Sample records for high performance polymers

  1. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.


    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  2. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas


    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  3. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    Directory of Open Access Journals (Sweden)

    K Ishihara


    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  4. High performance, durable polymers including poly(phenylene) (United States)

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark


    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  5. Toward High Performance Photovoltaic Cells based on Conjugated Polymers (United States)


    AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...Conjugated Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4113 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kung-Hwa Wei 5d. polymer with good packing order as the active layer for a single-junction photovoltaic device. The light absorptions for the small molecule and the

  6. CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers

    KAUST Repository

    Wadsworth, Andrew


    The field of organic photovoltaics has advanced a great deal over the last decade, with device efficiencies now exceeding 11%. A large part of this success can be attributed to the development of donor polymer materials, from their humble beginnings as homopolymers to the highly tuned push-pull copolymer and terpolymer materials that are now being reported on a regular basis. Through the careful use of chemical modification, it has been possible to design and synthesize a wide variety of donor polymers, allowing optimization of both the optoelectronic and structural properties of the materials. In doing so, more favourable active layer blends have been achieved and therefore significant improvements in device performance have been observed. Herein we discuss how the chemical design of donor polymers for organic photovoltaics has led to the emergence of high-performance materials.

  7. Alternative High Performance Polymers for Ablative Thermal Protection Systems (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg


    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  8. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja


    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  9. High performance carbon nanotube - polymer nanofiber hybrid fabrics (United States)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S.; Bradford, Philip D.


    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m-2 exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical

  10. Developing Flexible, High Performance Polymers with Self-Healing Capabilities (United States)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.


    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  11. High performance carbon nanotube--polymer nanofiber hybrid fabrics. (United States)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S; Bradford, Philip D


    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m(-2) exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.

  12. High electromechanical performance of electroelastomers based on interpenetrating polymer networks (United States)

    Ha, Soon Mok; Park, Il Seok; Wissler, Michael; Pelrine, Ron; Stanford, Scott; Kim, Kwang J.; Kovacs, Gabor; Pei, Qibing


    The electromechanical performance of interpenetrating polymer networks (IPN) in which one elastomer network is under high tension balanced by compression of the second network, were investigated. Uniaxial stress relaxation analysis confirmed significant decrease in viscoelasticity in comparison with 3M VHB films, the primary component network in the IPN films. In dynamic mechanical analysis, the IPN composite showed a higher mechanical efficiency, suggesting delayed relaxation of the acrylic chains in the presence of IPN formation. This improvement was found to be dependant on the contents of poly(TMPTMA). Actuation performance without mechanical prestrain showed that these IPN electroelastomers had demonstrated high elastic strain energy density (3.5 MJ/m 3) and a high electromechanical coupling factor (93.7%). These enhanced electromechanical performances indicate that IPN electroelastomer should be suitable for diverse applications.


    Directory of Open Access Journals (Sweden)

    Giuseppe eMensitieri


    Full Text Available Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI and polyetheretherketone (PEEK, is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging fro 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different’populations’ of water molecules present within the PEEK and a quantitative assessment of these ‘populations’ in the case of PEI.The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non equilibrium nature of glassy poymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.

  14. High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers. (United States)

    Fan, Baobing; Zhang, Kai; Jiang, Xiao-Fang; Ying, Lei; Huang, Fei; Cao, Yong


    High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage (United States)


    positioning has made high-performance, light-weight power sources of increasing importance to the US military. Polymer electrolyte membranes , which...AFRL-AFOSR-VA-TR-2016-0168 Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy...Sep 2015 4. TITLE AND SUBTITLE Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy

  16. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo


    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  17. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency. (United States)

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho


    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs


    K Ishihara


    Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC) polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma...

  19. Nanocellular polymer foams as promising high performance thermal insulation materials

    NARCIS (Netherlands)

    Liu, Shanqiu; Duvigneau, Joost; Vancso, Gyula J.


    Low density, nanocellular polymer nanocomposite foams are considered as a promising new class of materials with many promising applications, for example to passively enhance the energy efficiency of buildings. This paper discusses recent developments in this field of polymer materials science.

  20. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors

    DEFF Research Database (Denmark)

    Tsao, Hoi Nok; Cho, Don; Andreasen, Jens Wenzel


    The influence of molecular packing on the performance of polymer organic field-effect transistors is illustrated in this work. Both close -stacking distance and long-range order are important for achieving high mobilities. By aligning the polymers from solution, long-range order is induced...

  1. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope (United States)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)


    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  2. Achieving high performance polymer tandem solar cells via novel materials design (United States)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  3. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.


    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  4. Strategies, linkers and coordination polymers for high-performance sorbents (United States)

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver


    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  5. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors

    National Research Council Canada - National Science Library

    Lu, Guanghao; Blakesley, James; Himmelberger, Scott; Pingel, Patrick; Frisch, Johannes; Lieberwirth, Ingo; Salzmann, Ingo; Oehzelt, Martin; Di Pietro, Riccardo; Salleo, Alberto; Koch, Norbert; Neher, Dieter


    .... Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect...

  6. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording) (United States)

    Zhou, Yan; Bao, Zhenan


    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  7. High electron mobility ZnO film for high-performance inverted polymer solar cells (United States)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai


    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  8. Achieving high performance polymer optoelectronic devices for high efficiency, long lifetime and low fabrication cost (United States)

    Huang, Jinsong

    This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C

  9. Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates

    KAUST Repository

    Khan, M. A.


    Flexible ferroelectric capacitors with doped polymer electrodes have been fabricated on plastic substrates with performance as good as metal electrodes. The effect of doping on the morphology of polymer electrodes and its impact on device performance have been studied. Improved fatigue characteristics using doped and undoped poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes versus metal electrodes are observed. It is shown that the polymer electrodes follow classical ferroelectric and dielectric responses, including series resistance effects. The improved device characteristics obtained using highly conducting doped PEDOT:PSS suggest that it may be used both as an electrode and as global interconnect for all-polymer transparent circuits on flexible substrates.

  10. A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. (United States)

    Jiang, Haiying; Wang, Zhen; Zhang, Lianjie; Zhong, Anxing; Liu, Xuncheng; Pan, Feilong; Cai, Wanzhu; Inganäs, Olle; Liu, Yi; Chen, Junwu; Cao, Yong


    A new wide-band-gap conjugated polymer PBODT was successfully synthesized that showed high crystallinity and was utilized as the active material in nonfullerene bulk-heterojunction polymer solar cells (PSCs). The photovoltaic devices based on the as-cast blend films of PBODT with ITIC and IDIC acceptors showed notable power conversion efficiencies (PCEs) of 7.06% and 9.09%, with high open-circuit voltages of 1.00 and 0.93 V that correspond to low energy losses of 0.59 and 0.69 eV, respectively. In the case of PBODT:ITIC, lower exciton quenching efficiency and monomolecular recombination are found for devices with small driving force. On the other hand, the relatively higher driving force and suppressed monomolecular recombination for PBODT:IDIC devices are identified to be the reason for their higher short-circuit current density (Jsc) and higher PCEs. In addition, when processed with the nonchlorinated solvent 1,2,4-trimethylbenzene, a good PCE of 8.19% was still achieved for the IDIC-based device. Our work shows that such wide-band-gap polymers have great potential for the environmentally friendly fabrication of highly efficient PSCs.

  11. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains (United States)

    Png, Rui-Qi; Chia, Perq-Jon; Tang, Jie-Cong; Liu, Bo; Sivaramakrishnan, Sankaran; Zhou, Mi; Khong, Siong-Hee; Chan, Hardy S. O.; Burroughes, Jeremy H.; Chua, Lay-Lay; Friend, Richard H.; Ho, Peter K. H.


    Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor-acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible.

  12. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan


    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties (United States)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  14. High-Performance Polymers for Membrane CO2/N2Separation. (United States)

    Liu, Junyi; Hou, Xianda; Park, Ho Bum; Lin, Haiqing


    This Concept examines strategies to design advanced polymers with high CO 2 permeability and high CO 2 /N 2 selectivity, which are the key to the success of membrane technology for CO 2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO 2 solubility and thus CO 2 /N 2 selectivity are designed by incorporating CO 2 -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO 2 diffusivity and thus CO 2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO 2 /N 2 separation properties for CO 2 capture from flue gas are highlighted. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Investigations of non-linear polymers as high performance lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Joshua W.; Bhattacharya, Priyanka; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia


    Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional

  16. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. (United States)

    Zhang, Maojie; Guo, Xia; Ma, Wei; Ade, Harald; Hou, Jianhui


    A new copolymer PM6 based on fluorothienyl-substituted benzodithiophene is synthesized and characterized. The inverted polymer solar cells based on PM6 exhibit excellent performance with Voc of 0.98 V and power conversion efficiency (PCE) of 9.2% for a thin-film thickness of 75 nm. Furthermore, the single-junction semitransparent device shows a high PCE of 5.7%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalytic phosphonation of high performance polymers and POSS. Novel components for polymer blend and nanocomposite fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, T.R.


    Aim of this thesis was the preparation and evaluation of phosphonated high performance (HP) polyelectrolytes and polyhedral oligomeric silsesquioxanes (POSS) for polyelectrolyte membrane fuel cell (PEMFC) application. Brominated derivatives of the commercial high performance (HP) polymers poly(ethersulfone) (PES), poly(etheretherketone) (PEEK), poly(phenylsulfone) (PPSu), poly(sulfone) (PSU) and of octaphenyl-POSS of own production were phosphonated by Ni-catalysed Arbuzov reaction. Phosphonated PSU was cast into pure and blend films with sulfonated PEEK (s-PEEK) to investigate H+-conductivity, water uptake and film morphology. Blend films' properties were referenced to films containing unmodified blend partners. Solution-compounding of phosphonated octaphenyl-POSS and s-PEEK was used to produce novel nanocomposite films. An in-situ zirconisation method was assessed as convenient strategy for novel ionically crosslinked membranes of enhanced swelling resistance. Dibromo isocyanuric acid (DBI) and N-bromo succinimide (NBS) as brominating agents allowed polymer analogous preparation of the novel brominated PES and PEEK with precise reaction control. A random distribution of functional groups, i.e. polyelectrolytes' microstructural homogeneity was revealed as decisive factor concerning solubility of phosphonated PSU. Brominated phT8 was prepared with Br2 by a high temperature approach in tetrachloroethane (TCE). Brominated polymers were phosphonated by Ni-catalysis in non-coordinating high temperature solvents, such as diphenylether, benzophenone and diphenylsulfone without notable solvent influence. The lack of solvent - catalyst complexes and high reaction temperatures of 180-200 C led to halogen-free phosphonates with unprecedented high functionalities. Polymer analogous application of P(OSiMe3)3 offered a novel direct access to easily cleavable disilyl ester derivatives. These were obtained from PEEK and PSU in near quantitative yields at NiCl2-loads as

  18. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser


    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells (United States)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  20. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.


    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. (United States)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji


    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  2. Development of Sphere-Polymer Brush Hierarchical Nanostructure Substrates for Fabricating Microarrays with High Performance. (United States)

    Liu, Xia; Tian, Rongrong; Liu, Dianjun; Wang, Zhenxin


    In this work, a sphere-polymer brush hierarchical nanostructure-modified glass slide has been developed for fabricating high-performance microarrays. The substrate consists of a uniform 160 nm silica particle-self-assembled monolayer on a glass slide with a postcoated poly(glycidyl methacrylate) (PGMA) brush layer (termed PGMA@3D(160) substrate), which can provide three-dimensional (3D) polymer brushes containing abundant epoxy groups for directly immobilizing various biomolecules. As a typical example, the interactions of three monosaccharides (4-aminophenyl β-d-galactopyranoside, 4-aminophenyl β-d-glucopyranoside, and 4-aminophenyl α-d-mannopyranoside) with two lectins (biotinylated ricinus communis agglutinin 120 and biotinylated concanavalin A from Canavalia ensiformis) have been assessed by PGMA@3D(160) substrate-based carbohydrate microarrays. The carbohydrate microarrays show good selectivity, strong multivalent interaction, and low limit of detection (LOD) in the picomolar range without any signal amplification. Furthermore, the proposed sphere-polymer brush hierarchical nanostructure substrates can be easily extended to fabricate other types of microarrays for DNA and protein detection. PGMA@3D(160) substrate-based microarrays exhibit higher reaction efficiencies and lower LODs (by at least 1 order of magnitude) in comparison to those of two-dimensional microarrays, which are fabricated on planar epoxy substrates, making it a promising platform for bioanalytical and biomedical applications.

  3. Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing

    National Research Council Canada - National Science Library

    Zhou, Jie; Blair, Barry; Argires, John; Pitsch, Donald


    .... Polymer based materials are alternative materials that can operate at high temperatures and with thin films and have been in use for many decades in high load applications, such as electric submersible pumps (ESP...

  4. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing. (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry


    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications

    KAUST Repository

    Yue, Wan


    Two new alternating copolymers, PAIIDBT and PAIIDSe have been prepared by incorporating a highly electron deficient azaisoindigo core. The molecular structure and packing of the monomer is determined from the single crystal X-ray diffraction. Both polymers exhibit high EAs and highly planar polymer backbones. When polymers are used as the semiconducting channel for solution-processed thin film transistor application, good properties are observed. A–A type PAIIDBT exhibits unipolar electron mobility as high as 1.0 cm2 V−1 s−1, D–A type PAIIDSe exhibits ambipolar charge transport behavior with predominately electron mobility up to 0.5 cm2 V−1 s−1 and hole mobility to 0.2 cm2 V−1 s−1. The robustness of the extracted mobility values are also commented on in detail. Molecular orientation, thin film morphology and energetic disorder of both polymers are systematically investigated.

  6. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells (United States)

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong


    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs.

  7. Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing

    Directory of Open Access Journals (Sweden)

    Jie Zhou


    Full Text Available With the demand for turbomachinery to operate at higher speeds, loads, and power, fluid film bearings that support turbomachinery must be capable of operating in these more demanding applications. Thrust bearings operating at high speeds and loads can experience high surface temperatures and thin fluid film thickness. Typically, babbitt (white metal is the bearing lining material for most turbomachinery bearings but is limited in operating temperature and allowable film thickness. Polymer based materials are alternative materials that can operate at high temperatures and with thin films and have been in use for many decades in high load applications, such as electric submersible pumps (ESP. Test results of polymer lined thrust bearings subjected to modern turbomachinery speeds and loads are presented and compared to babbitt lined bearings of the same design and under similar conditions. The test results show polymer lined thrust bearings can operate at higher bearing unit loads than babbitt.

  8. Interface-Confined High Crystalline Growth of Semiconducting Polymers at Graphene Fibers for High-Performance Wearable Supercapacitors. (United States)

    Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Lim, Joonwon; Lee, Ho Jin; Koo, Sung Hwan; Kim, In Ho; Jung, Hong Ju; Kim, Sang Ouk


    We report graphene@polymer core-shell fibers (G@PFs) composed of N and Cu codoped porous graphene fiber cores uniformly coated with semiconducting polymer shell layers with superb electrochemical characteristics. Aqueous/organic interface-confined polymerization method produced robust highly crystalline uniform semiconducting polymer shells with high electrical conductivity and redox activity. When the resultant core-shell fibers are utilized for fiber supercapacitor application, high areal/volume capacitance and energy densities are attained along with long-term cycle stability. Desirable combination of mechanical flexibility, electrochemical properties, and facile process scalability makes our G@PFs particularly promising for portable and wearable electronics.

  9. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu


    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  10. Performance and degradation of high temperature polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arico, A.S.; Stassi, A.; Modica, E.; Ornelas, R.; Gatto, I.; Passalacqua, E.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy)


    An investigation of carbon-supported Pt/C and PtCo/C catalysts was carried out with the aim to evaluate their stability under high temperature polymer electrolyte membrane fuel cell (PEMFC) operation. Carbon-supported nanosized Pt and PtCo particles with a mean particle size between 1.5 nm and 3 nm were prepared by using a colloidal route. A suitable degree of alloying was obtained for the PtCo catalyst by using a carbothermal reduction. The catalyst stability was investigated to understand the influence of carbon black corrosion, platinum dissolution and sintering in gas-fed sulphuric acid electrolyte half-cell at 75 C and in PEMFC at 130 C. Electrochemical active surface area and catalyst performance were determined in PEMFC at 80 C and 130 C. A maximum power density of about 700 mW cm{sup -2} at 130 C and 3 bar abs. O{sub 2} pressure with 0.3 mg Pt cm{sup -2} loading was achieved. The PtCo alloy showed a better stability than Pt in sulphuric acid after cycling; yet, the PtCo/C catalyst showed a degradation after the carbon corrosion test. The PtCo/C catalyst showed smaller sintering effects than Pt/C after accelerated degradation tests in PEMFC at 130 C. (author)

  11. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. (United States)

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan


    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  12. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu


    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO2 (PDs-TiO2) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO4)2. Under visible light irradiation, the PDs-TiO2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO2 is 3.6 and 9.5 times higher than that of pure TiO2 and commercial P25, respectively. In addition, the PDs-TiO2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO2, therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Molecularly Imprinted Polymers (MIP for Selective Solid Phase Extraction of Celecoxib in Urine Samples Followed by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Saeedeh Ansari


    Full Text Available In this study, for the analysis of human urine samples, a novel method explained for the determination of celecoxib, a nonsteroidal anti-inflammatory drug (NSAID, using molecularly imprinted solid-phase extraction (MISPE coupled with high-performance liquid chromatography (HPLC. The synthesis of the MIP was performed by precipitation polymerization in methacrylic acid (MAA, ethylene glycol dimethacrylate (EGDMA, chloroform, 2,2′-azobisisobutyronitrile (AIBN and celecoxib as the functional monomer, cross-linker monomer, solvent, initiator and target drug, respectively. The celecoxib imprinted polymer was utilized as a specific sorbent for the solid phase extraction (SPE of celecoxib from samples. The molecularly imprinted polymer (MIP performance was compared with the synthesized non-molecularly imprinted polymer (NIP. Scanning electron microscopy (SEM, FT-IR spectroscopy, UV-VIS spectrophotometry and thermogravimetric analysis (TGA/DTG were used for characterizing the synthesized polymers. Moreover, the MISPE procedure parameters such as pH, eluent solvent flow rate, eluent volume and sorbent mass that probably influence the extraction process have been optimized to achieve the highest celecoxib extraction efficiency. The relative standard deviation (RSD %, recovery percent, limit of detection (LOD and limit of quantification (LOQ of this proposed method were 1.12%, 96%, 8 µg L-1 and 26.7 µg L-1, respectively. The proposed MISPE-HPLC-UV method can be used for the separation and enrichment of trace amounts of celecoxib in human urine and biological samples.

  14. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott


    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. (United States)

    Liu, Jun; Xue, Yuhua; Dai, Liming


    In this study, we have rationally designed and successfully developed sulfated graphene oxide (GO-OSO3H) with -OSO3H groups attached to the carbon basal plane of reduced GO surrounded with edge-functionalized -COOH groups. The resultant GO-OSO3H is demonstrated to be an excellent hole extraction layer (HEL) for polymer solar cells (PSCs) because of its proper work function for Ohmic contact with the donor polymer, its reduced basal plane for improving conductivity, and its -OSO3H/-COOH groups for enhancing solubility for solution processing. Compared with that of GO, the much improved conductivity of GO-OSO3H (1.3 S m(-1) vs 0.004 S m(-1)) leads to greatly improved fill factor (0.71 vs 0.58) and power conversion efficiency (4.37% vs 3.34%) of the resulting PSC devices. Moreover, the device performance of GO-OSO3H is among the best reported for intensively studied poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM) devices. Our results imply that judiciously functionalized graphene materials can be used to replace existing HEL materials for specific device applications with outstanding performance.

  16. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions (United States)

    Suleman, Naushadalli K.


    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  17. Upgrading low-quality natural gas by means of highly performing polymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stern, S.A. [Syracuse Univ., NY (United States)


    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing acid gases (CO{sub 2} and H{sub 2}S) from low-quality natural gas. Nonporous {open_quotes}dense{close_quotes} (homogeneous) membranes made from new, highly gas-selective polymers are being evaluated for this purpose. The project comprises gas permeability and separation measurements with CH{sub 4}/CO{sub 2} and CH{sub 4}/CO{sub 2}/H{sub 2}S mixtures having compositions in ranges found in low-quality natural gas. Process design studies and economic evaluations are also being made to determine the cost of upgrading low-quality natural gas with the most promising membranes. Until recently, the membranes used in this study were made from new types of polyimides synthesized in our laboratory. The polyimide membranes were found to exhibit a very high CO{sub 2}/CH{sub 4} selectivity but a relatively low H{sub 2}S/CH{sub 4} selectivity. Therefore, different types of polymers that exhibit a high H{sub 2}S/CH{sub 4} selectivity are also being evaluated.

  18. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation. (United States)

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar


    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.

  19. High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer (United States)

    Wang, Xiangdong; Peng, Qing; Zhu, Weiguo; Lei, Gangtie


    Cobalt oxide (II, III) (CoOx) was inserted as efficient hole-transporting interlayer between the active layer and top electrode in inverted polymer solar cells (PSCs) with titanium (diisopropoxide) bis(2, 4-pentanedionate) (TIPD) as an electron selective layer. The work function of CoOx was measured by Kelvin probe and the device performances with different thicknesses of cobalt oxide were studied. The device with CoOx exhibited a remarkable improvement in power conversion efficiency compared with that without CoOx, which indicated that CoOx efficiently prevented the recombination of charge carriers at the organic/top electrode interface. The performance improvement was attributed to the fact that the CoOx thin film can module the Schottky barrier and form an ohmic contact at the organic/metal interface, which makes it a promising hole-transporting layer.

  20. Mechanical Properties of High-Performance Lightweight Aggregate Concrete with Inorganic Polymers Cement Based on Multiple Minerals under Uniaxial Loading


    Xiao Ma; Qiuhua Rao


    High-performance lightweight aggregate concrete with inorganic polymers cement based on multiple minerals is a very promising new material. The research of mechanical properties of the new material is of great theoretical and practical significance. In this research, the failure behavior, cubic and prism compressive strength, elastic modulus, peak strain of the new material, and the nature of the stress-strain curve are studied. An analytical model is quoted to represent the ascending and des...

  1. High-performance polymers from nature: catalytic routes and processes for industry. (United States)

    Walther, Guido


    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Performance of High-Permittivity Ceramic-Polymer Composite as a Substrate for UHF RFID Tag Antennas

    Directory of Open Access Journals (Sweden)

    A. A. Babar


    Full Text Available A high-permittivity ceramic-polymer composite substrate is fabricated and proposed for its potential use in UHF RFID tags. The substrate is developed using high-permittivity Barium Titanate (BaTiO3 ceramic powder mixed with polydimethylsiloxane (PDMS polymer. The resulting composite achieves a soft, hydrophobic, heat resistant, low loss, and flexible material with high dielectric constant. The percentage of the ceramic powder in the composite helps in achieving variable permittivity values. When this material is used as a substrate for a tag antenna, it will help the tag to be reduced in size, to conform to uneven or rough surface, and to be less vulnerable to breakage or other environmental damages. A small passive UHF RFID tag antenna is designed, fabricated, and attached to this type of composite substrate, to demonstrate the performance of this composite material.

  3. A Novel High-performance Electrospun Thermoplastic Polyurethane/Poly(vinylidene fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. (United States)

    Deng, Yuanyuan; He, Zeyue; Cao, Qi; Jing, Bo; Wang, Xianyou; Peng, Xiuxiang


    A novel high-performance gel polymer electrolyte (GPE) based on poly(vinylidene fluoride) (PVDF), thermoplastic polyurethane (TPU) and polystyrene (PS) has been prepared. Its characteristics are investigated by scanning electron microscopy (SEM), thermal analysis (DSC), universal testing machines (UTM), galvanostatic charge-discharge and electrochemical impedance spectroscopy. The GPE based on TPU/PVDF/PS (10 wt.%) show a high ionic conductivity of 5.28 × 10-3 S cm-1 with the electrochemical stability window of 5.0 V. In addition, its first charge-discharge capacity reached to 169.5 mAh g-1, high mechanical strength and stability to allow safe operation in rechargeable lithium ion polymer batteries.

  4. High-performance inverted polymer solar cells based on thin copper film (United States)

    Luo, Guoping; Cheng, Xiaoping; He, Zhicai; Wu, Hongbin; Cao, Yong


    We report the fabrication of cost-effective indium-free polymer solar cells (PSCs) with an inverted structure that incorporates an ultrathin copper (Cu) film as a bottom cathode via thermal evaporation. The average optical transmittance of the 15-nm Cu coated glass substrate in the visible region of the spectrum was found to be around 80% with a highest value of 84.5%. The Cu electrode was modified by an interfacial layer of an alcohol-/water-soluble conjugated polymer, poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) interlayer to ensure a very smooth surface. Upon the use of the PFN interfacial layer, the work function of Cu was decreased from 4.68 to 4.31 eV, which can form an Ohmic contact with photoactive layer and facilitate electrode transport and extraction. As a result, a power conversion efficiency of 3.6% was achieved when poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and a [6,6]-phenyl C71-butyric acid methyl ester blend were utilized as the photoactive layers, demonstrating that the thermally evaporated Cu thin-film electrode can be a promising candidate to replace indium tin oxide for highly efficient PSCs.

  5. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    KAUST Repository

    Nielsen, Christian B.


    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous envi-ronment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially availa-ble conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT based devices, and show stability under aqueous oper-ation without the need for formulation additives and cross-linkers.

  6. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes. (United States)

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun


    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  7. High-Performance Non-Fullerene Polymer Solar Cells Based on a Pair of Donor-Acceptor Materials with Complementary Absorption Properties. (United States)

    Lin, Haoran; Chen, Shangshang; Li, Zhengke; Lai, Joshua Yuk Lin; Yang, Guofang; McAfee, Terry; Jiang, Kui; Li, Yunke; Liu, Yuhang; Hu, Huawei; Zhao, Jingbo; Ma, Wei; Ade, Harald; Yan, He


    A 7.3% efficiency non-fullerene polymer solar cell is realized by combining a large-bandgap polymer PffT2-FTAZ-2DT with a small-bandgap acceptor IEIC. The complementary absorption of donor polymer and small-molecule acceptor is responsible for the high-performance of the solar-cell device. This work provides important guidance to improve the performance of non-fullerene polymer solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Trap Healing for High-Performance Low-Voltage Polymer Transistors and Solution-Based Analog Amplifiers on Foil. (United States)

    Pecunia, Vincenzo; Nikolka, Mark; Sou, Antony; Nasrallah, Iyad; Amin, Atefeh Y; McCulloch, Iain; Sirringhaus, Henning


    Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High Performance Liquid Crystalline Polymers from 2,5- furandicarboxylic acid; : Synthesis, Characterization and Properties

    NARCIS (Netherlands)

    Wilsens, Karel


    Thermotropic polyesters are an important class of materials for high performance applications.Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compressionmolded

  10. Molecular composites based on high-performance polymers and an interpenetrating liquid crystal thermoset

    NARCIS (Netherlands)

    Dingemans, T.J.


    The invention is directed to a polymeric composition comprising a first polymer (in particular HPP) and a liquid crystal thermoset (LCT) network that interpenetrates said first polymer, which LCT network comprises LCT oligomers that are at least partly polymerized, as well as to a method for

  11. A new high-performance ionic polymer-metal composite based on Nafion/polyimide blends (United States)

    Nam, Jungsoo; Hwang, Taeseon; Kim, Kwang Jin; Lee, Dong-Chan


    For the first time, we report ion-exchange membranes based on Nafion and polyimide (PI, Kapton) blends to fabricate ionic polymer-metal composites (IPMCs). Polyamic acid [PAA, poly(pyromellitic dianhydride-co-4,4‧-oxydianiline), as a precursor of PI] solution was blended with Nafion solution using physical blending method to provide PAA-Nafion blend membrane. This work demonstrates that, by simple physical blending method, the thermal and mechanical properties of Nafion can be improved while maintaining the excellent actuating performance. After thermal imidization, PAA converted into PI, resulting in PI-Nafion blend membrane. Optimum conditions to cast PAA-Nafion blends and thermal imidization have been established, and blend membranes with PI wt% of 6, 12, 18, and 30 were prepared. Fourier transform infrared spectroscopy confirmed the incorporation of PI in the Nafion matrix. Thermal decomposition unique to the PI became more noticeable as the content of PI increased, which was measured by thermogravimetric analysis. Dynamic mechanical analysis showed that the storage modulus (E‧) increased as a function of PI content while loss modulus (E″) exhibited only a minor change, which resulted in the decrease in the damping properties (tan δ). The blend membranes were fabricated into IPMCs by deposition of platinum electrode onto the membrane surface through electroless plating process. Among tested, NPI-18 IPMC actuator, which has 18 wt% of PI in Nafion, showed comparable electromechanical performance to the commercially available Nafion 117 IPMC actuator.

  12. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries. (United States)

    Wang, Junkai; Yue, Kaiqiang; Zhu, Xiaodan; Wang, Kang L; Duan, Lianfeng


    A unique C-S@PANI composite with a conductive polymer spherical network (PSN) has been successfully designed and synthesized by a simple processing approach. The PSN framework is formed at the surface of the oxidized carbon black by conductive polymer self-assembly and grafting, followed by pouring elemental sulfur into the pores of the polymer matrix. As the cathode material for lithium-sulfur batteries, the C-S@PANI composite delivered a high specific capacity of 1453 mA h g(-1) at a 0.1 C current rate and a stable cycling performance of 948 mA h g(-1) after 200 cycles. The composite also demonstrated high capacities of 922 and 581 mA h g(-1) at 50 °C and 0 °C, respectively, after 200 cycles. The conductive PANI coatings were connected with the C-S core-shell composites to form a three-dimensional conducting network, which improves the utilization of the active mass and dual conduction of Li(+) and electrons, while at the same time encapsulating sulfur into the PANI hollow spherical network. The structure effectively inhibits the dissolution and migration of polysulfides into the electrolyte, while improving the cycling stability and the coulombic efficiency of the electrode at high current rates, especially the low temperature electrochemical properties of Li-S batteries.

  13. Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. (United States)

    Cao, Hai-Lei; Huang, Hai-Bo; Chen, Zhi; Karadeniz, Bahar; Lü, Jian; Cao, Rong


    A conjugated microporous polymer (CMP) material was designed with pore function of cyano and pyridyl groups that act as potential binding sites for Ag+ ion capture. Ultrafine silver nanoparticles (less than 5 nm) were successfully supported on the predesigned CMP material to afford Ag0@CMP composite materials by means of a simple liquid impregnation and light-induced reduction method. Spherical Ag0 nanoparticles with a statistical mean diameter of ca. 3.9 nm were observed and characterized by scanning electron microscopy and transmission electron microscopy. The Ag0@CMP composite materials were consequently exploited as high-performance nanocatalysts for the reduction of nitrophenols, a family of priority pollutants, at various temperatures and ambient pressure. Moreover, the composite nanocatalysts feature convenient recovery and excellent reusability. This work presents an efficient platform to achieve ultrafine metal nanoparticles immobilized on porous supports with predominant catalytic properties by virtue of the structural design and spatial confinement effect available for conjugated microporous polymers.

  14. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn


    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  15. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  16. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors. (United States)

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao


    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm2 V-1 s-1 with an on/off ratio > 107 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells (United States)

    Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi


    High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept ;Nanofiber Framework (NfF).; The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.

  18. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries. (United States)

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu


    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries.

  19. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping


    The integration of multiple materials with complementary absorptions into a singlejunction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, due to increased complexity with one more component, only limited high performance ternary systems have been demonstrated previously. Here, we report an efficient ternary blend OSC with a PCE of 9.2%. We show for the first time that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer, and better morphology. The novel working mechanism and high device performance demonstrate new insights and design guidelines for high performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  20. Mechanical Properties of High-Performance Lightweight Aggregate Concrete with Inorganic Polymers Cement Based on Multiple Minerals under Uniaxial Loading

    Directory of Open Access Journals (Sweden)

    Xiao Ma


    Full Text Available High-performance lightweight aggregate concrete with inorganic polymers cement based on multiple minerals is a very promising new material. The research of mechanical properties of the new material is of great theoretical and practical significance. In this research, the failure behavior, cubic and prism compressive strength, elastic modulus, peak strain of the new material, and the nature of the stress-strain curve are studied. An analytical model is quoted to represent the ascending and descending parts of the stress-strain curve.

  1. Thiophene-Thiazole-Based Semiconducting Copolymers for High-Performance Polymer Field-Effect Transistors. (United States)

    Chung, Jong Won; Park, Won-Tae; Park, Jeong-Il; Yun, Youngjun; Gu, Xiaodan; Lee, Jiyoul; Noh, Yong-Young


    We report a newly synthesized donor (D)-acceptor (A)type semiconducting copolymer, consisting of thiophene as an electron-donating unit and thiazole as an electron-accepting unit (PQTBTz-TT-C8) for the active layer of the organic field-effect transistors (OFETs). Specifically, this study investigates the structure and electrical property relationships of PQTBTz-TT-C8 with comprehensive analyses on the charge-transporting properties corresponding to the spin rate of the spin coater during the formation of the PQTBTz-TT-C8 film. The crystallinity of PQTBTz-TT-C8 films is examined with grazing incidence X-ray diffraction. Temperature-dependent transfer measurements of the OFETs are conducted to extract the density of states (DOS) and characterize the charge-transport properties. Comparative analyses on charge transports within the framework of the physical model, based on polaron hopping and Gaussian DOS, reveal that the prefactors of both physical charge-transport models are independent of the spin-coating condition for the films. For staggered structural transistors, however, the thickness of the PQTBTz-TT-C8 films, which strongly affect the series resistance along the charge-transfer path in a vertical direction, is changed in accordance with the spin-coating rate. In other words, the spin-coating rate of the PQTBTz-TT-C8 films influences the thickness of the polymer films, yet any significant changes in the crystallinity of the film or electronic coupling between the neighboring molecules upon the spin-coating condition were barely noticeable. Because the PQTBTz-TT-C8 backbone chains inside the thin film are stacked up with the edge-on, the series resistances are changed according to the thickness of the film and thus the performance of the device varies depending on the thickness.

  2. Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites

    NARCIS (Netherlands)

    Zhang, Wei-De; Phang, In Yee; Liu, Tianxi


    High-performance composites are produced using nanostructured clay-carbon nanotube (CNT) hybrids as a reinforcing filler. The intercalation of iron particles between the clay platelets serves as the catalyst for the growth of CNTs, while the platelets are exfoliated by the CNTs, forming the unique

  3. Enhancing the Properties of Conductive Polymer Hydrogels by Freeze-Thaw Cycles for High-Performance Flexible Supercapacitors. (United States)

    Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming


    We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g-1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm-2 and 210 F·g-1) and high energy density (18.7 W·h·kg-1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.

  4. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics (United States)

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee


    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer.

  5. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics (United States)

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee


    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer. PMID:26392211

  6. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures (United States)

    Gupta, Nikhil; Paramsothy, Muralidharan


    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  7. Integrated high voltage power supply utilizing burst mode control and its performance impact on dielectric electro active polymer actuators

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Andersen, Michael A. E.

    Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric transformer based power supply for driving DEAP actuators is developed, utilizing...... a burst mode control technique. Controlling and driving a DEAP actuator between 250V to 2.5kV is demonstrated, where discrete like voltage change and voltage ripple is observed, which is introduced by the burst mode control. Measurements of the actuator strain-force reveal that the voltage ripples...... translates to small strain-force ripples. Nevertheless the driver demonstrates good capabilities of following an input reference signal, as well as having the size to fit inside a 110 mm x 32 mm cylindrical InLastor Push actuator, forming a “low voltage” DEAP actuator....

  8. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor (United States)

    Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi


    Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.

  9. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.


    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  10. High performance electrochemical pseudocapacitors from ionic liquid assisted electrochemically synthesized p-type conductive polymer. (United States)

    Ehsani, A; Mohammad Shiri, H; Kowsari, E; Safari, R; Torabian, J; Hajghani, S


    In this paper firstly, 1-methyl-3-methylimidazolium bromide (MB) as a new high efficient ionic liquid was synthesized using chemical approach and then fabricated POAP/MB films by electro-polymerization of POAP in the presence of MB to serve as the active electrode for electrochemical supercapacitor. Theoretical study (AIM) and electrochemical analysis have been used for characterization of ionic liquid and POAP/MB composite film. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new most efficient materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang


    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  12. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. (United States)

    He, Zhicai; Wu, Hongbin; Cao, Yong


    This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung


    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high...... in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  14. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan


    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  15. High-Performance Polymers and Their Potential Application as Medical and Oral Implant Materials: A Review. (United States)

    Wiesli, Matthias Guido; Özcan, Mutlu


    To review the literature on high-performance polymeric (HPP) materials used as medical and oral implants and make comparisons with the commonly used titanium. Original scientific articles published in English in MEDLINE (PubMed-NCBI) and Picarta literature databases between January 01, 1995 and June 01, 2013 were included in this review. Additional information was derived from scientific reports, medical and chemical textbooks, handbooks, product information, manufacturers' instructions, and Internet web sites of the manufacturers. Based on the 7 animal studies and 1 clinical study, HPP polyetheretherketone (PEEK) consisting of a single monomer and featuring a low Young modulus may be advantageous. PEEK seems to lead to less osteolyses and healing problems and no scattering in radiation was observed. Some animal studies showed direct contact between PEEK and the bone with high biocompatibility and no evidence for cytotoxicity, mutagenicity, carcinogenicity, and immunogenicity to the present day. The HPPs (ie, PEEK) may carry some potential to be an alternative material for titanium as medical and dental implants. Yet, clinical and animal studies are limited in the field of implantology with such materials.

  16. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman


    In today\\'s digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  17. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael


    We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices.

  18. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance (United States)

    Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch


    Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2–12.4 GHz). Such an intriguing performance mainly depends on the unique filler–filler or filler–polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.

  19. Polymer brushes under high load.

    Directory of Open Access Journals (Sweden)

    Suzanne M Balko

    Full Text Available Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties.

  20. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries. (United States)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young


    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  1. Synthesis of High Performance Cyclic Olefin Polymers (COPs with Ester Group via Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jing Cui


    Full Text Available Novel ester group functionalized cyclic olefin polymers (COPs with high glass transition temperature, high transparency, good mechanical performance and excellent film forming ability have been achieved in this work via efficient ring-opening metathesis copolymerization of exo-1,4,4a,9,9a,10-hexahydro-9,10(1′,2′-benzeno-l,4-methanoanthracene (HBM and comonomers (5-norbornene-2-yl methylacetate (NMA, 5-norbornene-2-yl methyl 2-ethylhexanoate (NME or 5-norbornene-2-yl methyldodecanoate (NMD utilizing the Grubbs first generation catalyst, Ru(CHPh(Cl2(PCy32 (Cy = cyclohexyl, G1, followed by hydrogenation of double bonds in the main chain. The fully hydrogenated copolymers were characterized by nuclear magnetic resonance, FT-IR spectroscopy analysis, gel permeation chromatography, and thermo gravimetric analysis. Differential scanning calorimetry curves showed that the glass transition temperatures (Tg linearly decreased with the increasing of comonomers content, which was easily controlled by changing feed ratios of HBM and comonomers. Static water contact angles tests indicate that hydrophilicity of copolymers can also be modulated by changing the comonomers incorporation. Additionally, the mechanical performances of copolymers were also investigated.

  2. Multifunctional Free-Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for High-Performance Lithium-Sulfur Batteries. (United States)

    Choi, Sinho; Song, Jianjun; Wang, Chengyin; Park, Soojin; Wang, Guoxiu


    Free-standing trimethylolpropane ethoxylate triacrylate gel polymer electrolyte is synthesized by a chemical cross-linking process and used as an electrolyte and separator membrane in lithium-sulfur batteries. The cross linked gel polymer electrolyte also exhibited a stable geometric size retention of 95 % at the high temperature of 130 °C. The as-prepared gel polymer electrolyte membrane with carbon nanofibers interlayer can effectively prevent polysulfide dissolution and shuttle effect, leading to significantly enhanced electrochemical properties, including high capacity and cycling stability, with an enhanced specific capacity of 790 mA h g-1 after 100 cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. (United States)

    Agostini, Marco; Lim, Du Hyun; Sadd, Matthew; Fasciani, Chiara; Navarra, Maria Assunta; Panero, Stefania; Brutti, Sergio; Matic, Aleksandar; Scrosati, Bruno


    Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g(-1) ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  5. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications. (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C


    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  6. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos


    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  7. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications (United States)

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.


    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  8. Simply modified indium tin oxides by ultrathin aluminum and sodium chloride composite interlayer for high performance inverted polymer solar cells (United States)

    Zheng, Shuang; Wu, Zhenxuan; Zhang, Chuan; Liu, Huan; Yan, Minnan; Su, Xiaodan; Wang, Jin; Zhang, Hongmei; Ma, Dongge


    We report the fabrication of high performance inverted polymer solar cells with simply modified indium tin oxide (ITO) by an ultrathin aluminum (Al) and sodium chloride (NaCl) composite layer. The device efficiency and stability were both improved. The optimized device with poly(3-hexylthiophene) as the donor and [6,6]-phenyl-C61-butyric acid methylester as the acceptor under AM 1.5 (100 mw cm-2) radiation achieved a high power conversion efficiency of 3.88% with an open-circuit voltage of 0.60 V and a fill factor of 0.61, which is significantly higher than those of the inverted devices with only Al or NaCl as modification interlayer, respectively. Moreover, the stability is enhanced by about 70% more than that of the conventional device. The significant enhancement is attributed to the reduced work function of ITO electrode from 4.75 to 3.90 eV by modification as well as the improvement of the electrode interface.

  9. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. (United States)

    Chen, Mengting; Zhang, Ling; Duan, Shasha; Jing, Shilong; Jiang, Hao; Luo, Meifang; Li, Chunzhong


    New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (∼1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (∼16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a ∼120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm(-1) even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of ∼170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on.

  10. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers (United States)

    Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.


    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  11. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration (United States)

    Wang, Zhao; Sahadevan, Rajesh; Yeh, Che-Ning; Menkhaus, Todd J.; Huang, Jiaxing; Fong, Hao


    Graphene oxide (GO) sheets can be readily surface-overlaid on hot-pressed electrospun polyacrylonitrile (PAN) nanofiber membrane to form a continuous and crack-free layer; upon thermal reduction at 150 °C for 12 h, the resulting reduced GO (rGO) layer can reject ∼90% MgSO4 with high water flux (due to the size exclusion mechanism), making the prepared PAN-rGO membranes promising nanofiltration media for water purification. It is important to note that no delamination of GO/rGO sheet layers has been observed throughout this study. We highlight that a simple processing method (i.e., hot pressing) is critical for the successful preparation of 2D materials (e.g., GO/rGO) based membranes/media. It is envisioned that the reported study can benefit many groups working on various membrane applications of 2D materials; in other words, the hot-pressed electrospun nanofiber membranes could be generally utilized as an innovative type of platform to support various 2D sheets for different separation applications such as highly efficient and cost-effective removal of dissolved components (e.g., organic molecules) and even (hydrated) ions from water.

  12. Conjugated-Polymer Blends for Organic Photovoltaics: Rational Control of Vertical Stratification for High Performance. (United States)

    Yan, Yu; Liu, Xuan; Wang, Tao


    The photoactive layer of bulk-heterojunction organic solar cells, in a thickness range of tens to hundreds of nanometers, comprises phase-separated electron donors and acceptors after solution casting. The component distribution in the cross-section of these thin films is found to be heterogeneous, with electron donors or acceptors accumulated or depleted near the electrode interfaces. This vertical stratification of the photovoltaic blend influences device metrics through its impact on charge transport and recombination, and consequently plays an important role in determining the power conversion efficiency of photovoltaic devices. Here, different techniques, e.g., surface analysis and sputter-assisted depth-profiling, reflectivity modeling, and 3D imaging, that have been employed to characterize vertical stratification in bulk-heterojunction photovoltaic blends are reviewed. The origins of vertical stratification are summarized, including thermodynamics, kinetics, surface free energy, and selective dissolubility. The impact of correct and wrong vertical stratification to device metrics of solar cells are highlighted. Examples are then given to demonstrate how desired vertical stratification can be controlled with properly aligned device architecture to enable solar cells with high efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of Two-dimensional Microporous Carbonaceous Polymer Nanosheets and Their Application as High-performance CO2 Capture Sorbent. (United States)

    Zhang, Miao; Liu, Lin; He, Teng; Wu, Guotao; Chen, Ping


    The synthesis of two-dimensional (2D) polymer nanosheets with a well-defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4-dicyanobenzene in molten zinc chloride at 400-500 °C. This type of nanosheets has a thickness in the range of 3-20 nm, well-defined microporosity, a high surface area (∼537 m(2)  g(-1) ), and a large micropore volume (∼0.45 cm(3)  g(-1) ). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High elastic modulus polymer electrolytes (United States)

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel


    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  15. Slot-die Coating of a High Performance Copolymer in a Readily Scalable Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Krebs, Frederik C


    Copolymers based on dithieno[3,2-b:2',3'-d]silole (DTS) and dithienylthiazolo[5,4-d]thiazole (TTz) are synthesized and tested in an all-solution roll process for polymer solar cells (PSCs). Fabrication of polymer:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells is done on a previously...... above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll-coated PDTSTTz-4:PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz-4 as a convincing candidate for high-throughput roll-to-roll production of PSCs....

  16. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application

    Directory of Open Access Journals (Sweden)

    Sabrina C. Zignani


    Full Text Available In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs, it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt3Ni2/C presented the highest catalytic activity (lower potential losses in the activation region among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C and low humidification (50% conditions for automotive applications, showing a cell potential (ohmic drop-free of 0.82 V at 500 mA·cm−2. In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL and end of life (EoL, it was demonstrated that the Pt1Ni1/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm−2 and 12.5% at 950 mA·cm−2. However, further improvements are needed to produce durable catalysts.

  17. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application. (United States)

    Zignani, Sabrina C; Baglio, Vincenzo; Sebastián, David; Saccà, Ada; Gatto, Irene; Aricò, Antonino S


    In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs), it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt₃Ni₂/C) presented the highest catalytic activity (lower potential losses in the activation region) among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C) and low humidification (50%) conditions for automotive applications, showing a cell potential (ohmic drop-free) of 0.82 V at 500 mA·cm -2 . In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL) and end of life (EoL), it was demonstrated that the Pt₁Ni₁/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm -2 and 12.5% at 950 mA·cm -2 . However, further improvements are needed to produce durable catalysts.

  18. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell. (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara


    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  19. Cross-Linkable and Dual Functional Hybrid Polymeric Electron Transporting Layer for High-Performance Inverted Polymer Solar Cells. (United States)

    Dong, Sheng; Hu, Zhicheng; Zhang, Kai; Yin, Qingwu; Jiang, Xiaofang; Huang, Fei; Cao, Yong


    A cross-linkable dual functional polymer hybrid electron transport layer (ETL) is developed by simply adding an amino-functionalized polymer dopant (PN4N) and a light crosslinker into a commercialized n-type semiconductor (N2200) matrix. It is found that the resulting hybrid ETL not only has a good solvent resistance, facilitating multilayers device fabrication but also exhibits much improved electron transporting/extraction properties due to the doping between PN4N and N2200. As a result, by using PTB7-Th:PC 71 BM blend as an active layer, the inverted device based on the hybrid ETL can yield a prominent power conversion efficiency of around 10.07%. More interestingly, photovoltaic property studies of bilayer devices suggest that the absorption of the hybrid ETL contributes to photocurrent and hence the hybrid ETL simultaneously acts as both cathode interlayer material and an electron acceptor. The resulting inverted polymer solar cells function like a novel device architectures with a combination of a bulk heterojunction device and miniature bilayer devices. This work provides new insights on function of ETLs and may be open up a new direction for the design of new ETL materials and novel device architectures to further improve device performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Facile Synthesis of Unique Cellulose Triacetate Based Flexible and High Performance Gel Polymer Electrolyte for Lithium Ion Batteries. (United States)

    Nirmale, Trupti C; Karbhal, Indrapal; Kalubarme, Ramchandra S; Shelke, Manjusha V; Varma, Anjani J; Kale, Bharat B


    Lithium ion batteries (LIBs) with polymer based electrolytes have attracted enormous attention due to the possibility of fabricating intrinsically safer and flexible devices. However, economical and eco-friendly sustainable technology is an oncoming challenge to fulfill the ever increasing demand. To circumvent this issue, we have developed a gel polymer electrolyte (GPE) based on renewable polymers like cellulose triacetate and poly(polyethylene glycol methacrylate) p(PEGMA) using a photo polymerization technique. Cellulose triacetate offers good mechanical strength with improved ionic conductivity, owing to its ether and carbonyl functional groups. It is observed that the presence of an open network has a critical impact on lithium ion transport. At room temperature, GPE PC exhibits an optimal ionic conductivity of 1.8 × 10-3 S cm-1 and transference number of 0.7. Interestingly, it affords an excellent electrochemical stability window up to 5.0 V vs Li/Li+. GPE PC shows a discharge capacity of 164 mAhg-1 after the first cycle when evaluated in a Li/GPE/LiFePO4 cell at 0.5 C-rate. Interfacial compatibility of GPE PC with lithium metal improves the overall cycling performance. This system provides a guiding principle toward a future renewable and flexible electrolyte design for flexible LIBs (FLIBs).

  1. Driving High-Performance n- and p-type Organic Transistors with Carbon Nanotube/Conjugated Polymer Composite Electrodes Patterned Directly from Solution

    KAUST Repository

    Hellstrom, Sondra L.


    We report patterned deposition of carbon nanotube/conjugated polymer composites from solution with high nanotube densities and excellent feature resolution. Such composites are suited for use as electrodes in high-performance transistors of pentacene and C60, with bottom-contact mobilities of ?0.5 and ?1 cm2 V-1 s-1, respectively. This represents a clear step towards development of inexpensive, high-performance all-organic circuits. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography-inductively coupled plasma mass spectrometry. (United States)

    Mingwu, Shao; Chao, Wei; Yongjuan, Jia; Xinhua, Dai; Xiang, Fang


    A new method has been developed for the determination of selected polybrominated diphenylethers (PBDEs) and polybrominated biphenyl (PBB) in four polymers: high-density polyethylene (HDPE), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), and polypropylene (PP). PBDEs and PBB in the polymers were extracted with toluene, using ultrasonic-assisted extraction (UAE). The extracts were then determined by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), using external calibration (single-point). Extraction parameters of UAE and several ICP-MS parameters were optimized. Extraction efficiencies almost reached 100%. The relative standard deviations (RSDs) were in the range of 0.7%-5.4%. The results demonstrate that the method possesses advantages of good precision, as well as high extraction efficiency and accuracy. The method especially overcomes the problem of the thermal degradation of highly brominated PBDEs, such as PBDE-209.

  3. High-Performance Green Light-Emitting Diodes Based on MAPbBr3-Polymer Composite Films Prepared by Gas-Assisted Crystallization. (United States)

    Kim, Yun Cheol; Porte, Yoann; Baek, Sung-Doo; Cho, Seong Rae; Myoung, Jae-Min


    The morphology of perovskite films has a significant impact on luminous characteristics of perovskite light-emitting diodes (PeLEDs). To obtain a highly uniform methylammonium lead tribromide (MAPbBr3) film, a gas-assisted crystallization method is introduced with a mixed solution of MAPbBr3 precursor and polymer matrix. The ultrafast evaporation of the solvent causes a high degree of supersaturation which expedites the generation of a large number of nuclei to form a MAPbBr3-polymer composite film with full surface coverage and nano-sized grains. The addition of the polymer matrix significantly affects the optical properties and morphology of MAPbBr3 films. The PeLED made of the MAPbBr3-polymer composite film exhibits an outstanding device performance of a maximum luminance of 6800 cd·m-2 and a maximum current efficiency of 1.12 cd·A-1. Furthermore, 1 cm2 area pixel of PeLED displays full coverage of a strong green electroluminescence, implying that the high-quality perovskite film can be useful for large-area applications in perovskite-based optoelectronic devices.

  4. High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices. (United States)

    Liu, Boao; Dang, Feifan; Tian, Zhuanzhuan; Feng, Zhao; Jin, Deyuan; Dang, Wanping; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin


    A high triplet energy level (E T ) of ca. 2.83 eV has been achieved in a novel polymer backbone through tuning the arrangement of two kinds of building blocks, showing enhanced hole injection/transporting capacity. Based on this new polymer backbone with high E T , both blue and white phosphorescent polymers were successfully developed with a trade-off between high E T and enhanced charge-carrier transporting ability. In addition, their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. Benefitting from the advantages associated with the novel polymer backbone, the blue phosphorescent polymers show top-ranking EL performances with a maximum luminance efficiency (η L ) of 15.22 cd A -1 , corresponding to a power efficiency (η P ) of 12.64 lm W -1 , and external quantum efficiency (η ext ) of 6.22% and the stable Commission Internationale de L'Eclairage (CIE) coordinates of (0.19, 0.38). Furthermore, blue-orange (B-O) complementary-colored white phosphorescent polymers based on this novel polymer backbone were also obtained showing encouraging EL efficiencies of 12.34 cd A -1 , 9.59 lm W -1 , and 4.10% in the optimized WOLED together with exceptionally stable CIE coordinates of (Δx = 0.014, Δy = 0.010) in a wide driving voltage range from 4 to 16 V. All of these attractive EL results achieved by these novel phosphorescent polymers show the great potential of this new polymer backbone in developing highly efficient phosphorescent polymers.

  5. Noncovalent Se···O Conformational Locks for Constructing High-Performing Optoelectronic Conjugated Polymers. (United States)

    Dong, Tao; Lv, Lei; Feng, Linlin; Xia, Yu; Deng, Wei; Ye, Pan; Yang, Bei; Ding, Shang; Facchetti, Antonio; Dong, Huanli; Huang, Hui


    Noncovalent conformational locks are broadly employed to construct highly planar π-conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen-based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene-based building block, 1,2-diethoxy-1,2-bisselenylvinylene (DESVS), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution-processable conjugated polymers are synthesized and implemented in organic thin-film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS-based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V-1 s-1 (p-type) and 0.65 cm2 V-1 s-1 (n-type) in TFTs, and power conversion efficiency >5% in OPV cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U.-Ser; Chen, Charn-Ying


    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  7. Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. (United States)

    Xu, Rongguo; Zhang, Kai; Liu, Xi; Jin, Yaocheng; Jiang, Xiao-Fang; Xu, Qing-Hua; Huang, Fei; Cao, Yong


    Solution-processable highly transparent and thickness-insensitive hybrid electron-transport layer (ETL) with enhanced electron-extraction and electron-transport properties for high-performance polymer solar cell was reported. With the incorporation of Cs 2 CO 3 into the poly[(9,9-bis(6'-((N,N-diethyl)-N-ethylammonium)-hexyl)-2,7-fluorene)-alt-1,4-diphenylsulfide]dibromide (PF6NPSBr) ETL, the power conversion efficiency (PCE) of resulted polymer solar cells (PSCs) was significantly enhanced due to the favorable interfacial contact, energy-level alignment, and thus facile electron transport in the PSC device. These organic-inorganic hybrid ETLs also exhibited high transparency and high electron mobility. All of these combined properties ensured us to design novel thickness-insensitive ETLs that avoid the parasitic absorption of ETL itself simultaneously. With the conventional device structure with poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th) as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM) as an acceptor, devices with hybrid ETLs exhibited PCE of 8.30-9.45% within a wide range of ETL thickness. A notable PCE of 10.78% was achieved with the thick active layer poly(2,5-thiophene-alt-5,5'-(5,10-bis(4-(2-octyldodecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)) (PTNT812):PC 71 BM. These findings indicated that doping alkali salt into the organic interfacial materials can be a promising strategy to design highly efficient and thickness-insensitive ETL, which may be suitable for large-area PSC modules device fabrication with roll-to-roll printing technique.

  8. High-performance anode for Polymer Electrolyte Membrane Fuel Cells by multiple-layer Pt sputter deposition (United States)

    Natarajan, Sadesh Kumar; Hamelin, Jean

    We investigate the sputtering deposition as a tool for preparing Polymer Electrolyte Membrane Fuel Cell (PEMFC) electrodes with improved performance and catalyst utilization. Anodes of PEMFC with ultra-low loading of Pt (0.05 mg cm -2) are developed by alternate sputtering of Pt and painting layers of carbon nanotube ink with Nafion directly on the gas diffusion layer. Sputter depositing alternate layers of Pt on carbon-Nafion layer (CNL) has increased the anode activity over single-layer Pt deposited anode due to improved porosity and the presence of Pt nanoparticles in the inner CNL. Also, we investigated the influence of Nafion content in the CNL. The optimal Nafion content giving less resistance and better performance in an anode is 29 wt.%. This is significantly lower than for standard MEA anodes, indicating sufficient interfacial contact between each CNL. We studied the anodes prepared with 50 wt.% Nafion, which revealed larger ohmic resistance and also, blocks the CNL pores reducing gas permeability. Excellent mass transfer and performance is obtained with three-layer Pt sputter deposited anode with CNL containing 29 wt.% of Nafion.

  9. Highly cross-linked nanoporous polymers (United States)

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.


    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  10. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance. (United States)

    Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping


    Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO2 or ZnO) to enhance the short-circuit current (Jsc) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC71BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.

  11. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites (United States)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang


    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices. PMID:26831222

  12. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab


    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  13. Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes (United States)

    Long, Hongtao; Del Frari, Doriane; Martin, Arnaud; Didierjean, Joffrey; Ball, Vincent; Michel, Marc; Ahrach, Hicham Ibn El


    Carbon materials such as carbon black or nanotubes suffer from degradation when subjected to harsh conditions occurring in a Polymer Electrolyte Membrane Fuel Cells (PEMFCs) electrode. Hence, nowadays it is more and more important to search for alternative support materials. The present work shows the results for the incorporation of alternative materials into PEMFCs electrode architectures. Commercially available Multi-Walled NanoTubes (MWNTs) are used as a support for Pt nanoparticles in combination with Polydopamine (PDA). The role of MWNTs is to confer a high electronic conductivity and help to form a porous network. On the other side the role of polydopamine is both to promote the proton conductivity similarly to ionomers such as Nafion and to protect the MWNTs against corrosion. The fuel cell polarization test shows a maximum power density of 780 mW cm-2 and a Pt utilization of 6051 mW mg(Pt)-1. The Pt utilization reached in this work is almost three times higher than for Pt/MWNTs electrodes containing the same Pt loading. Beside this, it is also shown for the first time that PDA serves as protective layer against carbon corrosion.

  14. Understanding Charge Transport and Recombination Losses in High Performance Polymer Solar Cells with Non-Fullerene Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning; Zuo, Xiaobing; Xie, Shenkun; Yuan, Jianyu; Zhou, Huiqiong; Zhang, Yuan


    The photovoltaic performance of organic solar cells can be enhanced by achieving a fundamental understanding of the key processes that govern the device behaviour. In this work, we comprehensively investigate temperature (T)-dependent charge transport, non-geminate recombination losses and intermolecular stacking based on three representative organic bulk heterojunction (BHJ) solar cells comprising the polymeric donor of PBDB-T blended with non-fullerene small molecule ITIC and polymeric P(NDI2OD-T2) alongside PC71BM acceptors. Surprisingly, the champion solar cell based on PBDB-T: ITIC, even though exhibiting the most imbalanced transport, produces the highest PCE approaching 10%. We find that such an imbalance is in association with the decrease in the recombination reduction factor with respect to the Langevin rate constant. This beneficially leads to mitigated non-geminate recombination and gains in photoconductivity. In contrast, the all-polymer solar cell using the P(NDI2OD-T2) acceptor displays an excellent balance in mobility while suffering from a more substantial recombination, which causes severe carrier losses and reduced photocurrent. T-dependent mobility measurements indicate that the activation energy for the transport in these BHJ films is low (50-150 meV) which is rationalized by the preferential out-of-plane intermolecular pi-pi stacking mainly adopted by the donor molecules. The combined results point to an indication that the electron mobility in non-fullerene acceptors may not be a severe restraint while charge recombination losses play a critical role in ultimate photovoltaic characteristics based on these emerging materials

  15. Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high-performance liquid chromatography. (United States)

    Li, Juan; Chen, Huaixia; Chen, Hui; Ye, Yong


    A novel solid-phase microextraction (SPME) method based on molecularly imprinted polymer (MIP) monolith as the sorbent for the selective extraction of thiamphenicol (TAP) in milk and honey was developed. The newly developed MIP monolith was produced using TAP as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer. The TAP-MIP monolith synthesized in a micropipette tip could be connected with syringes in different sizes simply to perform SPME process without any other treatment. The derivated MIP monolith showed high selectivity and enrichment ability for TAP. A simple, rapid and sensitive method for the determination of TAP in milk and honey using polymer monolith microextraction (PMME) based on the MIP monolith combined with high-performance liquid chromatography-photodiodes array detector was developed. Several parameters affecting MIP monolith microextraction were investigated, including the flow rate, volume, pH and salt concentration of sample, the type and volume of washing solution, the type and flow rate of eluent. The recovery of this method for TAP was investigated and high recoveries of 92.9-99.3% from milk and honey were obtained with relative standard deviations less than 4.9%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Organic Diode Rectifiers Based on a High-Performance Conjugated Polymer for a Near-Field Energy-Harvesting Circuit. (United States)

    Higgins, Stuart G; Agostinelli, Tiziano; Markham, Steve; Whiteman, Robert; Sirringhaus, Henning


    Organic diodes manufactured on a plastic substrate capable of rectifying a high-frequency radio-frequency identification signal (13.56 MHz), with sufficient power to operate an interactive smart tag, are reported. A high-performance conjugated semiconductor (an indacenodithiophene-benzothiadiazole copolymer) is combined with a carefully optimized architecture to satisfy the electrical requirements for an organic-semiconductor-based logic chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High specific power lithium polymer rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; De Jonghe, L.; Visco, S. [PolyPlus Battery Co., Berkeley, CA (United States)


    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on its proprietary positive electrode. This battery offers high steady-state (> 250 W/kg) and peak power densities (3,000 W/kg), in a low cost and environmentally benign format. This PolyPlus lithium polymer battery also delivers high specific energy. The first generation battery has an energy density of 100 Wh/kg (120 Wh/l) and subsequent generations increases the performance in excess of 500 Wh/kg (600 Wh/l). The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cell makes this battery exceptionally attractive for both hybrid and electric vehicle applications.

  18. Polymer Chemistry in High School. (United States)

    Stucki, Roger


    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  19. Preparation of an ion-exchangeable polymer bead wrapped with bilayer membrane structures for high performance liquid chromatography. (United States)

    Haratake, Mamoru; Hidaka, Shuko; Ono, Masahiro; Nakayama, Morio


    We synthesized a chromatographic packing material that has a non-covalently attached dihexadecyl phosphate (DHP) bilayer membrane structure on a CA08S, a nonporous-type cationic polymer bead with a diameter ranging from 11 to 14 microm. Confocal fluorescence microscopic and differential scanning calorimetric analyses of the DHP-CA08S complex revealed that the DHP bilayer membrane structures were formed on the surface of the CA08S polymer beads. When the functionality of the DHP-CA08S complex was evaluated in the ion-exchange HPLC of proteins, the retention behavior of the proteins on the DHP-CA08S complex column totally mirrored the anionic property of the DHP bilayer membrane surface, not the cationic property of the CA08S bead. Methylene blue (MB) was eluted from the DHP-CA08S complex column in the isocratic elution mode, but not at all from a CK08S column, a styrene-divinylbenzene based cation-exchange polymer. When the column temperature was elevated from 50 to 60 degrees C, the peak shape of MB on the DHP-CA08S complex column became fairly sharp without a change in its peak area, which mirrored the characteristic phase transition of the DHP bilayer membrane formed on the DHP-CA08S complex.

  20. Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography. (United States)

    Zare, Fahimeh; Ghaedi, Mehrorang; Daneshfar, Ali; Ostovan, Abbas


    A molecularly imprinted polymer was selectively applied for solid-phase extraction and diazinon residues enrichment before high-performance liquid chromatography. Diazinon was thermally copolymerized with Fe3 O4 @polyethyleneglycol nanoparticles, methacrylic acid (functional monomer), 2-hydroxyethyl methacrylate (co-monomer), and ethylene glycol dimethacrylate (cross-linking monomer) in the presence of acetonitrile (porogen) and 2,2-azobisisobutyronitrile (initiator). Then, the imprinted diazinon was reproducibly eluted with methanol/acetic acid (9:1, v/v). The sorbent particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The comprehensive study of variables through experimental design showed that the maximum performance was achieved under these conditions: pH 7, 10 mL sample volume, 15 mg sorbent, 10 min vortex time, 5 min ultrasonic time, 200 μL methanol/acetic acid (9:1, v/v) as eluent, and 5 min desorption time. Under optimized conditions, the molecularly imprinted polymer solid-phase extraction method demonstrated a linear range (0.02-5 g/mL), a correlation coefficient of 0.997, and 0.005 g/mL detection limit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties. (United States)

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto


    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  2. Polymer Day: Outreach Experiments for High School Students (United States)

    Ting, Jeffrey M.; Ricarte, Ralm G.; Schneiderman, Deborah K.; Saba, Stacey A.; Jiang, Yaming; Hillmyer, Marc A.; Bates, Frank S.; Reineke, Theresa M.; Macosko, Christopher W.; Lodge, Timothy P.


    We present a collection of hands-on experiments that collectively teach precollege students fundamental concepts of polymer synthesis and characterization. These interactive experiments are performed annually as part of an all-day outreach event for high school students that can inform the development of ongoing polymer education efforts in a…

  3. Determination of Tributyltin in Seafood Based on Magnetic Molecularly Imprinted Polymers Coupled with High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hua Yang


    Full Text Available In this study, Fe3O4 was adopted as a carrier for surface molecular imprinting with two-stage polymerization. First, the functional monomer (methacrylic acid, MAA was modified on the surface of Fe3O4, which was then polymerized with the template molecule (tributyltin, TBT, cross linking agent (ethylene glycol dimethacrylate, EGDMA, and porogen (acetonitrile, hereby successfully preparing Fe3O4@MIPs prone to specifically identify TBT. The physical properties of Fe3O4@MIPs were then characterized, and adsorption and selection capacities were also assessed. Compared with conventional imprinting polymers, this magnetic molecular imprinting polymer (MIP displayed significantly increased and more specific adsorption. Meanwhile, its pretreatment was simpler and faster due to magnetic separation characteristics. Using magnetic MIPs as adsorbents for enrichment and separation, detection limit, recovery rate, and linear range were 1.0 ng g−1, 79.74–95.72%, and 5 ng g−1~1000 ng g−1, respectively, for a number of seafood samples. High-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS was used to analyze Tegillarca granosa, mussels, large yellow croaker, and other specimens, with recovery rates of 79.74–95.72% and RSD of 1.3%–4.7%. Overall, this method has a shorter total analysis time, lower detection limit, and wider linear range and can be more effectively applied to determine MAA in seawater and seafood.

  4. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S; Zacharia, T


    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  5. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells

    KAUST Repository

    Ashraf, Raja Shahid


    The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm2/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm-2 was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells. (Graph Presented).

  6. High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. (United States)

    Fan, Qunping; Wang, Yan; Zhang, Maojie; Wu, Bo; Guo, Xia; Jiang, Yufeng; Li, Wanbin; Guo, Bing; Ye, Chennan; Su, Wenyan; Fang, Jin; Ou, Xuemei; Liu, Feng; Wei, Zhixiang; Sum, Tze Chien; Russell, Thomas P; Li, Yongfang


    In this work, a nonfullerene polymer solar cell (PSC) based on a wide bandgap polymer donor PM6 containing fluorinated thienyl benzodithiophene (BDT-2F) unit and a narrow bandgap small molecule acceptor 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) is developed. In addition to matched energy levels and complementary absorption spectrum with IDIC, PM6 possesses high crystallinity and strong π-π stacking alignment, which are favorable to charge carrier transport and hence suppress recombination in devices. As a result, the PM6:IDIC-based PSCs without extra treatments show an outstanding power conversion efficiency (PCE) of 11.9%, which is the record value for the as-cast PSC devices reported in the literature to date. Moreover, the device performances are insensitive to the active layer thickness (≈95-255 nm) and device area (0.20-0.81 cm2 ) with PCEs of over 11%. Besides, the PM6:IDIC-based flexible PSCs with a large device area of 1.25 cm2 exhibit a high PCE of 6.54%. These results indicate that the PM6:IDIC blend is a promising candidate for future roll-to-roll mass manufacturing and practical application of highly efficient PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance. (United States)

    Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei


    A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. (United States)

    Hu, Pu; Duan, Yulong; Hu, Deping; Qin, Bingsheng; Zhang, Jianjun; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan


    LiMn2O4-based batteries exhibit severe capacity fading during cycling or storage in LiPF6-based liquid electrolytes, especially at elevated temperatures. Herein, a novel rigid-flexible gel polymer electrolyte is introduced to enhance the cyclability of LiMn2O4/graphite battery at elevated temperature. The polymer electrolyte consists of a robust natural cellulose skeletal incorporated with soft segment poly(ethyl α-cyanoacrylate). The introduction of the cellulose effectively overcomes the drawback of poor mechanical integrity of the gel polymer electrolyte. Density functional theory (DFT) calculation demonstrates that the poly(ethyl α-cyanoacrylate) matrices effectively dissociate the lithium salt to facilitate ionic transport and thus has a higher ionic conductivity at room temperature. Ionic conductivity of the gel polymer electrolyte is 3.3 × 10(-3) S cm(-1) at room temperature. The gel polymer electrolyte remarkably improves the cycling performance of LiMn2O4-based batteries, especially at elevated temperatures. The capacity retention after the 100th cycle is 82% at 55 °C, which is much higher than that of liquid electrolyte (1 M LiPF6 in carbonate solvents). The polymer electrolyte can significantly suppress the dissolution of Mn(2+) from surface of LiMn2O4 because of strong interaction energy of Mn(2+) with PECA, which was investigated by DFT calculation.

  9. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films (United States)

    Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo


    Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.

  10. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy. (United States)

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter


    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott-Schottky analysis a donor concentration of 2.3 × 1020 cm-3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm-1.

  11. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆ (United States)

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter


    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott–Schottky analysis a donor concentration of 2.3 × 1020 cm−3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm−1. PMID:25843970

  12. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions (United States)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke


    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  13. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. (United States)

    Nischang, Ivo


    Porous monoliths based on organic precursors undergoing free-radical cross-linking polymerization in porogenic solvents emerged approximately two decades ago as an alternative stationary phase material for diverse applications including liquid chromatography. Though having a profound difference in morphology to their earlier generation polymer bead-based counterparts, they are often based on similar chemistries and as such show certain peculiarities with respect to transport and performance in liquid chromatography applications. Polymer monoliths typically consist of a globule-like, three-dimensionally adhered backbone, which is in a contrast to the silica monoliths having a bi-continuous mesoporous skeleton. Both material types possess large flow-through pores making them desirable for high performance liquid chromatography and other flow-through applications. The current review is devoted to a critical appraisal of the major challenges that researchers face in the retrieval of the never-ending demand of efficiency at often forgotten and desired selectivity and retention in separations using porous polymer monoliths. Therefore, an attempt is made to establish profound links of polymer monoliths to their earlier generation polymer-based particulate beds and differences to silica-based materials. These links are associated with an emerging morphological understanding of the polymer monoliths porous flow-through pore structure, the nanoscale backbone chemistry, and related chromatographic performances in both theoretical and experimental studies. Associated with this understanding, existing attempts in improving flow and transport performance of polymer monoliths are described and discussed. Such developments are addressing morphological concerns with respect to homogeneity and detailed design of pore space, but also tailoring backbone nanostructural chemistry to modulate mass transfer. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz


    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed...

  15. In-tube solid-phase microextraction with molecularly imprinted polymer to determine interferon alpha 2a in plasma sample by high performance liquid chromatography. (United States)

    Rodrigues Chaves, Andréa; Costa Queiroz, Maria Eugênia


    A molecularly imprinted sol–gel polymer (MIP) based on protein (biopharmaceutical) template with a mild template removal condition using protease was synthetized and evaluated as stationary phase for in-tube solid phase microextraction (in-tube SPME) of the interferon alpha 2a from plasma samples,followed by high performance liquid chromatography analysis with fluorescence detection (HPLC-FD).The developed MIP exhibited high selectivity for the analyte in a complex matrix. The in-tube SPME variables such as draw/eject cycles, draw/eject volume, and desorption conditions were optimized to establish the equilibrium conditions in a short time. The MIP in-tube SPME/HPLC-FD method presented linear response over a dynamic range of 8–300 ng mL−1, with a correlation coefficient of 0.997. The inter-assay precision presented coefficient of variation lower than 9.2%, and accuracy values between 92% and 98%. The developed MIP performed as well as other selective interferon alpha 2a stationary phases (e.g.,immunosorbent and restricted access material), with the advantage that it is robust, easy to handle and cheap to synthesize, in a addition to requiring smaller sample volume (50 L). Based on the analytical validation results, the proposed method (MIP in-tube SPME/HPLC-FD) can be a useful tool to determine interferon alpha 2a in plasma samples from patients receiving therapeutic dosages.

  16. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela


    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... in the performance during the H2 continuous tests, because of a decrease in the reaction kinetic resistance mainly in the cathode due to the redistribution of PA between the membrane and electrodes. The performance of both single cells decreased in the following tests, with highest performance decay rate...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  17. A novel structural Fenton-like nanocatalyst with highly improved catalytic performance for generalized preparation of iron oxide@organic dye polymer core-shell nanospheres. (United States)

    Zhao, Guanghui; Peng, Xiaomen; Li, Hongping; Wang, Jianzhi; Zhou, Lincheng; Zhao, Tianqi; Huang, Zhihao; Jiang, Haifei


    FexOy@FexOy/C nanoparticles with a soap-bubble-like shell have been synthesized, and the materials exhibit excellent Fenton catalytic performance. More importantly, FexOy@FexOy/C nanoparticles as catalysts and precursors could catalyze organic dye molecules to form iron oxide@organic dye polymer core-shell nanospheres.

  18. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage. (United States)

    Huang, Yanshan; Wu, Dongqing; Wang, Jinzuan; Han, Sheng; Lv, Lu; Zhang, Fan; Feng, Xinliang


    3D macroporous graphene/SnO2 frameworks (MGTFs) are fabricated by amphiphilic polymer-promoted assembly method, which exhibit controllable macroporous structure and outstanding lithium storage performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simple O2 Plasma-Processed V2O5 as an Anode Buffer Layer for High-Performance Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting


    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating...... a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under...... transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics...

  20. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.


    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  1. Absence of reptation in highly confined polymers. (United States)

    Srivastava, S; Basu, J K


    We present results of mechanical stress relaxation measurements on polymers confined at the air-water interface in the form of a monolayer. Systematic measurements allow, to our knowledge, for the first time, observation of the scaling of the stress relaxation time of the highly confined polymers as a function of both surface concentration and molecular weight. The observed scaling is found to be very close to that expected for motion of unentangled polymer solutions with hydrodynamic interactions. Our experimental observations thus clearly rule out the possibility of entanglement and hence reptation as a mode of relaxation in such highly confined polymeric systems.

  2. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)


    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  3. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content. (United States)

    Wang, Kun; Guo, Xia; Guo, Bing; Li, Wanbin; Zhang, Maojie; Li, Yongfang


    A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Melting point of polymers under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:; Freitag, Detlef [Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Freidel, Frank [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany); Luft, Gerhard [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:


    The influence of highly compressed gases on the melting of polyethylene was investigated for nitrogen, helium and ethylene. The impact of the particle size of the polymer and the heating rate on the melting point were also analysed. The melting points were determined with a high pressure differential thermal analysis (HPDTA) apparatus. These measurements were compared with independent measurements, done by high pressure differential scanning calorimetry (HPDSC), without gas. From this experimental data it was possible to calculate the concentration of the gas in the molten polymer phase based on equilibrium thermodynamics. For high density polyethylene (HDPE), a concentration of nitrogen at the polymer melting point of 10.4-35.7 mL(SATP) g(polymer){sup -1}, in the pressure interval of 65-315 MPa, was calculated.

  5. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries


    Liangming Wei; Changxin Chen; Zhongyu Hou; Hao Wei


    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dim...

  6. One step grafting of iron phthalocyanine containing flexible chains on Fe{sub 3}O{sub 4} nanoparticles towards high performance polymer magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zejun; Zhou, Xuefei; Yang, Xulin; Jia, Kun, E-mail:; Liu, Xiaobo, E-mail:


    To develop high-performance inorganic particles/polymer composites, the interfacial interaction and dispersion of inorganic particles are the two essential issues to be considered. Herein, we report an effective approach to graft iron phthalocyanine containing flexible chains (NP-ph) on Fe{sub 3}O{sub 4} nanoparticles (NP-ph@Fe{sub 3}O{sub 4}). The hybrids were monodispersed solid nanoparticles with the average diameter of about 250 nm. About 16.8% of the phthalocyanine oligomer was incorporated into the resulting NP-ph@Fe{sub 3}O{sub 4} nanoparticles. The NP-ph@Fe{sub 3}O{sub 4} nanoparticles were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PAEN) composites. The scanning electron microscopy (SEM) investigation showed that the NP-ph@Fe{sub 3}O{sub 4} nanoparticles present better dispersion and interfacial compatibility with PAEN matrix than that of raw Fe{sub 3}O{sub 4}, which was further confirmed by rheological study. Consequently, the improved thermal stability and enhanced mechanical properties were obtained from composites using NP-ph@Fe{sub 3}O{sub 4}. Vibrating sample magnetometer (VSM) results showed that the prepared PAEN composites exhibited higher saturation magnetization and soft magnetic properties. Meanwhile, the saturation magnetization (Ms) of the PAEN/NP-ph@Fe{sub 3}O{sub 4} composite films increased with the increase of the hybrid nanoparticles loading. Thus, the PAEN/NP-ph@Fe{sub 3}O{sub 4} composite would find potential applications in organic magnetic films fields due to their high thermal stability, excellent flexibility and tunable magnetic properties. - Highlights: • An effective approach to graft CuPc containing flexible chains on Fe. • Effect on the mechanical, thermal and interfacial properties were investigated. • The dispersion state was characterized using parallel-plate rheometry. • The mechanism of interfacial compatibility was clarified.

  7. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries (United States)

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao


    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  8. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology (United States)


    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  9. Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells. (United States)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang


    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.

  10. Molecularly imprinted polymer for the extraction of parabens from environmental solid samples prior to their determination by high performance liquid chromatography-ultraviolet detection. (United States)

    Núñez, L; Turiel, E; Martin-Esteban, A; Tadeo, J L


    An analytical methodology incorporating a molecularly imprinted solid-phase extraction procedure (MISPE) has been developed for the determination of parabens in environmental solid samples. Four different polymers were prepared combining the use of acetonitrile or toluene as porogen, and 4-vinylpyridine (VP) or methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template molecule. Although all the polymers were able to recognize the template in rebinding experiments, the MIP prepared in toluene using MAA showed better performance. This polymer was also capable of recognizing other parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzylparaben) allowing to develop an appropriated MISPE procedure for this family of compounds. The extraction of the parabens from environmental solid samples was performed by ultrasonic assisted extraction in small columns (SAESC), and this procedure next to MISPE as clean-up step followed by HPLC-UV determination was successfully used for the determination of parabens in soil and sediment samples of different locations. Recoveries ranging from 80% to 90% have been achieved depending on the compound and the samples, and limits of detection (LODs) were under 1 ng g(-1) for all the compounds, making this method suitable for the determination of parabens in environmental solid matrices. The method was further applied to the determination of paraben contents in real samples, founding levels up to 11.5 ng g(-1) in sea sediments. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples. (United States)

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing


    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM(+)Cl(-)) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du


    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  13. A novel molecularly imprinted polymer for simultaneous extraction and determination of sudan dyes by on-line solid phase extraction and high performance liquid chromatography. (United States)

    Zhao, Chuande; Zhao, Ting; Liu, Xiaoyan; Zhang, Haixia


    A novel molecularly imprinted polymer was synthesized with attapulgite employed as matrix, which is simple and time-saving. In this method, sudan I was chosen as template molecule, 2-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as cross-linking agent, respectively. The imprinted polymer was characterized by the infrared spectroscopy and transmission electron microscopy. Then the selectivity experiments were performed on sudan dyes and the recognition coefficients for sudan I, sudan II, sudan III and sudan IV were 2.9, 1.9, 1.9 and 2.3, respectively. As the packing material of solid-phase extraction, the imprinted polymer has been applied to on-line concentration of the four sudan dyes in samples from Yellow River water, tomato sauce and sausage. The corresponding analytical methods to determine these sudan dyes have been developed. The limits of detection for these sudan dyes were in the range of 0.01-0.05 ng mL(-1) for Yellow River water, 1.0-3.0 ng g(-1) for tomato sauce and 0.8-3.0 ng g(-1) for sausage. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  14. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food. (United States)

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin


    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Computational-aided design of magnetic ultra-thin dummy molecularly imprinted polymer for selective extraction and determination of morphine from urine by high-performance liquid chromatography. (United States)

    Xi, Shuangling; Zhang, Kai; Xiao, Deli; He, Hua


    In this work, a novel magnetic ultra-thin dummy molecularly imprinted polymer (MMIP) for morphine (MO) was prepared. In order to obtain highly selective recognition cavities, the MMIP has been designed using semi-flexible docking to screen the optimal monomer and its ratio to morphine from six representative monomers. Furthermore, the dummy template was creatively screened by semi-flexible docking method from opioid drugs. The system of dihydrocodeine (DI) as dummy template, methacrylamide (MAC) as founctional monomer, ethyleneglycol dimethacrylate (EGDMA) as crosslinker was chosen for MO imprinting. The morphological and magnetic properties of MMIP were characterized by FT-IR, TEM and VSM. The results suggested that molecularly imprinted polymer (MIP) was synthesized evenly on Fe3O4 surface. The adsorption experiments revealed that MMIP showed better extraction capacity and selectivity toward MO and its analogues than the non-imprinted polymer (NIP). The MMIP possessed adsorption capacity of 14.71mg/g for MO and the imprinting factor was 2.10 at separate adsorption and 1.87 at competitive adsorption. A magnetic molecularly imprinted solid phase extraction coupled with HPLC method (M-MISPE-HPLC) has been established for the analysis of MO in urine sample. The developed method was validated for its linearity (0.038-100mgL-1 R2=0.9937), precision (1.07%-3.72%) and accuracy (83.62%-100.37%). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Polymer-Particle Pressure-Sensitive Paint with High Photostability

    Directory of Open Access Journals (Sweden)

    Yu Matsuda


    Full Text Available We propose a novel fast-responding and paintable pressure-sensitive paint (PSP based on polymer particles, i.e. polymer-particle (pp-PSP. As a fast-responding PSP, polymer-ceramic (PC-PSP is widely studied. Since PC-PSP generally consists of titanium (IV oxide (TiO2 particles, a large reduction in the luminescent intensity will occur due to the photocatalytic action of TiO2. We propose the usage of polymer particles instead of TiO2 particles to prevent the reduction in the luminescent intensity. Here, we fabricate pp-PSP based on the polystyrene particle with a diameter of 1 μm, and investigate the pressure- and temperature-sensitives, the response time, and the photostability. The performances of pp-PSP are compared with those of PC-PSP, indicating the high photostability with the other characteristics comparable to PC-PSP.

  17. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry. (United States)

    Sánchez-González, Juan; Jesús Tabernero, María; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio


    A magnetic molecularly imprinted polymer (MMIP) has been synthesized and applied for cocaine (COC) and metabolites (benzoylecgonine, BZE; cocaethylene, CE; and ecgonine methyl ester, EME) recognition/pre-concentration in urine samples. The MMIP has been prepared using COC as a template molecule, ethylene dimethacrylate (EDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, Fe3O4 magnetite as a magnetic component, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator. The best results (MIP layer on the surface of the magnetic nanoparticles) and physical properties of the prepared MMIP were obtained when assisting the synthesis procedure with ultrasounds (325W, 37kHz, 30°C, 4h). After solid phase extraction (SPE) with the prepared adsorbent material, analytes were determined by high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). Variables affecting the SPE process (batch mode) were fully evaluated. Optimum retention of analytes (1.8mL of urine and 50mg of MMIP) was achieved by fixing the urine pH at 5.5 (use of a KH2PO4/NaOH, pH 5.5 buffer solution), and magnetic stirring (25°C, 700rpm) for 10min. Elution was performed by using 2mL of a dichloromethane/2-propanol/ammonium hydroxide (75:20:5) mixture under ultrasounds (325W, 35kHz, room temperature) for 5min. The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The detection limits were in the range of 0.39-1.4ngL(-1). The relative standard deviations of intra- and inter-day tests ranged from 5 to 11% and from 3 to 11%, respectively. Analytical recoveries were in the range of 79-106% when spiking drug-free urine samples at three concentration levels. Good results were also obtained after analyzing an FDT +25% control material. The applicability of the method was proved for screening/quantifying COC, BZE, CE and EME in several samples from poly-drug abusers

  18. Parameters of Drag Reducing Polymers and Drag Reduction Performance in Single-Phase Water Flow

    Directory of Open Access Journals (Sweden)

    A. Abubakar


    Full Text Available This study presents experimental investigation about the effect of polymer parameters on the performance of the drag reducing polymers in single-phase water flowing in a horizontal pipe of 30.6 mm ID. Master solutions (1000 ppm of ten high-molecular weight polymers were injected at different flow rates to achieve polymer concentrations in the range of 2–40 ppm in the test section. The drag reduction increased with polymer concentration up to 10 ppm, above which it reached a plateau value. While the drag reduction at the plateau value increases with polymer molecular weight, the maximum drag reduction was not affected by the increase in polymer charge density up to 13%. For instance, the maximum drag reduction for anionic polymers with molecular weight 6–8 million Da. and charge density between 5 and 13% was around 60%, which decreased to around 38% for the polymer with charge density of 25%. Ionic polymers provided more drag reduction than nonionic ones. The overall conclusion is that drag reduction depends on polymer ability to form intermolecular associations and/or its flexibility, which can be enhanced by increasing molecular weight, decreasing charge density, and selecting smaller side groups in the main polymer backbone.

  19. A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas

    KAUST Repository

    Yi, Shouliang


    Acid gases carbon dioxide (CO2) and hydrogen sulfide (H2S) are important and highly undesirable contaminants in natural gas, and membrane-based removal of these contaminants is environmentally attractive. Although removal of CO2 from natural gas using membranes is well established in industry, there is limited research on H2S removal, mainly due to its toxic nature. In actual field operations, wellhead pressures can exceed 50 bar with H2S concentrations up to 20%. Membrane plasticization and competitive mixed-gas sorption, which can both lead to a loss of separation efficiency, are likely to occur under these aggressive feed conditions, and this is almost always accompanied by a significant decrease in membrane selectivity. In this paper, permeation and separation properties of a hydroxyl-functionalized polymer with intrinsic microporosity (PIM-6FDA-OH) are reported for mixed-gas feeds containing CO2, H2S or the combined pair with CH4. The pure-gas permeation results show no H2S-induced plasticization of the PIM-6FDA-OH film in a pure H2S feed at 35 °C up to 4.5 bar, and revealed only a slight plasticization up to 8 bar of pure H2S. The hydroxyl-functionalized PIM membrane exhibited a significant pure-gas CO2 plasticization resistance up to 28 bar feed pressure. Mixed-gas (15% H2S/15% CO2/70% CH4) permeation results showed that the hydroxyl-functionalized PIM membrane maintained excellent separation performance even under exceedingly challenging feed conditions. The CO2 and H2S permeability isotherms indicated minimal CO2-induced plasticization; however, H2S-induced plasticization effects were evident at the highest mixed gas feed pressure of 48 bar. Under this extremely aggressive mixed gas feed, the binary CO2/CH4 and H2S/CH4 permselectivities, and the combined CO2 and H2S acid gas selectivity were 25, 30 and 55, respectively. Our results indicate that OH-functionalized PIM materials are very promising candidate membrane materials for simultaneous removal of CO2

  20. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. (United States)

    Bezzu, C Grazia; Carta, Mariolino; Tonkins, Alexander; Jansen, Johannes C; Bernardo, Paola; Bazzarelli, Fabio; McKeown, Neil B


    A highly gas-permeable polymer with enhanced selectivities is prepared using spirobifluorene as the main structural unit. The greater rigidity of this polymer of intrinsic microporosity (PIM-SBF) facilitates gas permeability data that lie above the 2008 Robeson upper bound, which is the universal performance indicator for polymer gas separation membranes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of mesoporous NiCo2S4 deposited on reduced graphite oxide assistant by co-polymer Pluronic F127 for high-performance supercapacitor (United States)

    Qin, Huiya; Yang, Shuo; Zhao, Wenliang; Yang, Zhengchun; Li, Xuan; Li, Huijun; Yao, Pei


    Mesoporous NiCo2S4 particles deposited on reduced graphite oxide (RGO) sheets using the co-polymer Pluronic F127 as a structure-directing agent have been successfully prepared as a supercapacitor electrode. The formation of F127 micelles alleviated the aggregation of the RGO sheets and generated NiCo2S4 nanoparticles through hydrophilic affinity of ethylene oxide (EO) ends to produce porous channels during the hydrothermal process. This resulted in a large specific area of the prepared material, and superior electrochemical performance in terms of outstanding rate capability of 85.6% (from 1 A g-1 to 20 A g-1) and cycling stability (92.7% retention after 6500 cycles), features that are crucial for supercapacitors in practical application.

  2. Energy harvesting performance of piezoelectric ceramic and polymer nanowires. (United States)

    Crossley, Sam; Kar-Narayan, Sohini


    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs. Our work offers a viable means of

  3. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark


    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V). (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos


    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm-2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The DARPA High-Performance Polymer Program. Volume 2. Appendix--Selected Presentation Material From the Program Review Held on 14-15 January 1992 (United States)


    Transistors Using Conducting Polymers." 1 July 18, 1991 - Dr. Nick Castellucci , from Northrup Corporation (Aircraft Division), CA, visited Dr...MacDiarmid’s Office. Tide of invited talk given by Dr. Castellucci , "Charge Transfer _ Polymers and Corrosion Inhibition." July 18, 1991 - Drs. Epstein, Andrew

  6. Performance, Performance System, and High Performance System (United States)

    Jang, Hwan Young


    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  7. High temperature chemically resistant polymer concrete (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  8. Highly stretchable electrospun conducting polymer nanofibers (United States)

    Boubée de Gramont, Fanny; Zhang, Shiming; Tomasello, Gaia; Kumar, Prajwal; Sarkissian, Andranik; Cicoira, Fabio


    Biomedical electronics research targets both wearable and biocompatible electronic devices easily adaptable to specific functions. To achieve such goals, stretchable organic electronic materials are some of the most intriguing candidates. Herein, we develop highly stretchable poly-(3,4-ethylenedioxythiphene) (PEDOT) doped with tosylate (PEDOT:Tos) nanofibers. A two-step process involving electrospinning of a carrier polymer (with oxidant) and vapor phase polymerization was used to produce fibers on a polydimethylsiloxane substrate. The fibers can be stretched up to 140% of the initial length maintaining high conductivity.

  9. Molecularly imprinted polymer as efficient sorbent of solid-phase extraction for determination of gonyautoxin 1,4 in seawater followed by high-performance liquid chromatography-fluorescence detection. (United States)

    Mei, Xiao-Qi; He, Xiu-Ping; Wang, Jiang-Tao


    A kind of new molecularly imprinted polymer (MIP) was synthesized by bulk polymerization using guanosine as dummy template molecule, α-methacrylic acid as functional monomer and ethylene glycol dimethyl acrylic ester as crosslinker. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) showed that the MIP had homogenous and uniform-sized cavities. It was confirmed that the MIP had higher binding affinity and selectivity towards gonyautoxins 1,4 (GTX 1,4) than the non-imprinted polymer (NIP) according to the static equilibrium adsorption. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was established for the analysis of GTX 1,4. 0.1 mol/L acetic acid and 95:5 (v:v) methanol/water were optimized as the washing and elution solutions, respectively. The recoveries of spiked cultured seawater samples were satisfactory, as high as 88 %. Using this method, the concentrations of GTX 1,4 from cultured seawater samples of Alexandrium minutum and Alexandrium tamarense were detected to be 1.10 μg/L and 0.99 μg/L, respectively. Graphical Abstract The synthesis of molecularly imprinted polymer and molecularly imprinted solid-phase extraction analysis for gonyautoxin 1,4.

  10. Determination of donepezil in serum samples using molecularly imprinted polymer nanoparticles followed by high-performance liquid chromatography with ultraviolet detection. (United States)

    Khansari, Mehdi Rajabnia; Bikloo, Shahrzad; Shahreza, Sara


    A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid-phase extraction. The optimal conditions for solid-phase extraction were provided by cartridge conditioning using acidified water purified from a Milli-Q system, sample loading under basic aqueous conditions, clean-up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90-102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia


    Two low-band gap polymer series based on benzo[1,2-b:4,5-b?]dithiophene (BDT) and dithienylbenzothiadiazole, with different numbers of fluorine substituents on the 2,3,1-benzothiadiazole unit, have been synthesized and explored in a comparative study of the photochemical stability and operational...... lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...

  12. Development and performance evaluation of fiber reinforced polymer bridge. (United States)


    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  13. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen


    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo...

  14. Monitoring the extraction of additives and additive degradation products from polymer packaging into solutions by multi-residue method including solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis. (United States)

    Pouech, Charlène; Lafay, Florent; Wiest, Laure; Baudot, Robert; Léonard, Didier; Cren-Olivé, Cécile


    The use of polymer materials in industry for product packaging is increasing. The presence of additives in the polymer matrix enables the modification or improvement of the properties and performance of the polymer, but these industries are concerned regarding the extractability of these additives. The quantification of these additives is particularly challenging because of the presence of these substances as contaminants in all the analytical equipment and the diversity of their physicochemical properties. In this context, a multi-residue analytical method was developed for the trace analysis of the twenty main additives (and their degradation products) authorized in plastic products such as pharmaceutical packaging (e.g., antioxidants, release agents, and light absorbers). This analytical method consisted of a solid phase extraction (SPE) followed by an analysis using ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). A comparison of two ionization interfaces and the optimization of the extraction procedure were discussed. The influence of the quality of the solvent type (distilled versus not distilled) and the nature of the SPE cartridges (Polypropylene versus Teflon(®)) were demonstrated. The optimized method exhibited a quantification limit lower than 20 ng mL(-1) and recoveries between 70 % and 120 % for all compounds. Finally, the method was validated according to the ICH directive and was subsequently applied to the extraction of polymers under different pH conditions and storage temperatures. To the best of our knowledge, this study presents the first methodology allowing the simultaneous quantification of 24 additives at low ng mL(-1).

  15. High-Temperature Shape Memory Polymers (United States)

    Yoonessi, Mitra; Weiss, Robert A.


    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  16. High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. (United States)

    Chen, Chao; Wang, Lihua; Tan, Yueming; Qin, Cong; Xie, Fangyun; Fu, Yingchun; Xie, Qingji; Chen, Jinhua; Yao, Shouzhuo


    Rapid oxidation of dopamine (DA) or L-noradrenaline (NA) by K(3)Fe(CN)(6) yields poly(DA) (PDA(C)) or poly(NA) (PNA(C)) with glucose oxidase (GOx) effectively entrapped, and such an enzyme-entrapped catecholamine polymer is cast on an Au electrode followed by chitosan (CS) strengthening for biosensing and fabrication of a biofuel cell (BFC). The optimized glucose biosensor of CS/PDA(C)-GOx/Au displays an extremely high sensitivity up to 135 μA mM(-1) cm(-2), a very low limit of detection of 0.07 μM, a response time of biosensor also works well in the second generation biosensing mode with p-benzoquinone (BQ) or ferrocene monocarboxylic acid (Fc) as an artificial mediator, with greatly broadened linear detection ranges (2.0 μM-48.0 mM for BQ and 2.0 μM-16.0 mM for Fc) and up to mA cm(-2)-scale glucose-saturated current density. The good permeability of artificial mediators across the enzyme film enables the quantification of the surface concentration of immobilized GOx on the basis of a reported kinetic model, and UV-Vis spectrophotometry is used to measure the enzymatic activity, revealing high enzymatic activity/load at CS/PDA(C)-GOx/Au. A BFC is also successfully fabricated with a bioanode of CS/PDA(C)-GOx/Au in phosphate buffer solution containing 100 mM glucose and 4.0 mM BQ and a carbon cathode in Nafion-membrane-isolated acidic KMnO(4), and its maximum power density of 1.62 mW cm(-2) is superior to those of most BFC hitherto reported. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G. (United States)

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan


    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites. (United States)

    Shen, Zhong-Hui; Wang, Jian-Jun; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang


    Understanding the dielectric breakdown behavior of polymer nanocomposites is crucial to the design of high-energy-density dielectric materials with reliable performances. It is however challenging to predict the breakdown behavior due to the complicated factors involved in this highly nonequilibrium process. In this work, a comprehensive phase-field model is developed to investigate the breakdown behavior of polymer nanocomposites under electrostatic stimuli. It is found that the breakdown strength and path significantly depend on the microstructure of the nanocomposite. The predicted breakdown strengths for polymer nanocomposites with specific microstructures agree with existing experimental measurements. Using this phase-field model, a high throughput calculation is performed to seek the optimal microstructure. Based on the high-throughput calculation, a sandwich microstructure for PVDF-BaTiO3 nanocomposite is designed, where the upper and lower layers are filled with parallel nanosheets and the middle layer is filled with vertical nanofibers. It has an enhanced energy density of 2.44 times that of the pure PVDF polymer. The present work provides a computational approach for understanding the electrostatic breakdown, and it is expected to stimulate future experimental efforts on synthesizing polymer nanocomposites with novel microstructures to achieve high performances. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anaerobic polymers as high vacuum leak sealants (United States)

    Kendall, B. R. F.


    Anaerobic polymers are useful as solventless leak sealants with good vacuum properties at moderate temperatures. Loctite 290 can seal leaks in a range generally encountered in carefully constructed ultrahigh vacuum and high vacuum systems. It was found that small leaks are sealed best under vacuum, whereas large leaks should be sealed at atmospheric pressure. The high-temperature behavior of Loctite 290 is limited by its fast cure, which prevents deep penetration into small leaks; cracking eventually occurs at the entrance to the leak. Repeated thermal cycling to about 300 C is possible, however, provided viscosity, curing time, and leak size are properly matched to ensure penetration into the body of the leak. This may require special formulations for high temperature vacuum applications.

  20. High Pressure and Temperature Effects in Polymers (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  1. Inkjet printing of TIPS-PEN on soluble polymer insulating films: a route to high-performance thin-film transistors

    NARCIS (Netherlands)

    Kjellander, B.K.C.; Smaal, W.T.T.; Anthony, J.E.; Gelinck, G.H.


    We present an approach to inkjet print high-performance organic transistors by printing the organic semiconductor ink on a thin, continuous, and solvent-absorbing layer of insulating material. The ink spreading is effectively controlled by local dissolution of the layer, and during drying the

  2. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship (United States)

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.


    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  3. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    Directory of Open Access Journals (Sweden)

    Marilyn L. Minus


    Full Text Available Among the many potential applications of carbon nanotubes (CNT, its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed.

  4. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee


    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  5. Prediction of Polymer Flooding Performance with an Artificial Neural Network: A Two-Polymer-Slug Case

    Directory of Open Access Journals (Sweden)

    Jestril Ebaga-Ololo


    Full Text Available Many previous contributions to methods of forecasting the performance of polymer flooding using artificial neural networks (ANNs have been made by numerous researchers previously. In most of those forecasting cases, only a single polymer slug was employed to meet the objective of the study. The intent of this manuscript is to propose an efficient recovery factor prediction tool at different injection stages of two polymer slugs during polymer flooding using an ANN. In this regard, a back-propagation algorithm was coupled with six input parameters to predict three output parameters via a hidden layer composed of 10 neurons. Evaluation of the ANN model performance was made with multiple linear regression. With an acceptable correlation coefficient, the proposed ANN tool was able to predict the recovery factor with errors of <1%. In addition, to understand the influence of each parameter on the output parameters, a sensitivity analysis was applied to the input parameters. The results showed less impact from the second polymer concentration, owing to changes in permeability after the injection of the first polymer slug.

  6. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. (United States)

    Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan; Seh, Zhi Wei; Yao, Hongbin; Cui, Yi


    Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer-sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), were coated, respectively, onto monodisperse hollow sulfur nanopsheres through a facile, versatile, and scalable polymerization process. The sulfur cathodes made from these well-defined sulfur nanoparticles act as ideal platforms to study and compare how coating thickness, chemical bonding, and the conductivity of the polymers affected the sulfur cathode performances from both experimental observations and theoretical simulations. We found that the capability of these three polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI. High specific capacities and excellent cycle life were demonstrated for sulfur cathodes made from these conductive polymer-coated hollow sulfur nanospheres.

  7. Direct-write polymer nanolithography in ultra-high vacuum

    Directory of Open Access Journals (Sweden)

    Woo-Kyung Lee


    Full Text Available Polymer nanostructures were directly written onto substrates in ultra-high vacuum. The polymer ink was coated onto atomic force microscope (AFM probes that could be heated to control the ink viscosity. Then, the ink-coated probes were placed into an ultra-high vacuum (UHV AFM and used to write polymer nanostructures on surfaces, including surfaces cleaned in UHV. Controlling the writing speed of the tip enabled the control over the number of monolayers of the polymer ink deposited on the surface from a single to tens of monolayers, with higher writing speeds generating thinner polymer nanostructures. Deposition onto silicon oxide-terminated substrates led to polymer chains standing upright on the surface, whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface.

  8. Evaluation the effect of using polymers on the performance of wearing asphalt mixture

    Directory of Open Access Journals (Sweden)

    Yasir Mohammed Jebur


    Full Text Available In Iraq , the increasing in number of vehicles and trucks with their heavy traffic loading and under high temperature , a variety of pavement distresses continues to develop affecting the performance and economy of pavement construction. Polymer modified asphalt mixtures have been used to resist the distresses that produced and developed from the applied stresses. Several distresses effect on the performance of HMA. The primary forms of distress are fatigue cracking , rutting , moisture damage and thermal cracking. These distresses reduce the services life of HMA and increase the maintenance costs. The main objective of this research is to find the effect of polymers on the performance of asphalt mixtureby using one asphalt cement grade (40-50 from Al-Daurah refinery with two types of locally available polymers (Low-Density Polyethylene LDPE and Styrene Butadiene Styrene SBS with three percentages for each type. These percent are (1, 3 and 6 % for (LDPE & SBS by weight of asphalt cement. Each type of these polymers is blended with asphalt cement by using the wet process. The experimental work showed that all polymer-modified mixtures have stability and indirect tensile strength higher than the control mixtures. It can be concluded that the addition of (1% LDPE and (3% SBS to asphalt mixtures showed better improvement on the performance properties of pavement modified with these polymers , in which the referred percent represent the optimum percent of concentration for blending polymers .

  9. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers. (United States)

    Kranthiraja, Kakaraparthi; Gunasekar, Kumarasamy; Kim, Hyunji; Cho, An-Na; Park, Nam-Gyu; Kim, Seonha; Kim, Bumjoon J; Nishikubo, Ryosuke; Saeki, Akinori; Song, Myungkwan; Jin, Sung-Ho


    Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoactive donors, respectively. Especially, P3-based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte. (United States)

    Plylahan, Nareerat; Maria, Sébastien; Phan, Trang Nt; Letiche, Manon; Martinez, Hervé; Courrèges, Cécile; Knauth, Philippe; Djenizian, Thierry


    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance ((1)H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte.

  11. NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer. (United States)

    Li, Junting; Zhao, Qi; Shi, Feng; Liu, Chenghui; Tang, Yanli


    A novel nanohybrid comprised of upconversion nanophosphors (UCNPs) and fluorescent conjugated polymers (PFVCN) is rationally fabricated. The new UCNP/PFVCN nanohybrids combine the excellent antibacterial ability of PFVCN and the near IR (NIR) absorbing property of UCNPs, which allows for NIR-mediated antibacterial through the effective fluorescence resonance energy transfer from UCNPs to PFVCN accompanied with generation of reactive oxygen species to kill bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng


    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  13. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  14. Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries. (United States)

    Fischer, Michael G; Hua, Xiao; Wilts, Bodo D; Castillo-Martínez, Elizabeth; Steiner, Ullrich


    Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.

  15. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong


    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  16. Novel methacrylated diamondoid to produce high-refractive index polymer (United States)

    Takano, Tadashi; Lin, Yuan-Chang; Shi, Frank G.; Carlson, Bob; Sciamanna, Steven


    A novel, high-refractive index, methacrylic monomer was produced by incorporating 1-diamantane-carboxylic acid (1-D2-CA) and glycidyl methacrylate (GMA). The resulting monomer was gently polymerized with organic peroxide, and was formed transparent polymer thin film. Physicochemical and optical properties were compared with isobornyl methacrylate (IBoMA) homo-polymer film. 1-D2-CA/GMA homo-polymer reveals that the refractive index is 1.56, and the softening temperature is 107.8 °C. High thermal stability and high-refractive index of 1-D2-CA/GMA homo-polymer indicate the potential use in optical applications.

  17. High frequency electromagnetic interference shielding magnetic polymer nanocomposites (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  18. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.


    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  19. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin

    Directory of Open Access Journals (Sweden)

    Haseog Kim


    Full Text Available There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  20. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry. (United States)

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle


    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Computationally Designed Oligomers for High Contrast Black Electrochromic Polymers (United States)


    AFRL-AFOSR-VA-TR-2017-0097 Computationally Designed Oligomers for High Contrast Black Electrochromic Polymers Aimee Tomlinson University Of North...Black Electrochromic FA9550-15-1-0181 Polymers 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6.AUTHO~ 5d. PROJECT NUMBER AimeeL. T . Se. TASK...neraly black neutral state. Additionally, upon oxidation these polymers would have litte to no tailing form the near IR thereby guaranteeing nearly a I

  2. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu


    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  3. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor. (United States)

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O


    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  4. Polymer-impregnated bridge slabs : performance over 10 years. (United States)


    This report presents the results of a study to evaluate the performance over a 10-year period of slabs that were impregnated to a depth of about 1 in with a monomer that was subsequently polymerized (shallow polymer impregnation). The slabs were used...

  5. Tribological performance of polymer composites used in electrical ...

    Indian Academy of Sciences (India)

    Sliding wear performance of 20% mica-filled polyamide 6 (PA6 + 20% mica) and 20% short glass fibrereinforced polysulphone (PSU + 20 GFR) polymer composites used in electrical applications were investigated using a pin-on-disc wear test apparatus. Two different disc materials were used in this study. These are AISI ...

  6. Design of Advanced MnO/N-Gr 3D Walls through Polymer Cross-Linking for High-Performance Supercapacitor. (United States)

    Tran, Ngoc Quang; Kang, Bong Kyun; Tiruneh, Sintayehu Nibret; Yoon, Dae Ho


    Three-dimensional, vertically aligned MnO/nitrogen-doped graphene (3D MnO/N-Gr) walls were prepared through facile solution-phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross-links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as-prepared 3D MnO/N-Gr hybirdes provide a large surface area (91.516 m(2) g(-1)) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g(-1) at 0.25 A g(-1) and an excellent charge/discharge stability (93.7% capacity retention after 8000 cycles) in aqueous 1 m Na2 SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N-Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg(-1) and a power density of 437.5 W kg(-1). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang


    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  8. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))


    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  9. Rheological properties of polymer melts with high elasticity (United States)

    Feranc, Jozef; Matvejová, Martina; Alexy, Pavol; Pret'o, Jozef; Hronkovič, Ján


    In the recent years efforts to complex description of the rheological characteristic increase even in the case of polymeric blends with high part of elastic deformation. However, unlike the most thermoplastic these blends have a certain specific features. Besides the already mentioned the higher part of elastic deformation it is especially higher viscosity, which are shown mainly for the measurement in the range of high shear rates. For this reason, the presented work is focused on the description of measurement methodology for blends with high part of elastic deformation using capillary rheometer. The measurements were carried out on a commercial polymer blend with trade name A517 based on rubbery polymer. Capillary rheometer Gottfert RG 75 was used, with diameter of chamber 15 mm. Measurements were performed using capillaries with different ratio of length/diameter at temperature 100°C. Because of existence elastic part of deformation, it is not possible to achieve a steady state pressure using measurements at constant volumetric flow at high shear rates. Therefore we decided to measure the flow characteristic using isobaric mode.

  10. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering


    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  11. Effect of the direction of ester linkage on molecular shape selectivity through multiple carbonyl-pi interaction with octadecyl chain branched polymers as organic phases in reversed-phase high-performance liquid chromatography. (United States)

    Rana, Ashequl A; Takafuji, Makoto; Ihara, Hirotaka


    Poly(vinyl octadecanoate)-grafted porous silica (Sil-VODn, n=23) was newly prepared to investigate the efficiencies of the carbonyl groups in the polymer chain for recognition of polycyclic aromatic hydrocarbons (PAHs) in RP-HPLC. In Sil-VOD23, the octadecyl side chains were connected to the polymer main chain through ester linkage in opposite direction to that in poly(octadecylacrylate)-grafted silica (Sil-ODAn, n=25) which has been reported by us. Sil-ODAn performs enhanced molecular shape selectivity of PAHs in RP-HPLC through multiple carbonyl-pi interaction of aligned carbonyl groups which are induced by the formation of highly oriented structure of side chains. Differential scanning calorimetry of VOD23 demonstrated that octadecyl alkyl chains showed crystalline to isotropic phase transition with endothermic peak at 48.7 degrees C which was similar to ODA25 (at 47.8 degrees C). After grafting of both polymers, phase transition phenomenon was completely disappeared in Sil-VOD23 whereas Sil-ODA25 still exhibits phase transition although at lower endothermic peak top temperature (38.5 degrees C). This indicates that the slight structural change in Sil-VODn and Sil-ODAn influence the ordered structure of side alkyl chains. Moreover, solid-state 13C NMR revealed that the long alkyl chain in Sil-VOD23 is highly disordered as compared with that of Sil-ODA25. Sil-VOD23 was applied to RP-HPLC stationary phase using PAHs as pi-electron containing elutes, and compared with Sil-ODA25 and conventional monomeric octadecylated silica (ODS). Results confirmed that Sil-VOD23 showed much higher selectivity for PAH isomers than ODS, but lower than Sil-ODA25. For example, the separation factors for trans-/cis-stilbene were 1.47 (Sil-VOD23), 1.70 (Sil-ODA25) and 1.07 (ODS), respectively. These results indicate that carbonyl groups in Sil-VOD23 are effective for molecular shape recognition of PAHs through carbonyl-pi interactions even in the disordered state.

  12. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.


    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  13. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells. (United States)

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang


    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells.


    Directory of Open Access Journals (Sweden)



    Full Text Available Asphalt is commonly used as a binder in the construction of highways and runways, due to its good viscoelastic properties, natural asphalt cement does not have sufficient strength to resist sudden stresses of excessive loading or stress from low and high temperatures. Therefore, modification of asphalt is necessary in order to improve its material temperature sensitivity, adhesion, durability, oxidation and aging resistance. The property of base asphalt and polymer modified asphalt binders and mixtures has been characterized using the conventional tests and dynamic creep tests. It has been found that, the addition of Acrylate Styrene Acrylonhrtilrei (ASA polymer content has magnificent influence on the properties of the asphalt binders and mixtures. The temperature susceptibility of modified asphalt binders was reduced compared with base asphalt binder as the penetration increase and softening point decrease. The reduction in penetration was up to 69%, while the improvement in softening point was up to 19%. Moreover, it was approved from the storage stability test that, the ASA polymer has a great compatibility with asphalt binder up to 5% ASA. In addition, it was observe reduction in permanent deformation of modified asphalt mixtures with increase of modifier up to 5% ASA, which lead to better resistance to rutting at high temperatures, and the reduction was up to 36%. As a result, the modification of asphalt binder and mixture with ASA polymer can be considered a proper alternative technique to improve the properties of asphalt binder and mixture and 5% ASA was the optimum content of the modifier.

  15. Highly crystalline and low bandgap donor polymers for efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Dai, Liming [Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH (United States); Choi, Hyosung; Kim, Jin Young [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Bailey, Chris; Durstock, Michael [Materials and Manufacturing Directorate, Air Force Research Laboratory, RXBP, Wright-Patterson Air Force Base, OH (United States)


    A highly crystalline and low bandgap donor polymer, EI-PFDTBT, is developed by inserting ethylene bridging units to ensure a coplanar configuration between the side chains and the main chain. Polymer solar cells based on the EI-PFDTBT and PC{sub 71}BM blends spincoated at elevated temperatures exhibit a power conversion efficiency of 5.1%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis (United States)

    Nicholson, Marjorie Anne


    A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.

  17. Responsive design high performance

    CERN Document Server

    Els, Dewald


    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  18. High Molecular Weight Polymers in the New Chemicals Program (United States)

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  19. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery. (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen


    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  20. Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. (United States)

    Gong, Xue; Li, Guangwu; Wu, Yang; Zhang, Jicheng; Feng, Shiyu; Liu, Yahui; Li, Cuihong; Ma, Wei; Bo, Zhishan


    Conjugated polymers with three components, P1-1 and P1-2, were prepared by one-pot Stille polymerization. The two-component polymer P1-0 is only composed of a 5-fluoro-6-alkyloxybenzothiadiazole (AFBT) acceptor unit and a thiophene donor unit, while the three-component polymers P1-1 and P1-2 contain 10% and 20% 5,6-difluorobenzothiadiazole (DFBT), respectively, as the third component. The incorporation of the third component, 5,6-difluorobenzothiadiazole, makes the side chains discretely distributed in the polymer backbones, which can enhance the π-π stacking of polymers in film, markedly increase the hole mobility of active layers, and improve the power-conversion efficiency (PCE) of devices. Influence of the third component on the morphology of active layer was also studied by X-ray diffraction (XRD), resonant soft X-ray scattering (R-SoXS), and transmission electron microscopy (TEM) experiments. P1-1/PC71BM-based PSCs gave a high PCE up to 7.25%, whereas similarly fabricated devices for P1-0/PC71BM only showed a PCE of 3.46%. The PCE of P1-1/PC71BM-based device was further enhanced to 8.79% after the use of 1,8-diiodooctane (DIO) as the solvent additive. Most importantly, after the incorporation of 10% 5,6-difluorobenzothiadiazole unit, P1-1 exhibited a marked tolerance to the blend film thickness. Devices with a thickness of 265 nm still showed a PCE above 8%, indicating that P1-1 is promising for future applications.

  1. High Strength Development at Incompatible Semicrystalline Polymer-Polymer Interfaces (United States)

    Hong, C. H.; Wool, Richard


    For incompatible A/B interfaces, the strength G1c is related to the equilibrium width w (normalized to the tube diameter) of the interface by G1c/G* = (w-1), where G* is the virgin strength [R.P. Wool, C.R, Chimie, 9 (2006) 25]. However, the interface strength is quite weak due to very limited interdiffusion. The mechanism of high strength development of a series of thermoplastic polyurethane elastomers (TPU) bonding with ethylene vinyl alcohol copolymers (EVOH) was investigated. During cool down of the A/B interface in the co-extruded melt, there exits a unique process window---the α-β window-which promotes considerable strength development. We used the differences in melting points and the volume contraction during asymmetric crystallization to generate influxes (σ nano-nails/unit area), where an influx occurs by the fluid being pulled into the crystallizing side. TPU samples with higher degree of crystallization typically exhibited higher peel strengths, due to the formation of both inter- and intra- spherulitic influxes of nano-dimension across the interface. The peel energy now behaves as G1c˜ σL^2, where L is the length of the influx and L>>w. Annealing between the α and βt relaxation temperatures of the EVOH generated additional influxes which provided significant connectivity and peel strength.

  2. A novel route for electrosynthesis of CuCr(2)O(4) nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors. (United States)

    Shayeh, Javad Shabani; Sadeghinia, Mohammad; Siadat, Seyed Omid Ranaei; Ehsani, Ali; Rezaei, Mehran; Omidi, Meisam


    In this work, supercapacitive performance of polypyrrole copper chromate nano particles (Ppy/CuCr2O4 NPs) was studied. CuCr2O4 NPs with the average size of 20nm were synthesized simply by hydrothermal method and the composite electrodes were then electropolymerized on the surface of glassy carbon electrode. Common surface analysis techniques such as scanning electron microscopy (SEM), transmission electron microscopy(TEM) and Fourier transform infrared (FTIR) were used to study the morphology and structure of the composite. Furthermore, for electrochemical evaluation of composite electrodes, techniques including cyclic voltammetry (CV), galvanostatic charge discharge (CD) and impedance spectroscopy (EIS) were used. Using cyclic voltammetry, the specific capacitance values of Ppy and Ppy/CuCr2O4 NPs were calculated to be 109 and 508 F g-1, respectively. Results show that using CuCr2O4 NPs in the structure of polymeric films led to increased specific capacitance of composite electrodes more than four times that of poly pyrrole. Increasing the conductivity and stability of composite electrodes through continuous cycles are the other advantages of using CuCr2O4 NPs as active materials in a polymeric structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oleylamine-functionalized graphene oxide as an electron block layer towards high-performance and photostable fullerene-free polymer solar cells. (United States)

    Liu, Zhiyong; Niu, Shengli; Wang, Ning


    Oleylamine-functionalized graphene oxide (GO) has a shallower energy level of conduction band (ECB) and a deeper energy level of the valence band (EVB) as compared to common hole extraction layer (HEL) materials, which make the electron block layer (EBL). Photoluminescence, X-ray photoelectron spectroscopy (XPS), and current density-voltage (J-V) curves with a large reverse bias voltage range obtained under dark conditions are used to determine whether GO layers play important roles in blocking the electron transport to the MoO3/Ag composite anode and prevent MoO3 diffusion into a photoactive layer under light illumination. Moreover, GO inserted between a photoactive layer and an HEL enhances charge carrier transport and collection and avoids the monomolecular recombination between the photoactive layer and HEL. Photovoltaic parameters and photostability measurements of inverted and forward PSCs have shown that upon introduction of GO, the performance and photostability of PSCs are improved. On adding GO to PSCs, the power conversion efficiency (PCE) increases approximately 5% and 4% and reduces the decay ratio to approximately 50% and 65% of the initial value for the inverted and forward PSCs, respectively.

  4. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez


    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy......Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  5. Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation. (United States)

    Noël, Sébastien; Léger, Bastien; Herbois, Rudy; Ponchel, Anne; Tilloy, Sébastien; Wenz, Gerhard; Monflier, Eric


    Rhodium(0) nanoparticles stabilized by a polymer containing carboxylate and β-cyclodextrin moieties have high stability and catalytic activity for aqueous hydrogenation reactions of olefins and aromatic substrates. This catalytic system can be recycled and reused without loss of activity. These high catalytic performances can be attributed to conjugated electrostatic interactions (carboxylate groups) and steric interactions (polymer structure and β-cyclodextrin moiety).

  6. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu


    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  7. Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries. (United States)

    Le, Hang T T; Ngo, Duc Tung; Kalubarme, Ramchandra S; Cao, Guozhong; Park, Choong-Nyeon; Park, Chan-Jin


    A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites.

  8. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh


    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties. © 2012 American Chemical Society

  9. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding (United States)


    generally light. Polymers have densities around 1–2 g/cm3, while those of copper (Cu) and mu-metal are almost 9 g/cm3. Polymers can also be easily...interfaces that can cause poor dispersion and nonuniform shielding. As an example of a lightweight alternative, graphene can be made ferromagnetic by...chemically bonding metal atoms (both high- and low-spin ions) onto the surface.6 Enhanced ferromagnetism in graphene can be elicited by

  10. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ


    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  11. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita


    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  12. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states. (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S


    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  13. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.


    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  14. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. (United States)

    Chen, Yuejie; Liu, Chengyu; Chen, Zhen; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng


    The in vitro dissolution mechanism of an amorphous solid dispersion (ASD) remains elusive and highly individualized, yet rational design of ASDs with optimal performance and prediction of their in vitro/in vivo performance are very much desirable in the pharmaceutical industry. To this end, we carried out comprehensive investigation of various ASD systems of griseofulvin, felodipine, and ketoconazole, in PVP-VA or HPMC-AS at different drug loading. Physiochemical properties and processes related to drug-polymer-water interaction, including the drug crystallization tendency in aqueous medium, drug-polymer interaction before and after moisture exposure, supersaturation of drug in the presence of polymer, polymer dissolution kinetics, etc., were characterized and correlated with the dissolution performance of ASDs at different dose and different drug/polymer ratio. It was observed that ketoconazole/HPMC-AS ASD outperformed all other ASDs in various dissolution conditions, which was attributed to the drug's low crystallization tendency, the strong ketoconazole/HPMC-AS interaction and the robustness of this interaction against water disruption, the dissolution rate and the availability of HPMC-AS in solution, and the ability of HPMC-AS in maintaining ketoconazole supersaturation. It was demonstrated that all these properties have implications for the dissolution performance of various ASD systems, and further quantification of them could be used as potential predictors for in vitro dissolution of ASDs. For all ASDs investigated, HPMC-AS systems performed better than, or at least comparably with, their PVP-VA counterparts, regardless of the drug loading or dose. This observation cannot be solely attributed to the ability of HPMC-AS in maintaining drug supersaturation. We also conclude that, for fast crystallizers without strong drug-polymer interaction, the only feasible option to improve dissolution might be to lower the dose and the drug loading in the ASD. In this

  15. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa


    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  16. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu


    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  17. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar


    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  18. Polymer ring resonators for high density photonic and electronic-photonic integration (United States)

    Sun, Haishan


    Electrical interconnect based on the copper wires will be the bottleneck for the future performance improvement of multi-core CPUs. Chip scale optical interconnect based on high density photonic and electronic-photonic integration is one of the feasible solutions. Ring resonators are promising photonic components serving as building blocks. High density integration of ring resonators is also important for high throughput lab-on-a-chip biosensors and opto-microwave integrated circuits. Polymer materials are compatible with most semiconductor fabrication processes. Polymers can be easily doped with rare earth ions, quantum dots etc. to make active optical devices. Especially, over several hundreds pm/V electro-optic (EO) coefficients and femtosecond scale response time of EO polymers enables photonic devices with sub 1V to millivolt drive voltages and terahertz bandwidth. This dissertation describes several technologies about design, simulation, fabrication, integration with electronic circuits and fiber optics of polymer ring resonators, and demonstrates three application examples of polymer ring resonators in communications and biochemical sensing. First the Beam Propagation Method (BPM) and the matrix analysis are combined to provide a fast circuit level simulation and design procedure of polymer ring resonators. Several low cost fabrication techniques based on electron beam irradiation effects on EO polymers are introduced. For the practical electronicphotonic integration, a hybrid integration scheme of EO polymer waveguide devices with Si integrated circuits is developed. One application is an all-dielectric RF sensor or receiver with sensitivity of 100 V/m and theoretical bandwidth over 100 GHz. This device is based on a novel structure with polymer ring resonator directly coupled to a side polished optical fiber. The other two examples are biochemical sensors based on multi-slot waveguide and ring resonator reflector structures.

  19. High-Performance Networking

    CERN Document Server

    CERN. Geneva


    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  20. Melting point of polymers under high pressure Part I: Influence of the polymer properties

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas; Freitag, Detlef; Freidel, Frank; Luft, Gerhard


    The pressure dependence of the melting point of various polymers including homo- and copolymers (HDPE, LDPE, PP and ethylene vinyl acetate copolymers (EVA)) was investigated under nitrogen atmosphere up to 330 MPa within a high pressure differential thermal analysis cell designed by our group. The properties of the polymers (vinylacetate content, melt flow index, molecular weight, isotactic index, crystallinity, density, and frequency of branching) have been correlated with the change of the melting point under pressure (dT{sub m}/dp). It could be shown that the melting point always increases linearly with pressure up to 330 MPa. The pressure dependence was found to be in the range of 11-17 K/(100 MPa). From these results it is possible to approximate dT{sub m}/dp using the enthalpy of fusion of the polymers at ambient pressure.

  1. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias


    This paper studies in detail the measurement of the permeation properties of highly permeable and highly selective polymers for water vapor/nitrogen gas mixtures. The analysis of the mass transport of a highly permeable polymer is complicated by the presence of stagnant boundary layers at feed and

  2. Performance analysis of polymer electrolyte membranes for direct methanol fuel cells (United States)

    Lufrano, F.; Baglio, V.; Staiti, P.; Antonucci, V.; Arico', A. S.


    The status of research and development of polymer electrolyte membranes (PEMs) for direct methanol fuel cells (DMFCs) is described. Perfluorosulfonic acid membranes, e.g. Nafion, are widely used in fuel cell technology; but, despite their success, they show some drawbacks such as high cost, limited operating temperature range and high methanol crossover. These limit their widespread commercial application in DMFCs. Such disadvantages are inspiring worldwide research activities for developing new PEM materials based on non-perfluorinated polymers as alternative to Nafion for DMFCs. A review of membrane properties is carried out on the basis of thermal stability, methanol crossover and proton conductivity. The analysis of DMFC performance covers perfluorosulfonic acid membranes (PFSA), sulfonated aromatic polymers (SAPs) and composite membranes. PFSA membranes are suitable materials in terms of power density, SAPs are more advantageous regarding the low methanol permeability and cost, whereas composite membranes are more appropriate for operation above 100 °C. DMFC power density values reported in literature show that, although there are remarkable research efforts on this subject, the achieved results are not yet satisfying. Further work is especially necessary on non-perfluorinated polymers to improve performance and durability for an effective application in practical DMFC devices.

  3. High performance data transfer (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.


    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  4. High temperature lithium cells with solid polymer electrolytes (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit


    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  5. High Resolution Additive Patterning of Nanoparticles and Polymers Enabled by Vapor Permeable Polymer Templates (United States)

    Demko, Michael Thomas

    The structure and chemistry of nanoparticles and polymers are interesting for applications in electronics and sensors. However, because they are outside of the standard material set typically used for these applications, widespread use of these materials has not yet been realized. This is due in part to the limited ability of traditional manufacturing processes to adapt to these unique materials. As a result, several alternative manufacturing methods have been developed, including nanoimprint lithography, gravure printing, inkjet printing, and screen printing, among many others. However, these current processes are not able to simultaneously produce patterns with high resolution and high dimensional fidelity, rapidly, over large areas, and in a completely additive manner. In this work, high-resolution patterns of nanoparticles and polymers are created on a variety of substrates in a completely additive manner using a template-based microfluidic process. Permeation of solvent through a vapor-permeable polymer template is used to both drive the flow of ink and concentrate the solute inside of template features. This fluidic process is shown to allow gradual packing of solute inside the template features, enabling creation of three-dimensional features with low defect densities. Additionally, because the mechanical properties of the template material are found to significantly impact patterning resolution and fidelity, and a process for creating rigid, vapor permeable templates from poly(4-methyl-2-pentyne) is developed. These templates are used for creating patterning of nanoparticles and polymers with a minimum line width of smaller than 350 nm. The process is then applied to the creation of low temperature metallization for polymer electronics using metallic nanoparticles and a highly-sensitive ultraviolet light sensor from zinc oxide nanoparticles.

  6. Dielectric Performance of Polymer Nanocomposites: Matrix Free, Hairy Nanoparticle Assemblies and Amorphous Polymer-Nanoparticle Blends (United States)

    Grabowski, Christopher; Opsitnick, Elizabeth; Koerner, Hilmar; Meth, Jeffrey; Bockstaller, Michael; Durstock, Michael; Vaia, Richard


    Over the past decade, polymer nanocomposites (PNCs) have been developed for electrical insulation and capacitor films to achieve extreme energy-power storage. The quality of nanoparticle dispersion has been shown to greatly affect dielectric performance. Nanoparticle aggregates function as defect sites and dramatically reduce dielectric strength. It is unclear, however, to what extent enhanced nanoparticle order (or perfect dispersion) can improve energy storage properties. Uniform dispersions of silica colloids (15 and 29 nm diam.) in polystyrene (PS) and polymethyl methacrylate (PMMA) have been achieved by two methods: (1) solvent-annealed, two-component, polymer-nanoparticle blends and (2) single-component matrix free, hairy nanoparticle assemblies. The dielectric strength, permittivity, and energy storage over a wide range of silica loadings (0-50% v/v) will be discussed. Our findings indicate PS NCs have comparable breakdown strength for blend and hairy nanoparticle assemblies, while at intermediate silica loadings (~ 15% v/v) PMMA grafted silica assemblies show enhanced breakdown strength compared to simple blends. Dielectric permittivity follows the Bruggeman effective medium model for all materials.

  7. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  8. High Performance Liquid Chromatography (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  9. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)



    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  10. Performance assessment of polymer based electrodes for in vitro electrophysiological sensing: the role of the electrode impedance (United States)

    Medeiros, Maria C. R.; Mestre, Ana L. G.; Inácio, Pedro M. C.; Santos, José M. L.; Araujo, Inês M.; Bragança, José; Biscarini, Fabio; Gomes, Henrique L.


    Conducting polymer electrodes based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) are used to record extracellular signals from autonomous cardiac contractile cells and glioma cell cultures. The performance of these conducting polymer electrodes is compared with Au electrodes. A small-signal impedance analysis shows that in the presence of an electrolyte, both Au and polymer electrodes establish high capacitive double-layers. However, the polymer/electrolyte interfacial resistance is 3 orders of magnitude lower than the resistance of the metal/electrolyte interface. The polymer low interfacial resistance minimizes the intrinsic thermal noise and increases the system sensitivity. However, when measurements are carried out in current mode a low interfacial resistance partially acts as a short circuit of the interfacial capacitance, this affects the signal shape.

  11. High-aspect ratio magnetic nanocomposite polymer cilium (United States)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.


    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  12. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.


    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  13. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. (United States)

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A


    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of

  14. Designing High-Refractive Index Polymers Using Materials Informatics

    Directory of Open Access Journals (Sweden)

    Vishwesh Venkatraman


    Full Text Available A machine learning strategy is presented for the rapid discovery of new polymeric materials satisfying multiple desirable properties. Of particular interest is the design of high refractive index polymers. Our in silico approach employs a series of quantitative structure–property relationship models that facilitate rapid virtual screening of polymers based on relevant properties such as the refractive index, glass transition and thermal decomposition temperatures, and solubility in standard solvents. Exploration of the chemical space is carried out using an evolutionary algorithm that assembles synthetically tractable monomers from a database of existing fragments. Selected monomer structures that were further evaluated using density functional theory calculations agree well with model predictions.

  15. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 37, No. 1, February 2014, pp. 95–99. c Indian Academy of Sciences. High mobility polymer gated organic field effect transistor using zinc phthalocyanine. K R RAJESH. ∗. , V KANNAN, M R KIM, Y S CHAE and J K RHEE. Millimeter- Wave Innovation Technology Research Centre (MINT), Dongguk University,.

  16. The Unique Story of a High-Tech Polymer

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 6. The Unique Story of a High-Tech Polymer. Panchanan Pramanik Ruby Chakraborty. General ... Author Affiliations. Panchanan Pramanik1 Ruby Chakraborty1. Department of Chemistry Indian Institute of Technology Kharagpur 721302, India ...

  17. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 1. High mobility polymer gated organic field effect transistor using zinc ... fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film prepared by chemical vapour deposition was used as the organic gate insulator. The annealing of the ...

  18. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren


    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4...... of the pendant groups in the derivatized polymers and the glass-transition temperature has emerged: the aromatic carboxylic acids give high glass-transition temperatures (90—120 DC), and the aliphatic carboxylic acids give lower glass-transition temperatures (50—65 DC).......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...

  19. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan


    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  20. A high brightness probe of polymer nanoparticles for biological imaging (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng


    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  1. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed an......V higher than that of methanol, indicating less fuel crossover.......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  2. High Performance Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jesse E [Los Alamos National Laboratory


    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  3. R high performance programming

    CERN Document Server

    Lim, Aloysius


    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  4. Water and polymer dynamics in highly crosslinked polyamide membranes (United States)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  5. High performance pulse generator (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.


    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  6. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim


    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  7. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries. (United States)

    Fu, Jing; Lee, Dong Un; Hassan, Fathy Mohamed; Yang, Lin; Bai, Zhengyu; Park, Moon Gyu; Chen, Zhongwei


    A thin-film, flexible, and rechargeable zinc-air battery having high energy density is reported particularly for emerging portable and wearable electronic applications. This freeform battery design is the first demonstrated by sandwiching a porous-gelled polymer electrolyte with a freestanding zinc film and a bifunctional catalytic electrode film. The flexibility of both the electrode films and polymer electrolyte membrane gives great freedom in tailoring the battery geometry and performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evolution of polymer photovoltaic performances from subtle chemical structure variations. (United States)

    Yan, Han; Li, Denghua; Lu, Kun; Zhu, Xiangwei; Zhang, Yajie; Yang, Yanlian; Wei, Zhixiang


    Conjugated polymers are promising replacements for their inorganic counterparts in photovoltaics due to their low cost, ease of processing, and straightforward thin film formation. New materials have been able to improve the power conversion efficiency of photovoltaic cells up to 8%. However, rules for rational material design are still lacking, and subtle chemical structure variations usually result in large performance discrepancies. The present paper reports a detailed study on the crystalline structure, morphology, and in situ optoelectronic properties of blend films of polythiophene derivatives and [6,6]-phenyl C61-butyric acid methyl ester by changing the alkyl side chain length and position of polythiophene. The correlation among the molecular structure, mesoscopic morphology, mesoscopic optoelectronic property and macroscopic device performance (highest efficiency above 4%) was directly established. Both solubility and intermolecular interactions should be considered in rational molecular design. Knowledge obtained from this study can aid the selection of appropriate processing conditions that improve blend film morphology, charge transport property, and overall solar cell efficiency.

  9. Flexible Polymer/Metal/Polymer and Polymer/Metal/Inorganic Trilayer Transparent Conducting Thin Film Heaters with Highly Hydrophobic Surface. (United States)

    Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin


    Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq-1, sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiNx structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

  10. Unbalanced heat isolation in high-frequency electrothermics of polymers

    Directory of Open Access Journals (Sweden)

    A. V. Livshits


    Full Text Available The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Traditionally, the technological scheme with one insulator made of cardboard is used to implement the HF heating processes for welding of polymers without analyzing their insulating properties. For welding of polymer parts with various thickness it is interesting to consider the scheme with two heat insulators in the form of five-layer plate, including electrodes, insulators, and processed material. As a result of the conducted research activities the article presents a mathematical model in the form of a system of differential equations of unsteady heat conductivity taking into account internal sources of heat with appropriate boundary conditions, and software to implement it.The software that implements a mathematical model enables to study the mutual influence between the geometrical and electro-physical parameters of technological system of HF heating of the thermoplastics. From the calculations presented in numerical and graphic form the following areas of heating polymer are identified: uniform heating, regional zones of thermal influence of insulators.The article presents the research results of influence of heat insulators with different thickness on the distribution of thermoplastics temperature field. It is determined that the zone of maximum value of heating polymer can be displaced by modifying the parameters of insulating layers, thereby improving the welding quality of polymeric items.According to research results, we can conclude that there is a

  11. Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer (United States)

    Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi


    Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other

  12. Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization and Performance (United States)


    dispersity and polymerization pathway, Moskowitz, Jeremy and Wiggins, Jeffrey, Polymer Degradation and Stability 2016, 125, 76 iv. High Molecular...for advancing epoxy chemistries with our approach to achieve high levels of nanotube dispersion using a continuous reactor. We believe MWCNT...Typically this method is associated with dispersing nanoparticles within high molecular weight linear thermoplastic polymers . In this process

  13. Unbalanced heat isolation in high-frequency electrothermics of polymers


    A. V. Livshits


    The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF) electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Tr...

  14. High birefringent microstructured polymer optical fiber with frozen stresses (United States)

    Wójcik, G.; Gil, M.; CzyŻewska, L.; Mergo, P.


    We report on fabrication of a new type high birefringent microstructured polymer fiber with a PMMA stress applied element in the core. An inner part of preform consists regular three rings of holes, made by drilling method. Inside the microstructure we drilled an additional hole, where a special type - strongly stressed PMMA rod was placed. The manufactured preform was measured in an polarimetric microscope configuration where we observed very large internal stresses - especially seen in a core area.

  15. High aspect ratio micro tool manufacturing for polymer replication using mu EDM of silicon, selective etching and electroforming

    DEFF Research Database (Denmark)

    Tosello, Guido; Bissacco, Giuliano; Tang, Peter Torben


    Mass fabrication of polymer micro components with high aspect ratio micro-structures requires high performance micro tools allowing the use of low cost replication processes such as micro injection moulding. In this regard an innovative process chain, based on a combination of micro electrical...... discharge machining (mu EDM) of a silicon substrate, electroforming and selective etching was used for the manufacturing of a micro tool. The micro tool was employed for polymer replication by means of the injection moulding process....

  16. Printable highly conductive conjugated polymer sensitized ZnO NCs as cathode interfacial layer for efficient polymer solar cells. (United States)

    Liu, Jian; Wu, Jiang; Shao, Shuyan; Deng, Yunfeng; Meng, Bin; Xie, Zhiyuan; Geng, Yanhou; Wang, Lixiang; Zhang, Fengling


    We report a facile way to produce printable highly conductive cathode interfacial layer (CIL) for efficient polymer solar cells (PSCs) by sensitizing ZnO nanocrystals (NCs) with a blue fluorescent conjugated polymer, poly(9, 9-bis-(6'-diethoxylphosphorylhexyl) fluorene) (PFEP). Herein, PFEP plays dual distinctive roles in the composite. Firstly, PFEP chains can effectively block the aggregation of ZnO NCs, leading to uniform and smooth film during solution processing via assembly on ZnO NC surfaces through their pending phosphonate groups. Secondly, PFEP can greatly improve the conductivity of ZnO NCs by charge transfer doping, that is the charge transfer from the sensitizer driven by electron-chemical potential equilibrium, which could be even more pronounced under light illumination because of light excitation of PFEP sensitizer. The increased conductivity in ZnO-PFEP layer renders more efficient electron transport and extraction compared to pristine ZnO layer. This ZnO-PFEP CIL was successfully applied to PSCs based on three polymer donor systems with different band-gaps, and efficiency enhancements from 44 to 70% were observed compared to those PSCs with pristine ZnO CIL. The highest efficiency of 7.56% was achieved in P(IID-DTC):PC70BM-based PSCs by using ZnO-PFEP film as CIL. Moreover, the enhanced conductivity due to the charge-transfer doping effect allows thick ZnO-PFEP film to be used as CIL in high-performance PSCs. Both the high conductivity and good film-forming properties of ZnO-PFEP CIL are favorable for large-scale printable PSCs, which is also verified by high-efficiency PSCs with ZnO-PFEP CIL fabricated using doctor-blading, a large-scale processing technique. The work provides an efficient printable cathode interfacial material for efficient PSCs.

  17. Performance comparison of low and high temperature polymer electrolyte membrane fuel cells. Experimental examinations, modelling and numerical simulation; Leistungsvergleich von Nieder- und Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen. Experimentelle Untersuchungen, Modellierung und numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Loehn, Helmut


    The experimental part of this thesis essentially comprises the performance comparison of low temperature (LT) - polymer electrolyte membrane fuel cells (PEMFCs) on basis of Nafion {sup registered} and high temperature (HT)- PEMFCs on basis of Polybenzimidazol (PBI)/phosphoric acid (H{sub 3}PO{sub 4}). The performance characteristic of commercially available Nafion {sup registered} - LT - (E-TEK-Series 12 W) and PBI/H{sub 3}PO{sub 4} - HT -(Celtec P 1000) membrane electrode assemblies (MEAs) were examined with a single cell in dependence of cell temperature (LT-MEA: 50 - 80 C, HT-MEA: 120 - 190 C), anode and cathode pressure (1 - 3 bar), stoichiometry of gas supply streams and relative humidity (only LT-MEA). Because of the same active cell area of both MEAs (45.16 cm{sup 2}) and the fact, that the flow field for the gas distribution of the test cell can be used universally, the performance tests with both MEA-types could be carried out with the same single test cell. When comparing the performance of both MEAs under similar test conditions - except increased temperature and deactivated humidification of the HT-MEA - at 0.7 A/cm{sup 2} with both MEA-types nearly equal performance densities of 0.3 - 0.45 W/cm{sup 2} can be reached. Since there is no liquid process water present in the HT-MEA the operation is not limited by concentration losses; therefore the HT-MEA can be operated in a wider range with higher current densities and because of the not required water management the operation of the HT-MEA is essentially simplified. Further advantages of the HT-MEA exist in the relative high tolerance against the catalyst poison carbon monoxide - the operation with reformat gas and hydrogen rich gases is facilitated - and an improved heat management because of the elevated operation temperature. However, a disadvantage of the Celtec-P-1000-MEA exists in the degradation at deep temperatures. At operating conditions, in which liquid process water is present, there is the

  18. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele


    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  19. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor


    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole


    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are ...

  20. Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization. (United States)

    Song, Jiangxuan; Jeon, Jin-Han; Oh, Il-Kwon; Park, K C


    We report here a facile synthesis of high performance electro-active polymer actuator based on a sulfonated polyimide with well-defined silver electrodes via self-metallization. The proposed method greatly reduces fabrication time and cost, and obviates a cation exchange process required in the fabrication of ionic polymer-metal composite actuators. Also, the self-metallized silver electrodes exhibit outstanding metal-polymer adhesion with high conductivity, resulting in substantially larger tip displacements compared with Nafion-based actuators. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. NGINX high performance

    CERN Document Server

    Sharma, Rahul


    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  2. Vacuum-integrated electrospray deposition for highly reliable polymer thin film. (United States)

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin


    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.

  3. Recent advances in high temperature polymers for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Labadie, J.W.; Hedrick, J.L. (IBM Almaden Research Center, San Jose, CA (USA))


    This paper describes research concerned with the synthesis and properties of a variety of new materials based on polyphenylquinoxalines, polyquinoxalones, polybenzoxazoles and polyimide random copolymers containing phenylquinoxaline and benzoxazole moieties. The synthesis of NMP processable phenylquinoxaline and benzoxazole based poly(aryl ethers) was carried out using a novel heterocyclic activated fluoro displacement by bisphenoxides, affording high T(g), melt and solvent processable polymers with tough, ductile mechanical properties. In addition, heterocyclic activated ether synthesis was used to prepare phenylquinoxaline and benzoxazole containing diamines which were used in conventional polyimide syntheses, yielding random copolymers which showed moduli comparable to PMDA/ODA polyimide and elongations ranging from 60 to 120 percent. Polyquinoxalones were synthesized by the step growth polymerization of bis(keto esters) with bis(o-diamines) and represent an interesting new class of linear polyquinoxalines. The thermal and mechanical properties were evaluated for many of these polymers, and were found to be comparable to polyimides. 11 refs.

  4. Specific Consideration on Superior Performance and Evaluation Methods of Polymer-housed Surge Arresters (United States)

    Ishizaki, Yoshihiro; Kobayashi, Misao; Suzuki, Hironori; Futagami, Koichi

    It is very suitable to select the polymer materials for the housings of surge arresters (SAs), because the polymer materials are generally soft and light weight. Therefore, many kinds of polymer-housed SAs using various polymer materials have been developed, and expanding into many countries. Considering these backgrounds, the JEC technical report (JEC-TR) 23002-2008; polymer-housed surge arrester(1) has been established based on the existent relevant standards of arresters, such as JEC-2371-2003; Insulator-housed surge arresters(2) and IEC 60099-4 Edition 2.2, Metal-oxide surge arresters (MOSAs) without gaps for a.c. systems(3) in order to introduce the technology and provide a common guide for testing of polymer-housed SAs. According as the JEC-TR, the various new applications of the polymer-housed SAs, which are caused by superior advantages such as compact, light weight, safe failure mode, anti-seismic performance, anti-pollution performance and cost efficiency design, have been realized recently in Japan. Therefore, this paper gives specific consideration on the superior performance of the polymer-housed SAs and the evaluation methods of the polymer-housed SAs, because there are some issues in the existent standards to be solved.

  5. Performance of conducting polymer electrodes for stimulating neuroprosthetics (United States)

    Green, R. A.; Matteucci, P. B.; Hassarati, R. T.; Giraud, B.; Dodds, C. W. D.; Chen, S.; Byrnes-Preston, P. J.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H.


    Objective. Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. Approach. PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. Main results. It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30× larger than Pt when tested in physiological saline and 20× larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. Significance. These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.

  6. Zwitter-Ionic Polymer Applied as Electron Transportation Layer for Improving the Performance of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Qiaoyun Chen


    Full Text Available A zwitter-ionic polymer poly (sulfobetaine methacrylate (denoted by PSBMA was employed as an electron transportation layer (ETL in polymer solar cells (PSCs based on poly(3-hexylthiophene (P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM. PSBMA is highly soluble in trifluoroethanol, showing an orthogonal solubility to the solvent of the active layer in the preparation of multilayered PSCs. Upon introduction of PSBMA, the short circuit current and as a consequence the power conversion efficiency of the corresponding PSCs are dramatically improved, which can be because of the relatively high polarity of PSBMA compared with the other ETLs. This study demonstrated that zwitter-ionic polymer should be a competitive potential candidate of ETLs in PSCs.

  7. Structural Analysis of Semiconducting Polymers Exposed to High Energy Radiation (United States)

    Ahmadi Vaselabadi, Saeed; Mahadevapuram, Nikhila; Shakarisaz, David; Strzalka, Joseph; Ruchhoeft, Paul; Stein, Gila


    Semicrystalline polymers are used in low-cost electronics such as solar cells, thin film transistors, and light-emitting diodes. Their optoelectronic performance in these devices is partly dictated by molecular ordering and nanoscale structure, where the latter is particularly difficult to control. We used atom-beam radiation to crosslink the polymer poly(3-hexylthiophene) into nanoscale and microscale patterns. Ionizing radiation sources generate intermolecular cross-links that render the polymer insoluble in organic solvents. Grazing-incidence Wide-angle X-ray Scattering (GIWAXS) was used to investigate the effects of irradiation on molecular ordering of poly(3-hexylthiophene). We found that crosslinking will disrupt intermolecular ordering (reduce crystallinity and crystalline grain sizes). We also found that X-ray exposure during the WAXS measurements can induce the crosslinking through a similar mechanism, and we propose a simple method to test for the damage caused by these measurements. As an example, we find that poly (3-hexylthiophene) has measurable cross-links after 20 sec exposure to 7.35 keV radiation with flux of 1 *1011 photons/sec at an incident angle of 0.5° .

  8. Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers (United States)


    Efficiency Inverted Polymer Solar Cells with Double Interlayer” Conference... Efficient Inverted Polymer Solar Cells using Silole-containing low-bandgap polymer ” with C. Small, F. So. 18. Materials be used as the active polymer in PCBM based solar cells . 6 Simplifying our chemistry, we have developed Stille coupling polymerization

  9. Naphthacenodithiophene Based Polymers-New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency

    KAUST Repository

    Knall, Astrid Caroline


    Wide-bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6-dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3-benzothiadiazole (BT) via a palladium-catalyzed Suzuki coupling reaction, NDT-BT co-polymers with high molecular weights and narrow polydispersities are afforded. These novel wide-bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT-BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  10. High-performance membranes from polyimides with intrinsic microporosity. (United States)

    Ghanem, Bader S; McKeown, Neil B; Budd, Peter M; Selbie, James D; Fritsch, Detlev


    Membranes with high permeability to gases are formed from polyimides with rigid backbones that incorporate a spiro-centre. A route to this new range of high-free-volume polyimides is demonstrated, and exceptional performance is obtained for a polymer containing a dimethyl binaphthyl unit. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells (United States)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  12. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)


    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  13. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian


    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  14. Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. (United States)

    Miller, Thomas F; Wang, Zhen-Gang; Coates, Geoffrey W; Balsara, Nitash P


    The development of solid polymer electrolytes for lithium battery applications is a challenge of profound technological significance. We have established a collaboration with the aim of understanding and designing improved polymer electrolytes that combines theoretical modeling, polymer synthesis, and experimental characterization. By studying diverse polymer chemistries, we have discovered that ion-solvation-site connectivity is an important feature of polymer electrolytes that is necessary for high lithium-ion conductance. We are employing this insight into search for improved polymer electrolytes, with promising early-stage results.

  15. High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. (United States)

    Liu, Yao; Renna, Lawrence A; Bag, Monojit; Page, Zachariah A; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D; Russell, Thomas P


    Perovskite-containing tandem solar cells are attracting attention for their potential to achieve high efficiencies. We demonstrate a series connection of a ∼ 90 nm thick perovskite front subcell and a ∼ 100 nm thick polymer:fullerene blend back subcell that benefits from an efficient graded recombination layer containing a zwitterionic fullerene, silver (Ag), and molybdenum trioxide (MoO3). This methodology eliminates the adverse effects of thermal annealing or chemical treatment that occurs during perovskite fabrication on polymer-based front subcells. The record tandem perovskite/polymer solar cell efficiency of 16.0%, with low hysteresis, is 75% greater than that of the corresponding ∼ 90 nm thick perovskite single-junction device and 65% greater than that of the polymer single-junction device. The high efficiency of this hybrid tandem device, achieved using only a ∼ 90 nm thick perovskite layer, provides an opportunity to substantially reduce the lead content in the device, while maintaining the high performance derived from perovskites.

  16. Effect of polymer microsphere incorporation on impact performance of STF cotton fabric composite (United States)

    Suhaimi, M. S.; Mohamed, R.; Faiza, M. A.


    Liquid body armor system is recently being used compared to conventional body armor due to its lightweight, highly flexibility and reduced layered fabric. Shear thickening fluid (STF) system comprising of Polymer Microsphere (PMS) and solvent media are exploited in this study. Polymer Microsphere (eg: PMS) in solvent media varies with viscosity upon different PMS composition with and without surfactant. Fabrication of STF fabric system using Cotton laminate were performed using hand lay up with fixed areal density of 40% PMS content. Impact performance was evaluated using knife pendulum impact tester. Impact strength was found to increase with incorporation of STF system. STF addition significantly improves stab resistance of fabric. There were improvements of impact energy absorption for cotton fabric at different volume of STF used with 3 layers. For the three layer systems, impact performance showed improvement of 27.62% using 4ml of STF compared to use of 8ml of STF (12.44% impact improvement). For Cotton STF fabric composite, the effectiveness of the penetration was raised upon higher fabric layers. Overall, the STF-Cotton fabric composite are totally failure during testing, because of the cotton fabric is a fabric, which has very low strength. The addition of STF onto the cotton fabric system will not make the fabric becomes highly impact resistance.

  17. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)



    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  18. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 11 (1999) pp 281-296 by IOP Publishing Ltd

    DEFF Research Database (Denmark)

    Henk, Peter O; Kortsen, T.W.; Kvarts, T.


    A fluid DGEBA/methyl nadicanhydride epoxy system has been filled with inorganic particles, cast as bubble-free plates and cured. The ability of both the pure network polymer and the polymer/particle composites to withstand partial electrical discharges has been investigated. Three types of particle...... electrode arrangement was applied, the test comprising the establishment of partial discharges running perpendicularly onto one face of a plate specimen for a period measured until breakdown.Our results show that the endurance of the pure polymer is low. Increased loading with Aerosil increases...

  19. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST


    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  20. Interaction of Phosphoric Acid with Cell Components in High Temperature Polymer Electrolyte Fuel Cells


    Liu, Fang


    A high-temperature polymer electrolyte fuel cell (HT-PEFC) is an efficient and clean energy convertingdevice. The protonic conductivity of the electrodes and the polybenzimidazole-type membraneis assured by phosphoric acid. The electrochemical reactions in HT-PEFCs of hydrogen andoxygen to water take place in the electrodes of the membrane electrode assembly (MEA) whichare partly soaked with phosphoric acid. The performance of a HT-PEFC depends mainly on theinteractions between all cell compo...

  1. Moisture absorption analysis of high performance polyimide adhesive

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Bhowmik, S.; Ernst, L.J.


    The high temperature resistant polymers and metal composites are used widely in aviation, space, automotive and electronics industry. The high temperature resistant polymers and metals are joined together using high temperature adhesives. Polyimide and epoxy adhesives that can withstand high

  2. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei


    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  3. Effect Dispersibility of MWCNT on the Mechanical and Tribological Performance of Polymer Nanocomposite Coating

    Directory of Open Access Journals (Sweden)

    Ammar Al-kawaz


    Full Text Available To utilize MWCNTs as influential reinforcement in polymer composites, reasonable dispersion and a satisfactory interfacial bond between the MWCNTs and polymer matrix must be ensured. The chemical modification of carbon nanotube surface (CNTs could enhance their chemical compatibility and dispersibility with the polymer matrix. In this study, polymer matrix composites reinforced by pristine MWCNT and MWCNT grafted PMMA (CNTPMMA were prepared. A comparative study executed to analyze the impact of MWCNT dispersion on the mechanical and tribological performance of the resultant polymer nanocomposite coating. The results showed that the dispersion of carbon nanotubes in the base polymeric material was improved after being grafted with polymethyl meth acrylate chains, and thus improved their mechanical and tribological performance in the composite coatings.

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik


    The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.

  5. Response of polymer composites to high and low velocity impact (United States)

    Hsieh, C. Y.; Mount, A.; Jang, B. Z.; Zee, R. H.


    The present investigation of fiber-reinforced polymer matrix composites' impact characteristics employed a drop tower for the low-velocity impact case and a novel, projectile instantaneous velocity-measuring sensor for high-velocity impact. Attention was given to the energy loss of projectiles in composites reinforced with polyethylene, kevlar, and graphite. Two distinct energy-loss mechanisms are noted, the first of which is due to the actual fracture process while the other is due to the generation of friction heat. The drop-tower impact-test results furnish the strain-rate dependence of the energy loss.

  6. Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers

    KAUST Repository

    Jiang, Ying


    Regioregular pentacene-containing polymers were synthesized with alkylated bithiophene (BT) and cyclopentadithiophene (CPDT) as comonomers. Among them, 2,9-conjugated polymers PnBT-2,9 and PnCPDT-2,9 achieved the best performance in transistor and photovoltaic devices respectively. The former achieved the most highly ordered structures in thin films, yielding ambipolar transistor behavior with hole and electron mobilities up to 0.03 and 0.02 cm 2 V -1 s -1 on octadecylsilane-treated substrates. The latter achieved photovoltaic power conversion efficiencies up to 0.33%. The impact of regioregularity and direction of conjugation-extension (2,9 vs. 2,10), on thin-film order and device performance has been demonstrated for the pentacene-containing polymers for the first time, providing insight towards future functional material design. © 2012 The Royal Society of Chemistry.

  7. High Performance Computing at NASA (United States)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)


    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  8. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.


    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  9. Ultimate performance of polymer : fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J. D.; Blom, P. W. M.


    We present the model calculations to explore the potential of polymer: fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a

  10. Performance of polymer compositions as carrier to cowpea rhizobial ...

    African Journals Online (AJOL)

    ... to provide the same shoot nitrogen content and productivity in comparison to the recommended strain. These results indicate the feasibility of inoculants with the polymer blends as carrier materials and the efficiency of the new fast growing rhizobia from Brazilian semi-arid. Key words: Inoculant technology, strain selection, ...

  11. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.


    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  12. High-performance sports medicine

    National Research Council Canada - National Science Library

    Speed, Cathy


    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition...

  13. Synthesis and characterization of a novel molecularly imprinted polymer for simultaneous extraction and determination of water-soluble and fat-soluble synthetic colorants in chilli products by solid phase extraction and high performance liquid chromatography. (United States)

    Long, Chaoyang; Mai, Zhibin; Yang, Yingfen; Zhu, Binghui; Xu, Xiumin; Lu, Lin; Zou, Xiaoyong


    A sorbent was synthesized and investigated for molecularly imprinted solid phase extraction (MISPE). Molecularly imprinted polymers (MIP) were synthesized via precipitation polymerization procedure, where 4-vinyl pyridine (4-VP) was used as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The imprinting effect of the MISPE was evaluated by elution experiments. The resulting MISPE showed high extraction selectivity to water-soluble and fat-soluble synthetic colorants. The determination of multi-residue for three kinds of water-soluble and six kinds of fat-soluble synthetic colorants in chilli products was also investigated by HPLC coupled with MISPE. The mean recoveries calculated by solvent calibration curve for water-soluble and fat-soluble synthetic colorants were from 72.1% to 95.6% for chilli spice and 72.1% to 92.3% for chilli powder. The decision limit (CCalpha) and the detection capability (CCbeta) obtained for water-soluble and fat-soluble synthetic colorants were in the range of 1.2-1.6 and 1.9-2.4 microg kg(-1) in chilli spice and chilli powder. The resulting MISPE was successfully used off-line for the determination of nine kinds of synthetic colorants in chilli products.

  14. Bilayer Polymer Metacomposites Containing Negative Permittivity Layer for New High-k Materials. (United States)

    Wang, Jing; Shi, Zhicheng; Mao, Fan; Chen, Shougang; Wang, Xin


    Polymer matrix high-k composites are of considerable interest in various electronic devices, such as capacitors, antennas, actuators, etc. However, how to enhance the permittivity without elevating the loss remains a challenge for us. Here we present a novel design of bilayer high-k metacomposites consisting of two stacked single layers with positive permittivity and negative permittivity. Interestingly, the bilayer system shows an obvious permittivity boost effect with a permittivity improved by a 40-fold increase compared with the polymer matrix, while maintaining a loss tangent as low as 0.06. Further calculation results indicate that the permittivity of the bilayer composites could be enhanced by 4000-fold or even a greater increase as compared with the polymer matrix via balancing the dielectric properties of single layers. Insights into how the thickness ratios and dielectric properties of single layers interfere with the dielectric performances of bilayer composites were discussed. This study provides a new route for the design of high-k materials, and it will have great significance on the development of dielectric materials. Hopefully, multilayer high-k metacomposites with fascinating dielectric performances could be achieved via balancing the dielectric properties of single layers.

  15. Electro-optic polymers for high speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.


    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature $(T_g)$ and photodefinable properties. The polymers tested are polysulfone (PS) and polycarbonate (PC). The electro-optic chromophore,

  16. High Performance Space Pump Project (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  17. Influence of ionic liquid on pseudocapacitance performance of electrochemically synthesized conductive polymer: Electrochemical and theoretical investigation. (United States)

    Ehsani, A; Kowsari, E; Dashti Najafi, M; Safari, R; Mohammad Shiri, H


    This study demonstrates a method for improving supercapacitive performance of electrochemically synthesized conductive polymer. In this regards, 1-Butyl-3-methyl imidazolium hexafluorophosphate (BI) as a new high efficient ionic liquid was synthesized using chemical approach and then fabricated POAP/BI films by electro-polymerization of POAP in the presence of BI to serve as the active electrode for electrochemical supercapacitor. Theoretical study (AIM) and electrochemical analysis have been used for characterization of ionic liquid and POAP/BI composite film. Different electrochemical methods including galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new most efficient materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance Measurement for a Logistics Services Provider to the Polymer Industry


    Tok, King Lai


    This management project discusses the form of performance measurement system suitable for a logistics services provider who focuses on providing its services to large multinational petrochemical companies in the polymer industry

  19. Performance tuning for high performance computing systems


    Pahuja, Himanshu


    A Distributed System is composed by integration between loosely coupled software components and the underlying hardware resources that can be distributed over the standard internet framework. High Performance Computing used to involve utilization of supercomputers which could churn a lot of computing power to process massively complex computational tasks, but is now evolving across distributed systems, thereby having the ability to utilize geographically distributed computing resources. We...

  20. Performance Improvement of Latex-Based PSAs using Polymer Microstructure Control (United States)

    Qie, Lili

    This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA's bonding strength to a substrate while shear strength reflects a PSA's capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength. In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel

  1. Highly Sensitive Flexible NH3 Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers. (United States)

    Nketia-Yawson, Benjamin; Jung, A-Ra; Noh, Yohan; Ryu, Gi-Seong; Tabi, Grace Dansoa; Lee, Kyung-Koo; Kim, BongSoo; Noh, Yong-Young


    Understanding the sensing mechanism in organic chemical sensors is essential for improving the sensing performance such as detection limit, sensitivity, and other response/recovery time, selectivity, and reversibility for real applications. Here, we report a highly sensitive printed ammonia (NH3) gas sensor based on organic thin film transistors (OTFTs) with fluorinated difluorobenzothiadiazole-dithienosilole polymer (PDFDT). These sensors detected NH3 down to 1 ppm with high sensitivity (up to 56%) using bar-coated ultrathin (NH3 interactions comprise hydrogen bonds and electrostatic interactions between the PDFDT polymer backbone and NH3 gas molecules, thus lowering the highest occupied molecular orbital levels, leading to hole trapping in the OTFT sensors. Additionally, density functional theory calculations show that gaseous NH3 molecules are captured via cooperation of fluorine atoms and dithienosilole units in PDFDT. We verified that incorporation of functional groups that interact with a specific gas molecule in a conjugated polymer is a promising strategy for producing high-performance printed OTFT gas sensors.

  2. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan


    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  3. Rigid, vapor-permeable poly(4-methyl-2-pentyne) templates for high resolution patterning of nanoparticles and polymers. (United States)

    Demko, Michael T; Cheng, Jim C; Pisano, Albert P


    Soft lithography methods are emerging as useful tools for high-resolution, three-dimensional patterning of polymers and nanoparticles. However, the low Young's modulus of the standard template material, poly(dimethylsiloxane) (PDMS), limits attainable resolution, fidelity, and alignment capability. While much research has been performed to find other more rigid polymer template materials, the high solvent and vapor permeability that is characteristic of PDMS is often sacrificed, preventing their use in those processes reliant on this property. In this work, a highly rigid, chemically robust, optically transparent and vapor-permeable poly(4-methyl-2-pentyne) template is developed. The combination of high rigidity and high vapor permeability enables high resolution patterning with simplified ink handling. This material was nanopatterned to create a template for patterning polymers and nanoparticles, achieving a resolution of better than 350 nm.

  4. Polymers, Polymers, Everywhere! A Workshop for Pre-High School Teachers and Students. (United States)

    Sherman, Marie


    Described is a workshop for grades 5-8 school teachers and students related to synthetic polymers. Participants become familiar with polymer theory and practice experiments they can use in class. Sources of materials used in the workshop are listed. (RH)

  5. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui


    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  6. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.


    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  7. High Performance Flexible Thermal Link (United States)

    Sauer, Arne; Preller, Fabian


    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  8. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics (United States)

    Luo, Jingdong; Liu, Sen; Haller, Marnie A.; Kang, Jae-Wook; Kim, Tae-Dong; Jang, Sei-Hum; Chen, Baoquan; Tucker, Neil; Li, Hongxiang; Tang, Hong-Zhi; Dalton, Larry R.; Liao, Yi; Robinson, Bruce H.; Jen, Alex K.


    Recent development of high-performance nonlinear optical polymers for electro-optics (E-O) is reviewed in this paper. A highly efficient and thermally stable nonlinear optical (NLO) chromophore, namely 2-[4-(2-{5-[2-(4-{Bis-(tert-butyl-dimethyl-silanyloxy)-ethyl]-amino}-phenyl)-vinyl]-thiophen-2-yl}-vinyl)-3-cyano-5-trifluoromethyl-5H-furan-2-ylidene]-malononitrile, has been prepared and incorporated in amorphous polycarbonate (APC) composites. The result from high electric field poling shows a very large E-O coefficient (r33 = 94 pm/V at 1.3 μm), 80% of which can be maintained at 85 °C for more than 500 hours. In addition to this guest/host sysytem, a high Tg side-chain polymer, derived from a 3-D cardo-type polimide with dendron-encapsulated chromophores as pendent groups has also been synthesized and characterized. A high degree of chromophore dipole orientation and a large r33 of 71 pm/V at 1.3 μm can be achieved in this poled polyimide. More than 90% of its E-O activity can be maintained at 85 °C for more than 600 hours. To access the full potential of poled polymers for device applications, we have developed a new lattice-hardening approach to overcome the "nonlinearity-stability-tradeoff" of conventional thermoset methods. By using the Diels-Alder lattice-hardening process, we can achieve the same high poling efficiency and large r33value as in a guest-host system while maintaining good thermal stability seen in densely-crosslinked polymers. By modifying the electronic properties of the crosslinking reagents, we can fine-tune the processing temperature window of the Diels-Alder reactions to achieve hardened materials with optimal properties.

  9. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format (United States)

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey


    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  10. Performance-based analysis of polymer-modified emulsions in asphalt surface treatments. (United States)


    Chip seals provide a durable and functional pavement surface and serve as a highly economical highway : maintenance option when constructed properly. Data and literature suggest that chip seal sections constructed with : polymer-modified emulsions (P...

  11. Magnetic field effect in highly pure, highly fluorescent conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Graupner, W.; Sacher, M.; Graupner, M.; Zenz, C.; Grampp, G.; Hermetter, A.; Leising, G.


    The authors report on the magnetic field effect (MFE) on the photoluminescence in films of a highly fluorescent conjugated laddertype poly(paraphenylene) (LPPP). They observe no MFE for the pure material, however, the introduction of a very small content of chemical defects via photo-oxidation leads to a MFE proportional to the amount of defects. The chemically induced increase in MFE is correlated with a change in other properties of the LPPP films, such as photoluminescence emission and excitation spectra, transient photoluminescence and infrared spectra.

  12. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Mark; Chénard, Etienne; Hernández-Burgos, Kenneth; Nagarjuna, Gavvalapalli; Assary, Rajeev S.; Hui, Jingshu; Moore, Jeffrey S.; Rodríguez-López, Joaquín


    The design of chemically stable and electrochemically reversible redox active polymers (RAPs) is of great interest for energy storage technologies. Particularly, RAPs are new players for flow batteries relying on a size-exclusion based mechanism of electrolyte separation, but few studies have provided detailed molecular understanding of redox polymers in solution. Here, we use a systematic molecular design approach to investigate the impact of linker and redox-pendant electronic interactions on the performance of viologen RAPs. We used scanning electrochemical microscopy, cyclic voltammetry, bulk electrolysis, temperature-dependent absorbance, and spectroelectrochemistry to study the redox properties, charge transfer kinetics, and self-exchange of electrons through redox active dimers and their equivalent polymers. Stark contrast was observed between the electrochemical properties of viologen dimers and their corresponding polymers. Electron self-exchange kinetics in redox active dimers that only differ by their tether length and rigidity influences their charge transfer properties. Predictions from the Marcus Hush theory were consistent with observations in redox active dimers, but they failed to fully capture the behavior of macromolecular systems. For example, polymer bound viologen pendants, if too close in proximity, do not retain chemical reversibility. In contrast to polymer films, small modifications to the backbone structure decisively impact the bulk electrolysis of polymer solutions. This first comprehensive study highlights the careful balance between electronic interactions and backbone rigidity required to design RAPs with superior electrochemical performance.

  13. Extensive EIS characterization of commercially available lithium polymer battery cell for performance modelling

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Teodorescu, Remus


    or degradation of an electrochemical system. Used for Lithium-ion (Li-ion) batteries, this method allows for a fast and accurate assessment of the battery's impedance at any working point, without modifying the state of the battery. The influence of the operating conditions, state of charge (SOC) and temperature...... on the performance of a commercially available 53 Ah Lithium polymer battery cell, manufactured by Kokam Co. Ltd., is investigated in laboratory experiments, at its beginning of life, by means of EIS. A data fitting algorithm was used to obtain the parameter values for the proposed equivalent electrical circuit......Electrochemical Impedance Spectroscopy (EIS) has become a popular analytical technique for research and development of battery cells' chemistries, due to the established, high precision computer controlled equipment, that are capable of direct, on-line monitoring of performance parameters...

  14. Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell

    Directory of Open Access Journals (Sweden)

    Toshihiro Ando


    Full Text Available We have used fibrous carbon materials as polymer electrolyte fuel cell (PEFC electrodes. We have examined the influence of the ionomer/carbon ratio on the performance of the PEFCs. The Marimo carbon is a kind of carbon with a spherical shape, and consists of carbon nanofilaments. Fibrous carbon materials have large specific surface areas without fine pores. The reactant gases and generated water can easily diffuse among the nanofilaments. The ionomer plays two roles; one is a proton transfer activity, and the other is binding the catalyst electrodes. An excess ionomer interferes with the diffusion of gases. The ionomer/carbon ratio should affect the performance of the PEFC, especially at a high current density.

  15. Ultimate performance of polymer: fullerene bulk heterojunction tandem solar cells


    Kotlarski, J. D.; Blom, P. W. M.


    We present the model calculations to explore the potential of polymer: fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonic acid) middle electrode an ulti...

  16. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)


    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  17. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  18. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance. (United States)

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao


    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


    Directory of Open Access Journals (Sweden)

    Zverev Andrey Olegovich


    Full Text Available There are considered the results of stress-strain state analysis of polymer diaphragm in the body of the 50 m high earthfill cofferdam of Gibe III dam. The diaphragm is made of polyvinylchloride (PVC geomembrane and has a zigzag location. Computations were conducted with the finite element method. A thin geomembrane was modeled by rod-shaped finite elements. Computations showed that the diaphragm made of geomembrane is a sufficiently safe seepage-control element: there are small tensile stresses on its individual sections. The geomembrane damage may occur in it only in the part anchored to the upstream shell. Considerable tensile stresses appear in anchors which are comparable with the geomembrane tensile strength. If the geomembrane is made of PVC, there will be a margin of safety. It is not recommended to anchor the diaphragm into the upstream shell but make it only into the downstream shell.

  20. RavenDB high performance

    CERN Document Server

    Ritchie, Brian


    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  1. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin


    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  2. Comparison of the performances of four hydrophilic polymers as supports for lipase immobilisation


    Toscano, Lydia; Montero, Gisela; Stoytcheva, Margarita; Cervantes, Lourdes; Gochev, Velizar


    Four hydrophilic polymers in the form of beads ? chitosan, alginate, alginate/polyvinyl alcohol (PVA), and chitosan-coated alginate ? were used as supports for lipase immobilisation. Hydrogel beads were characterised by bead-size-distribution estimation, surface morphology studies, and polymer interactions assessment. Matrix performances ? loading efficiency, immobilisation yield, enzyme activity, and stability retention ? were evaluated and compared. Although the loading efficiency of the ch...

  3. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)


    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  4. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. (United States)

    Qing, Guangyan; Lu, Qi; Li, Xiuling; Liu, Jing; Ye, Mingliang; Liang, Xinmiao; Sun, Taolei


    Multisite phosphorylation is an important and common mechanism for finely regulating protein functions and subsequent cellular responses. However, this study is largely restricted by the difficulty to capture low-abundance multiply phosphorylated peptides (MPPs) from complex biosamples owing to the limitation of enrichment materials and their interactions with phosphates. Here we show that smart polymer can serve as an ideal platform to resolve this challenge. Driven by specific but tunable hydrogen bonding interactions, the smart polymer displays differential complexation with MPPs, singly phosphorylated and non-modified peptides. Importantly, MPP binding can be modulated conveniently and precisely by solution conditions, resulting in highly controllable MPP adsorption on material surface. This facilitates excellent performance in MPP enrichment and separation from model proteins and real biosamples. High enrichment selectivity and coverage, extraordinary adsorption capacities and recovery towards MPPs, as well as high discovery rates of unique phosphorylation sites, suggest its great potential in phosphoproteomics studies.Capture of low-abundance multiply phosphorylated peptides (MPPs) is difficult due to limitation of enrichment materials and their interactions with phosphates. Here the authors show, a smart polymer driven by specific but tunable hydrogen bonding interactions can differentially complex with MPPs, singly phosphorylated and non-modified peptides.

  5. Cure Cycle Effect on High-Temperature Polymer Composite Structures Molded by VARTM

    Directory of Open Access Journals (Sweden)

    Ahmed Khattab


    Full Text Available This paper presents an analytical and experimental investigation of cure cycle effect on carbon-fiber reinforced high-temperature polymer composite structures molded by vacuum assisted resin transfer molding (VARTM. The molded composite structure consists of AS4-8 harness carbon-fiber fabrics and a high-temperature polymer (Cycom 5250-4-RTM. Thermal and resin cure analysis is performed to model the cure cycle of the VARTM process. The temperature and cure variations with time are determined by solving the three-dimensional transient energy and species equations within the composite part. Several case studies were investigated by the developed analytical model. The same cases were also experimentally investigated to determine the ultimate tensile strength for each case. This study helps in developing a science based technology for the VARTM process for the understanding of the process behavior and the effect of the cure cycle on the properties of the molded high-temperature polymer composites.

  6. High performance flexible heat pipes (United States)

    Shaubach, R. M.; Gernert, N. J.


    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  7. The High Performance Computing Initiative (United States)

    Holcomb, Lee B.; Smith, Paul H.; Macdonald, Michael J.


    The paper discusses NASA High Performance Computing Initiative (HPCI), an essential component of the Federal High Performance Computing Program. The HPCI program is designed to provide a thousandfold increase in computing performance, and apply the technologies to NASA 'Grand Challenges'. The Grand Challenges chosen include integrated multidisciplinary simulations and design optimizations of aerospace vehicles throughout the mission profiles; the multidisciplinary modeling and data analysis of the earth and space science physical phenomena; and the spaceborne control of automated systems, handling, and analysis of sensor data and real-time response to sensor stimuli.

  8. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. (United States)

    Totani, Masayasu; Ando, Tsuyoshi; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Kuroda, Kenichi; Tanihara, Masao


    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

  9. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao


    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  10. High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery. (United States)

    Zhang, Yiyong; Peng, Yueying; Wang, Yunhui; Li, Jiyang; Li, He; Zeng, Jing; Wang, Jing; Hwang, Bing Joe; Zhao, Jinbao


    The lithium-sulfur battery, which offers a high energy density and is environmental friendly, is a promising next generation of rechargeable energy storage system. However, despite these attractive attributes, the commercialization of lithium-sulfur battery is primarily hindered by the parasitic reactions between the Li metal anode and dissolved polysulfide species from the cathode during the cycling process. Herein, we synthesize the sulfur-rich carbon polysulfide polymer and demonstrate that it is a promising cathode material for high performance lithium-sulfur battery. The electrochemical studies reveal that the carbon polysulfide polymer exhibits superb reversibility and cycle stability. This is due to that the well-designed structure of the carbon polysulfide polymer has several advantages, especially, the strong chemical interaction between sulfur and the carbon framework (C-S bonds) inhibits the shuttle effect and the π electrons of the carbon polysulfide compound enhance the transfer of electrons and Li+. Furthermore, as-prepared carbon polysulfide polymer-graphene hybrid cathode achieves outstanding cycle stability and relatively high capacity. This work highlights the potential promise of the carbon polysulfide polymer as the cathode material for high performance lithium-sulfur battery.

  11. Inkjet-printing-based soft-etching technique for high-speed polymer ambipolar integrated circuits. (United States)

    Khim, Dongyoon; Baeg, Kang-Jun; Kang, Minji; Lee, Seung-Hoon; Kim, Nam-Koo; Kim, Jihong; Lee, Geon-Woong; Liu, Chuan; Kim, Dong-Yu; Noh, Yong-Young


    Here, we report the so-called soft-etching process based on an inkjet-printing technique for realizing high-performance printed and flexible organic electronic circuits with conjugated polymer semiconductors. The soft-etching process consists of selective etching of the gate made of a dielectric polymer and deposition of another gate dielectric layer. The method enables the use of a more desirable polymer dielectric layer for the p-channel and n-channel organic field-effect transistors (OFETs) in complementary integrated circuits. We fabricated high-performance ambipolar complementary inverters and ring oscillators (ROs) using poly([N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as the active layer as well as poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) and polystyrene ((PS)/P(VDF-TrFE)) as dielectric materials for the p-channel (pull-up transistor) and n-channel (pull-down transistor) OFETs, respectively. The PS dielectric polymer was selectively etched by inkjetting of n-butyl acetate as an orthogonal solvent for P(NDI2OD-T2). Employing this methodology, the five-stage ambipolar ROs with P(NDI2OD-T2) exhibited an oscillation frequency of ∼16.7 kHz, which was much higher than that of non-soft-etched ROs with a single dielectric layer (P(VDF-TrFE); ∼3 kHz).

  12. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar


    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  13. Characterizing the self-sensing performance of carbon nanotube-enhanced fiber-reinforced polymers (United States)

    Loyola, Bryan R.; La Saponara, Valeria; Loh, Kenneth J.


    The increased usage of fiber-reinforced polymers (FRP) in recent decades has created a need to monitor the unique response of these materials to impact and fatigue damage. As most traditional nondestructive evaluation methods are illsuited to detecting damage in FRPs, new methods must be created without compromising the high strength-to-weight aspects of FRPs. This paper describes the characterization of carbon nanotube-polyelectrolyte thin films applied to glass fiber substrates as a means for in situ strain sensing in glass fiber-reinforced polymers (GFRP). The layer-by-layer deposition process employed is capable of depositing individual and small bundles of carbon nanotubes within a polyelectrolyte matrix and directly onto glass fiber matrices. Upon film fabrication, the nanocomposite-coated GFRP specimens are mounted in a load frame for characterizing their electromechanical performance. This preliminary results obtained from this study has shown that these thin films exhibit bilinear piezoresistivity. Time- and frequency-domain techniques are utilized to characterize the nanocomposite strain sensing response. An equivalent circuit is also derived from electrical impedance spectroscopic analysis of thin film specimens.

  14. Molecularly Imprinted Polymers and Highly Porous Materials in Sensing Applications (United States)


    83). The supercritical CO2 is then slowly vented. In the second method the monomers are polymerized with formic acid in the presence of...instance, materials might include polymers, molecularly imprinted polymers, dendrimers, porous silicon, optical fibres, nanoparticles /metallics, aptamersD...Analytes include small organic molecules, pharmaceuticals, pesticides, amino acids and peptides, nucleotide bases, steroids and sugars. Analytes

  15. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. (United States)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole


    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength.

  16. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio


    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C...... and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent...... sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more...

  17. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)


    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  18. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics (United States)

    Bucella, Sadir G.; Luzio, Alessandro; Gann, Eliot; Thomsen, Lars; McNeill, Christopher R.; Pace, Giuseppina; Perinot, Andrea; Chen, Zhihua; Facchetti, Antonio; Caironi, Mario


    High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the deposition of highly crystalline films, orientational alignment of polymer chains, albeit commonly achieved by non-scalable/slow bulk alignment schemes, is a more robust approach towards large-area electronics. By combining pre-aggregating solvents for formulating the semiconductor and by adopting a room temperature wired bar-coating technique, here we demonstrate the fast deposition of submonolayers and nanostructured films of a model electron-transporting polymer. Our approach enables directional self-assembling of polymer chains exhibiting large transport anisotropy and a mobility up to 6.4 cm2 V-1 s-1, allowing very simple device architectures to operate at 3.3 MHz. Thus, the proposed deposition strategy is exceptionally promising for mass manufacturing of high-performance polymer circuits.

  19. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application (United States)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel


    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  20. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range. (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui


    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton


    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  2. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries. (United States)

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao


    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  3. Closed-loop performance of an actuated deformable carbon fiber reinforced polymer mirror (United States)

    Wilcox, Christopher C.; Jungwirth, Matthew E. L.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Romeo, Robert C.; Martin, Robert N.


    The Naval Research Laboratory and Sandia National Laboratories have been actively researching the use of carbon fiber reinforced polymer material as optical elements in many optical systems. Active optical elements can be used to build an optical system capable of changing is optical zoom. We have developed a two-element optical system that uses a large diameter, thin-shelled carbon fiber reinforced polymer mirror, actuated with micro-positioning motors, and a high actuator density micro-electro-mechanical deformable mirror. Combined with a Shack-Hartmann wavefront sensor, we have optimized this actuated carbon fiber reinforced polymer deformable mirror's surface for use with a forthcoming reflective adaptive optical zoom system. In this paper, we present the preliminary results of the carbon fiber reinforced polymer deformable mirror's surface quality and the development of the actuation of it.

  4. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang


    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  5. Predictive Model of Graphene Based Polymer Nanocomposites: Electrical Performance (United States)

    Manta, Asimina; Gresil, Matthieu; Soutis, Constantinos


    In this computational work, a new simulation tool on the graphene/polymer nanocomposites electrical response is developed based on the finite element method (FEM). This approach is built on the multi-scale multi-physics format, consisting of a unit cell and a representative volume element (RVE). The FE methodology is proven to be a reliable and flexible tool on the simulation of the electrical response without inducing the complexity of raw programming codes, while it is able to model any geometry, thus the response of any component. This characteristic is supported by its ability in preliminary stage to predict accurately the percolation threshold of experimental material structures and its sensitivity on the effect of different manufacturing methodologies. Especially, the percolation threshold of two material structures of the same constituents (PVDF/Graphene) prepared with different methods was predicted highlighting the effect of the material preparation on the filler distribution, percolation probability and percolation threshold. The assumption of the random filler distribution was proven to be efficient on modelling material structures obtained by solution methods, while the through-the -thickness normal particle distribution was more appropriate for nanocomposites constructed by film hot-pressing. Moreover, the parametrical analysis examine the effect of each parameter on the variables of the percolation law. These graphs could be used as a preliminary design tool for more effective material system manufacturing.

  6. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.


    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  7. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide


    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  8. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)


    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  9. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti


    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  10. Flexible High-Barrier Polymers for Food Packaging Project (United States)

    National Aeronautics and Space Administration — The development of a polymer laminate with water and oxygen barrier properties suitable for food packaging and preservation on 3-5 year manned space exploration...

  11. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors

    KAUST Repository

    Chen, Hu


    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm2 V−1 s−1 in bottom-gate top-contact organic field-effect transistors.

  12. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3....... A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...... will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity....

  13. High Performance Tools And Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collette, M R; Corey, I R; Johnson, J R


    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  14. P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors. (United States)

    Boorboor Ajdari, F; Kowsari, E; Ehsani, A


    In the present work, zeolitic imidazolate framework (ZIF-67) was synthesized via chemical routes. For improving the electrochemical performance of the conductive polymer, POAP/ /ZIF-67 composite films were fabricated by POAP electropolymerization in the presence of ZIF-67 as active electrodes for electrochemical supercapacitors. The structural and the valance states of the prepared samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Different electrochemical methods, including galvanostatic charge discharge experiments, cyclic voltammetry, and electrochemical impedance spectroscopy, have been applied to study the system performance. The supercapacitive behavior of the composite film was attributed to the (i) high active surface area of the composite, the (ii) charge transfer along the polymer chain due to the conjugation form of the polymer, and finally, the (iii) synergism effect between the conductive polymer and ZIF-67. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A Study of the Strength of a Template Molecule-A Functional Monomer Interaction That Affects the Performance of Molecularly Imprinted Polymers and Its Application to Chiral Amplification. (United States)

    Yasuyama, Takuro; Matsunaga, Hirofumi; Ando, Shin; Ishizuka, Tadao


    A novel type of molecularly imprinted polymer (MIP), N-benzoyl-(S)-valine anilide-imprinted polymer (IP-2), was prepared using hydrogen-bonding interactions as a main force in the pre-polymerization step. The performance of the IP-2 was evaluated via batch procedure and compared with a (S)-valine anilide-imprinted polymer (IP-1) that was prepared using an ionic interaction that is stronger than hydrogen bonding. Although both polymers showed a preferential adsorbability for (S)-amino acid derivatives, different performances were observed in terms of adsorbability and enantioselectivity. In addition, the IP-2 was able to recognize the enantiomer of a valine-derived chiral catalyst. This phenomenon was applied to a chiral amplification reaction, and a highly selective asymmetric Mannich-type amination was achieved using the combination of a racemic catalyst and a MIP.

  16. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan


    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  17. Record high hole mobility in polymer semiconductors via side-chain engineering. (United States)

    Kang, Il; Yun, Hui-Jun; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi


    Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm(2)/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π-π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature.

  18. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography

    NARCIS (Netherlands)

    Uliyanchenko, E.; van der Wal, S.; Schoenmakers, P.J.


    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles

  19. College-Mentored Polymer/Materials Science Modules for Middle and High School Students (United States)

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim


    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  20. Performance evaluation of cross-flow single-phase liquid-to-gas polymer tube heat exchanger (United States)

    Dewanjee, Sujan; Hossain, Md. Rakibul; Rahman, Md. Ashiqur


    Reduced core weight and material cost, higher corrosion resistance are some of the major eye catching properties to study polymers over metal in heat exchanger applications in spite of the former's relatively low thermal conductivity and low strength. In the present study, performance of polymer parallel thin tube heat exchanger is numerically evaluated for cross flow liquid to air applications for a wide range of design and operating parameters such as tube diameter, thickness, fluid velocity and temperature, etc. using Computational Fluid Dynamics (CFD). Among a range of available polymeric materials, those with a moderate to high thermal conductivity and strength are selected for this study. A 90 cm × 1 cm single unit of polymer tubes, with appropriate number of tubes such that at least a gap of 5 mm is maintained in between the tubes, is used as a basic unit and multiple combination in the transverse direction of this single unit is simulated to measure the effect. The tube inner diameter is varied from 2 mm to 4 mm and the pressure drop is measured to have a relative idea of pumping cost. For each inner diameter the thickness is varied from .5 mm to 2.5 mm. The water velocity and the air velocity are varied from 0.4 m/s to 2 m/s and 1 m/s to 5 m/s, respectively. The performance of the polymer heat exchanger is compared with that of metal heat exchanger through and an optimum design for polymer heat exchanger is sought out.

  1. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil


    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard....... Stereomicroscope observations before and after fire testing focused on the interface between HPC and BFRP mesh and its change with temperature exposure. BFRP mesh showed tendency to reduce the probability of HPC spalling without solving this issue. BFRP mesh alone leads to mechanical failure of concrete elements......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  2. Eeonomer 200F®: A High-Performance Nanofiller for Polymer Reinforcement—Investigation of the Structure, Morphology and Dielectric Properties of Polyvinyl Alcohol/Eeonomer-200F® Nanocomposites for Embedded Capacitor Applications (United States)

    Deshmukh, Kalim; Ahamed, M. Basheer; Deshmukh, Rajendra R.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Pasha, S. K. Khadheer; AlMaadeed, Mariam Al-Ali; Polu, Anji Reddy; Chidambaram, K.


    In the present study, Eeonomer 200F® was used as a high-performance nanofiller to prepare polyvinyl alcohol (PVA)-based nanocomposite films using a simple and eco-friendly solution casting technique. The prepared PVA/Eeonomer nanocomposite films were further investigated using various techniques including Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetric analysis, polarized optical microscopy, scanning electron microscopy and mechanical testing. The dielectric behavior of the nanocomposites was examined over a broad frequency range from 50 Hz to 20 MHz and temperatures ranging from 40°C to 150°C. A notable improvement in the thermal stability of the PVA was observed with the incorporation of Eeonomer. The nanocomposites also demonstrated improved mechanical properties due to the fine dispersion of the Eeonomer, and good compatibility and strong interaction between the Eeonomer and the PVA matrix. A significant improvement was observed in the dielectric properties of the PVA upon the addition of Eeonomer. The nanocomposites containing 5 wt.% Eeonomer exhibited a dielectric constant of about 222.65 (50 Hz, 150°C), which was 18 times that of the dielectric constant (12.33) of neat PVA film under the same experimental conditions. These results thus indicate that PVA/Eeonomer nanocomposites can be used as a flexible high-k dielectric material for embedded capacitor applications.

  3. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives

    KAUST Repository

    Nikolka, Mark


    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  4. Neo4j high performance

    CERN Document Server

    Raj, Sonal


    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  5. High-performance sports medicine. (United States)

    Speed, Cathy


    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  6. Origin of high propagation loss in electrospun polymer nanofibers (United States)

    Ishii, Yuya; Satozono, Shota; Kaminose, Ryohei; Fukuda, Mitsuo


    We evaluate optical propagation loss (α) in electrospun poly(methyl methacrylate) (PMMA) nanofibers with different wavelength (λ) and determine the origin of the loss. Aligned single electrospun nanofibers composed of PMMA and a small amount of an organic dye are fabricated with an average diameter of approximately 640 nm. After cladding seven fiber samples, α is evaluated to be 26-62 dB cm-1 at wavelengths 590-680 nm. Moreover, α depended linearly on λ-4, and from the fitting functions we determined the ratio of the following two possible losses for α: loss at the interface between the fiber-core and cladding because of non-uniformity within the fibers (αun), and loss because of excess light scattering in the fibers resulting from density inhomogeneity of PMMA (αsc). For the fibers, αun is evaluated to be 6.9-22 dB cm-1, which represents 19%-50% of α at λ of 650 nm with α ˜ αun + αsc. Thus, we conclude that the high α in these fibers originates from both their poor uniformity and density inhomogeneity. Furthermore, a quantitative investigation of uniformity in the individual fibers revealed that the root mean square roughness ranges from 5.5 nm to 9.0 nm and the theoretical value of αun was ˜1 dB cm-1 showing reasonable agreement with experimental data. These findings hold for low-loss polymer nanofiber waveguides, which have high aspect ratio and fine patterning even in three dimensions.

  7. High-Performance Polymeric Materials. (United States)


    the rigid- n;d polymer, the coplanar conformation may be f-vored by long-range conjugation effects, which are absent in benzaldehyde , the model...tetrahvdrofuran and then toluene for several days to remove soluble material ,found to be present to the extent of a few percent Strips cut from the network...The resulting networks were extracted in tetra- end-linking process. hydrofuran and toluene in the usual manner (6, 7); The present investigation

  8. Controlled formation of polymer nanocapsules with high diffusion-barrier properties and prediction of encapsulation efficiency. (United States)

    Hofmeister, Ines; Landfester, Katharina; Taden, Andreas


    Polymer nanocapsules with high diffusion-barrier performance were designed following simple thermodynamic considerations. Hindered diffusion of the enclosed material leads to high encapsulation efficiencies (EEs), which was demonstrated based on the encapsulation of highly volatile compounds of different chemical natures. Low interactions between core and shell materials are key factors to achieve phase separation and a high diffusion barrier of the resulting polymeric shell. These interactions can be characterized and quantified using the Hansen solubility parameters. A systematic study of our copolymer system revealed a linear relationship between the Hansen parameter for hydrogen bonding (δh ) and encapsulation efficiencies which enables the prediction of encapsulated amounts for any material. Furthermore EEs of poorly encapsulated materials can be increased by mixing them with a mediator compound to give lower overall δh values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Coordination Polymer Framework Based On-Chip Micro-Supercapacitors with AC Line-Filtering Performance. (United States)

    Yang, Chongqing; Schellhammer, Karl Sebastian; Ortmann, Frank; Sun, Sai; Dong, Renhao; Karakus, Melike; Mics, Zoltán; Löffler, Markus; Zhang, Fan; Zhuang, Xiaodong; Cánovas, Enrique; Cuniberti, Gianaurelio; Bonn, Mischa; Feng, Xinliang


    On-chip micro-supercapacitors (MSCs) are important Si-compatible power-source backups for miniaturized electronics. Despite their tremendous advantages, current on-chip MSCs require harsh processing conditions and typically perform like resistors when filtering ripples from alternating current (AC). Herein, we demonstrated a facile layer-by-layer method towards on-chip MSCs based on an azulene-bridged coordination polymer framework (PiCBA). Owing to the good carrier mobility (5×10-3  cm2  V-1  s-1 ) of PiCBA, the permanent dipole moment of azulene skeleton, and ultralow band gap of PiCBA, the fabricated MSCs delivered high specific capacitances of up to 34.1 F cm-3 at 50 mV s-1 and a high volumetric power density of 1323 W cm-3 . Most importantly, such MCSs exhibited AC line-filtering performance (-73° at 120 Hz) with a short resistance-capacitance constant of circa 0.83 ms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-performing physician executives. (United States)

    Brown, M; Larson, S R; McCool, B P


    Physician leadership extends beyond traditional clinical disciplines to hospital administration, group practice management, health policy making, management of managed care programs, and many business positions. What kind of person makes a good physician executive? What stands out as the most important motivations, attributes, and interests of high-performing physician executives? How does this compare with non-physician health care executives? Such questions have long been high on the agenda of executives in other industries. This article builds on existing formal assessments of leadership attributes of high-performing business, government, and educational executives and on closer examination of health care executives. Previous studies looked at the need for innovative, entrepreneurial, energetic, community-oriented leaders for positions throughout health care. Traits that distinguish excellence and leadership were described by Brown and McCool.* That study characterized successful leaders in terms of physical strengths (high energy, good health, and propensity for hard work), mental strengths (creativity, intuition, and innovation), and organizational strengths (mission orientation, vision, and entrepreneurial spirit). In this investigation, a subset of health care executives, including physician executives, was examined more closely. It was initially assumed that successful physician executives exhibit many of the same positive traits as do nonphysician executives. This assumption was tested with physician leaders in a range of administrative and managerial positions. We also set out to identify key differences between physician and nonphysician executives. Even with our limited exploration, it seems to us that physician executives probably do differ from nonphysician executives.

  11. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.


    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  12. On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers (United States)

    Wan, Lei; Chandrahalim, Hengky; Chen, Cong; Chen, Qiushu; Mei, Ting; Oki, Yuji; Nishimura, Naoya; Guo, L. Jay; Fan, Xudong


    We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C based on a rhodamine 6G (R6G)-doped SU-8 whispering gallery mode microring laser. The optical mode was largely distributed in a polymer core layer with a 30 μm height that provided detection sensitivity, and the chemically robust fused-silica microring resonator host platform guaranteed its versatility for investigating different functional polymer materials with different refractive indices. As a proof of concept, a dye-doped hyperbranched polymer (TZ-001) microring laser-based temperature sensor was simultaneously developed on the same host wafer and characterized using a free-space optics measurement setup. Compared to TZ-001, the SU-8 polymer microring laser had a lower lasing threshold and a better photostability. The R6G-doped SU-8 polymer microring laser demonstrated greater adaptability as a high-performance temperature-sensing element. In addition to the sensitivity, the temperature resolutions for the laser-based sensors were also estimated to be 0.13 °C and 0.35 °C, respectively. The rapid and simple implementation of micrometer-sized temperature sensors that operate in the range of 31 - 43 °C enables their potential application in thermometry.

  13. Polypeptide Composite Particle-Assisted Organization of π-Conjugated Polymers into Highly Crystalline "Coffee Stains". (United States)

    Rosu, Cornelia; Chu, Ping-Hsun; Tassone, Christopher J; Park, Katherine; Balding, Paul L; Park, Jung Ok; Srinivasarao, Mohan; Reichmanis, Elsa


    We demonstrate that homopolypeptides covalently tethered to anisotropically shaped silica particles induce crystalline ordering of representative semiconducting polymers. Films drop-cast from chloroform dispersions of poly(γ-stearyl-l-glutamate) (PSLG) composite particles and poly(3-hexythiophene) (P3HT) led to highly ordered crystalline structures of P3HT. Hydrophobic-hydrophobic interactions between the alkyl side chains of P3HT and PSLG were the main driving force for P3HT chain ordering into the crystalline assemblies. It was found that the orientation of rigid P3HT fibrils on the substrate adopted the directionality of the evaporating front. Regardless of the PSLG-coated particle dimensions used, the drop-cast films displayed patterns that were shaped by the coffee ring and Marangoni effects. PSLG-coated particles of high axial ratio (4.2) were more efficient in enhancing the electronic performance of P3HT than low axial ratio (2.6) homologues. Devices fabricated from the ordered assemblies displayed improved charge-carrier transport performance when compared to devices fabricated from P3HT alone. These results suggest that PSLG can favorably mediate the organization of semiconducting polymers.

  14. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)



    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  15. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode (United States)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei


    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  16. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj


    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  17. Carbazole based electrochromic polymers with benzoazole units: Effect of heteroatom variation on electrochromic performance

    Directory of Open Access Journals (Sweden)

    C. Doyranli


    Full Text Available A series of carbazole-based polymers were synthesized via Suzuki polymerization between N-(2-ethylhexylcarbazole-3,6-bis(ethyleneboronate (Cbz and dibromobenzazole unit. Three different polymers, PCBN, PCBS and PCBSe were obtained from 4,7-dibromo-2-hexyl-2H-benzotriazole (BN, 4,7-dibromo-2,1,3-benzothiadiazole- (BS and 4,7-dibromo-2,1,3-benzoselenadiazole (BSe, respectively. It is observed that, the variation of heteroatoms (N,S and Se on the benzazole unit have most important effect on electro-optic properties of the PCBX polymers. Neutral state color of the polymer films and their electrochromic performances are also influenced. Among the synthesized polymers, the PCBS bearing 2,1,3-benzothiadiazole as acceptor units has a broad absorption and 50% of ΔT in the near-IR regime at the oxidized state. This property of PCBS is a great advantage for near-IR electrochromic applications.

  18. Salmon Muscle Adherence to Polymer Coatings and Determination of Antibiotic Residues by Reversed-Phase High-Performance Liquid Chromatography Coupled to Selected Reaction Monitoring Mass Spectrometry, Atomic Force Microscopy, and Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu


    Full Text Available The persistent adhesion of salmon muscle to food container walls after treatment with urea solution was observed. This work evaluated the diffusion of antibiotics from the salmon muscle to the polyethylene terephthalate (PET coating protecting the electrolytic chromium coated steel (ECCS plates. New aquaculture production systems employ antibiotics such as florfenicol, florfenicol amine, oxytetracycline, and erythromycin to control diseases. The introduction of antibiotics is a matter of concern regarding the effects on human health and biodiversity. It is important to determine their impact on the adhesion of postmortem salmon muscle to can walls and the surface and structural changes affecting the functionality of multilayers. This work characterized the changes occurring in the multilayer PET polymer and steel of containers by electron microscopy, 3D atomic force microscopy (3D-AFM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectroscopy (FT-IR analyses. A robust mass spectrometry methodology was employed to determine the presence of antibiotic residues. No evidence of antibiotics was observed on the protective coating in the range between 0.001 and 2.0 ng/mL; however, the presence of proteins, cholesterol, and alpha-carotene was detected. This in-depth profiling of the matrix-level elements is relevant for the use of adequate materials in the canning export industry.

  19. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. (United States)

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey


    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Performance of reinforced polymer ablators exposed to a solid rocket motor exhaust. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Burgess, T.; Bowen, J.; Deloach, K.; Talmy, I.


    Summarized in this report is the effort by the Naval Surface Warfare Center Dahlgren Division (NSWCDD) and FMC Corporation (a launcher manufacturer) to identify new high performance ablators suitable for use on Navy guided missile launchers (GML) and ships' structures. The goal is to reduce ablator erosion by 25 to 50 percent compared to that of the existing ablators such as MXBE350 (rubbermodified phenolic containing glass fiber reinforcement). This reduction in erosion would significantly increase the number of new missiles with higher-thrust, longer burn rocket motors that can be launched prior to ablator refurbishment. In fact, there are a number of new Navy missiles being considered for development and introduction into existing GML: e.g., the Antisatellite Missile (ASM) and the Theater High-Altitude Area Defense (THAAD) Missile. The U.S. Navy experimentally evaluated the eight best fiber-reinforced, polymer composites from a possible field of 25 off-the-shelf ablators previously screened by FMC Corporation. They were tested by the Navy in highly aluminized solid rocket motor exhaust plumes to determine their ability to resist erosion and to insulate.... Ablator, Guided Missile Launchers, Erosion, Tactical missiles, Convective heating, Solid rocket motors, Aluminum oxide particles.

  1. Effect of drag-reducing polymers on Tubing Performance Curve (TPC) in vertical gas-liquid flows

    NARCIS (Netherlands)

    Shoeibi Omrani, P.; Veltin, J.; Turkenburg, D.H.


    This paper discusses the effect of drag reducing polymers on the Tubing Performance Curve (TPC) of vertical air-water flows at near atmospheric conditions. The effect of polymer concentration, liquid and gas flow rates on the pressure drop curve (Tubing Performance Curve) was investigated

  2. High Performance Proactive Digital Forensics (United States)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa


    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  3. High Accuracy Investigation of Microwave Absorption in Polymer Electrical Components on Motherboard of Computers (United States)

    Dašić, P.; Hutanu, C.; Jevremović, V.; Dobra, R.; Risteiu, M.; Ileana, I.


    Electronic operating at high frequencies can have problems with emission of high frequency noise. Once put inside an enclosure, the energy will add in phase at certain frequencies to cause resonances which will hinder the performance of the device. These absorbers are based upon open celled foam impregnated with a carbon coating. It is quite possible that in the near future, microprocessors would be to work on a frequency located in 5 to 10 GHz. In these circumstances it is useful to know how and how much of the electromagnetic field emitted by a microprocessor, it is absorbed by the circuit elements in the immediate vicinity of the microprocessor. The aim of this contribution is to demonstrate throughout high-level experimental analysis how the main electric parameters of polymer materials, which build the printed circuits and the one of electric capacitors and resistors, depend on the frequencies on which they work from the microwave range.

  4. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma


    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  5. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential...... this problem. This way, the delta-sigma quantizer's feedback signal is obtained by a multiple-stage quantization, where the loop quantizer (low-resolution and minimum-delay) implements only the last-stage quantization. Hence, high-speed, high-resolutiondelta-sigma quantization is feasible without using complex...... circuitry. An improved version of the MASH topology is also proposed. A delta-sigma quantizer is used to quantize the input signal into an oversampled digital representation of low-to-moderate resolution. The delta-sigma quantizer'struncation error is estimated either directly, or as the first...

  6. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser


    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.


    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. The Unique Story of a High-Tech Polymer

    Indian Academy of Sciences (India)

    professor at Department of Chemistry, lIT,. Kharagpur. His main interest of research is material chemistry. Ruby Chakrovorty completed her MSc in. Industrial Chemistry from. lIT, Kharagpur. Currently she is doing her PhD in polymer engineering at. University of Aleron,. Ohio, USA. Keywords. Kevlar, polyamide, terephthalic.

  9. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity (United States)


    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  10. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner......, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack...

  11. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries. (United States)

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P


    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  12. Deformable membranes actuated by high mechanical power density composite electroactive polymers using tailored electric field (United States)

    Bar-Cohen, Y.; Bhattacharya, K.


    The objective of the project was to develop a versatile electroactuator based on a specific class of EAP, conductive polymer, that is capable of developing high forces and displacements in both bending and linear contraction/expansion movements.

  13. Engineered carbon nanotubes reinforced polymer composites for enhanced thermoelectric performance (United States)

    Kiran, Raj; Kumar, Anuruddh; Chauhan, Vishal S.; Kumar, Rajeev; Vaish, Rahul


    Thermoelectric materials have attracted great attention from researchers because of their unique ability to convert thermal energy to electrical energy and vice versa. Based on the coupled theory of transport between heat and electricity in metals, we have carried out finite element simulations on carbon nanotube (CNT)/polyaniline (PANI) composites to compute effective Seebeck coefficients and figures of merit (FOMs). The present study focuses on the effect of interfacial electrical and thermal conductivities, the volume fraction of CNTs and their inclination on the effective electrical and thermal conductivities and thermoelectric performance. It is interesting to report that effective conductivities strongly depend on interfacial conductance in composites where CNTs are transverse to electrical current and heat flow. Interfaces with electrical and thermal conductance less than 103 S m‑2 and 107 W m‑2 K‑1 respectively isolate CNTs from the matrix. This reduces the effective properties, while the conductivities increase with the CNT content if interfacial conductance is more than these specified values. It was also established that the effective Seebeck coefficient and FOM increase with interfacial electrical conductance, while decreasing with an increase in interfacial thermal conductance. Additionally, the effect of inclination on the electrical and thermal conductivities of composites, the effective Seebeck coefficient and the FOM were analysed. It can be concluded from the study that the Seebeck coefficient and FOM of thermoelectric composites are increased if the CNTs are lying perpendicular to the heat and electrical current flow.

  14. Marine antifouling performance of polymer coatings incorporating zwitterions. (United States)

    Ventura, Claudia; Guerin, Andrew J; El-Zubir, Osama; Ruiz-Sanchez, Antonio J; Dixon, Luke I; Reynolds, Kevin J; Dale, Marie L; Ferguson, James; Houlton, Andrew; Horrocks, Benjamin R; Clare, Anthony S; Fulton, David A


    Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.

  15. Polymorphism of a polymer precursor: metastable glycolide polymorph recovered via large scale high-pressure experiments

    DEFF Research Database (Denmark)

    Hutchison, Ian B.; Delori, Amit; Wang, Xiao


    Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure.......Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure....

  16. High-energy radiation and polymers: A review of commercial processes and emerging applications (United States)

    Clough, R. L.


    Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.

  17. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity. (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping


    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna


    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate

  19. High Performance Perovskite Solar Cells (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang


    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  20. High Performance Perovskite Solar Cells. (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M


    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  1. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)


    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  2. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel


    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  3. Plasmon assisted synthesis of highly fluorescing silver quantum cluster/polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J. P.; Mogensen, K. B.


    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster/polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a greater...... oil-immersion microscopy through a ∼100 μm thick glass lid of the chip, while the bottom substrate contains the plasmonic silver nanoparticle film....

  4. Highly filled polymer nanocomposite films derived from novel nanostructured latexes


    Ruggerone, Riccardo


    The overall aim of this thesis has been to assess the potential of latex-based technologies for the preparation of polymer/clay nanocomposites. The key feature of latex-based technologies is that they offer the possibility of improved control of the final nanocomposite morphology at significantly higher clay loadings than can be obtained with more conventional processing techniques, such as melt blending or in situ polymerization. The idea is to exploit swelling of the clay in either the aque...

  5. Polymer supported sulphanilic acid: A highly efficient and recyclable ...

    Indian Academy of Sciences (India)

    tent were cooled and kept aside for one week with occa- sional shaking. At the end of reaction, the pH of reac- tion mixture came down from the 8 to 4. The yield of the modified thermosetting resin was 5.5 gm. Finally, the cross-linked polymer beads were filtered and washed with hot water followed by methanol and air dried.

  6. Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements. (United States)

    Kirby, Brian J; Reichmuth, David S; Renzi, Ronald F; Shepodd, Timothy J; Wiedenman, Boyd J


    This paper presents the first systematic engineering study of the impact of chemical formulation and surface functionalization on the performace of free-standing microfluidic polymer elements used for high-pressure fluid control in glass microsystems. System design, chemical wet-etch processes, and laser-induced polymerization techniques are described, and parametric studies illustrate the effects of polymer formulation, glass surface modification, and geometric constraints on system performance parameters. In particular, this study shows that highly crosslinked and fluorinated polymers can overcome deficiencies in previously-reported microvalve architectures, particularly limited solvent compatibility. Substrate surface modification is shown effective in reducing the friction of the polymer-glass interface and thereby facilitating valve actuation. A microchip one-way valve constructed using this architecture shows a 2 x 10(8) ratio of forward and backward flow rates at 7 MPa. This valve architecture is integrated on chip with minimal dead volumes (70 pl), and should be applicable to systems (including chromatography and chemical synthesis devices) requiring high pressures and solvents of varying polarity.

  7. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi


    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  8. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells. (United States)

    Murthy, Arun; Manthiram, Arumugam


    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  9. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen


    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...... of 130μm and 300μm, respectively, were fabricated. Their functionality was verified by chronoamperometry on potassium ferro-/ferricyanide. Comparison of the experimentally obtained results to finite element modeling of the respective electrode configurations shows that the conducting polymer electrodes...

  10. Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications (United States)

    Seveyrat, L.; Chalkha, A.; Guyomar, D.; Lebrun, L.


    Composites based on polyurethane (PU) or P(VDF-TrFE-CFE) terpolymer (T30) filled with various amounts of 60-nm thick graphene nanoflakes were prepared. The dielectric properties, including relative permittivity, loss tangent, and conductivity over a broad range of frequencies were presented and discussed according to the percolation theory. The percolation threshold was found to differ for the two systems, respectively, 7.2 and 3.0 vol. % for the PU and the T30 composites. Differential scanning calorimetry demonstrated that there was practically no interaction between the polymeric matrix and the fillers. The increase in permittivity could not be related to this very slight modification of the polymer but rather to the space charges induced by the graphene flakes. Moreover, measurements of the thickness strain under an applied electric field demonstrated a twofold increase of the actuation capability. The optimal value of the M33 electrostriction coefficient was for both systems obtained for a filler content somewhat lower than the percolation threshold. The PU-graphene composite exhibited better performances compared to its T30-graphene counterpart and this was attributed to the good ratio of relative permittivity to the Young modulus in addition to the specific morphology of the used polyurethane. The energy harvesting properties were investigated by monitoring the evolution of the current under a DC electric field and under AC mechanical strain. The T30-graphene composite was found to be the best material for energy harvesting as previously predicted based on its high permittivity.

  11. Raw materials for wood-polymer composites. (United States)

    Craig Clemons


    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  12. High-Density Liquid-Crystalline Polymer Brushes Formed by Surface Segregation and Self-Assembly. (United States)

    Mukai, Koji; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro


    High-density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface-initiated living polymerization. We show herein a new method to prepare a high-density polymer brush architecture using surface segregation and self-assembly of diblock copolymers containing a side-chain liquid-crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP-PS diblock copolymer upon annealing above the glass-transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self-assembly on the polystyrene base film. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effects of water and microstructure on the performance of polymer electrolyte fuel cells


    Shah, A.; Kim, G.S.; Gervais, W.; Young, A.; Promislow, K.; Li, J.; Yi, S.


    n this paper, we present a comprehensive non-isothermal, one-dimensional model of the cathode side of a Polymer Electrolyte Fuel Cell. We explicitly include the catalyst layer, gas diffusion layer and the membrane. The catalyst layer and gas diffusion layer are characterized by several measurable microstructural parameters. We model all three phases of water, with a view to capturing the effect that each has on the performance of the cell. A comparison with experiment is presented, demonstrat...

  14. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène


    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels...... on the electrochemical performance of the biosensor was exploited to improve the detection system. The developed model allowed us to predict the performance of the electrochemical system, and thus to optimize the geometry for electrochemical impedance spectroscopy (EIS). Finally, the optimized electrode design...

  15. High strain-rate compressive behavior and constitutive modeling of selected polymers


    Yokoyama T; Nakai K


    The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10−3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five paramete...

  16. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. (United States)

    Zhao, Hui; Fu, Yanbao; Ling, Min; Jia, Zhe; Song, Xiangyun; Chen, Zonghai; Lu, Jun; Amine, Khalil; Liu, Gao


    A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.

  17. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.


    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Highly stable red-emitting polymer dots for cellular imaging (United States)

    Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Thachoth Chandran, Hrisheekesh; Lee, Chun-Sing


    Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P3HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P3HT Pdots a promising fluorescent probe material for bioimaging.

  19. Improved performance of polymer solar cells using PBDTT-F-TT:PC71BM blend film as active layer (United States)

    Zang, Yue; Gao, Xiumin; Lu, Xinmiao; Xin, Qing; Lin, Jun; Zhao, Jufeng


    A detailed study of high-efficiency polymer solar cells (PSCs) based on a low bandgap polymer PBDTT-F-TT and PC71BM as the bulk heterojunction (BHJ) layer is carried out. By using 1,8-diiodooctane (DIO) as solvent additive to control the morphology of active layer and comparing different device architecture to optimize the optical field distribution, the power conversion efficiency (PCE) of the resulted devices can be reached as high as 9.34%. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of DIO and device geometry on photovoltaic performance. It was found that the addition of DIO can significantly improve the nanoscale morphology and increased electron mobility in the BHJ layer. The inverted device architecture was chosen because the results from optical modeling shows that it offers better optical field distribution and exciton generation profile. Based on these results, a low-temperature processed ZnO was finally introduced as an electron transport layer to facility the fabrication on flexible substrates and showed comparable performance with the device based on conventional ZnO interlayer prepared by sol-gel process.

  20. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V.; Di Blasi, A.; Baglio, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Ornelas, R.; Matteucci, F. [Tozzi Apparecchiature Elettriche SpA, Via Zuccherificio, 10-48010 Mezzano (RA) (Italy); Ledesma-Garcia, J.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico)


    The high temperature behaviour of a solid polymer electrolyte (SPE) water electrolyser based on a composite Nafion-SiO{sub 2} membrane was investigated and compared to that of a commercial Nafion membrane. The SPE water electrolyser performance was studied from 80 to 120{sup o}C with an operating pressure varying between 1 and 3 bar abs. IrO{sub 2} and Pt were used as oxygen and hydrogen evolution catalysts, respectively. The assemblies were manufactured by using a catalyst-coated membrane (CCM) technique. The performance was significantly better for the composite Nafion-SiO{sub 2} membrane than commercial Nafion 115. Furthermore, the composite membrane allowed suitable water electrolysis at high temperature under atmospheric pressure. The current densities were 2 and 1.2 A cm{sup -2} at a terminal voltage of 1.9 V for Nafion-SiO{sub 2} and Nafion 115, respectively, at 100{sup o}C and atmospheric pressure. By increasing the temperature up to 120{sup o}C, the performance of Nafion 115 drastically decreased; whereas, the cell based on Nafion-SiO{sub 2} membrane showed a further increase of performance, especially when the pressure was increased to 3 bar abs (2.1 A cm{sup -2} at 1.9 V). (author)

  1. Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility. (United States)

    Iwasaki, Yasuhiko; Yamasaki, Akira; Ishihara, Kazuhiko


    To obtain a novel polymer for coating on blood filtration devices, which can reduce platelet adhesion and activation when the polymer is in contact with blood under a dry condition, a phosphorylcholine polymer with high mobility of the polymer side chain was designed. The polymer possesses 2-methacryloyloxyethoxyethyl phosphorylcholine unit (PMEO2B) having a diethylene oxide chain between the phosphorylcholine group and the backbone. The surface density of the phosphorylcholine groups and their orientation under aqueous conditions were analyzed with an X-ray photoelectron spectroscope. On the PMEO2B surface, the surface density of phosphorylcholine groups was much higher than that of the theoretical value even when the surface was in air atmosphere. The period for equilibrating the surface of PMEO2B by hydration was shorter than that of the 2-methacryloyloxyethyl phosphorylcholine polymer (PMB). The mobility of the polymer chain with hydration was remarkably improved with the addition of a diethylene oxide chain as a bridging unit. The platelet activation and adhesion were evaluated using a non-woven fabric made from poly(ethylene terephthalate) fibers and that coated with these phosphorylcholine polymers. Even when the platelets were passed through the PMEO2B-coated fabric without prehydration, the activity of the platelets eluted was similar to that of native platelets. Moreover, adherent cells were not observed on the fabric. On the other hand, the platelets adhered to the PET fabric and to that coated with PMB. Based on these results, we concluded that the higher mobility of the polymer chain is very important to reduce interactions with platelets.

  2. Flexible Ultrahigh-Temperature Polymer-Based Dielectrics with High Permittivity for Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Zejun Pu


    Full Text Available In this report, flexible cross-linked polyarylene ether nitrile/functionalized barium titanate(CPEN/F-BaTiO3 dielectrics films with high permittivitywere prepared and characterized. The effects of both the F-BaTiO3 and matrix curing on the mechanical, thermal and dielectric properties of the CPEN/F-BaTiO3 dielectric films were investigated in detail. Compared to pristine BaTiO3, the surface modified BaTiO3 particles effectively improved their dispersibility and interfacial adhesion in the polymer matrix. Moreover, the introduction of F-BaTiO3 particles enhanced dielectric properties of the composites, with a relatively high permittivity of 15.2 and a quite low loss tangent of 0.022 (1 kHz when particle contents of 40 wt % were utilized. In addition, the cyano (–CN groups of functional layer also can serve as potential sites for cross-linking with polyarylene ether nitrile terminated phthalonitrile (PEN-Ph matrix and make it transform from thermoplastic to thermosetting. Comparing with the pure PEN-ph film, the latter results indicated that the formation of cross-linked network in the polymer-based system resulted in increased tensile strength by ~67%, improved glass transition temperature (Tg by ~190 °C. More importantly, the CPEN/F-BaTiO3 composite films filled with 30 wt % F-BaTiO3 particles showed greater energy density by nearly 190% when compared to pure CPEN film. These findings enable broader applications of PEN-based composites in high-performance electronics and energy storage devices materials used at high temperature.

  3. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition


    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Sidorin, Y.; Waechter, C.A.


    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficie...

  4. Polymer Grafted Nanoparticle Assemblies: From Optical to Mechanical Performance through Clusters, Monolayers and Monoliths (United States)

    Vaia, Richard

    Solution or melt-based fabrication of large area, matrix-free, ordered assemblies of polymer grafted nanoparticles (PGN) will enable additive manufacturing of novel membrane, electronic, and photonic elements. Due to the single component nature of these hybrids, aggregation and phase separation common in blended polymer nanocomposites are avoided. Architecturally, PGNs combine characteristics of colloids, brushes and high molecular weight polymers. Thus the processing-structure-property relationship of the entangled PGN assembly is unique from analogous condensed nano-structures, such as ligand stabilized nanoparticles, hard-sphere colloids, star macromolecules and linear chain - nanoparticle blends. Here in, we will discuss the intermediate character of PGNs with respect to deformability, physical aging, and rapid fabrication of stable, large-area, ordered PGN monolayers. For example, processing via flow coating follows that of classic colloids; however local structure and order within the PGN assembly is determined by the canopy architecture and substrate interactions. From this insight, large-area (cm2), highly-ordered, monolayer polystyrene-Au nanoparticle films that are resistant to de-wetting can be fabricated on substrates with high interface energy (80 mN/m) within seconds using flow-coating and a volatile solvent (THF). Overall these findings imply intriguing parallels between PGN assemblies and other mesoscale ordered polymeric systems including hard-soft block copolymers and semi-crystalline polymers. With the appropriate corona architecture, PGNs afford opportunities to design high inorganic fraction hybrids that retain processibility and enable the creation of films and fibers for next generation optoelectronic applications. Aknowledgement: Justin Che, Christopher A. Grabowski, Yang Jiao, Ming-Siao Hsiao, Kyoungweon Park, Lawrence Drummy.

  5. Manufacturing polymer light emitting diode with high luminance efficiency by solution process (United States)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog


    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  6. Directly patternable, highly conducting polymers for broad applications in organic electronics. (United States)

    Yoo, Joung Eun; Lee, Kwang Seok; Garcia, Andres; Tarver, Jacob; Gomez, Enrique D; Baldwin, Kimberly; Sun, Yangming; Meng, Hong; Nguyen, Thuc-Quyen; Loo, Yueh-Lin


    Postdeposition solvent annealing of water-dispersible conducting polymers induces dramatic structural rearrangement and improves electrical conductivities by more than two orders of magnitude. We attain electrical conductivities in excess of 50 S/cm when polyaniline films are exposed to dichloroacetic acid. Subjecting commercially available poly(ethylene dioxythiophene) to the same treatment yields a conductivity as high as 250 S/cm. This process has enabled the wide incorporation of conducting polymers in organic electronics; conducting polymers that are not typically processable can now be deposited from solution and their conductivities subsequently enhanced to practical levels via a simple and straightforward solvent annealing process. The treated conducting polymers are thus promising alternatives for metals as source and drain electrodes in organic thin-film transistors as well as for transparent metal oxide conductors as anodes in organic solar cells and light-emitting diodes.

  7. Photo-degradation of high efficiency fullerene-free polymer solar cells. (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf


    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  8. Complex monolithic and InP hybrid integration on high bandwidth electro-optic polymer platform. (United States)

    Groumas, P; Zhang, Z; Katopodis, V; Kouloumentas, Ch; de Felipe, D; Dinu, R; Miller, E; Mallari, J; Cangini, G; Keil, N; Avramopoulos, H; Grote, N


    We report on the monolithic integration of multimode interference couplers, Bragg gratings, and delay-line interferometers on an electro-optic polymer platform capable of modulation directly at 100 Gb/s. We also report on the hybrid integration of InP active components with the polymer structure using the butt-coupling technique. Combining the passive and the active components, we demonstrate a polymer-based, external cavity laser with 17 nm tuning range and the optical assembly of an integrated 100 Gb/s transmitter, and we reveal the potential of the electro-optic polymer technology to provide the next generation integration platform for complex, ultra-high-speed optical transceivers.

  9. Extremely high rate deposition of polymer multilayer optical thin film materials (United States)

    Affinito, J. D.

    A new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films) is highlighted. This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 microns; they have extinction coefficients of k is approximately 10(exp -7). Application of electric field during crosslinking can polarize ('pole') the film to greatly enhance the nonlinear optical properties. 'Poling' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications.

  10. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)


    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  11. A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution

    Directory of Open Access Journals (Sweden)


    Full Text Available A new process technology modified from conventional coaxial electrospinning process has been developed to prepare polymer fibers from a high concentration solution. This process involves a pure solvent concentrically surrounding polymer fluid in the spinneret. The concentric spinneret was constructed simply by inserting a metal needle through a high elastic silica gel tube. Two syringe pumps were used to drive the core polymer solution and the sheath solvent. Using polyvinylpyrrolidone (PVP as the polymer model, which normally has an electrospinnable concentration of 10% w/v in ethanol, it was possible to electrospin 35% w/v of PVP in the same solvent, when pure N, N-dimethylacetamide (DMAc was used as sheath fluid. The resultant fibers have a smooth surface morphology and good structural uniformity. The diameter of the fibers was 2.0±0.25 µm when the DMAc-to-polymer-solution flow rate ratio was set as 0.1. The process technology reported here opens a new window to tune the polymer fibers obtained by the electrospinning, and is useful for improving productivity of the electrospinning process.

  12. Metal Microporous Aromatic Polymers with Improved Performance for Small Gas Storage. (United States)

    Fu, Xian; Zhang, Yindong; Gu, Shuai; Zhu, Yunlong; Yu, Guipeng; Pan, Chunyue; Wang, Zhonggang; Hu, Yuehua


    A novel metal-doping strategy was developed for the construction of iron-decorated microporous aromatic polymers with high small-gas-uptake capacities. Cost-effective ferrocene-functionalized microporous aromatic polymers (FMAPs) were constructed by a one-step Friedel-Crafts reaction of ferrocene and s-triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal-doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene-free analogues, FMAP-1, which has a moderate BET surface area, shows good gas-adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2 /N2 selectivity (107 v/v at 273 K/(0-1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol(-1) ) and CO2 (41.6 kJ mol(-1) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Accelerated Discovery of High-Refractive-Index Polymers Using First-Principles Modeling, Virtual High-Throughput Screening, and Data Mining (United States)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic materials with refractive index (RI) values higher than 1.7 have attracted considerable interest in recent years due to the tremendous potential for their application in optical, optometric, and optoelectronic devices, and thus for shaping technological innovation in numerous related areas. Our work is concerned with creating predictive models for the optical properties of organic polymers, which will guide our experimentalist partners and allow them to target the most promising candidates. The RI model is developed based on a synergistic combination of first-principles electronic structure theory and machine learning techniques. The RI values predicted for common polymers using this model are in very good agreement with the experimental values. We also benchmark different DFT approximations along with various basis sets for their predictive performance in this model. We demonstrate that this combination of first-principles and data modeling is both successful and highly economical in determining the RI values of a wide range of organic polymers. To accelerate the development process, we cast this modeling approach into the high-throughput screening, materials informatics, and rational design framework that is developed in the group. This framework is a powerful tool and has shown to be highly promising for rapidly identifying polymer candidates with exceptional RI values as well as discovering design rules for advanced materials.

  14. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang


    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  15. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers. (United States)

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken


    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement. (United States)


    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  17. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. (United States)

    Li, Fu-Sheng; Wu, Yu-Shiang; Chou, Jackey; Winter, Martin; Wu, Nae-Lih


    A mechanically robust and ion-conductive polymeric coating containing two polymers, polyethylene glycol tert-octylphenyl ether and poly(allyl amine), with four tailored functional groups is developed for graphite and graphite-Si composite anodes. The coating, acting as an artificial solid electrolyte interphase, leads to remarkable enhancement in capacity reversibility and cycling stability, as well as a high-rate performance of the studied anodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas


    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absence...... of the polymer in the catalytic layer turned out to be beneficial for the PBI cell performance particularly under high load operation. The influence on performance of the Pt loading of the cathode was studied in a range from 0.11 to 2.04 mgPt cm−2 showing saturation of the maximum performance for Pt loadings...... higher than 0.5 mgPt cm−2. For fuel cell operation on H2 and air supplied under ambient pressure, a peak power density as high as 471 mW cm−2 was measured. The tolerance to carbon monoxide (CO) was also studied with Pt loadings of the anode ranging from 0.24 to 1.82 mgPt cm−2. Lifetime test for a MEA...

  19. Performance of dithiocarbamate-type flocculant in treating simulated polymer flooding produced water. (United States)

    Gao, Baoyu; Jia, Yuyan; Zhang, Yongqiang; Li, Qian; Yue, Qinyan


    Produced water from polymer flooding is difficult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Jeffamine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets efficiently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of effectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal efficiency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with different concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight effect on oil removal at the range of 2-12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The effects of mineral salts ions were also investigated.

  20. A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators (United States)

    Hatipoglu, Gokhan; Liu, Yang; Zhao, Ran; Yoonessi, Mitra; Tigelaar, Dean M.; Tadigadapa, Srinivas; Zhang, Q. M.


    A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4‧-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and consequently generates a high intrinsic strain response, which is >1.1% under 1.6 V while maintaining a high elastic modulus (i.e. 600 MPa for 65 vol% IL uptake). Moreover, such a high modulus of the active ionomer, originating from the highly aromatic backbone and side-chain-free structure, allows for the fabrication of free-standing thin film micro-actuators (down to 5 µm thickness) via the solution cast method and focused-ion-beam milling, which exhibits a much higher bending actuation, i.e. 43 µm tip displacement and 180 kPa blocking stress for a 200 µm long and 5 µm thick cantilever actuator, compared with the ionic actuators based on traditional ionomers such as Nafion, which has a much lower elastic modulus (50 MPa) and actuation strain.

  1. High Performance Torso Cooling Garment (United States)

    Conger, Bruce; Makinen, Janice


    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  2. Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow. (United States)

    Zhang, Yu; Xie, Zhihai; Teng, Xiaoxiao; Fan, Jin


    Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2-(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1-8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo-second-order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra


    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  4. Toward High-Performance Organizations. (United States)

    Lawler, Edward E., III


    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  5. High-Performance Composite Chocolate (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell


    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  6. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)


    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  7. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...... routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack and integration of such a system, FURIM is expected to sufficiently promote the commercialisation of the fuel cell technology...

  8. High performance S-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; Visco, S.J.; De Jonghe, L.C. [PolyPlus Battery Co., Berkeley, CA (United States)


    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on proprietary positive electrode chemistry. In one formulation, this electrode contains elemental sulfur, either free or in association with secondary materials that promote its utilization. Batteries based on this cathode chemistry offer high steady-state (>250 W/kg) and high peak power densities (3,000 W/kg), in a low cost and environmentally benign format. High energy density, in excess of 500 Wh/kg (600 Wh/l) can also be achieved. The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cells make this battery exceptionally attractive for both hybrid and electric vehicles, and for consumer electronic applications.

  9. Head-to-Head Linkage Containing Bithiophene-Based Polymeric Semiconductors for Highly Efficient Polymer Solar Cells. (United States)

    Shi, Shengbin; Liao, Qiaogan; Tang, Yumin; Guo, Han; Zhou, Xin; Wang, Yulun; Yang, Tingbin; Liang, Yongye; Cheng, Xing; Liu, Feng; Guo, Xugang


    Narrow bandgap (1.37-1.46 eV) polymers incorporating a head-to-head linkage containing 3-alkoxy-3'-alkyl-2,2'-bithiophene are synthesized. The head-to-head linkage enables polymers with sufficient solubility and the noncovalent sulfur-oxygen interaction affords polymers with high degree of backbone planarity and film ordering. When integrated into polymer solar cells, the polymers show a promising power conversion efficiency approaching 10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

    NARCIS (Netherlands)

    Bomm, J.; Büchtemann, A.; Fiore, Angela; Manna, L.; Nelson, J.H.; Hill, D.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526


    Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt

  11. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)


    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  12. Indoor Air Quality in High Performance Schools (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  13. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)



    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  14. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz


    auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...... at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT...

  15. High-Performance Heat Pipe (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.


    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  16. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    Directory of Open Access Journals (Sweden)

    Roswitha Zeis


    Full Text Available The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA primarily consists of a polybenzimidazole (PBI-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE, the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes

  17. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. (United States)

    Zeis, Roswitha


    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell

  18. Clinical Performance of a Dermal Filler Containing Natural Glycolic Acid and a Polylactic Acid Polymer (United States)

    Macchetto, Pedro Cervantes; Durán Páramo, Rosa Margarita


    Lipoatrophy is a condition that affects certain individuals, most commonly those who are infected with the human immunodeficiency virus.1–3 Injectable fillers are used for the treatment of these dermal contour deformities to smooth dermal depressions formed by the loss of volume. These dermal fillers (also known as soft tissue augmentation devices) can correct contour deformities caused by lipoatrophy in patients who are human immunodeficiency virus positive or negative. The product used in this study is a patented, second-generation, injectable, dermal collagen stimulator that combines glycolic acid and polylactic acid. The glycolic acid used is not a polymer, but rather an acid derived from sugar cane. Its chemical structure corresponds to that of an alpha-hydroxy acid. Glycolic acid is a well-characterized agent that is present in a number of cosmetic products. Polylactic acid is a synthetic, biocompatible, biodegradable, inert, synthetic polymer from the poly a-hydroxy-acid family that is believed to stimulate fibroblasts to produce more collagen, thus increasing facial volume. Together, polylactic acid and glycolic acid act in concert to 1) stimulate collagen production and 2) hydrate the outer layers of the skin. A multicenter, clinical investigation authorized by the Mexican Secretariat of Health was conducted between September 20, 2002, and September 19, 2004. This clinical study was conducted in male patients between 32 and 60 years of age with lipoatrophy as a result of highly active antiretroviral therapy for human immunodeficiency virus infection. The study objective was to measure the improvement of contour deformities after the injection of a dermal collagen stimulator containing glycolic acid and polylactic acid. In addition to safety, this dermal filler was assessed when used to correct volume deformities caused by lipoatrophy in subjects who are human immunodeficiency virus positive. Thirty male subjects participated and were treated as follows

  19. Prediction and correlation of high-pressure gas solubility in polymers with simplified PC-SAFT

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Michelsen, Michael Locht; Kontogeorgis, Georgios


    Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results...... are satisfactory, using in most cases a single, temperature-independent value of the binary interaction parameter. In the cases of methane in HDPE and PVDF, a temperature-dependent binary interaction parameter was required. New pure component polymer parameters for PA-11 and PVDF were obtained using a recently...

  20. Analysis of a high intensity shear zone between overlapping fiber ends in a polymer matrix composite

    DEFF Research Database (Denmark)

    Lindgreen, Britta


    The formation of high intensity shear zones in a glass fiber reinforced thermoplast is studied numerically. The thermoplast is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program where plane strain...... that develop as the highly deformed region approaches the limit resulting from network stiffening in the polymer. A simple analysis assuming periodicity is included in order to study the mechanical behaviour of the polymer matrix between fiber ends with long overlap....