling and curing of a homogeneous solution comprising poly(γ-benzyl α,L-glutamate) and methylmethacrylate via corona discharge methods. This film exhibited high piezoelectricity (d 33 = 23 pC N -1 ), and its mechanical characteristics (modulus = 450 MPa) were similar to those of low molecular weight poly(methylmethacrylate). As it is produced via solution-based fabrication processes, the composite film is conducive to miniaturization for small sensors with integrated electronics, and could also potentially be used in piezoelectric coating applications

  10. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  11. Phase structure, dielectric, and piezoelectric properties of (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lingling; Lin, Dunmin; Zheng, Qiaoji; Wu, Xiaochun; Xu, Chenggang [College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066 (China)

    2012-11-15

    Lead-free piezoelectric ceramics (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} have been fabricated by a conventional ceramic technique and the effects of K{sup +}/Na{sup +} ratio on the structure and piezoelectric properties of the ceramics have been studied. All the ceramics possess a pure perovskite structure. The coexistence of tetragonal and orthorhombic phases is formed at room temperature in the ceramics with 0.45 {<=} x {<=} 0.55. The tetragonal-orthorhombic phase-transition temperature T{sub O-T} decreases from 110 to 54 C with x increasing from 0.35 to 0.55 and then increases from 84 to 144 C with x further increasing from 0.6 to 0.7, while the Curie temperature T{sub C} deceases from 388 to 348 C with x increasing from 0.35 to 0.70. Because of the coexistence of the two phases near room temperature, the ceramics with x = 0.50 exhibit the optimum piezoelectric properties: d{sub 33} = 230 pC/N and k{sub p} = 49%. The ceramics possess good time stability of piezoelectric properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces.

    Science.gov (United States)

    Jiao, Fengyu; Wei, Peijun; Li, Yueqiu

    2018-01-01

    Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of compositions and Nb-doping on microstructure and piezoelectric properties of PMS-PZ-PT system

    Energy Technology Data Exchange (ETDEWEB)

    Jiwen, Long; Haiyan, Chen; Zhongyan, Meng

    2003-05-25

    Sr-substituted (2 mol%) xPMS-(1-x)(PZ-PT) compositions were investigated systematically as a function of PMS concentrations as well as Niobium (Nb) contents. X-ray diffraction (XRD) patterns show that phases shift from tetragonal phase to rhombohedral phase with the increase of PMS concentrations and with the increase of Nb-doping contents in PMS2. The compositions with x=0.05 (PMS2) was found to have superior piezoelectric properties. The properties of the PMS2 compositions were optimized by the Nb-doping contents of 0.1 mol% (d{sub 33}=450 pC N{sup -1}, K{sub p}=0.65, Q{sub m}=1210). The compositions of PMS2 and 0.1 mol% Nb-doped compositions of PMS2 are practically suitable for ultrasonic motor (USM) applications.

  14. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    Science.gov (United States)

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  15. Dielectric, piezoelectric properties of MnO2-doped (K0.5Na0.5)NbO3–0.05LiNbO3 crystal grown by flux-Bridgman method

    International Nuclear Information System (INIS)

    Liu, Ying; Xu, Guisheng; Liu, Jinfeng; Yang, Danfeng; Chen, Xiaxia

    2014-01-01

    Highlights: • KNN–0.05LN based single crystals were grown by flux-Bridgman method. • Dielectric, piezoelecrc and ferroelectric properties were studied. • The effect of MnO 2 doping on the crystals' properties. • Dielectric and other properties were improved due to MnO 2 doping. - Abstract: Lead-free potassium sodium niobate piezoelectric single crystals substituted with lithium and then doped with MnO 2 (K 0.5 Na 0.5 )NbO 3 –0.05LiNbO 3 –yMnO 2 (y = 0%, 1.0% and 1.5%) (abbreviated as KNN–0.05LN–yMnO 2 ) have been grown by flux-Bridgman method using KCl–K 2 CO 3 eutectic composition as the flux. Their actual composition as well as the dielectric and piezoelectric properties were studied. Their actual composition deviated from the ratio of the raw materials due to different segregation coefficients of K and Na. The orthorhombic–tetragonal (T o–t ) and tetragonal–cubic phase transition temperature (the Curie temperature T c ) of the single crystal appears at 186 °C and 441 °C, respectively, for KNN–0.05LN–1.0%MnO 2 , shift to higher temperatures compared with that of pure KNN–0.05LN crystals, according to the dielectric permittivity versus temperature loops. The KNN–0.05LN–1.0%MnO 2 (001) plate shows higher piezoelectric coefficient d 33 and dielectric permittivity ε r when compared with pure KNN–0.05LN crystal, being on the order of 226 pC/N and 799 (161 pC/N and 530 for KNN–0.05LN), respectively. These excellent properties show that MnO 2 dopant is effective in improving KNN–0.05LN based piezoelectric crystals

  16. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  17. Notes on Piezoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  18. Structural, dielectric and piezoelectric study of Ca-, Zr-modified ...

    Indian Academy of Sciences (India)

    2017-08-22

    Aug 22, 2017 ... Ferroelectric materials have attracted the attention of researchers around .... and piezoelectric properties than the BCTZ ceramics with finer grains but .... to the polycrys- tallinity and the porosity of the textured BCTZ ceramics.

  19. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  20. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  1. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  2. Diaphragm Pump With Resonant Piezoelectric Drive

    Science.gov (United States)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  3. High aspect ratio piezoelectric strontium-bismuth-tantalate nanotubes

    International Nuclear Information System (INIS)

    Morrison, Finlay D; Ramsay, Laura; Scott, James F

    2003-01-01

    We report the deposition and characterization of transparent ferroelectric/piezoelectric nanotubes of wall thickness about 40 nm, tube diameters ranging from a few hundred nanometres to 4 μm, and length about 100 μm. Comparison with other nanotubes is made and applications in dynamic random access memory trenching and ink-jet printers are discussed. (letter to the editor)

  4. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu

    2017-08-25

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  5. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Mike; Peng, Hailin; Lai, Keji

    2017-01-01

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  6. Atomic-scale origin of piezoelectricity in wurtzite ZnO.

    Science.gov (United States)

    Lee, Jung-Hoon; Lee, Woo-Jin; Lee, Sung-Hoon; Kim, Seong Min; Kim, Sungjin; Jang, Hyun Myung

    2015-03-28

    ZnO has been extensively studied by virtue of its remarkably high piezoelectric responses, especially in nanowire forms. Currently, the high piezoelectricity of wurtzite ZnO is understood in terms of the covalent-bonding interaction between Zn 3d and O 2p orbitals. However, the Zn 3d orbitals are not capable of forming hybridized orbitals with the O 2pz orbitals since the Zn ion is characterized by fully filled non-interacting 3d orbitals. To resolve this puzzling problem, we have investigated the atomic-scale origin of piezoelectricity by exploiting density-functional theory calculations. On the basis of the computed orbital-resolved density of states and the band structure over the Γ-M first Brillouin zone, we propose an intriguing bonding mechanism that accounts for the observed high piezoelectricity - intra-atomic 3dz(2)-4pz orbital self-mixing of Zn, followed by asymmetric hybridization between the Zn 3dz(2)-4pz self-mixed orbital and the O 2pz orbital along the polar c-axis of the wurtzite ZnO.

  7. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  8. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  9. Electromechanical characterization of piezoelectric actuators subjected to a variable pre-loading force at cryogenic temperature

    International Nuclear Information System (INIS)

    Fouaidy, M.; Saki, M.; Hammoudi, N.; Simonet, L.

    2007-01-01

    A dedicated apparatus was designed and constructed for studying the electromechanical behavior of prototype piezoelectric actuators subjected to a variable pre-loading force at cryogenic temperatures. This device was successfully used for testing a piezoelectric actuator of PICMA type from PI TM , for T in the range 2 K-300 K. The dielectric properties as well as dynamic properties were measured including the actuator characteristics when used as force sensor. The corresponding data are reported and discussed. (authors)

  10. An Assessment of New Applications for Single-Crystal Piezoelectric Materials

    National Research Council Canada - National Science Library

    Veitch, Lisa

    1998-01-01

    .... The purpose of this study was to determine the current commercial and military uses of the piezoelectric materials, the properties that are important to these uses, and the impact of substituting...

  11. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  12. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  13. Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

    Science.gov (United States)

    Ye, Wei; Liu, Yifei

    2018-04-01

    This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

  14. Thermodynamic theory of intrinsic finite size effects in PbTiO3 nanocrystals. II. Dielectric and piezoelectric properties

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We compute the intrinsic dielectric and piezoelectric properties of single domain, mechanically free, and surface charge compensated PbTiO3 nanocrystals (n-Pt) with no depolarization fields, undergoing a finite size induced first order tetragonal→cubic ferrodistortive phase transition. By using a Landau-Devonshire type free energy functional, in which Landau coefficients are a function of nanoparticle size, we demonstrate substantial deviations from bulk properties in the range <150 nm. We find a decrease in dielectric susceptibility at the transition temperature with decreasing particle size, which we verify to be in conformity with predictions of lattice dynamics considerations. We also find an anomalous increase in piezocharge coefficients near ˜15 nm , the critical size for n-Pt.

  15. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  16. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Piezoelectric effect in strained quantum wells

    International Nuclear Information System (INIS)

    Dang, L.S.; Andre, R.; Cibert, J.

    1995-01-01

    This paper describes some physical aspects of the piezoelectric effect which takes place in strained semiconductor heterostructures grown along a polar axis. First we show how piezoelectric fields can be accurately measured by optical spectroscopy. Then we discuss about the origin of the non-linear piezoelectric effect reported recently for CdTe, and maybe for InAs as well. Finally we compare excitonic effects in piezoelectric and non-piezoelectric quantum wells. (orig.)

  18. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials

    International Nuclear Information System (INIS)

    Dai Shuangxing; Dunn, Martin L; Park, Harold S

    2010-01-01

    We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

  19. Hydrothermal crystal growth, piezoelectricity, and triboluminescence of KNaNbOF5

    International Nuclear Information System (INIS)

    Chang, Kelvin B.; Edwards, Bryce W.; Frazer, Laszlo; Lenferink, Erik J.; Stanev, Teodor K.; Stern, Nathaniel P.; Nino, Juan C.; Poeppelmeier, Kenneth R.

    2016-01-01

    Single crystals of the noncentrosymmetric KNaNbOF 5 polymorph were grown for piezoelectric and triboluminescent measurements. Piezoelectric measurements yielded a d 33 value of ±6.3 pCN −1 and an effective electromechanical coupling coefficient of up to 0.1565 in the frequency range 1960–2080 kHz. Crystals of KNaNbOF 5 were found to exhibit a strong triboluminscence effect visible to the naked eye as blue sparks when crystals are crushed. This triboluminescence effect is uncommon in that it is likely independent from both the piezoelectric effect and atmospheric electrical discharge. Instead, triboluminescence may originate from crystal defects or be related to an electroluminescence effect. - Graphical abstract: An optical emission visible to the naked eye as blue sparks is observed when KNaNbOF 5 single crystals are fractured. - Highlights: • Single crystals of KNaNbOF 5 were grown under hydrothermal conditions. • Piezoelectric and triboluminescent properties were characterized. • Piezoelectric measurements yielded a d 33 value of ±pCN −1 . • KNaNbOF 5 exhibits strong triboluminscence visible to the naked eye as blue sparks.

  20. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  1. Computational and Experimental Insight Into Single-Molecule Piezoelectric Materials

    Science.gov (United States)

    Marvin, Christopher Wayne

    Piezoelectric materials allow for the harvesting of ambient waste energy from the environment. Producing lightweight, highly responsive materials is a challenge for this type of material, requiring polymer, foam, or bio-inspired materials. In this dissertation, I explore the origin of the piezoelectric effect in single molecules through density functional theory (DFT), analyze the piezoresponse of bio-inspired peptidic materials through the use of atomic and piezoresponse force microscopy (AFM and PFM), and develop a novel class of materials combining flexible polyurethane foams and non-piezoelectric, polar dopants. For the DFT calculations, functional group, regiochemical, and heteroatom derivatives of [6]helicene were examined for their influence on the piezoelectric response. An aza[6]helicene derivative was found to have a piezoelectric response (108 pm/V) comparable to ceramics such as lead zirconium titanate (200+ pm/V). These computed materials have the possibility to compete with current field-leading piezomaterials such as lead zirconium titanate (PZT), zinc oxide (ZnO), and polyvinylidene difluoride (PVDF) and its derivatives. The use of AFM/PFM allows for the demonstration of the piezoelectric effect of the selfassembled monolayer (SAM) peptidic systems. Through PFM, the influence that the helicity and sequence of the peptide has on the overall response of the molecule can be analyzed. Finally, development of a novel class of piezoelectrics, the foam-based materials, expands the current understanding of the qualities required for a piezoelectric material from ceramic and rigid materials to more flexible, organic materials. Through the exploration of these novel types of piezoelectric materials, new design rules and figures of merit have been developed.

  2. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  3. Universal phase diagram for high-piezoelectric perovskite systems

    NARCIS (Netherlands)

    Cox, D.E.; Noheda, B.; Shirane, G.; Uesu, Y.; Fujishiro, K.; Yamada, Y.

    2001-01-01

    Strong piezoelectricity in perovskite-type PbZn1-xTixO3 (PZT) and Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZN–PT) systems is generally associated with the existence of a morphotropic phase boundary (MPB) separating regions with rhombohedral and tetragonal symmetry. An x-ray study of PZN–9% PT has revealed the

  4. Hysteresis compensation for piezoelectric actuators in single-point diamond turning

    Science.gov (United States)

    Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin

    2006-02-01

    In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.

  5. Characterization of advanced piezoelectric materials in the wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Burianova, L.; Kopal, A.; Nosek, J

    2003-05-25

    We report about methods and results of our measurements of piezoelectric, dielectric and elastic properties of piezoelectric materials like crystals, ceramics, composites, polymers and thin layer composites. Among the methods, used in our laboratories are: the resonance method working in the temperature range 208-358 K, hydrostatic methods, both static and dynamic in the range 273-333 K, laser interferometric methods, using single and double-beam interferometer, working at room temperature, single and double-beam micro-interferometers, working inside of optical cryostat in the range 150-330 K, and pulse echo method for measurements of elastic coefficients, using ultrasonic set, working at room temperature. In our earlier papers we reported about some of our results of piezoelectric measurements of PZT ceramics using resonance method and laser interferometric method. The results of both methods were in good agreement. Now, the measurements are realized on 0-3 ceramic-polymer composites and thin layer composites. It is well known, that both intrinsic (material) and extrinsic (domain structure) contributions to properties of ferroelectric samples have characteristic, sometimes rather strong, temperature dependence. Therefore, any extension of temperature range of the above mentioned methods is welcomed.

  6. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring

    International Nuclear Information System (INIS)

    Lin, Shuyu; Hu, Jing; Fu, Zhiqiang

    2013-01-01

    A new type of piezoelectric ceramic transformer in radial vibration is presented. The piezoelectric transformer consists of a pairing of a concentric piezoelectric ceramic circular disk and ring. The inner piezoelectric ceramic disk is axially polarized and the outer piezoelectric ring is radially polarized. Based on the plane stress theory, the exact analytical theory for the piezoelectric transformer is developed and its electromechanical equivalent circuit is introduced. The resonance/anti-resonance frequency equations of the transformer are obtained and the relationship between the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient and the geometrical dimensions of the piezoelectric transformer is analyzed. The dependency of the voltage transformation ratio on the frequency is obtained. To verify the analytical theory, a numerical method is used to simulate the electromechanical characteristics of the piezoelectric transformer. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the numerical results. (paper)

  7. Anomalous piezoelectric effects, found in the laboratory and reconstructed by numerical simulation

    Directory of Open Access Journals (Sweden)

    K. P. Teisseyre

    2002-06-01

    Full Text Available Various rocks and minerals, which are not piezoelectric in the common sense, exhibit transient electric polarization in response to sudden changes in stress load. This anomalous piezoelectric effect differs from the regular, static piezoelectric response, in which electric charges appear as a result of crystal lattice deformation. The anomalous piezoelectricity is dynamic decaying in a few seconds or a few tens of seconds. However, in some materials different polarization properties are discovered. To explain certain aspects of the polarization signal increase and decay, some complicated mechanisms of electric charge generation and relaxation need to be assumed in their number ? concurrence of two or three relaxation processes. The hypothetical mechanisms are only mentioned, as the purpose of this work is to construct numerical models, behaving like the rocks investigated. Examples of experimental plots are shown together with the results of the numerical simulation of these experiments.

  8. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    Science.gov (United States)

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  9. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.

    Science.gov (United States)

    Gu, Guoying; Zhu, Limin

    2010-08-01

    In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.

  10. Piezoelectric Zinc Oxide Based MEMS Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Aarti Arora

    2008-04-01

    Full Text Available An acoustic sensors exhibiting good sensitivity was fabricated using MEMS technology having piezoelectric zinc oxide as a dielectric between two plates of capacitor. Thin film zinc oxide has structural, piezoelectric and optical properties for surface acoustic wave (SAW and bulk acoustic wave (BAW devices. Oxygen effficient films are transparent and insulating having wide applications for sensors and transducers. A rf sputtered piezoelectric ZnO layer transforms the mechanical deflection of a thin etched silicon diaphragm into a piezoelectric charge. For 25-micron thin diaphragm Si was etched in tetramethylammonium hydroxide solution using bulk micromachining. This was followed by deposition of sandwiched structure composed of bottom aluminum electrode, sputtered 3 micron ZnO film and top aluminum electrode. A glass having 1 mm diameter hole was bonded on backside of device to compensate sound pressure in side the cavity. The measured value of central capacitance and dissipation factor of the fabricated MEMS acoustic sensor was found to be 82.4pF and 0.115 respectively, where as the value of ~176 pF was obtained for the rim capacitance with a dissipation factor of 0.138. The response of the acoustic sensors was reproducible for the devices prepared under similar processing conditions under different batches. The acoustic sensor was found to be working from 30Hz to 8KHz with a sensitivity of 139µV/Pa under varying acoustic pressure.

  11. Experimental verification of distributed piezoelectric actuators for use in precision space structures

    Science.gov (United States)

    Crawley, E. F.; De Luis, J.

    1986-01-01

    An analytic model for structures with distributed piezoelectric actuators is experimentally verified for the cases of both surface-bonded and embedded actuators. A technique for the selection of such piezoelectric actuators' location has been developed, and is noted to indicate that segmented actuators are always more effective than continuous ones, since the output of each can be individually controlled. Manufacturing techniques for the bonding or embedding of segmented piezoelectric actuators are also developed which allow independent electrical contact to be made with each actuator. Static tests have been conducted to determine how the elastic properties of the composite are affected by the presence of an embedded actuator, for the case of glass/epoxy laminates.

  12. Analysis of an x-ray mirror made from piezoelectric bimorph

    Science.gov (United States)

    Zhang, Yao; Li, Ming; Tang, Shanzhi; Gao, Junxiang; Zhang, Weiwei; Zhu, Peiping

    2017-07-01

    Theoretical analysis of the mechanical behavior of an x-ray mirror made from piezoelectric bimorph is presented. A complete two-dimensional relationship between the radius of curvature of the mirror and the applied voltage is derived. The accuracy of this relationship is studied by comparing the figures calculated by the relationship and Finite Element Analysis. The influences of several critical parameters in the relationship on the radius of curvature are analyzed. It is found that piezoelectric coefficient d31 is the main material property parameter that dominates the radius of curvature, and that the optimal thickness of PZT plate corresponding to largest bending range is 2.5 times of that of faceplate. It is demonstrated that the relationship is helpful for us to complete the primary design of the x-ray mirror made from piezoelectric bimorph.

  13. Enhanced piezoelectric properties in vanadium-modified lead-free (K{sub 0.485}Na{sub 0.5}Li{sub 0.015})(Nb{sub 0.88}Ta{sub 0.1}V{sub 0.02})O{sub 3} ceramics prepared from nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Roopam; Dhingra, Apurva; Pal, Soham; Chandramani Singh, K., E-mail: kongbam@gmail.com

    2015-03-15

    Highlights: • (K{sub 0.485}Na{sub 0.5}Li{sub 0.015})(Nb{sub 0.9−x}Ta{sub 0.1}V{sub x}) O{sub 3}(x = 0, 0.01, 0.02, 0.03) ceramics were prepared. • These ceramics were synthesized from 35-nm powders. • Density, microstrain, crystallite size, tetragonality were high at x = 0.02. • Dielectric, ferroelectric and piezoelectric properties were enhanced at x = 0.02. • The increased properties are attributed to crystal structure and microstructure. - Abstract: Enhancing the piezoelectric properties of lead-free piezoceramics like alkaline niobate system has been an important research topic in our search for an alternative to widely used but highly toxic lead-based PZT piezoceramics system. In the present study, lead-free alkaline niobate-based compositions (K{sub 0.485}Na{sub 0.5}Li{sub 0.015})(Nb{sub 0.9−x}Ta{sub 0.1}V{sub x})O{sub 3} (x = 0, 0.01, 0.02 and 0.03) were synthesized using conventional solid state reaction method. Nanocrystalline powders of these compositions, produced by high energy ball milling, were sintered at 1050 °C for 4 h to produce corresponding ceramics. Increasing V{sup 5+} content in the ceramics from x = 0 to 0.02 results in a gradual increase in the room temperature dielectric constant (ε{sub r}) from 1185 to 1336, remnant polarization (P{sub r}) from 13.4 μC/cm{sup 2} to 17.1 μC/cm{sup 2}, electromechanical coupling factor (k{sub p}) from 0.37 to 0.40, and piezoelectric charge constant (d{sub 33}) from 156 pC/N to 185 pC/N. Further increase in x to 0.03 lowers these values to 1082, 13.4 μC/cm{sup 2}, 0.36 and 128 pC/N respectively. Correspondingly, the coercive field (E{sub c}) first shows a gradual decline from 8.5 kV/cm to 7.9 kV/cm and then a rise to 9.2 kV/cm, as x increases from 0 to 0.02 and then to 0.03. The enhancement of piezoelectric properties in (K{sub 0.485}Na{sub 0.5}Li{sub 0.015})(Nb{sub 0.88}Ta{sub 0.1}V{sub 0.02})O{sub 3} ceramics is attributed to the associated higher values of density, tetragonality and

  14. Development of multilayer piezoelectric actuator valve for JT-60

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Hiratsuka, Hajime; Masui, Hiroshi; Hosogane, Nobuyuki; Miya, Naoyuki

    2001-11-01

    In order to improve the gas injection valve used for the operation of JT-60, a new type of valve (multilayer piezoelectric actuator valve) was developed. The conventional valve (bimorph piezoelectric valve) has been used for 15 years since the beginning of experimental operation in April, 1985. However, it came to be hard to keep the performance of the valve because of the deterioration of the driving source, i.e. piezoelectric element. Developments of the new valve were carried out based on experiences through experimental operations in JT-60. Requirements for the design are: (1) to be hard structure for making a sheet leak, (2) to allow a repair work at atmosphere side without an air vent of the vacuum vessel, (3) to be more smaller and lighter compared with the conventional one, and (4) to have a high maintenance efficiency by utilizing of the commercial piezoelectric elements and power supplies. The newly developed valve was examined with various tests such as gas flow characteristic test, high magnetic field proof test, high temperature proof test and gas flow rate test for aged deterioration. Results, confirm that the performance of the valve is applicable for JT-60 operations. (author)

  15. High-amplitude THz and GHz strain waves, generated by ultrafast screening of piezoelectric fields in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; van Capel, P.J.S.; Turchinovich, Dmitry

    2010-01-01

    Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening.......Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening....

  16. Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    electromagnetic interference, compact, light, high power density and low cost allows for promising market in the near future. The piezoelectric transformer technology has the potential to be used in various applications e.g. motor driver for magnetic resonance imaging scans, the electronic ballast for fluorescent...... of inductorless switch-mode power supplies employing piezoelectric transformers. The main focus of this research is on the functionality of the piezoelectric transformer-based power converters and applying control techniques in order to exploit advantages of the piezoelectric transformers for the power converters...... detector applicable for switch-mode power supplies, optimum phase detector, bi-directional wide bandwidth current sensor and a comprehensive analysis of piezoelectric transformer-based switch-mode power supplies for zero-voltage switching, where all finalized with improving the unidirectional topology...

  17. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    International Nuclear Information System (INIS)

    Montoya, Angela C.; Maji, Arup K.

    2010-01-01

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  18. Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths

    OpenAIRE

    Gao, Xiaotong; Shih, Wei-Heng; Shih, Wan Y.

    2010-01-01

    We have examined a piezoelectric unimorph cantilever (PUC) with unequal piezoelectric and nonpiezoelectric lengths for vibration energy harvesting theoretically by extending the analysis of a PUC with equal piezoelectric and nonpiezoelectric lengths. The theoretical approach was validated by experiments. A case study showed that for a fixed vibration frequency, the maximum open-circuit induced voltage which was important for charge storage for later use occurred with a PUC that had a nonpiezo...

  19. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  20. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Energy Technology Data Exchange (ETDEWEB)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.