WorldWideScience

Sample records for high performance n-type

  1. Convergence of valence bands for high thermoelectric performance for p-type InN

    International Nuclear Information System (INIS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-01-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of Z e T is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  2. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    Science.gov (United States)

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  3. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    Science.gov (United States)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  4. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng; Chen, Yin; Ma, Chun; Buttner, Ulrich; Leo, Karl; Wu, Tao

    2016-01-01

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  5. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng

    2016-12-13

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  6. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers.

    Science.gov (United States)

    Wang, Yang; Hasegawa, Tsukasa; Matsumoto, Hidetoshi; Mori, Takehiko; Michinobu, Tsuyoshi

    2018-03-01

    While high-performance p-type semiconducting polymers are widely reported, their n-type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high-quality n-type polymers with number-average molecular weight up to 10 5 g mol -1 . Furthermore, by sp 2 -nitrogen atoms (sp 2 -N) substitution, three new n-type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp 2 -N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp 2 -N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine-tailed self-assembled monolayer (SAM) is smoothly formed on a Si/SiO 2 substrate by a simple spin-coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n-type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm 2 V -1 s -1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈10 7 is demonstrated for the pSNT-based devices, which are among the highest values for unipolar n-type semiconducting polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chemical Welding on Semimetallic TiS2 Nanosheets for High-Performance Flexible n-Type Thermoelectric Films.

    Science.gov (United States)

    Zhou, Yuan; Wan, Juanyong; Li, Qi; Chen, Lei; Zhou, Jiyang; Wang, Heao; He, Dunren; Li, Xiaorui; Yang, Yaocheng; Huang, Huihui

    2017-12-13

    Solution-based processing of two-dimensional (2D) materials provides the possibility of allowing these materials to be incorporated into large-area thin films, which can translate the interesting fundamental properties of 2D materials into available devices. Here, we report for the first time a novel chemical-welding method to achieve high-performance flexible n-type thermoelectric films using 2D semimetallic TiS 2 nanosheets. We employ chemically exfoliated TiS 2 nanosheets bridged with multivalent cationic metal Al 3+ to cross-link the nearby sheets during the film deposition process. We find that such a treatment can greatly enhance the stability of the film and can improve the power factor by simultaneously increasing the Seebeck coefficient and electrical conductivity. The resulting TiS 2 nanosheet-based flexible film shows a room temperature power factor of ∼216.7 μW m -1 K -2 , which is among the highest chemically exfoliated 2D transition-metal dichalcogenide nanosheet-based films and comparable to the best flexible n-type thermoelectric films, to our knowledge, indicating its potential applications in wearable electronics.

  8. High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels.

    Science.gov (United States)

    Yun, Sun Woo; Kim, Jong H; Shin, Seunghoon; Yang, Hoichang; An, Byeong-Kwan; Yang, Lin; Park, Soo Young

    2012-02-14

    Novel π–conjugated cyanostilbene-based semiconductors (Hex-3,5-TFPTA and Hex-4-TFPTA) with tight molecular stacking and optimized energy levels are synthesized. Hex-4-TFPTA exhibits high-performance n-type organic field-effect transistor (OFET) properties with electron mobilities as high as 2.14 cm2 V−1s−1 and on-off current ratios Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-Performance Visible-Blind UV Phototransistors Based on n-Type Naphthalene Diimide Nanomaterials.

    Science.gov (United States)

    Song, Inho; Lee, Seung-Chul; Shang, Xiaobo; Ahn, Jaeyong; Jung, Hoon-Joo; Jeong, Chan-Uk; Kim, Sang-Wook; Yoon, Woojin; Yun, Hoseop; Kwon, O-Pil; Oh, Joon Hak

    2018-04-11

    This study investigates the performance of single-crystalline nanomaterials of wide-band gap naphthalene diimide (NDI) derivatives with methylene-bridged aromatic side chains. Such materials are found to be easily used as high-performance, visible-blind near-UV light detectors. NDI single-crystalline nanoribbons are assembled using a simple solution-based process (without solvent-inclusion problems), which is then applied to organic phototransistors (OPTs). Such OPTs exhibit excellent n-channel transistor characteristics, including an average electron mobility of 1.7 cm 2 V -1 s -1 , sensitive UV detection properties with a detection limit of ∼1 μW cm -2 , millisecond-level responses, and detectivity as high as 10 15 Jones, demonstrating the highly sensitive organic visible-blind UV detectors. The high performance of our OPTs originates from the large face-to-face π-π stacking area between the NDI semiconducting cores, which is facilitated by methylene-bridged aromatic side chains. Interestingly, NDI-based nanoribbon OPTs exhibit a distinct visible-blind near-UV detection with an identical detection limit, even under intense visible light illumination (for example, 10 4 times higher intensity than UV light intensity). Our findings demonstrate that wide-band gap NDI-based nanomaterials are highly promising for developing high-performance visible-blind UV photodetectors. Such photodetectors could potentially be used for various applications including environmental and health-monitoring systems.

  10. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  11. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  12. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  13. Noise performance in AlGaN/GaN HEMTs under high drain bias

    International Nuclear Information System (INIS)

    Pang Lei; Pu Yan; Lin Xinyu; Wang Liang; Liu Jian

    2009-01-01

    The advent of fully integrated GaN PA-LNA circuits makes it meaningful to investigate the noise performance under high drain bias. However, noise performance of AlGaN/GaN HEMTs under high bias has not received worldwide attention in theoretical studies due to its complicated mechanisms. The noise value is moderately higher and its rate of increase is fast with increasing high voltage. In this paper, several possible mechanisms are proposed to be responsible for it. Impact ionization under high electric field incurs great fluctuation of carrier density, which increases the drain diffusion noise. Besides, higher gate leakage current related shot noise and a more severe self-heating effect are also contributors to the noise increase at high bias. Analysis from macroscopic and microscopic perspectives can help us to design new device structures to improve noise performance of AlGaN/GaN HEMTs under high bias. (semiconductor devices)

  14. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    International Nuclear Information System (INIS)

    Yeon Kwon, Jang; Kyeong Jeong, Jae

    2015-01-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed. (invited review)

  15. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  16. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    Science.gov (United States)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  17. Processing and first characterization of detectors made with high resistivity n- and p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Bruzzi, M.; Bisello, D.; Borrello, L.; Borchi, E.; Boscardin, M.; Candelori, A.; Creanza, D.; Dalla Betta, G.-F.; DePalma, M.; Dittongo, S.; Focardi, E.; Khomenkov, V.; Litovchenko, A.; Macchiolo, A.; Manna, N.; Menichelli, D.; Messineo, A.; Miglio, S.; Petasecca, M.; Piemonte, C.; Pignatel, G.U.; Radicci, V.; Ronchin, S.; Scaringella, M.; Segneri, G.; Sentenac, D.; Tosi, C.; Zorzi, N.

    2005-01-01

    We report on the design, manufacturing and first characterisation of pad diodes, test structures and microstrip detectors processed with high resistivity magnetic Czochralski (MCz) p- and n-type Si. The pre-irradiation study on newly processed microstrip detectors and test structures show a good overall quality of the processed wafers. After irradiation with 24 GeV/c protons up to 4x10 14 cm -2 the characterisation of n-on-p and p-on-n MCz Si sensors with the C-V method show a decrease of the full depletion voltage and no space charge sign inversion. Microscopic characterisation has been performed to study the role of thermal donors in Czochralski Si. No evidence of thermal donor activation was observed in n-type MCz Si detectors if contact sintering was performed at a temperature lower than 380 deg. C and the final passivation oxide was omitted

  18. N-type doping of InGaN by high energy particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720 (United States)

    2009-06-15

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E{sub F} approaches the Fermi stabilization energy E{sub FS}. At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E{sub F} and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In{sub x}Ga{sub 1-x}N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. N-type doping of InGaN by high energy particle irradiation

    International Nuclear Information System (INIS)

    Yu, K.M.

    2009-01-01

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E F approaches the Fermi stabilization energy E FS . At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E F and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In x Ga 1-x N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment

    Science.gov (United States)

    An, Hyeunhwan; Karas, Dale; Kim, Byung-Wook; Trabia, Sarah; Moon, Jaeyun

    2018-07-01

    Flexible thermoelectric (TE) materials, which are devices that convert thermal gradients to electrical energy, have attracted interest for practical energy-harvesting/recovery applications. However, as compared with p-type materials, the progress on the development of n-type TE flexible materials has been slow due to difficulties involved in n-type doping techniques. This study used high mobility carbon nanotubes (CNTs) to a uniformly mixed hybrid-composite, resulting in an enhanced power factor by increasing electrical conductivity. The energy filtering effect and stoichiometric composition of the material used, bismuth telluride (Bi2Te3) correlated to a significant enhancement in TE performance, with a power factor of 225.9 μW m‑1K‑2 at room temperature: a factor of 65 higher than as-fabricated composite film. This paper describes a simplified synthesis for the preparation of the composite film that eliminates time-intensive and cost-prohibitive processing, traditionally seen during extrusion and dicing inorganic manufacturing. The resulting post-annealed composite film consisting of Bi2Te3 nanowire and CNTs demonstrate a promising candidate for material that can be used for an n-type TE device that has improved energy conversion efficiency.

  1. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    Science.gov (United States)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  2. High power n-type metal-wrap-through cells and modules using industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Guillevin, N.; Heurtault, B.J.B.; Geerligs, L.J.; Van Aken, B.B.; Bennett, I.J.; Jansen, M.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Jianming, Wang; Ziqian, Wang; Jinye, Zhai; Zhiliang, Wan; Shuquan, Tian; Wenchao, Zhao; Zhiyan, Hu; Gaofei, Li; Bo, Yu; Jingfeng, Xiong [Yingli Green Energy Holding Co.,Ltd. 3399 North Chaoyang Avenue, Baoding (China)

    2013-10-15

    This paper reviews our recent progress in the development of metal wrap through (MWT) cells and modules, produced from n-type Czochralski silicon wafers. The use of n-type silicon as base material allows for high efficiencies: for front emitter-contacted industrial cells, efficiencies above 20% have been reported. N-type MWT (nMWT) cells produced by industrial process technologies allow even higher efficiency due to reduced front metal coverage. Based on the same industrial technology, the efficiency of the bifacial n-MWT cells exceeds the efficiency of the n-type front-and-rear contact and bifacial 'Pasha' technology (n-Pasha) by 0.1-0.2% absolute, with a maximum nMWT efficiency of 20.1% so far. Additionally, full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor losses. In a direct 60-cell module performance comparison, the n-MWT module, based on integrated backfoil, produced 3% higher power output than the comparable tabbed front emitter-contacted n-Pasha module. Thanks to reduced resistive losses in copper circuitry on the backfoil compared to traditional tabs, the CTM FF loss of the MWT module was reduced by about 2.2%abs. compared to the tabbed front emitter contact module. A full-size module made using MWT cells of 19.6% average efficiency resulted in a power output close to 280W. Latest results of the development of the n-MWT technology at cell and module level are discussed in this paper, including a recent direct comparison run between n-MWT and n-Pasha cells and results of n-MWT cells from 140{mu}m thin mono-crystalline wafers, with only very slight loss (1% of Isc) for the thin cells. Also reverse characteristics and effects of reverse bias for extended time at cell and module level are reported, where we find a higher tolerance of MWT modules than tabbed front contact modules for hotspots.

  3. Progress in N-type Si Solar Cell and Module Technology for High Efficiency and Low Cost

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dengyuan; Xiong, Jingfeng; Hu, Zhiyan; Li, Gaofei; Wang, Hongfang; An, Haijiao; Yu, Bo; Grenko, Brian; Borden, Kevin; Sauer, Kenneth; Cui, Jianhua; Wang, Haitao [Yingli Green Energy Holding Co., LTD, 071051 Boading (China); Roessler, T. [Yingli Green Energy Europe GmbH, Heimeranstr. 37, 80339 Munich (Germany); Bultman, J. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Vlooswijk, A.H.G.; Venema, P.R. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands)

    2012-06-15

    A novel high efficiency solar cell and module technology, named PANDA, using crystalline n-type CZ Si wafers has moved into large-scale production at Yingli. The first commercial sales of the PANDA modules commenced in mid 2010. Up to 600MW of mass production capacity from crystal-Si growth, wafer slicing, cell processing and module assembly have been implemented by the end of 2011. The PANDA technology was developed specifically for high efficiency and low cost. In contrast to the existing n-type Si solar cell manufacturing methods in mass production, this new technology is largely compatible with a traditional p-type Si solar cell production line by conventional diffusion, SiNx coating and screen-printing technology. With optimizing all technologies, Yingli's PANDA solar cells on semi-square 6-inch n-type CZ wafers (cell size 239cm{sup 2}) have been improved to currently have an average efficiency on commercial production lines exceeding 19.0% and up to 20.0% in pilot production. The PANDA modules have been produced and were certified according to UL1703, IEC 61215 and IEC 61730 standards. Nearly two years of full production on scale-up lines show that the PANDA modules have a high efficiency and power density, superior high temperature performance, near zero initial light induced degradation, and excellent efficiency at low irradiance.

  4. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  5. Air-stable n-type colloidal quantum dot solids

    KAUST Repository

    Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd H.; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R.; Sun, Jonpaul; Minor, James C.; Kemp, Kyle W.; Dong, Haopeng; Rollny, Lisa R.; Labelle, André J.; Carey, Graham H.; Sutherland, Brandon R.; Hill, Ian G.; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman; Sargent, E. H.

    2014-01-01

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  6. Air-stable n-type colloidal quantum dot solids

    KAUST Repository

    Ning, Zhijun

    2014-06-08

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  7. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  8. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka [Graduate School of Automotive Science, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Kato, Yoshimine, E-mail: yoshimine.kato@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Teii, Kungen [Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  9. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.; Cassinese, A. [CNR-SPIN and Physics Department, University of Naples, Piazzale Tecchio 80, I-80125 Naples (Italy); Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R. [IMEM-CNR-FBK Division of Trento, Via alla Cascata 56/C, I-38123 Povo (Italy); Iannotta, S. [IMEM-CNR, Parco Area delle Scienze 37/A, I-43124 Parma (Italy)

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  10. Significant performance enhancement in AlGaN/GaN high electron mobility transistor by high-κ organic dielectric

    International Nuclear Information System (INIS)

    Ze-Gao, Wang; Yuan-Fu, Chen; Cao, Chen; Ben-Lang, Tian; Fu-Tong, Chu; Xing-Zhao, Liu; Yan-Rong, Li

    2010-01-01

    The electrical properties of AlGaN/GaN high electron mobility transistor (HEMT) with and without high-κ organic dielectrics are investigated. The maximum drain current I D max and the maximum transconductance g m max of the organic dielectric/AlGaN/GaN structure can be enhanced by 74.5%, and 73.7% compared with those of the bare AlGaN/GaN HEMT, respectively. Both the threshold voltage V T and g m max of the dielectric/AlGaN/GaN HEMT are strongly dielectric-constant-dependent. Our results suggest that it is promising to significantly improve the performance of the AlGaN/GaN HEMT by introducing the high-κ organic dielectric. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Comparison of electrical performances of two n-in-p detectors with different implant type of guard ring by TCAD simulation

    Science.gov (United States)

    Mekheldi, Mohammed; Oussalah, Slimane; Lounis, Abdenour; Brihi, Nourredine

    This paper presents a preliminary comparative study for two different guard rings structures in the purpose of evaluating their electrical performances. The two structures are based on the n-in-p technology with different implant type of guard rings. I-V characteristics have been simulated using Silvaco/ATLAS software for both structures and compared for various parameters of substrate, guard ring and oxide. Simulation results show that the shape of leakage current is almost the same in all simulations but in terms of breakdown voltage, n-in-p structure with n-type guard rings ensures high voltage stability.

  12. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors.

    Science.gov (United States)

    Di Pietro, Riccardo; Sirringhaus, Henning

    2012-07-03

    We use high-resolution charge-accumulation optical spectroscopy to measure charge accumulation in the channel of an n-type organic field-effect transistor. We monitor the degradation of device performance in air, correlate the onset voltage shift with the reduction of charge accumulated in the polymer semiconductor, and explain the results in view of the redox reaction between the polymer, water and oxygen in the accumulation layer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  14. Comparison of electrical performances of two n-in-p detectors with different implant type of guard ring by TCAD simulation

    Directory of Open Access Journals (Sweden)

    Mohammed Mekheldi

    Full Text Available This paper presents a preliminary comparative study for two different guard rings structures in the purpose of evaluating their electrical performances. The two structures are based on the n-in-p technology with different implant type of guard rings. I–V characteristics have been simulated using Silvaco/ATLAS software for both structures and compared for various parameters of substrate, guard ring and oxide. Simulation results show that the shape of leakage current is almost the same in all simulations but in terms of breakdown voltage, n-in-p structure with n-type guard rings ensures high voltage stability. Keywords: Breakdown voltage, Guard ring, n-in-p silicon detector, TCAD simulation

  15. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications

    KAUST Repository

    Yue, Wan

    2016-09-28

    Two new alternating copolymers, PAIIDBT and PAIIDSe have been prepared by incorporating a highly electron deficient azaisoindigo core. The molecular structure and packing of the monomer is determined from the single crystal X-ray diffraction. Both polymers exhibit high EAs and highly planar polymer backbones. When polymers are used as the semiconducting channel for solution-processed thin film transistor application, good properties are observed. A–A type PAIIDBT exhibits unipolar electron mobility as high as 1.0 cm2 V−1 s−1, D–A type PAIIDSe exhibits ambipolar charge transport behavior with predominately electron mobility up to 0.5 cm2 V−1 s−1 and hole mobility to 0.2 cm2 V−1 s−1. The robustness of the extracted mobility values are also commented on in detail. Molecular orientation, thin film morphology and energetic disorder of both polymers are systematically investigated.

  16. SU-8 doped and encapsulated n-type graphene nanomesh with high air stability

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mumen, Haider [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical Engineering, University of Babylon, Babylon (Iraq); Dong, Lixin; Li, Wen, E-mail: wenli@egr.msu.edu [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2013-12-02

    N-type doping of graphene with long-term chemical stability in air represents a significant challenge for practical application of graphene electronics. This paper reports a reversible doping method to achieve highly stable n-type graphene nanomeshes, in which the SU-8 photoresist simultaneously serves as an effective electron dopant and an excellent encapsulating layer. The chemically stable n-type characteristics of the SU-8 doped graphene were evaluated in air using their Raman spectra, electrical transport properties, and electronic band structures. The SU-8 doping does minimum damage to the hexagonal carbon lattice of graphene and is completely reversible by removing the uncrosslinked SU-8 resist.

  17. Performance of AlGaN/GaN Heterostructure Field-Effect Transistors for High-Frequency and High-Power Electronics

    Directory of Open Access Journals (Sweden)

    Peter Kordos

    2005-01-01

    Full Text Available Preparation and properties of GaN-based heterostructure field-effect transistors (HFETs for high-frequency and high-power applications are studied in this work. Performance of unpassivated and SiO2 passivated AlGaN/GaN HFETs, as well as passivated SiO2/AlGaN/GaN MOSHFETs (metal-oxide-semicondutor HFETs is compared. It is found that MOSHFETs exhibit better DC and RF properties than simple HFET counterparts. Deposited SiO2 yielded an increase of the sheet carrier density from 7.6x10^12 cm^-2 to 9.2x10^12 cm^-2 and subsequent increase of the static drain saturation current from 0.75 A/mm to 1.09 A/mm. Small-signal RF characterisation of MOSHFETs showed an extrinsic current gain cut-off frequency fT of 24 GHz and a maximum frequency of oscillation fmax of 40 GHz. These are fully comparable values with state-of-the-art AlGaN/GaN HFETs. Finnaůůy, microwave power measurements confirmed excellent performance of MOSHFETs:the output power measured at 7 GHz is about two-times larger than that of simple unpassived HFET. Thus, a great potential in application of GaN-based MOSHFETs is documented. 

  18. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    Science.gov (United States)

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  19. High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao; Ng, Tien Khee; Wei, Nini; Janjua, Bilal; Elafandy, Rami T.; Prabaswara, Aditya; Shen, Chao; Consiglio, Giuseppe B.; Albadri, Abdulrahman; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    The first droop-free, reliable, and high-power InGaN/GaN quantum-disks-in-nanowires light-emitting diode on molybdenum substrates was demonstrated. The high performance was achieved through the epitaxial growth of high-quality nanowires on the all-metal stack of TiN/Ti/Mo.

  20. High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao

    2016-11-21

    The first droop-free, reliable, and high-power InGaN/GaN quantum-disks-in-nanowires light-emitting diode on molybdenum substrates was demonstrated. The high performance was achieved through the epitaxial growth of high-quality nanowires on the all-metal stack of TiN/Ti/Mo.

  1. n-Type Azaacenes Containing B←N Units.

    Science.gov (United States)

    Min, Yang; Dou, Chuandong; Tian, Hongkun; Geng, Yanhou; Liu, Jun; Wang, Lixiang

    2018-02-12

    We disclose a novel strategy to design n-type acenes through the introduction of boron-nitrogen coordination bonds (B←N). We synthesized two azaacenes composed of two B←N units and six/eight linearly annelated rings. The B←N unit significantly perturbed the electronic structures of the azaacenes: Unique LUMOs delocalized over the entire acene skeletons and decreased aromaticity of the B←N-adjacent rings. Most importantly, these B←N-containing azaacenes exhibited low-lying LUMO energy levels and high electron affinities, thus leading to n-type character. The solution-processed organic field-effect transistor based on one such azaacene exhibited unipolar n-type characteristics with an electron mobility of 0.21 cm 2  V -1  s -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    KAUST Repository

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah; Shakfa, M. Khaled; Ng, Tien Khee; Ooi, Boon S.

    2018-01-01

    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  3. Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    KAUST Repository

    Zhao, Chao

    2018-05-29

    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  4. Type of High School Predicts Academic Performance at University Better than Individual Differences.

    Science.gov (United States)

    Banai, Benjamin; Perin, Višnja

    2016-01-01

    Psychological correlates of academic performance have always been of high relevance to psychological research. The relation between psychometric intelligence and academic performance is one of the most consistent and well-established findings in psychology. It is hypothesized that intelligence puts a limit on what an individual can learn or achieve. Moreover, a growing body of literature indicates a relationship between personality traits and academic performance. This relationship helps us to better understand how an individual will learn or achieve their goals. The aim of this study is to further investigate the relationship between psychological correlates of academic performance by exploring the potentially moderating role of prior education. The participants in this study differed in the type of high school they attended. They went either to gymnasium, a general education type of high school that prepares students specifically for university studies, or to vocational school, which prepares students both for the labour market and for further studies. In this study, we used archival data of psychological testing during career guidance in the final year of high school, and information about the university graduation of those who received guidance. The psychological measures included intelligence, personality and general knowledge. The results show that gymnasium students had greater chances of performing well at university, and that this relationship exceeds the contribution of intelligence and personality traits to university graduation. Moreover, psychological measures did not interact with type of high school, which indicates that students from different school types do not profit from certain individual characteristics.

  5. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  6. Combined high-performance liquid chromatography/32P-postlabeling assay of N7-methyldeoxyguanosine

    International Nuclear Information System (INIS)

    Shields, P.G.; Povey, A.C.; Wilson, V.L.; Weston, A.; Harris, C.C.

    1990-01-01

    A highly sensitive and specific assay for the detection of N7-methyl-2'-deoxyguanosine (N7methyldG) has been developed by combining high-performance liquid chromatography, 32 P-postlabeling, and nucleotide chromatography. Separation of normal nucleotides and adducts by high-performance liquid chromatography and then combining a portion of 2'-deoxyguanosine to the N7methyldG allows for quantitation using an internal standard. The directly determined molar ratio is not subject to errors in digestion, variable ATP-specific activity, or assumptions in relative adduct-labeling efficiency. The detection limit was one N7methyldG adduct in 10(7) unmodified 2'-deoxyguanosine bases. N7methyldG adducts have been detected in 5 human lung samples in which O6-methyl-2'-deoxyguanosine adducts had been previously determined. The mean ratio of N7methyldG to O6-methyl-2'-deoxyguanosine was determined to be approximately 10. The current assay complements the high-performance liquid chromatography/ 32 P-postlabeling assay for O6-methyl-2'-deoxyguanosine and increases the detection sensitivity of DNA methylated by exogenous alkylating agents

  7. The Type of Culture at a High Performance Schools and Low Performance School in the State of Kedah

    Science.gov (United States)

    Daud, Yaakob; Raman, Arumugam; Don, Yahya; O. F., Mohd Sofian; Hussin, Fauzi

    2015-01-01

    This research aims to identify the type of culture at a High Performance School (HPS) and Low Performance School (LPS) in the state of Kedah. The research instrument used to measure the type of organizational culture was adapted from Organizational Culture Assessment Instrument (Cameron & Quinn, 2006) based on Competing Values Framework Quinn…

  8. High power Co3O4/ZnO p–n type piezoelectric transducer

    International Nuclear Information System (INIS)

    Hu, Yuh-Chung; Lee, Tsung-Han; Chang, Pei-Zen; Su, Pei-Chen

    2015-01-01

    Enhancing the output power of piezoelectric transducer is essential in order to supply sufficient and sustainable power to wireless sensor nodes or electronic devices. In this work, a Co 3 O 4 /ZnO p–n type power piezoelectric transducer which can be operated at low frequencies has been developed by utilizing n-type semiconducting zinc oxide (ZnO) and p-type semiconducting tricobalt tetroxide (Co 3 O 4 ). We utilize ZnO to be the piezoelectric transducer and build a multi-layer (Au/Co 3 O 4 /ZnO/Ti) thin film structure. The ZnO thin film with preferred orientation along the (002) plane was deposited under optimized deposition conditions on the flexible titanium (Ti) foil with thickness of 80 μm. The Co 3 O 4 /ZnO interface forms a p–n junction and increases the difference in Fermi levels between the two electrodes, resulting in the great enhancement of output power. The measured output power of the p–n type piezoelectric transducer with optimal resistance of 100 kΩ is 10.4 μW at low operating frequency of 37 Hz, which is 10.9 times of output power of ZnO piezoelectric transducers. - Highlights: • Deposited zinc oxide performed good piezoelectric coefficient. • ZnO thin film with preferred orientation along the (002) plane was deposited. • A p–n type piezoelectric transducer with enhanced output power was fabricated. • 10.9 times increment in output power was obtained. • Increase of difference in Fermi level and p–n junction formation was explained

  9. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, R.; Rivera, M.; Feng, P., E-mail: p.feng@upr.edu [Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, 00936-8377, PR/USA (Puerto Rico); Aldalbahi, A. [Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2016-08-15

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  10. Preparation and investigation of nano-AlN lubricant with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yu; Tao, Yuxiao; Wang, Biaobing [School of Materials Science and Engineering, Changzhou University, Changzhou 201326 (China); Tai, Yanlong, E-mail: ytai@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 (United States)

    2014-09-15

    A new kind of macromolecular coupling agent (LMW-a-PP-g-MAH) of maleic anhydride (MAH) onto low-molecular-weight atactic polypropylene (LMW-a-PP) was synthesized according to molecular design and was used as modifier for surface modification of nano-Aluminum nitride (AlN) by a high-pressure homogenization (HPH) process. IR was conducted to confirm the chemical structure of the step products of LMW-a-PP-g-MAH. The availability as a modifier for surface modification of nano-AlN was distinguished by Fourier transform infrared spectroscopy (FTIR), particle size analysis, transmission electron microscope (TEM), thermogravimetric analysis (TGA), contact angle experiments and the dispersion stability in dimethylbenzene and Greatwall lubrication oil. It can be inferred that the optimal loading is 10 wt. %–12 wt. % of LMW-a-PP-g-MAH to modify nano-AlN particles. Nano-AlN lubricating composite materials (LMW-a-PP-g-MAH-AlN) was used to improve the antifriction performance and the load capability of Greatwall lubrication oil, and maximum non-seizure load (P{sub B}) can increase highly from 1000 N to 1490 N when the loading is 0.3 wt. %. - Highlights: • Design and synthesis of macromolecular coupling agent (a-PP-g-MAH). • Surface modification and characterization of nano-AlN by HPH process. • Preparation and investigation of nano-AlN/lubricating oil with high performance.

  11. Study of araldite in edge protection of n-type and p-type surface barrier detectors

    International Nuclear Information System (INIS)

    Alencar, M.A.V.; Jesus, E.F.O.; Lopes, R.T.

    1995-01-01

    The aim of this work is the realization of a comparative study between the surface barrier detectors performance n and type using the epoxy resin Araldite as edge protection material with the purpose of determining which type of detector (n or p) the use of Araldite is more indicated. The surface barrier detectors were constructed using n and p type silicon wafer with resistivity of 3350Ω.cm and 5850 Ω.cm respectively. In the n type detectors, the metals used as ohmic and rectifier contacts were the Al and Au respectively, while in the p type detectors, the ohmic and rectifier contacts were Au and Al. All metallic contacts were done by evaporation in high vacuum (∼10 -4 Torr) and with deposit of 40 μm/cm 2 . The obtained results for the detectors (reverse current of -350nA and resolution from 21 to 26 keV for p type detectors and reserve current of 1μA and resolution from 44 to 49 keV for n type detectors) tend to demonstrate that use of epoxy resin Araldite in the edge protection is more indicated to p type surface barrier detectors. (author). 3 refs., 4 figs., 1 tab

  12. Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

    Science.gov (United States)

    Hu, Minglei; Liu, Yuhao; Zhang, Min; Wei, Helin; Gao, Yihua

    2016-12-01

    Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm-1 (73.2 mF cm-2, 9.8 F cm-3). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 μWh cm-1 (0.88 mWh cm-3). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes.

  13. Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells.

    Science.gov (United States)

    Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli

    2018-01-24

    A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

  14. A high-performance supercapacitor electrode based on N-doped porous graphene

    Science.gov (United States)

    Dai, Shuge; Liu, Zhen; Zhao, Bote; Zeng, Jianhuang; Hu, Hao; Zhang, Qiaobao; Chen, Dongchang; Qu, Chong; Dang, Dai; Liu, Meilin

    2018-05-01

    The development of high-performance supercapacitors (SCs) often faces some contradictory and competing requirements such as excellent rate capability, long cycling life, and high energy density. One effective strategy is to explore electrode materials of high capacitance, electrode architectures of fast charge and mass transfer, and electrolytes of wide voltage window. Here we report a facile and readily scalable strategy to produce high-performance N-doped graphene with a high specific capacitance (∼390 F g-1). A symmetric SC device with a wide voltage window of 3.5 V is also successfully fabricated based on the N-doped graphene electrode. More importantly, the as-assembled symmetric SC delivers a high energy density of 55 Wh kg-1 at a power density of 1800 W kg-1 while maintaining superior cycling life (retaining 96.6% of the initial capacitance after 20,000 cycles). Even at a power density as high as 8800 W kg-1, it still retains an energy density of 29 Wh kg-1, higher than those of previously reported graphene-based symmetric SCs.

  15. P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED

    Science.gov (United States)

    Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.

  16. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Science.gov (United States)

    Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-12-01

    We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  17. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    Directory of Open Access Journals (Sweden)

    Kohei Ueno

    2017-12-01

    Full Text Available We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm−3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V−1 s−1 at a carrier concentration of 3.9 × 1020 cm−3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  18. MOCVD Growth and Characterization of n-type Zinc Oxide Thin Films

    Science.gov (United States)

    Ben-Yaacov, Tammy

    In the past decade, there has been widespread effort in the development of zinc oxide as a II-V1 semiconductor material. ZnO has potential advantages in optoelectronip device applications due to its unique electrical and optical properties. What stands out among these properties is its wide direct bandgap of 3.37 eV and its high electrical conductivity and transparency in the visible and near-UV regions of the spectrum. ZnO can be grown heteroepitaxially on GaN under near lattice-matched conditions and homoepitaxially as well, as high-quality bulk ZnO substrates are commercially available. This dissertation focuses on the development of the growth of high-quality, single crystal n-type ZnO films, control of n-type conductivity, as well as its application as a transparent contact material in GaN-based devices. The first part of this dissertation is an extensive heteroepitaxial and homoepitaxial growth study presenting the properties of ZnO(0001) layers grown on GaN(0001) templates and ZnO(0001) substrates. We show that deposition on GaN requires a two-step growth technique involving the growth of a low temperature nucleation layer before growing a high temperature epitaxial layer in order to obtain smooth ZnO films with excellent crystal quality and step-flow surface morphology. We obtained homoepitaxial ZnO(0001) films of structural quality and surface morphology that is comparable to the as-received substrates, and showed that a high growth temperature (≥1000°C) is needed in order to achieve step-flow growth mode. We performed n-type doping experiments, and established the conditions for which Indium effectively controls the n-type conductivity of ZnO films grown on GaN(0001) templates. A peak carrier concentration of 3.22x 10 19cm-3 and minimum sheet resistance of 97 O/square was achieved, while simultaneously maintaining good morphology and crystal quality. Finally, we present In-doped ZnO films implemented as p-contacts for GaN-based solar cells and LEDs

  19. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  20. Molecular beam epitaxy for high-performance Ga-face GaN electron devices

    International Nuclear Information System (INIS)

    Kaun, Stephen W; Speck, James S; Wong, Man Hoi; Mishra, Umesh K

    2013-01-01

    Molecular beam epitaxy (MBE) has emerged as a powerful technique for growing GaN-based high electron mobility transistor (HEMT) epistructures. Over the past decade, HEMT performance steadily improved, mainly through the optimization of device fabrication processes. Soon, HEMT performance will be limited by the crystalline quality of the epistructure. MBE offers heterostructure growth with highly abrupt interfaces, low point defect concentrations, and very low carbon and hydrogen impurity concentrations. Minimizing parasitic leakage pathways and resistances is essential in the growth of HEMTs for high-frequency and high-power applications. Through growth on native substrates with very low threading dislocation density, low-leakage HEMTs with very low on-resistance can be realized. Ga-rich plasma-assisted MBE (PAMBE) has been studied extensively, and it is clear that this technique has inherent limitations, including a high density of leakage pathways and a very small growth parameter space. Relatively new MBE growth techniques—high-temperature N-rich PAMBE and ammonia-based MBE—are being developed to circumvent the shortcomings of Ga-rich PAMBE. (invited review)

  1. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  2. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  3. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  4. Effect of the structure distortion on the high photocatalytic performance of C{sub 60}/g-C{sub 3}N{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin, E-mail: yu-lin@sdu.edu.cn; Dai, Ying, E-mail: daiy60@sina.com

    2017-08-31

    Highlights: • The adsorption of C{sub 60} can induce an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle. • The structure distortion of g-C{sub 3}N{sub 4} plays a crucial role in enhancing photocatalytic performances. • Stability, optical absorption and band edge all have positive correlations with wrinkle degree for g-C{sub 3}N{sub 4} monolayers. - Abstract: C{sub 60}/g-C{sub 3}N{sub 4} composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C{sub 3}N{sub 4} monolayers with adsorbing and removing fullerene C{sub 60} are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C{sub 60} prefers to stay upon the “junction nitrogen” with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C{sub 60} can lead to an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C{sub 60} modified g-C{sub 3}N{sub 4}.

  5. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors

    Science.gov (United States)

    Zhu, Jun; Kong, Lirong; Shen, Xiaoping; Chen, Quanrun; Ji, Zhenyuan; Wang, Jiheng; Xu, Keqiang; Zhu, Guoxing

    2018-01-01

    Three-dimensional (3D) graphene aerogel and its composite with interconnected pores have aroused continuous interests in energy storage field owning to its large surface area and hierarchical pore structure. Herein, we reported the preparation of 3D nitrogen-doped graphene/polyaniline (N-GE/PANI) composite foam for supercapacitive material with greatly improved electrochemical performance. The 3D porous structure can allow the penetration and diffusion of electrolyte, the incorporation of nitrogen doping can enhance the wettability of the active material and the number of active sites with electrolyte, and both the N-GE and PANI can ensure the high electrical conductivity of total electrode. Moreover, the synergistic effect between N-GE and PANI materials also play an important role on the electrochemical performance of electrode. Therefore, the as-prepared composite foam could deliver a high specific capacitance of 528 F g-1 at 0.1 A g-1 and a high cyclic stability with 95.9% capacitance retention after 5000 charge-discharge cycles. This study provides a new idea on improving the energy storage capacity of supercapacitors by using 3D graphene-based psedocapacitive electrode materials.

  6. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel.

    Science.gov (United States)

    Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-12-14

    The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

  7. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    Boron-doped p-type silicon is the industry standard silicon solar cell substrate. However, it has serious limitations: iron boron (Fe-B) pairs and light induced degradation (LID). To suppress LID, the replacement of boron by gallium as a p-type dopant has been proposed. Although this eliminates B-O related defects, gallium-related pairing with iron, oxygen, and carbon can reduce lifetime in this material. In addition resistivity variations are more pronounced in gallium doped ingots, however Continuous-Czochralski (c-Cz) growth technologies are being developed to overcome this problem. In this work lifetime limiting factors and resistivity variations have been investigated in this material. The radial and axial variations of electrically active defects were observed using deep level transient spectroscopy (DLTS) these have been correlated to lifetime and resistivity variations. The DLTS measurements demonstrated that iron-related pairs are responsible for the lifetime variations. Specifically, Fe-Ga pairs were found to be important recombination sites and are more detrimental to lifetime than Fei. Typically n-type silicon has a higher minority carrier lifetime than p-type silicon with similar levels of contamination. That is because n-type silicon is more tolerant to metallic impurities, especially Fe. Also, it has no serious issues in relation to lifetime degradation, such as FeB pairs and light-induced degradation (LID). However, surface passivation of the p + region in p+n solar cells is much more problematic than the n+p case where silicon nitride provides very effective passivation of the cell. SiO2 is the most effective passivation for n type surfaces, but it does not work well on B-doped surfaces, resulting in inadequate performance. Al2O3 passivation layer suggested for B-doped emitters. With this surface passivation layer a 23.2 % conversion efficiency has been achieved. After this discovery n-type silicon is now being seriously considered for

  8. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  9. Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players

    Directory of Open Access Journals (Sweden)

    Jean Nyakayiru

    2017-03-01

    Full Text Available It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR or a nitrate-depleted beetroot juice (PLA for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001, and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027. Mean HR was lower in the BR (172 ± 2 vs. PLA trial (175 ± 2; p = 0.014. Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.

  10. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  12. Determination of carrier diffusion length in p- and n-type GaN

    Science.gov (United States)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  13. Research and Application of New Type of High Performance Titanium Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Zhishou

    2016-06-01

    Full Text Available With the continuous extension of the application quantity and range for titanium alloy in the fields of national aviation, space, weaponry, marine and chemical industry, etc., even more critical requirements to the comprehensive mechanical properties, low cost and process technological properties of titanium alloy have been raised. Through the alloying based on the microstructure parameters design, and the comprehensive strengthening and toughening technologies of fine grain strengthening, phase transformation and process control of high toughening, the new type of high performance titanium alloy which has good comprehensive properties of high strength and toughness, anti-fatigue, failure resistance and anti-impact has been researched and manufactured. The new titanium alloy has extended the application quantity and application level in the high end field, realized the industrial upgrading and reforming, and met the application requirements of next generation equipment.

  14. Thermal expansion of spinel-type Si3N4

    DEFF Research Database (Denmark)

    Paszkowics, W.; Minkikayev, R.; Piszora, P.

    2004-01-01

    The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K......The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K...

  15. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  16. Componential Analysis of Analogical-Reasoning Performance of High and Low Achievers.

    Science.gov (United States)

    Armour-Thomas, Eleanor; Allen, Brenda A.

    1990-01-01

    Assessed analogical reasoning in high- and low-achieving students at the high school level and determined whether analogical reasoning was related to academic achievement in ninth grade students (N=54). Results indicated that high achievers performed better than low achievers on all types of analogical-reasoning processes. (Author/ABL)

  17. Stability at high performance in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Buttery, R.J.; Akers, R.; Arends, E. =

    2003-01-01

    The development of reliable H-modes on MAST, together with advances in heating power and a range of powerful diagnostics, has provided a platform to enable MAST to address some of he most important issues of tokamak stability. In particular the high β potential of the ST is highlighted with stable operation at β N ∼5-6 , β T ∼ 16% and β p as high as 1.9, confirmed by a range of profile diagnostics. Calculations indicate that β N levels are in the vicinity of no-wall stability limits. Studies have provided the first identification of the Neoclassical Tearing Mode (NTM) in the ST, using its behaviour to quantitatively validate predictions of NTM theory, previously only applied to conventional tokamaks. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs - by avoiding large sawteeth much higher β N can, and has, been reached. Further studies have confirmed the NTM's significance, with large islands observed using the 300 point Thomson diagnostic, and locking of large n=1 modes frequently leading to disruptions. H-mode plasmas are also limited by ELMs, with confinement degraded as ELM frequency rises. However, unlike the conventional tokamak, the ELMs in high performing regimes on MAST (H IPB98Y2 ∼1) appear to be type III in nature. Modelling identifies instability to peeling modes, consistent with a type III interpretation, and shows considerable scope to raise pressure gradients (despite n=∞ ballooning theory predictions of instability) before ballooning type modes (perhaps associated with type I ELMs) occur. Finally sawteeth are shown not to remove the q=1 surface in the ST - other promising models are being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels, and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER. (author)

  18. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  19. n-Type organic semiconductors in organic electronics.

    Science.gov (United States)

    Anthony, John E; Facchetti, Antonio; Heeney, Martin; Marder, Seth R; Zhan, Xiaowei

    2010-09-08

    Organic semiconductors have been the subject of intensive academic and commercial interest over the past two decades, and successful commercial devices incorporating them are slowly beginning to enter the market. Much of the focus has been on the development of hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or so called n-type, materials, and in this paper we focus upon recent developments in several classes of n-type materials and the design guidelines used to develop them.

  20. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

    Directory of Open Access Journals (Sweden)

    Xiong, Ming-Xiang

    2015-12-01

    Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir

  1. N -annulated perylene-based push-pull-type sensitizers

    KAUST Repository

    Qi, Qingbiao; Wang, Xingzhu; Fan, Li; Zheng, Bin; Zeng, Wangdong; Luo, Jie; Huang, Kuo-Wei; Wang, Qing; Wu, Jishan

    2015-01-01

    Alkoxy-wrapped N-annulated perylene (NP) was synthesized and used as a rigid and coplanar π-linker for three push-pull type metal-free sensitizers QB1-QB3. Their optical and electrochemical properties were tuned by varying the structure of acceptor. These new dyes were applied in Co(II)/(III) based dye-sensitized solar cells, and power conversion efficiency up to 6.95% was achieved, indicating that NP could be used as a new building block for the design of high-performance sensitizers in the future.

  2. N -annulated perylene-based push-pull-type sensitizers

    KAUST Repository

    Qi, Qingbiao

    2015-02-06

    Alkoxy-wrapped N-annulated perylene (NP) was synthesized and used as a rigid and coplanar π-linker for three push-pull type metal-free sensitizers QB1-QB3. Their optical and electrochemical properties were tuned by varying the structure of acceptor. These new dyes were applied in Co(II)/(III) based dye-sensitized solar cells, and power conversion efficiency up to 6.95% was achieved, indicating that NP could be used as a new building block for the design of high-performance sensitizers in the future.

  3. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

    International Nuclear Information System (INIS)

    Liang Xiaoyu; Cheng Xiaoman; Du Boqun; Bai Xiao; Fan Jianfeng

    2013-01-01

    We investigated the properties of C 60 -based organic field-effect transistors (OFETs) with a pentacene passivation layer inserted between the C 60 active layer and the gate dielectric. After modification of the pentacene passivation layer, the performance of the devices was considerably improved compared to C 60 -based OFETs with only a PMMA dielectric. The peak field-effect mobility was up to 1.01 cm 2 /(V·s) and the on/off ratio shifted to 10 4 . This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs. (semiconductor devices)

  4. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinyu [College of Science, Guilin University of Technology, Guilin 541004 (China); Department of Physics and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Tang, Tao; Li, Ming, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [College of Science, Guilin University of Technology, Guilin 541004 (China); He, Xiancong, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167 (China)

    2015-01-05

    Highly nitrogen-doped GO (NGO) and n-type graphene field effect transistor (FET) have been achieved by simple irradiation of graphene oxide (GO) thin films in NH{sub 3} atmosphere. The electrical properties of the NGO film were performed on electric field effect measurements, and it displays an n-type FET behavior with a charge neutral point (Dirac point) located at around −8 V. It is suggested that the amino-like nitrogen (N-A) mainly contributes to the n-type behavior. Furthermore, compared to the GO film irradiated in Ar atmosphere, the NGO film is much more capable to improve the electrical conductivity. It may attribute to nitrogen doping and oxygen reduction, both of which can effectively enhance the electrical conductivity.

  5. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation.

    Science.gov (United States)

    de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda

    2017-01-20

    Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS n . Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C 31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  7. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes

    Science.gov (United States)

    Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan

    2018-02-01

    Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.

  8. Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport

    KAUST Repository

    Rivnay, Jonathan

    2011-07-12

    Control of crystallographic texture from mostly face-on to edge-on is observed for the film morphology of the n-type semicrystalline polymer {[N,N-9-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl] -alt-5,59-(2,29-bithiophene)}, P(NDI2OD-T2), when annealing the film to the polymer melting point followed by slow cooling to ambient temperature. A variety of X-ray diffraction analyses, including pole figure construction and Fourier transform peak shape deconvolution, are employed to quantify the texture change, relative degree of crystallinity and lattice order. We find that annealing the polymer film to the melt leads to a shift from 77.5% face-on to 94.6% edge-on lamellar texture as well as to a 2-fold increase in crystallinity and a 40% decrease in intracrystallite cumulative disorder. The texture change results in a significant drop in the electron-only diode current density through the film thickness upon melt annealing, while little change is observed in the in-plane transport of bottom gated thin film transistors. This suggests that the texture change is prevalent in the film interior and that either the (bottom) surface structure is different from the interior structure or the intracrystalline order and texture play a secondary role in transistor transport for this material. © 2011 American Chemical Society.

  9. Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage.

    Science.gov (United States)

    Liu, Sitong; Zhou, Jisheng; Song, Huaihe

    2018-03-01

    To prepare highly N-doped carbon materials (HNCs) as well as to determine the influence of N dopants on Na-ion storage performance, hexamine-based metal-organic frameworks are employed as new and efficient precursors in the preparation of HNCs. The HNCs possess reversible capacities as high as 160 and 142 mA h g -1 at 2 A g -1 (≈8 C) and 5 A g -1 (≈20 C), respectively, and maintain values of 145 and 123 mA h g -1 after 500 cycles, thus exhibiting excellent rate and long-term cyclic performance. Based on systematic analysis, a new insight into the roles of the different N configurations in Na-ion storage is proposed. The adsorption of Na ions on pyridinic-N (N-6) and pyrrolic-N (N-5) is fully irreversible, whereas the adsorption on graphitic-N (N-Q) is partially reversible and the adsorption on N-oxide (N-O) is fully reversible. More importantly, the N-6/N-Q ratio is an intrinsic parameter that reflects the relationship between the N configurations and carbon textures for N-doped carbons prepared from in situ pyrolysis of organic precursors. The cyclic stability and rate-performance improve with decreasing N-6/N-Q ratio. Therefore, this work is of great significance for the design of N-doped carbon electrodes with high performance for sodium ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].

    Science.gov (United States)

    Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S

    1985-04-01

    Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.

  11. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-01-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm 2 /V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  12. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5347 (United States); Gougousi, Theodosia [Physics Department, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Evans, Keith R. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  13. High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on ?-TiAl

    OpenAIRE

    Walker, J.C.; Ross, I.M.; Reinhard, C.; Rainforth, W.M.; Hovsepian, P.Eh.

    2009-01-01

    This paper details the effect of temperature on the frictional behaviour of highly novel CrAlYN/CrN multilayer coatings, deposited by High Power Impulse Magnetron Sputtering (HIPIMS) on a Titanium Aluminide alloy used as fan blade material in the aerospace and a turbo-charger wheel in the automotive industries. The work was the first to discover the high temperature oxide 'glaze' layer formation which occurred on CrN multilayer-type coatings at higher temperatures and has received significant...

  14. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    Science.gov (United States)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-01

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 1019 cm-3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 1020 cm-3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 1019 cm-3. The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5 V and series resistances of 6-10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  15. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors

    Science.gov (United States)

    Xia, Kaisheng; Huang, Zhiyuan; Zheng, Lin; Han, Bo; Gao, Qiang; Zhou, Chenggang; Wang, Hongquan; Wu, Jinping

    2017-10-01

    Improving the energy density of carbon-based supercapacitors is one of the most urgent demands for developing high-power energy supplies, which in general requires delicate engineering of the carbon composition and textures. By pre-functionalization of graphene nanosheets and successive one-step (NH4)3PO4 activation, we prepared a type of nitrogen and phosphorus co-doped graphene (NPG) with high specific surface areas, hierarchical pore structures as well as tunable N and P contents. The as-obtained NPG shows high specific capacitances of 219 F g-1 (123 F cm-3) at 0.25 A g-1 and 175 F g-1 (98 F cm-3) at 10 A g-1, respectively. Accordingly, the NPG-based symmetrical supercapacitor device, working at a potential window of 1.3 V, could deliver an enhanced energy density of 8.2 Wh kg-1 (4.6 Wh L-1) at a power density of 162 W kg-1 (91 W L-1), which still retains 6.7 Wh kg-1 at 6.5 kW kg-1. In particular, under a current density of 5 A g-1, the device endows an 86% capacitance retention of initial after 20,000 cycles, displaying superior cycle stability. Our results imply the feasibility of NPG as a promising candidate for high-performance supercapacitors.

  16. Performance improvement and better scalability of wet-recessed and wet-oxidized AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Takhar, Kuldeep; Meer, Mudassar; Upadhyay, Bhanu B.; Ganguly, Swaroop; Saha, Dipankar

    2017-05-01

    We have demonstrated that a thin layer of Al2O3 grown by wet-oxidation of wet-recessed AlGaN barrier layer in an AlGaN/GaN heterostructure can significantly improve the performance of GaN based high electron mobility transistors (HEMTs). The wet-etching leads to a damage free recession of the gate region and compensates for the decreased gate capacitance and increased gate leakage. The performance improvement is manifested as an increase in the saturation drain current, transconductance, and unity current gain frequency (fT). This is further augmented with a large decrease in the subthreshold current. The performance improvement is primarily ascribed to an increase in the effective velocity in two-dimensional electron gas without sacrificing gate capacitance, which make the wet-recessed gate oxide-HEMTs much more scalable in comparison to their conventional counterpart. The improved scalability leads to an increase in the product of unity current gain frequency and gate length (fT × Lg).

  17. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  18. Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer

    KAUST Repository

    Rivnay, Jonathan; Toney, Michael F.; Zheng, Yan; Kauvar, Isaac V.; Chen, Zhihua; Wagner, Veit; Facchetti, Antonio; Salleo, Alberto

    2010-01-01

    Substantial in-plane crystallinity and dominant face-on stacking are observed in thin films of a high-mobility n-type rylene-thiophene copolymer. Spun films of the polymer, previously thought to have little or no order are found to exhibit an ordered microstructure at both interfaces, and in the bulk. The implications of this type of packing and crystalline morphology are discussed as they relate to thin-film transistors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer

    KAUST Repository

    Rivnay, Jonathan

    2010-07-09

    Substantial in-plane crystallinity and dominant face-on stacking are observed in thin films of a high-mobility n-type rylene-thiophene copolymer. Spun films of the polymer, previously thought to have little or no order are found to exhibit an ordered microstructure at both interfaces, and in the bulk. The implications of this type of packing and crystalline morphology are discussed as they relate to thin-film transistors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-05-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances.

  1. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Zeng, Jian-Jhou; Lin, Yow-Jon

    2014-01-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances

  2. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  3. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  4. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  5. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    Science.gov (United States)

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  6. Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors

    Science.gov (United States)

    Nazarian-Samani, Masoud; Haghighat-Shishavan, Safa; Nazarian-Samani, Mahboobeh; Kim, Myeong-Seong; Cho, Byung-Won; Oh, Si-Hyoung; Kashani-Bozorg, Seyed Farshid; Kim, Kwang-Bum

    2017-12-01

    A P, N dual-doped holey graphene (PNHG) material is prepared by a scalable, facile synthetic approach, using a mixture of glucose, dicyandiamide (DCDA), and phosphoric acid (H3PO4). H3PO4 successfully functions as an "acid catalyst" to encourage the uniform breakage of C=C bonds to create large, localized perforations over the graphene monolith. Further acid treatment and annealing introduce in-plane holes. The correlation between the capacitance of the PNHG and its structural parameters during the fabrication process is comprehensively evaluated. A thermally induced sp2→sp3 transformation occurs at high temperatures because of the substantial loss of graphitic sp2-type carbons, together with a dramatic reduction in capacitance. The target PNHG-400 electrode material delivers exceptionally high gravimetric capacitance (235.5 F g-1 at 0.5 A g-1), remarkable rate capability (84.8% at 70 A g-1), superior capacitance retention (93.2 and 92.7% at 10 and 50 A g-1 over 25000 cycles, respectively), and acceptable volumetric capacitance due to moderate density, when it is used with organic electrolytes in the voltage range between 0 and 3 V. These results suggest a pioneering defect-engineered strategy to fabricate dual-doped holey graphene with valuable structural properties for high-performance electric double layer supercapacitors, which could be used in next-generation energy storage applications.

  7. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    Science.gov (United States)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  8. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10{sup 19} cm{sup −3} with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10{sup 20} cm{sup −3} show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10{sup 19} cm{sup −3}. The p-GaN and p-Al{sub 0.11}Ga{sub 0.89}N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  9. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    International Nuclear Information System (INIS)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-01

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10 19 cm −3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10 20 cm −3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10 19 cm −3 . The p-GaN and p-Al 0.11 Ga 0.89 N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K

  10. High-Pressure Phase Equilibria in Systems Containing CO2 and Ionic Liquid of the [Cnmim][Tf2N] Type

    OpenAIRE

    Sedláková, Z. (Zuzana); Wagner, Z. (Zdeněk)

    2012-01-01

    In this review, we present a comparison of the high-pressure phase behaviour of binary systems constituted of CO2 and ionic liquids of the [Cn(m)mim][Tf2N] type. The comparative study shows that the solubility of CO2 in ionic liquids of the [Cnmim][Tf2N] type generally increases with increasing pressure and decreasing temperature, but some peculiarities have been observed. The solubility of CO2 in ionic liquid solvents was correlated using the Soave–Redlich–Kwong equation of state. The result...

  11. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  12. Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode.

    Science.gov (United States)

    Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C

    2017-09-04

    The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.

  13. Magnéli oxides as promising n-type thermoelectrics

    Directory of Open Access Journals (Sweden)

    Gregor Kieslich

    2014-10-01

    Full Text Available The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.

  14. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.

    Science.gov (United States)

    Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang

    2015-11-25

    Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.

  15. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters

    KAUST Repository

    Zhao, Chao; Ng, Tien Khee; Tseng, Chien-Chih; Li, Jun; Shi, Yumeng; Wei, Nini; Zhang, Daliang; Consiglio, Giuseppe Bernardo; Prabaswara, Aditya; Alhamoud, Abdullah Ali; Albadri, Abdulrahman  M.; Alyamani, Ahmed Y.; Zhang, Xixiang; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    The recent study of a wide range of layered transition metal dichalcogenides (TMDCs) has created a new era for device design and applications. In particular, the concept of van der Waals epitaxy (vdWE) utilizing layered TMDCs has the potential to broaden the family of epitaxial growth techniques beyond the conventional methods. We report herein, for the first time, the monolithic high-power, droop-free, and wavelength tunable InGaN/GaN nanowire light-emitting diodes (NW-LEDs) on large-area MoS2 layers formed by sulfurizing entire Mo substrates. MoS2 serves as both a buffer layer for high-quality GaN nanowires growth and a sacrificial layer for epitaxy lift-off. The LEDs obtained on nitridated MoS2 via quasi vdWE show a low turn-on voltage of ∼2 V and light output power up to 1.5 mW emitting beyond the “green gap”, without an efficiency droop up to the current injection of 1 A (400 A cm−2), by virtue of high thermal and electrical conductivities of the metal substrates. The discovery of the nitride/layered TMDCs/metal heterostructure platform also ushers in the unparalleled opportunities of simultaneous high-quality nitrides growth for high-performance devices, ultralow-profile optoelectronics, energy harvesting, as well as substrate reusability for practical applications.

  16. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters

    KAUST Repository

    Zhao, Chao

    2017-05-18

    The recent study of a wide range of layered transition metal dichalcogenides (TMDCs) has created a new era for device design and applications. In particular, the concept of van der Waals epitaxy (vdWE) utilizing layered TMDCs has the potential to broaden the family of epitaxial growth techniques beyond the conventional methods. We report herein, for the first time, the monolithic high-power, droop-free, and wavelength tunable InGaN/GaN nanowire light-emitting diodes (NW-LEDs) on large-area MoS2 layers formed by sulfurizing entire Mo substrates. MoS2 serves as both a buffer layer for high-quality GaN nanowires growth and a sacrificial layer for epitaxy lift-off. The LEDs obtained on nitridated MoS2 via quasi vdWE show a low turn-on voltage of ∼2 V and light output power up to 1.5 mW emitting beyond the “green gap”, without an efficiency droop up to the current injection of 1 A (400 A cm−2), by virtue of high thermal and electrical conductivities of the metal substrates. The discovery of the nitride/layered TMDCs/metal heterostructure platform also ushers in the unparalleled opportunities of simultaneous high-quality nitrides growth for high-performance devices, ultralow-profile optoelectronics, energy harvesting, as well as substrate reusability for practical applications.

  17. Improved thermoelectric performance of n-type Ca and Ca-Ce filled skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Daniel R.; Liu, Chang; Ellison, Nicole D. [Optimal CAE, Plymouth, Michigan 48170 (United States); Salvador, James R.; Meyer, Martin S.; Haddad, Daad B. [General Motors Research and Development, Warren, Michigan 48090 (United States); Wang, Hsin; Cai, W. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-28

    Thermoelectric (TE) technology for use in automotive waste heat recovery is being advanced by General Motors with support from the US Department of Energy. Skutterudites are a very promising material for this application of TE technology due to their superior mechanical properties and good TE performance. Double-filled Yb{sub x}Ba{sub y}Co{sub 4}Sb{sub 12} with ZT values around 1.1 at 750 K are the best performing n-type skutterudites produced on a large scale using an economically viable approach of melt spinning (MS) in conjunction with spark plasma sintering (SPS). Another economical production method on the tons scale, the melt quench annealing (MQA) technique, has been recently claimed by Treibacher Industrie AG, further information is available [G. Rogl et al., Acta Mater. 76, 434–448 (2014)]. A possible hurdle to commercial implementation of these materials is the use of rare earths as the fillers to reduce thermal conductivity and improve the electrical transport properties. It will be shown herein that skutterudites double-filled with Ca and Ce, both of which are lower-cost fillers, display markedly different TE properties depending on whether they are produced by MQA or MS + SPS synthesis techniques. Ca and Ce double-filled skutterudites prepared by MS + SPS have TE properties that are superior to the same compositions prepared by MQA and that are comparable to the best performing Yb and Ba filled materials. Furthermore, the results of this study suggest that the unusually poor transport properties of MQA Ca-filled skutterudites can be ascribed to deleterious secondary phases, which is contrary to reports in the literature attempting to explain these irregularities via band structure features.

  18. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander

    2018-04-24

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  19. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; Donahue, Mary J.; Bryant, Daniel; Barth, Katrina J.; Makdah, Beatrice E.; Savva, Achilleas; Moia, Davide; Zetek, Matyá š; Barnes, Piers R.F.; Reid, Obadiah G.; Inal, Sahika; Rumbles, Garry; Malliaras, George G.; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-01-01

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  20. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    Science.gov (United States)

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  1. High performance AlGaN/GaN HEMTs with 2.4 μm source-drain spacing

    International Nuclear Information System (INIS)

    Wang Dongfang; Wei Ke; Yuan Tingting; Liu Xinyu

    2010-01-01

    This paper describes the performance of AlGaN/GaN HEMTs with 2.4 μm source-drain spacing. So far these are the smallest source-drain spacing AlGaN/GaN HEMTs which have been implemented with a domestic wafer and domestic process. This paper also compares their performance with that of 4 μm source-drain spacing devices. The former exhibit higher drain current, higher gain, and higher efficiency. It is especially significant that the maximum frequency of oscillation noticeably increased. (semiconductor integrated circuits)

  2. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    Science.gov (United States)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  3. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  4. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors.

    Science.gov (United States)

    Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon

    2015-01-01

    For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.

  5. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  6. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range

    Directory of Open Access Journals (Sweden)

    Robert Kucharski

    2017-06-01

    Full Text Available GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples or dopant ionization (p-type samples. In the mid-infrared the transparency cut-off, which for a semi-insulating GaN is at ~7 µm due to an absorption on a second harmonic of optical phonons, shifts towards shorter wavelengths due to an absorption on free carriers up to ~1 µm at n ~ 1020 cm−3 doping level. Moreover, a semi-insulating GaN crystal shows good transparency in the 1–10 THz range, while for n-and p-type crystal, the transparency in this spectral region is significantly quenched below 1%. In addition, it is shown that in the visible spectral region n-type GaN substrates with a carrier concentration below 1018 cm−3 are highly transparent with the absorption coefficient below 3 cm−1 at 450 nm, a satisfactory condition for light emitting diodes and laser diodes operating in this spectral range.

  7. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Pang Liang; Kim, Kyekyoon

    2012-01-01

    A bimodal deposition scheme combining radiofrequency magnetron sputtering and plasma enhanced chemical vapour deposition (PECVD) is proposed as a means for improving the performance of GaN-based metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs). High-density sputtered-SiO 2 is utilized to reduce the gate leakage current and enhance the breakdown voltage while low-density PECVD-SiO 2 is employed to buffer the sputtering damage and further increase the drain current by engineering the stress-induced-polarization. Thus-fabricated MOSHEMT exhibited a low leakage current of 4.21 × 10 -9 A mm -1 and high breakdown voltage of 634 V for a gate-drain distance of 6 µm, demonstrating the promise of bimodal-SiO 2 deposition scheme for the development of GaN-based MOSHEMTs for high-power application. (paper)

  8. Driving High-Performance n- and p-type Organic Transistors with Carbon Nanotube/Conjugated Polymer Composite Electrodes Patterned Directly from Solution

    KAUST Repository

    Hellstrom, Sondra L.

    2010-07-12

    We report patterned deposition of carbon nanotube/conjugated polymer composites from solution with high nanotube densities and excellent feature resolution. Such composites are suited for use as electrodes in high-performance transistors of pentacene and C60, with bottom-contact mobilities of ?0.5 and ?1 cm2 V-1 s-1, respectively. This represents a clear step towards development of inexpensive, high-performance all-organic circuits. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  10. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  11. Efficiency improvements by Metal Wrap Through technology for n-type Si solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Wenchao, Zhao; Jianming, Wang; Yanlong, Shen; Ziqian, Wang; Yingle, Chen; Shuquan, Tian; Zhiliang, Wan; Bo, Yu; Gaofei, Li; Zhiyan, Hu; Jingfeng, Xiong [Yingli Green Energy Holding Co., Ltd, 3399 North Chaoyang Avenue, Baoding (China); Guillevin, N.; Heurtault, B.; Aken, B.B. van; Bennett, I.J.; Geerligs, L.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    N-type Metal Wrap Through (n-MWT) is presented as an industrially promising back-contact technology to reach high performance of silicon solar cells and modules. It can combine benefits from both n-type base and MWT metallization. In this paper, the efficiency improvements of commercial industrial n-type bifacial Si solar cells (239 cm{sup 2}) and modules (60 cells) by the integration of the MWT technique are described. For the cell, after the optimization of integration, over 0.3% absolute efficiency gain was achieved over the similar non-MWT technology, and Voc gain and Isc gain up to 0.9% and 3.5%, respectively. These gains are mainly attributed to reduced shading loss and surface recombination. Besides the front pattern optimization, a 0.1m{Omega} reduction of Rs in via part will induce further 0.06% absolute efficiency improvement. For the module part, a power output of n-MWT module up to 279W was achieved, corresponding to a module efficiency of about 17.7%.

  12. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  13. Physical effects of DCNQI derivatives doping as an N type organic semiconductor in organic photovoltaic cell performance.

    Science.gov (United States)

    Lee, Joo Hyung; Oh, Se Young

    2014-08-01

    In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.

  14. Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure.

    Science.gov (United States)

    Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q

    2015-10-19

    Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer.

  15. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion

    Science.gov (United States)

    Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi

    2018-05-01

    Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).

  16. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.; Chen, Mark S.; Niskala, Jeremy R.; Lee, Olivia P.; Yiu, Alan T.; Young, Eric P.; Frechet, Jean

    2014-01-01

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices

  17. Equilibrium constant and nitrogen activity and the parameters of interaction eN(N), rN(N,Cr), rN(N,Mn) in high nitrogen steels of Fe-Cr-Mn-N type

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Siwka, J.; Rashev, T.

    1999-01-01

    In the paper a description of a thermodynamic of liquid solutions of Fe-Cr-Mn-N type with using a concept of parameters of an interaction has been presented. A temperature relationship of the equilibrium constant K N(Fe) and values of self interaction parameters e N (N) , r N (N,Cr) , r N (N,Mn) and t N (N,Cr,Cr) has been determined for mean values of temperatures of liquid metal equal 1990 K and 2090 K. By application of a theory of regular solutions those values were recalculated for a temperature 1873 K. (orig.)

  18. High performance printed oxide field-effect transistors processed using photonic curing

    Science.gov (United States)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  19. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  20. Comparison of recessed gate-head structures on normally-off AlGaN/GaN high-electron-mobility transistor performance.

    Science.gov (United States)

    Khan, Mansoor Ali; Heo, Jun-Woo; Kim, Hyun-Seok; Park, Hyun-Chang

    2014-11-01

    In this work, different gate-head structures have been compared in the context of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). Field-plate (FP) technology self-aligned to the gate electrode leads to various gate-head structures, most likely gamma (γF)-gate, camel (see symbol)-gate, and mushroom-shaped (T)-gate. In-depth comparison of recessed gate-head structures demonstrated that key performance metrics such as transconductance, output current, and breakdown voltage are better with the T-gate head structure. The recessed T-gate with its one arm toward the source side not only reduces the source-access resistance (R(g) +R(gs)), but also minimizes the source-side dispersion and current leakage, resulting in high transconductance (G(m)) and output current (I(DS)). At the same time, the other arm toward the drain-side reduces the drain-side dispersion and tends to distribute electric field peaks uniformly, resulting in high breakdown voltage (V(BR)). DC and RF analysis showed that the recessed T-gate FP-HEMT is a suitable candidate not only for high-frequency operation, but also for high-power applications.

  1. Lg = 100 nm T-shaped gate AlGaN/GaN HEMTs on Si substrates with non-planar source/drain regrowth of highly-doped n+-GaN layer by MOCVD

    International Nuclear Information System (INIS)

    Huang Jie; Li Ming; Tang Chak-Wah; Lau Kei-May

    2014-01-01

    High-performance AlGaN/GaN high electron mobility transistors (HEMTs) grown on silicon substrates by metal—organic chemical-vapor deposition (MOCVD) with a selective non-planar n-type GaN source/drain (S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance (g m ) of 247 mS/mm. The current gain cutoff frequency f T and maximum oscillation frequency f MAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard GaN HEMT on silicon substrate, the f T and f MAX is 50% and 52% higher, respectively. (interdisciplinary physics and related areas of science and technology)

  2. Integration of High-Performance Nanocrystalline TiO2 Photoelectrodes for N719-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ke-Jian Jiang

    2013-01-01

    Full Text Available We report on enhanced performance of N719-sensitized TiO2 solar cells (DSCs incorporating size and photoelectron diffusion-controlled TiO2 as sensitizer-matched light-scatter layers on conventional nanocrystalline TiO2 electrodes. The double-layered N719/TiO2 composite electrode with a high dye-loading capacity exhibits the diffused reflectance of more than 50% in the range of λ = 650–800 nm, even when the films are coupled with the titania nanocrystalline underlayer in the device. As a result, the increased near-infrared light-harvesting produces a high light-to-electricity conversion efficiency of over 9% mainly due to the significant increase of Jsc. Such an optical effect of the NIR-light scattering TiO2 electrodes will be beneficial when the sensitizers with low molar extinction coefficients, such as N719, are introduced in the device.

  3. Anesthesiology resident personality type correlates with faculty assessment of resident performance.

    Science.gov (United States)

    Schell, Randall M; Dilorenzo, Amy N; Li, Hsin-Fang; Fragneto, Regina Y; Bowe, Edwin A; Hessel, Eugene A

    2012-11-01

    To study the association between anesthesiology residents' personality preference types, faculty evaluations of residents' performance, and knowledge. Convenience sample and prospective study. Academic department of anesthesiology. Consenting anesthesiology residents (n = 36). All participants completed the Myers Briggs Type Indicator® (MBTI®). All residents' 6-month summation of daily focal evaluations completed by faculty [daily performance score (DPS); 1 = unsatisfactory, 2 = needs improvement, 3 = meets expectations, 4 = exceeds expectations], as well as a global assessment of performance (GAP) score based on placement of each resident into perceived quartile compared with their peers (ie,1 = first, or top, quartile) by senior faculty (n = 7) who also completed the MBTI, were obtained. The resident MBTI personality preferences were compared with the DPS and GAP scores, the United States Medical Licensing Examination (USMLE) I and II scores, and faculty MBTI personality type. There was no association between personality preference type and performance on standardized examinations (USMLE I, II). The mean GAP score was better (higher quartile score) for Extraverts than Introverts (median 2.0 vs 2.6, P = 0.0047) and for Sensing versus Intuition (median 2.0 vs 2.6, P = 0.0206) preference. Faculty evaluator MBTI preference type did not influence the GAP scores they assigned residents. Like GAP, the DPS was better for residents with Sensing versus Intuition preference (median 3.5 vs 3.3, P = 0.0111). No difference in DPS was noted between Extraverts and Introverts. Personality preference type was not associated with resident performance on standardized examinations, but it was associated with faculty evaluations of resident performance. Residents with Sensing personality preference were evaluated more favorably on global and focal faculty evaluations than those residents who chose the Intuition preference. Extraverted residents were evaluated more favorably on

  4. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    Science.gov (United States)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  5. N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors

    Science.gov (United States)

    Xu, Zongying; Li, Yu; Li, Dandan; Wang, Dawei; Zhao, Jing; Wang, Zhifeng; Banis, Mohammad N.; Hu, Yongfeng; Zhang, Huaihao

    2018-06-01

    In this study, N-enriched multilayered porous activated carbon (LPAC), using natural casings as precursor, was fabricated by a facile carbonization and subsequent KOH activation procedure. The influence of the mass ratio of KOH to carbonized material on pore-structure and surface element composition of LPACs was investigated by a variety of means, such as SEM, HRTEM, BET, Raman, XRD, XPS and XAS. Owing to the unique multilayered texture and nitrogen (N) and oxygen (O) rich feature of natural casings, the resulting LPACs possess interconnected and developed porous structure with N- and O-enriched functional groups, contributing to larger pseudocapacitance. With the rise of mass ratio, the specific surface area (SSA) and average pore size of LPACs increased. The final materials were endowed with a desirable SSA (3100 m2 g-1) and high N content (6.34 at.%). Meanwhile, N- and O-enriched LPAC-4 exhibited a high specific capacitance (307.5 F g-1 at a current density of 0.5 A g-1 in 6 M KOH aqueous solution), excellent rate performance (63.4% capacitance retention at 20 A g-1) and good cycling stability (7.1% capacitance loss after 5000 cycles). Furthermore, the assembled symmetrical supercapacitor (LPAC-4//LPAC-4) with a wide voltage window of 1.4 V delivered a remarkable energy density of 11.6 Wh kg-1 at a power density of 297 W kg-1. These results suggested that unique LPACs derived from natural casings are a promising material for supercapacitors.

  6. Driving High-Performance n- and p-type Organic Transistors with Carbon Nanotube/Conjugated Polymer Composite Electrodes Patterned Directly from Solution

    KAUST Repository

    Hellstrom, Sondra L.; Jin, Run Zhi; Stoltenberg, Randall M.; Bao, Zhenan

    2010-01-01

    We report patterned deposition of carbon nanotube/conjugated polymer composites from solution with high nanotube densities and excellent feature resolution. Such composites are suited for use as electrodes in high-performance transistors

  7. Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Matteo, E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, Gaudenzio; Zanoni, Enrico [University of Padova, Department of Information Engineering, via Gradenigo 6/B, 35131 Padova (Italy); Zhu, Dandan; Humphreys, Colin J. [University of Cambridge, Dept. Materials Science & Metallurgy, Cambridge, CB2 3QZ (United Kingdom); Berti, Marina; Gasparotto, Andrea; Cesca, Tiziana [University of Padova, Department of Physics, and Astronomy via Marzolo 8 35131 Padova (Italy); Vinattieri, Anna [University of Florence, Department of Physics, Via Sansone, 1 - 50019 Sesto Fiorentino (Italy); Bogani, Franco [University of Florence, Department of Engineering, Via di Santa Marta, 3, 50139 Firenze (Italy)

    2015-10-15

    This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N{sub 2} atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS); (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i))

  8. Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes

    Science.gov (United States)

    Meneghini, Matteo; Zhu, Dandan; Humphreys, Colin J.; Berti, Marina; Gasparotto, Andrea; Cesca, Tiziana; Vinattieri, Anna; Bogani, Franco; Meneghesso, Gaudenzio; Zanoni, Enrico

    2015-10-01

    This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N2 atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS); (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i)).

  9. Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes

    Directory of Open Access Journals (Sweden)

    Matteo Meneghini

    2015-10-01

    Full Text Available This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N2 atmosphere, the samples exhibit: (i an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS; (iii a diffusion of acceptor (Mg atoms to the quantum well region; (iv a reduction in the yield of Rutherford Backscattering Spectrometry (RBS-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i.

  10. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts.

    Science.gov (United States)

    Wang, Ching-Hua; Incorvia, Jean Anne C; McClellan, Connor J; Yu, Andrew C; Mleczko, Michal J; Pop, Eric; Wong, H-S Philip

    2018-05-09

    Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.

  11. Improved DC performance of AlGaN/GaN high electron mobility transistors using hafnium oxide for surface passivation

    International Nuclear Information System (INIS)

    Liu, Chang; Chor, Eng Fong; Tan, Leng Seow

    2007-01-01

    Improved DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) have been demonstrated using reactive-sputtered hafnium oxide (HfO 2 ) thin film as the surface passivation layer. Hall data indicate a significant increase in the product of sheet carrier concentration (n s ) and electron mobility (μ n ) in the HfO 2 -passivated HEMTs, compared to the unpassivated HEMTs. This improvement in electron carrier characteristics gives rise to a 22% higher I Dmax and an 18% higher g mmax in HEMTs with HfO 2 passivation relative to the unpassivated devices. On the other hand, I gleak of the HEMTs decreases by nearly one order of magnitude when HfO 2 passivation is applied. In addition, drain current is measured in the subthreshold regime. Compared to the unpassivated HEMTs, HfO 2 -passivated HEMTs exhibit a much smaller off-state I D , indicating better turn-off characteristics

  12. Overview of JT-60U results toward high integrated performance in reactor-relevant regime

    International Nuclear Information System (INIS)

    Fujita, T.

    2002-01-01

    Toward steady sustainment of high integrated performance, we have developed weak magnetic shear (high β p mode) and reversed magnetic shear plasmas. As a large-sized tokamak equipped with a variety of devices for heating, current drive and profile/shape control, JT-60U has high ability to approach the conditions required in reactors: low values of normalized Larmor radius and collisionality, high temperatures with T e > or approx. T i , etc. This paper reviews recent JT-60U results with the emphasis on the projection to the reactor-relevant regime. Full non-inductive current drive has been achieved in a 1.8 MA high β p H-mode plasma with β N 2:4, HH y2 =1.2 and high fusion triple product (3 x 10 20 m -3 keVs) owing to increased N-NB power. In a reversed shear plasma, HH y2 =1.4 at n e /n GW 0.8 under the full non-inductive current drive has been achieved with injection of LHRF and N-NB. In box-type ITBs with reversed shear, barriers for ions and electrons were sustained in a regime with T e > or approx. T i . The pedestal pressure was doubled with increased total poloidal beta in pellet-injected high triangularity plasmas with type I and II ELMs. Stable existence of current hole was demonstrated. (author)

  13. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements.

    Science.gov (United States)

    Czajkowska-Mysłek, Anna; Siekierko, Urszula; Gajewska, Magdalena

    2016-04-01

    The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA-LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high-performance liquid chromatography coupled to a diode array detector (Ag-HPLC-DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1% acetonitrile in n-hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n-3 and n-6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L(-1). The developed method was used to evaluate of n-3 and n-6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC-FID based method.

  14. Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX

    International Nuclear Information System (INIS)

    Azli, Tarek; Chaoui, Zine-El-Abidine

    2015-01-01

    The MCNPX code was used to determine the efficiency of a N-type HPGe detector after two decades of operation. Accounting for the roundedness of the crystal's front edges and an inhomogeneous description of the detector's dead layers were shown to achieve better agreement between measurements and simulation efficiency determination. The calculations were experimentally verified using point sources in the energy range from 50 keV to 1400 keV, and an overall uncertainty less than 2% was achieved. In order to use the detector for different matrices and geometries in radioactivity, the suggested model was validated by changing the counting geometry and by using multi-gamma disc sources. The introduced simulation approach permitted the revaluation of the performance of an HPGe detector in comparison of its initial condition, which is a useful tool for precise determination of the thickness of the inhomogeneous dead layer. - Highlights: • Monte Carlo (MCNPX) simulation of an HPGe detector performance after more than two decades in use. • Investigating influence of detector rounded front edges of crystal. • Achieving good matching between Monte Carlo simulation and experiments by inhomogeneous description of detector dead layers

  15. Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent.

    Science.gov (United States)

    Wu, Yike; Sha, Qiuyue; Du, Juan; Wang, Chang; Zhang, Liang; Liu, Bi-Feng; Lin, Yawei; Liu, Xin

    2018-02-02

    Robust, efficient identification and accurate quantification of N-glycans are of great significance in N-glycomics analysis. Here, a simple and rapid derivatization method, based on the combination of microwave-assisted deglycosylation and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) labeling, was developed for the analysis of N-glycan by high performance liquid chromatography with fluorescence detection (HPLC-FLD). After optimizing various parameters affecting deglycosylation and derivatization by RNase B, the time for N-glycan labeling was shortened to 50 min with ∼10-fold enhancement in detection sensitivity comparing to conventional 2-aminobenzoic acid (2-AA) labeling method. Additionally, the method showed good linearity (correlation coefficients > 0.991) and reproducibility (RSD < 8.7%). These advantages of the proposed method were further validated by the analysis of complex samples, including fetuin and human serum. Investigation of serum N-glycome for preliminary diagnosis of human lung cancer was conducted, where significant changes of several N-glycans corresponding to core-fucosylated, mono- and disialylated glycans have been evidenced by a series of statistical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    Science.gov (United States)

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    Science.gov (United States)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  18. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  20. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei.

    Science.gov (United States)

    Schulz, Sarah; Wilkes, Martin; Mills, Deryck J; Kühlbrandt, Werner; Meier, Thomas

    2017-04-01

    The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N-type rotary ATPase, in addition to an operon for a regular F-type rotary ATPase. The molecular architecture of N-type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N 1 N o -type ATPase and investigated the structure and ion specificity of its membrane-embedded c-ring rotor by single-particle electron cryo-microscopy. Of several amphiphilic compounds tested for solubilizing the complex, the choice of the low-density, low-CMC detergent LDAO was optimal in terms of map quality and resolution. The cryoEM map of the c-ring at 6.1 Å resolution reveals a heptadecameric oligomer with a molecular mass of ~141 kDa. Biochemical measurements indicate that the c 17 ring is H + specific, demonstrating that the ATPase is proton-coupled. The c 17 ring stoichiometry results in a very high ion-to-ATP ratio of 5.7. We propose that this N-ATPase is a highly efficient proton pump that helps these melioidosis-causing bacteria to survive in the hostile, acidic environment of phagosomes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  2. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  3. A comparative study of the Si diodes of N type applied to high-dose range dosimetry

    International Nuclear Information System (INIS)

    Pascoalino, Kelly Cristina da Silva; Goncalves, Josemary Angelica Correa; Tobias, Carmen Cecilia Bueno

    2011-01-01

    This work presents the results of the comparative studies of floating-zone (Fz) and magnetic Czochralski (MCz) n-type silicon diodes as gamma dosimeters. The devices were irradiated with gamma rays from 60 Co source, Gammacell 220, at Radiation Technology Center (CTR-IPEN/CNEN-SP) with the dose rate of 2 kGy/h. The results with total absorbed doses of approximately 1 MGy showed that the devices studied are tolerant to radiation damages and then can be used as an online dosimeter in high doses radiation processing. (author)

  4. Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials

    Science.gov (United States)

    Song, Shaowei; Mao, Jun; Shuai, Jing; Zhu, Hangtian; Ren, Zhensong; Saparamadu, Udara; Tang, Zhongjia; Wang, Bo; Ren, Zhifeng

    2018-02-01

    The recent discovery of a high thermoelectric figure of merit (ZT) in an n-type Mg3Sb2-based Zintl phase triggered an intense research effort to pursue even higher ZT. Based on our previous report on Mg3.1Nb0.1Sb1.5Bi0.49Te0.01, we report here that partial texturing in the (001) plane is achieved by double hot pressing, which is further confirmed by the rocking curves of the (002) plane. The textured samples of Mg3.1Nb0.1Sb1.5Bi0.49Te0.01 show a much better average performance in the (00l) plane. Hall mobility is significantly improved to ˜105 cm2 V-1 s-1 at room temperature in the (00l) plane due to texturing, resulting in higher electrical conductivity, a higher power factor of ˜18 μW cm-1 K-2 at room temperature, and also higher average ZT. This work shows that texturing is good for higher thermoelectric performance, suggesting that single crystals of n-type Mg3Sb2-based Zintl compounds are worth pursuing.

  5. Validation of an efficiency calibration procedure for a coaxial n-type and a well-type HPGe detector used for the measurement of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Morera-Gómez, Yasser, E-mail: ymore24@gamail.com [Centro de Estudios Ambientales de Cienfuegos, AP 5. Ciudad Nuclear, CP 59350 Cienfuegos (Cuba); Departamento de Química y Edafología, Universidad de Navarra, Irunlarrea No 1, Pamplona 31009, Navarra (Spain); Cartas-Aguila, Héctor A.; Alonso-Hernández, Carlos M.; Nuñez-Duartes, Carlos [Centro de Estudios Ambientales de Cienfuegos, AP 5. Ciudad Nuclear, CP 59350 Cienfuegos (Cuba)

    2016-05-11

    To obtain reliable measurements of the environmental radionuclide activity using HPGe (High Purity Germanium) detectors, the knowledge of the absolute peak efficiency is required. This work presents a practical procedure for efficiency calibration of a coaxial n-type and a well-type HPGe detector using experimental and Monte Carlo simulations methods. The method was performed in an energy range from 40 to 1460 keV and it can be used for both, solid and liquid environmental samples. The calibration was initially verified measuring several reference materials provided by the IAEA (International Atomic Energy Agency). Finally, through the participation in two Proficiency Tests organized by IAEA for the members of the ALMERA network (Analytical Laboratories for the Measurement of Environmental Radioactivity) the validity of the developed procedure was confirmed. The validation also showed that measurement of {sup 226}Ra should be conducted using coaxial n-type HPGe detector in order to minimize the true coincidence summing effect. - Highlights: • An efficiency calibration for a coaxial and a well-type HPGe detector was performed. • The calibration was made using experimental and Monte Carlo simulations methods. • The procedure was verified measuring several reference materials provided by IAEA. • Calibrations were validated through the participation in 2 ALMERA Proficiency Tests.

  6. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  7. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  8. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  9. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity

    International Nuclear Information System (INIS)

    Villamagua, Luis; Stashans, Arvids; Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi; Carini, Manuela

    2015-01-01

    Highlights: • Switch from n-type to p-type conductivity in SnO 2 has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO 2 compound shows stable p-type conductivity. • Low resistivity (3.657 × 10 −1 Ω cm) has been obtained. • High carrier concentration (4.858 × 10 19 cm −3 ) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO 2 systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO 2 material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling

  10. Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX.

    Science.gov (United States)

    Azli, Tarek; Chaoui, Zine-El-Abidine

    2015-03-01

    The MCNPX code was used to determine the efficiency of a N-type HPGe detector after two decades of operation. Accounting for the roundedness of the crystal`s front edges and an inhomogeneous description of the detector's dead layers were shown to achieve better agreement between measurements and simulation efficiency determination. The calculations were experimentally verified using point sources in the energy range from 50keV to 1400keV, and an overall uncertainty less than 2% was achieved. In order to use the detector for different matrices and geometries in radioactivity, the suggested model was validated by changing the counting geometry and by using multi-gamma disc sources. The introduced simulation approach permitted the revaluation of the performance of an HPGe detector in comparison of its initial condition, which is a useful tool for precise determination of the thickness of the inhomogeneous dead layer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage

    Directory of Open Access Journals (Sweden)

    Weina Ren

    2018-01-01

    Full Text Available In this paper, SnS2 nanosheets arrays sandwiched by porous N-doped carbon and TiO2 (TiO2@SnS2@N-C on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries. The as-obtained TiO2@SnS2@N-C composite delivers a remarkable capacity performance (840 mA h g−1 at a current density of 200 mA g−1, excellent rate capability and long-cycling life stability (293 mA h g−1 at 1 A g−1 after 600 cycles. The excellent electrochemical performance can be attributed to the synergistic effect of each component of the unique hybrid structure, in which the SnS2 nanosheets with open framworks offer high capacity, while the porous N-doped carbon nanoplates arrays on flexible carbon cloth are able to improve the conductivity and the TiO2 passivation layer can keep the structure integrity of SnS2 nanosheets.

  12. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  13. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  14. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard.

    Science.gov (United States)

    Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F

    2013-11-15

    A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Corrosion Performance of Inconel 625 in High Sulphate Content

    Science.gov (United States)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  16. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    Science.gov (United States)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  17. A Photodetector Based on p-Si/n-ZnO Nanotube Heterojunctions with High Ultraviolet Responsivity

    KAUST Repository

    Flemban, Tahani H.

    2017-09-19

    Enhanced ultraviolet (UV) photodetectors (PDs) with high responsivity comparable to that of visible and infrared photodetectors are needed for commercial applications. n-Type ZnO nanotubes (NTs) with high-quality optical, structural, and electrical properties on a p-type Si(100) substrate are successfully fabricated by pulsed laser deposition (PLD) to produce a UV PD with high responsivity, for the first time. We measure the current–voltage characteristics of the device under dark and illuminated conditions and demonstrated the high stability and responsivity (that reaches ∼101.2 A W–1) of the fabricated UV PD. Time-resolved spectroscopy is employed to identify exciton confinement, indicating that the high PD performance is due to optical confinement, the high surface-to-volume ratio, the high structural quality of the NTs, and the high photoinduced carrier density. The superior detectivity and responsivity of our NT-based PD clearly demonstrate that fabrication of high-performance UV detection devices for commercial applications is possible.

  18. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  19. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  20. Fluorinated copper-phthalocyanine-based n-type organic field-effect transistors with a polycarbonate gate insulator

    International Nuclear Information System (INIS)

    Sethuraman, Kunjithapatham; Kumar, Palanisamy; Santhakumar, Kannappan; Ochiai, Shizuyasu; Shin, Paikkyun

    2012-01-01

    Fluorinated copper-phthalocyanine (F 16 CuPc) thin films were prepared by using a vacuum evaporation technique and were applied to n-type organic field-effect transistors (OFETs) as active channel layers combined with a spin-coated polycarbonate thin-film gate insulator. The output characteristics of the resulting n-type OFET devices with bottom-gate/bottom-contact structures were investigated to evaluate the performances such as the field effect mobility (μ FE ), the on/off current ratio (I on/off ), and the threshold voltage (V th ). A relatively high field effect mobility of 6.0 x 10 -3 cm 2 /Vs was obtained for the n-type semiconductor under atmospheric conditions with an on/off current ratio of 1 x 10 4 and a threshold voltage of 5 V. The electron mobility of the n-type semiconductor was found to depend strongly on the growth temperature of the F 16 CuPc thin films. X-ray diffraction profiles showed that the crystallinity and the orientation of the F 16 CuPc on a polycarbonate thin film were enhanced with increasing growth temperature. Atomic force microscopy studies revealed various surface morphologies of the active layer. The field effect mobility of the F 16 CuPc-OFET was closely related to the crystallinity and the orientation of the F 16 CuPc thin film.

  1. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  2. Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility

    KAUST Repository

    Fallon, Kealan J.

    2016-10-18

    Herein, we present the synthesis and characterization of four conjugated polymers containing a novel chromophore for organic electronics based on an indigoid structure. These polymers exhibit extremely small band gaps of ∼1.2 eV, impressive crystallinity, and extremely high n-type mobility exceeding 3 cm V s. The n-type charge carrier mobility can be correlated with the remarkably high crystallinity along the polymer backbone having a correlation length in excess of 20 nm. Theoretical analysis reveals that the novel polymers have highly rigid nonplanar geometries demonstrating that backbone planarity is not a prerequisite for either narrow band gap materials or ultrahigh mobilities. Furthermore, the variation in backbone crystallinity is dependent on the choice of comonomer. OPV device efficiencies up to 4.1% and charge photogeneration up to 1000 nm are demonstrated, highlighting the potential of this novel chromophore class in high-performance organic electronics.

  3. Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility

    KAUST Repository

    Fallon, Kealan J.; Wijeyasinghe, Nilushi; Manley, Eric F.; Dimitrov, Stoichko D.; Yousaf, Syeda A.; Ashraf, Raja S.; Duffy, Warren; Guilbert, Anne A. Y.; Freeman, David M. E.; Al-Hashimi, Mohammed; Nelson, Jenny; Durrant, James R.; Chen, Lin X.; McCulloch, Iain; Marks, Tobin J.; Clarke, Tracey M.; Anthopoulos, Thomas D.; Bronstein, Hugo

    2016-01-01

    Herein, we present the synthesis and characterization of four conjugated polymers containing a novel chromophore for organic electronics based on an indigoid structure. These polymers exhibit extremely small band gaps of ∼1.2 eV, impressive crystallinity, and extremely high n-type mobility exceeding 3 cm V s. The n-type charge carrier mobility can be correlated with the remarkably high crystallinity along the polymer backbone having a correlation length in excess of 20 nm. Theoretical analysis reveals that the novel polymers have highly rigid nonplanar geometries demonstrating that backbone planarity is not a prerequisite for either narrow band gap materials or ultrahigh mobilities. Furthermore, the variation in backbone crystallinity is dependent on the choice of comonomer. OPV device efficiencies up to 4.1% and charge photogeneration up to 1000 nm are demonstrated, highlighting the potential of this novel chromophore class in high-performance organic electronics.

  4. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Tagnit-Hamou Arezki

    2018-01-01

    Full Text Available Ground-glass pozzolan (G obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM, given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC, high-performance concrete (HPC, and ultra-high performance concrete (UHPC. The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental. It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.

  5. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  6. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    International Nuclear Information System (INIS)

    Choi, Yunju; Kim, Yangsoo; Ahn, Kwang-Soon; Kim, Hyunsoo

    2014-01-01

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10 −3 , 4.3 × 10 −4 , and 1.1 × 10 −3 Ω cm 2 for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N 2 ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples

  7. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunju [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Kim, Yangsoo [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Ahn, Kwang-Soon, E-mail: kstheory@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kim, Hyunsoo, E-mail: hskim7@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-10-30

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10{sup −3}, 4.3 × 10{sup −4}, and 1.1 × 10{sup −3} Ω cm{sup 2} for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N{sub 2} ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples.

  8. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Yibo; Liu, Yan; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-06-01

    We investigate GaAsBi/GaAsN system for the design of type-II staggered hetero tunneling field-effect transistor (hetero-TFET). Strain-symmetrized GaAsBi/GaAsN with effective lattice match to GaAs exhibits a type-II band lineup, and the effective bandgap EG,eff at interface is significantly reduced with the incorporation of Bi and N elements. The band-to-band tunneling (BTBT) rate and drive current of GaAsBi/GaAsN hetero-TFETs are boosted due to the utilizing of the type-II staggered tunneling junction with the reduced EG,eff. Numerical simulation shows that the drive current and subthreshold swing (SS) characteristics of GaAsBi/GaAsN hetero-TFETs are remarkably improved by increasing Bi and N compositions. The dilute content GaAs0.85Bi0.15/GaAs0.92N0.08 staggered hetero-nTFET achieves 7.8 and 550 times higher ION compared to InAs and In0.53Ga0.47As homo-TFETs, respectively, at the supply voltage of 0.3 V. GaAsBi/GaAsN heterostructure is a potential candidate for high performance TFET.

  9. Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.

    Science.gov (United States)

    Yao, Yifan; Zhang, Lei; Leydecker, Tim; Samorì, Paolo

    2018-05-23

    Organic crystals are generated via the bottom-up self-assembly of molecular building blocks which are held together through weak noncovalent interactions. Although they revealed extraordinary charge transport characteristics, their labile nature represents a major drawback toward their integration in optoelectronic devices when the use of sophisticated patterning techniques is required. Here we have devised a radically new method to enable the use of photolithography directly on molecular crystals, with a spatial resolution below 300 nm, thereby allowing the precise wiring up of multiple crystals on demand. Two archetypal organic crystals, i.e., p-type 2,7-diphenyl[1]benzothieno[3,2- b][1]benzothiophene (Dph-BTBT) nanoflakes and n-type N, N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires, have been exploited as active materials to realize high-performance top-contact organic field-effect transistors (OFETs), inverter and p-n heterojunction photovoltaic devices supported on plastic substrate. The compatibility of our direct photolithography technique with organic molecular crystals is key for exploiting the full potential of organic electronics for sophisticated large-area devices and logic circuitries, thus paving the way toward novel applications in plastic (opto)electronics.

  10. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.

    Science.gov (United States)

    Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A

    2008-09-15

    Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.

  11. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    International Nuclear Information System (INIS)

    Huang Wei; Lu Chao; Yu Jue; Wei Jiang-Bin; Chen Chao-Wen; Wang Jian-Yuan; Xu Jian-Fang; Li Cheng; Chen Song-Yan; Lai Hong-Kai; Wang Chen; Liu Chun-Li

    2016-01-01

    High-performance Ge n + /p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n + /p junction has a rectification ratio of 5.6× 10 4 and a forward current of 387 A/cm 2 at −1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. (paper)

  12. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  13. LHCb-VELO module production with n-side read-out on n- and p-type silicon substrates

    International Nuclear Information System (INIS)

    Affolder, A.; Bowcock, T.J.V.; Carrol, J.L.; Casse, G.; Huse, T.; Patel, G.D.; Rinnert, K.; Smith, N.A.; Turner, P.R.

    2007-01-01

    The modules for the Vertex Locator detector of the LHCb experiment represent a technical challenge for their complexity. The design of the sensors uses a complex double metal routing of the connection to the read-out strips and a high density of metal lines has to be accommodated in the module. The detectors are n-side read-out to be able to survive the highest radiation damage of any micro-strip sensor used in LHC experiments. The present choice is n-strips on n-type substrates (n-in-n geometry). Double-sided lithography is required, which impact on the cost of the devices and on the module construction. Moreover, the compact size of the hybrid imposes sophisticated technical solutions for cooling the electronics and the detector. The module construction and the possible benefits offered by the choice of p-type substrate detectors compared to the present n-in-n devices are here discussed in details

  14. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  15. Validation of SCALE code package on high performance neutron shields

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Smuc, T.

    1999-01-01

    The shielding ability and other properties of new high performance neutron shielding materials from the KRAFTON series have been recently published. A comparison of the published experimental and MCNP results for the two materials of the KRAFTON series, with our own calculations has been done. Two control modules of the SCALE-4.4 code system have been used, one of them based on one dimensional radiation transport analysis (SAS1) and other based on the three dimensional Monte Carlo method (SAS3). The comparison of the calculated neutron dose equivalent rates shows a good agreement between experimental and calculated results for the KRAFTON-N2 material.. Our results indicate that the N2-M-N2 sandwich type is approximately 10% inferior as neutron shield to the KRAFTON-N2 material. All values of neutron dose equivalent obtained by SAS1 are approximately 25% lower in comparison with the SAS3 results, which indicates proportions of discrepancies introduced by one-dimensional geometry approximation.(author)

  16. Semiconductor type n for applications in gas sensing film

    International Nuclear Information System (INIS)

    Cerón Hurtado, Nathalie Marcela; Rodríguez Páez, Jorge Enrique

    2008-01-01

    Semiconductors are materials commonly used in the conformation of the active material in gas sensors, in this paper the synthesis routes are shown for obtaining raw material Sn02-Ti02 system, n-type semiconductor material, methods of characterization the same and the formation of thick films. The synthesis was performed using the methods of precipitation Controlled Polymeric Precursor, characterization of ceramic powders are made using techniques of differential thermal analysis and thermogravimetric (DTA / TG), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM ) and Scanning Electron Microscopy (SEM); Finally they settled in thick films by screen printing method and microstructurally characterized by Optical Microscopy (M0) and Scanning Electron Microscopy (SEM), besides this electrically characterized. The ceramic powders obtained are nanoscale high chemical purity and respond favorably formed films in the presence of oxygen and carbon monoxide.

  17. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  18. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  19. Microwave-assisted rapid synthesis of birnessite-type MnO{sub 2} nanoparticles for high performance supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong; Miao, Wang; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-11-15

    Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.

  20. [Neuropsychological performance in neurofibromatosis type 1].

    Science.gov (United States)

    Hernández Del Castillo, Lilia; Martínez Bermejo, Antonio; Portellano Pérez, José Antonio; Tirado Requero, Pilar; Garriz Luis, Alexandra; Velázquez Fragua, Ramón

    2017-08-01

    Neurofibromatosis type 1 (NF1) is a genetic disorder with various clinical manifestations that affect the peripheral and central nervous system, as well as the skin, bones and endocrine and vascular system. There is still insufficient knowledge of neuropsychological effects of NF1 on children, and there is some controversy about the cognitive deficits that defines the cognitive profile of patients affected by this disorder. In this study an analysis is made of the neuropsychological performance of a group of patients affected by NF1, compared with a control group of healthy children. A comparison was made between the neuropsychological performance of a group of 23 boys and girls with a mean age of 8.7 years (+/-1.39) and diagnosed with NF1, and a control group consisting of 21 healthy children, with mean age of 8.9 years (+/- 1.41) and with similar socio-demographic characteristics. The Wechsler Intelligence Scale for Children (WISC) was applied to evaluate the subjects of both groups. The group of patients affected with NF1 showed a lower performance in every primary index of WISC IV: Verbal Comprehension Index, Fluid Reasoning Index, Working Memory Index, Processing Speed Index, and full Scale IQ. Only in two subscales were no statistically significant differences observed: similarities and coding. The results show subtle and generalised neuropsychological alterations in the sample of children affected with NF1, which affect most of cognitive domains that have been evaluated. Proper specific and early neuropsychological treatment should be provided in order to prevent the high risk for these children of presenting learning difficulties and school failure. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    Science.gov (United States)

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  2. Effects of High Performance Inulin Supplementation on Glycemic Status and Lipid Profile in Women with Type 2 Diabetes: A Randomized, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Parvin Dehghan

    2013-06-01

    Full Text Available Background: Type 2 diabetes mellitus, as a noncommunicable disease, is the main public health challenge in the 21st century. The prevalence of di¬abetes mellitus adjusted for the world population in Iran was 8% until the year 2010. Lipid levels are considered as important parameters to be eva¬luated, as high serum lipid levels are often reported as a complication in patients with diabetes mellitus. It is claimed that functional foods may im¬prove complications of diabetes mellitus, so this study was designed to evaluate the effects of high performance inulin on glycemic status and lipid profile of women with type 2 diabetes.Methods: The study was a randomized controlled clinical trial. Forty-nine type 2 diabetic females (fiber intake <30g/d, 25n=24 re¬ceived 10g/d inulin and patients in the control group (n=25 received 10g/d maltodextrin for 8 weeks. Glycemic status and lipid profile indices were measured pre and post intervention. Data were analyzed using SPSS software (verision11.5. Paired, unpaired t-test and ANCOVA were used to compare quantitative variables.Results: Supplementation with inulin caused a significant reduction in FBS (8.50%, HbA1c (10.40%, total cholesterol (12.90%, triglyceride (23.60 %, LDL-c (35.30 %, LDL-c/HDL-c ratio (16.25% and TC/HDL-c ratio (25.20% and increased HDL-c (19.90%. The changes for the control group parameters were not significant at the end of study. Conclusion: Inulin may help to control diabetes and its complications via improving glycemic and lipid parameters.

  3. The development of p-type silicon detectors for the high radiation regions of the LHC

    International Nuclear Information System (INIS)

    Hanlon, M.D.L.

    1998-04-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17±1 is reported, along with a spatial resolution of 14.6±0.2 μm. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22±0.23) x 10 14 per cm 2 . An account of the measurement program is presented along with results on the changes in the effective doping concentration (N eff ) with irradiation and the changes in bulk current. Changes in the effective doping concentration and leakage current for high resistivity p-type material under irradiation were found to be similar to to that of n-type material. Values of α=(3.30±0.08) x 10 -17 A cm -1 for the leakage current parameter and g c =(1.20±0.05)x10 -2 cm -1 for the effective dopant introduction rate were found for this material. The epitaxial material did not perform better than the float zone material for the range of doses studied. Surprising results were obtained for highly irradiated p-type diodes illuminated on the ohmic side with an α-source, in that signals were observed well below the full depletion voltage. The processing that had been used to fabricate the test structures and the initial prototype that was studied in the test beam was based on the process used to fabricate devices on n-type material. Presented in this thesis are the modifications that were made to the process, which centred on the oxidation

  4. Development of n-type polymer semiconductors for organic field-effect transistors

    International Nuclear Information System (INIS)

    Choi, Jongwan; Kim, Nakjoong; Song, Heeseok; Kim, Felix Sunjoo

    2015-01-01

    We review herein the development of unipolar n-type polymer semiconductors in organic field-effect transistors, which would enable large-scale deployment of printed electronics in combination with a fast-growing area of p-type counterparts. After discussing general features of electron transport in organic semiconductors, various π-conjugated polymers that are capable of transporting electrons are selected and summarized to outline the design principles for enhancing electron mobility and stability in air. The n-type polymer semiconductors with high electron mobility and good stability in air share common features of low-lying frontier molecular orbital energy levels achieved by design. In this review, materials are listed in roughly chronological order of the appearance of the key building blocks, such as various arylene diimides, or structural characteristics, including nitrile and fluorinated groups, in order to present the progress in the area of n-type polymers. (paper)

  5. Change in the electrical conductivity of SnO{sub 2} crystal from n-type to p-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Villamagua, Luis, E-mail: luis.villamagua@tyndall.ie [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy); Stashans, Arvids [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi [Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan (China); Carini, Manuela [Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy)

    2015-05-01

    Highlights: • Switch from n-type to p-type conductivity in SnO{sub 2} has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO{sub 2} compound shows stable p-type conductivity. • Low resistivity (3.657 × 10{sup −1} Ω cm) has been obtained. • High carrier concentration (4.858 × 10{sup 19} cm{sup −3}) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO{sub 2} systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO{sub 2} material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling.

  6. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.

    Science.gov (United States)

    Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh

    2013-07-01

    High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.

  7. Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Naresh-Kumar, G., E-mail: naresh.gunasekar@strath.ac.uk; Trager-Cowan, C. [Dept of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Vilalta-Clemente, A.; Morales, M.; Ruterana, P. [CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN 14050 Caen Cedex (France); Pandey, S.; Cavallini, A.; Cavalcoli, D. [Dipartimento di Fisica Astronomia, Università di Bologna, 40127 Bologna (Italy); Skuridina, D.; Vogt, P.; Kneissl, M. [Institute of Solid State Physics, Technical University Berlin, 10623 Berlin (Germany); Behmenburg, H.; Giesen, C.; Heuken, M. [AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath (Germany); Gamarra, P.; Di Forte-Poisson, M. A. [Thales Research and Technology, III-V Lab, 91460 Marcoussis (France); Patriarche, G. [LPN, Route de Nozay, 91460 Marcoussis (France); Vickridge, I. [Institut des NanoSciences, Université Pierre et Marie Curie, 75015 Paris (France)

    2014-12-15

    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al{sub 2}O{sub 3} high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  8. Multicharacterization approach for studying InAl(GaN/Al(GaN/GaN heterostructures for high electron mobility transistors

    Directory of Open Access Journals (Sweden)

    G. Naresh-Kumar

    2014-12-01

    Full Text Available We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(GaN(33nm barrier/Al(GaN(1nm interlayer/GaN(3μm/ AlN(100nm/Al2O3 high electron mobility transistor (HEMT heterostructure grown by metal organic vapor phase epitaxy (MOVPE. In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(GaN interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  9. Influence of doped-charge transport layers on the photovoltaic performance of donor-acceptor blend p-i-n type organic solar cells

    Directory of Open Access Journals (Sweden)

    D. Gebeyehu

    2004-06-01

    Full Text Available This report demonstrates external power conversion efficiencies of 2% under 100 mW/cm2 simulated AM1.5 illumination for organic thin-film photovoltaic cells using a phthalocyanine-fullerene (ZnPc/C60 bulk heterojunction as an active layer, embedded into a p-i-n type architecture with doped wide-gap charge transport layers. For an optically optimized device, we found internal quantum efficiency (IQE of above 80% under short circuit conditions. Such optically thin cells with high internal quantum efficiency are an important step towards high efficiency tandem cells. The p-i-n architecture allows for the design of solar cells with high internal quantum efficiency where only the photoactive region absorbs visible light and recombination losses at contacts are avoided. The I-V characteristics, power conversion efficiencies, the dependence of short circuit current on incident white light intensity, incident photon to collected electron efficiency (IPCE and absorption spectra of the active layer system are discussed.

  10. High energy ion irradiated III-N semiconductors (AlN, GaN, InN): study of point defect and extended defect creation

    International Nuclear Information System (INIS)

    Sall, Mamour

    2013-01-01

    Nitride semiconductors III N (AlN, GaN, InN) have interesting properties for micro-and opto-electronic applications. In use, they may be subjected to different types of radiation in a wide range of energy. In AlN, initially considered insensitive to electronic excitations (Se), we have demonstrated a novel type of synergy between Se and nuclear collisions (Sn) for the creation of defects absorbing at 4.7 eV. In addition, another effect of Se is highlighted in AlN: climb of screw dislocations under the influence of Se, at high fluence. In GaN, two mechanisms can explain the creation of defects absorbing at 2.8 eV: a synergy between Se and Sn, or a creation only due to Sn but with a strong effect of the size of displacement cascades. The study, by TEM, of the effects of Se in the three materials, exhibits behaviors highly dependent on the material while they all belong to the same family with the same atomic structure. Under monoatomic ion irradiations (velocity between 0.4 and 5 MeV/u), while discontinuous tracks are observed in GaN and InN, no track is observed in AlN with the highest electronic stopping power (33 keV/nm). Only fullerene clusters produce tracks in AlN. The inelastic thermal spike model was used to calculate the energies required to produce track in AlN, GaN and InN, they are 4.2 eV/atom, 1.5 eV/atom and 0.8 eV/atom, respectively. This sensitivity difference according to Se, also occurs at high fluence. (author)

  11. Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor

    International Nuclear Information System (INIS)

    Ganganboina, Akhilesh Babu; Chowdhury, Ankan Dutta; Doong, Ruey-an

    2017-01-01

    Highlights: •Halloysite coated Fe 3 O 4 is served as the framework for supporting graphene quantum dots. •GQDs can be well distributed onto Fe 3 O 4 /HNTs to prevent structural failure. •High specific capacitance of 418 F g −1 in 1 M Na 2 SO 4 neutral electrolyte is observed. •The composites show excellent electrochemical performance with energy density of 10.4–29.0 Wh kg −1 . -- Abstract: The development of robust and low cost electrode materials with superior electrochemical properties has been a subject of focus on energy storage devices. Herein, the development of N-doped graphene quantum dots (N-GQDs) deposited on Fe 3 O 4 -halloysite nanotubes (Fe 3 O 4 -HNTs) as active anode materials has been established for supercapacitor applications. The Fe 3 O 4 nanoparticles synthesised by coprecipitation have been in-situ deposited on HNT surfaces following by the coating of (3-aminopropyl)-triexthoxysilane to anchor 4–10 nm N-GQDs via the formation of amide linkage. The N-GQD@Fe 3 O 4 -HNTs exhibits a high specific capacitance of 418 F g −1 and maintains good rate capability in neutral electrolyte solutions. In addition, the anode materials show excellent electrochemical performance with energy and power densities of 10.4–29 W h kg −1 and 0.25–5.2 kW kg −1 , respectively. Such excellent electrochemical features can be attributed to the synergistic contribution from individual components. The Fe 3 O 4 -HNTs provide 1-dimensional matrix to shorten the diffusion path of electrons and electrolyte ions as well as to absorb the mechanical stress during cycling along with excess sites for charge storage, while N-GQDs offer abundantly accessible electroactive sites for rapid electrons and electrolyte ions transport as well as enhance electrical conductivity of Fe 3 O 4 -HNTs. Results obtained in this study clearly demonstrate that metal oxide-HNTs are promising support to anchor N-GQDs nanomaterials as the high performance anode materials for next

  12. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  13. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    Science.gov (United States)

    2017-11-02

    wireless systems where consumers will benefit significantly from the high power densities achievable in GaN devices.[8] Further complicating the...future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication... power density of traditional RF amplifier materials at different frequencies and wireless generation bands, as well as an image of the flexible GaN

  14. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    Science.gov (United States)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  15. Temperature dependent microwave performance of AlGaN/GaN high-electron-mobility transistors on high-resistivity silicon substrate

    International Nuclear Information System (INIS)

    Arulkumaran, S.; Liu, Z.H.; Ng, G.I.; Cheong, W.C.; Zeng, R.; Bu, J.; Wang, H.; Radhakrishnan, K.; Tan, C.L.

    2007-01-01

    The influence of temperature (- 50 deg. C to + 200 deg. C) was studied on the DC and microwave characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) on high resistivity Si substrate for the first time. The AlGaN/GaN HEMTs exhibited a current-gain cut-off frequency (f T ) of 11.8 GHz and maximum frequency of oscillation (f max ) of 27.5 GHz. When compared to room temperature values, about 4% and 10% increase in f T and f max and 23% and 39.5% decrease in f T and f max were observed when measured at - 50 deg. C and 200 deg. C, respectively. The improvement of I D , g m f T , and f max at - 50 deg. C is due to the enhancement of 2DEG mobility and effective electron velocity. The anomalous drain current reduction in the I-V curves were observed at low voltage region at the temperature ≤ 10 deg. C but disappeared when the temperature reached ≥ 25 deg. C. A positive threshold voltage (V th ) shift was observed from - 50 deg. C to 200 deg. C. The positive shift of V th is due to the occurrence of trapping effects in the devices. The drain leakage current decreases with activation energies of 0.028 eV and 0.068 eV. This decrease of leakage current with the increase of temperature is due to the shallow acceptor initiated impact ionization

  16. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  17. Anatomy-performance correlation in Ti-based contact metallizations on AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Mohammed, Fitih M.; Wang, Liang; Koo, Hyung Joon; Adesida, Ilesanmi

    2007-01-01

    A comprehensive study of the electrical and surface microstructural characteristics of Ti/Au, Ti/Al/Au, Ti/Mo/Au, and Ti/Al/metal/Au schemes, where metal is Ir, Mo, Nb, Pt, Ni, Ta, and Ti, has been carried out to determine the role of constituent components of multilayer contact metallizations on Ohmic contact formation on AlGaN/GaN heterostructures. Attempts have been made to elucidate the anatomy (composition-structure) performance correlation in these schemes. Evidences have been obtained for the necessity of the Al and metal barrier layer as well as an optimal amount of Ti for achieving low-resistance Ohmic contact formation. A strong dependence of electrical properties and intermetallic interactions on the type of metal barrier layer used was found. Scanning electron microscopy characterization, coupled with energy dispersive x-ray spectroscopy, has shown evidence for alloy aggregation, metal layer fragmentation, Al-Au solid solution formation, and possible Au and/or Al reaction with metal layer. Results from the present study provide insights on the active and the necessary role various components of a multilayer contact metallization play for obtaining excellent Ohmic contact formation in the fabrication of AlGaN/GaN high electron mobility transistors

  18. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  19. Air-stable n-type doping of graphene from overlying Si3N4 film

    International Nuclear Information System (INIS)

    Wang, Zegao; Li, Pingjian; Chen, Yuanfu; Liu, Jingbo; Qi, Fei; Tian, Hongjun; Zheng, Binjie; Zhou, Jinhao

    2014-01-01

    In this study, we report a facile method to obtain air-stable n-type graphene by plasma-enhanced chemical vapor depositing Si 3 N 4 film on the surface of graphene. We have demonstrated that the overlying Si 3 N 4 film can not only act as the penetration-barrier against H 2 O and O 2 adsorbed on the graphene surface, but also cause an effective n-type doping due to the amine groups at the interface of graphene/Si 3 N 4 . Furthermore, the studies reveal that the Dirac point of graphene can be modulated by the thickness of Si 3 N 4 film, which is due to competing effects of Si 3 N 4 -induced doping (n-type) and penetrating H 2 O (O 2 )-induced doping (p-type). We expect this method to be used for obtaining stable n-type graphene field-effect transistors in air, which will be widely used in graphene electronic devices.

  20. Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.

    Science.gov (United States)

    Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz

    2018-05-23

    Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

  1. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  2. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  3. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  4. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-01-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme

  5. High-calorie food-cues impair working memory performance in high and low food cravers.

    Science.gov (United States)

    Meule, Adrian; Skirde, Ann Kathrin; Freund, Rebecca; Vögele, Claus; Kübler, Andrea

    2012-10-01

    The experience of food craving can lead to cognitive impairments. Experimentally induced chocolate craving exhausts cognitive resources and, therefore, impacts working memory, particularly in trait chocolate cravers. In the current study, we investigated the effects of exposure to food-cues on working memory task performance in a group with frequent and intense (high cravers, n=28) and less pronounced food cravings (low cravers, n=28). Participants performed an n-back task that contained either pictures of high-calorie sweets, high-calorie savory foods, or neutral objects. Current subjective food craving was assessed before and after the task. All participants showed slower reaction times and made more omission errors in response to food-cues, particularly savory foods. There were no differences in task performance between groups. State cravings did not differ between groups before the task, but increased more in high cravers compared to low cravers during the task. Results support findings about food cravings impairing visuo-spatial working memory performance independent of trait cravings. They further show that this influence is not restricted to chocolate, but also applies to high-calorie savory foods. Limiting working memory capacity may be especially crucial in persons who are more prone to high-calorie food-cues and experience such cravings habitually. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Control of short-channel effects in InAlN/GaN high-electron mobility transistors using graded AlGaN buffer

    Science.gov (United States)

    Han, Tiecheng; Zhao, Hongdong; Peng, Xiaocan; Li, Yuhai

    2018-04-01

    A graded AlGaN buffer is designed to realize the p-type buffer by inducing polarization-doping holes. Based on the two-dimensional device simulator, the effect of the graded AlGaN buffer on the direct-current (DC) and radio-frequency (RF) performance of short-gate InAlN/GaN high-electron mobility transistors (HEMTs) are investigated, theoretically. Compared to standard HEMT, an enhancement of electron confinement and a good control of short-channel effect (SCEs) are demonstrated in the graded AlGaN buffer HEMT. Accordingly, the pinched-off behavior and the ability of gate modulation are significantly improved. And, no serious SCEs are observed in the graded AlGaN buffer HEMT with an aspect ratio (LG/tch) of about 6.7, much lower than that of the standard HEMT (LG/tch = 13). In addition, for a 70-nm gate length, a peak current gain cutoff frequency (fT) of 171 GHz and power gain cutoff frequency (fmax) of 191 GHz are obtained in the grade buffer HEMT, which are higher than those of the standard one with the same gate length.

  7. Micro Raman and photoluminescence spectroscopy of nano-porous n and p type GaN/sapphire(0001).

    Science.gov (United States)

    Ingale, Alka; Pal, Suparna; Dixit, V K; Tiwari, Pragya

    2007-06-01

    Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.

  8. Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production

    International Nuclear Information System (INIS)

    Chen, Hongmei; Sun, Xiaoqin; Xu, Xiaoxiang

    2017-01-01

    Graphical abstract: Two layered ferrites LaSrFeO 4 and La 2 SrFe 2 O 7 have been investigated which demonstrate interesting p-type semconductivity and efficient hydrogen production from water. Display Omitted -- Abstract: Here we report two Ruddlesden-Popper type ferrite perovskites (SrO)(LaFeO 3 ) n (n = 1 and 2) which demonstrate p-type semiconductivity. Their crystal structure, optical absorption and other physicochemical properties have been systematically explored. Our results show that both ferrites crystallize in tetragonal symmetry with structural lamination along c axis. Efficient photocatalytic hydrogen production has been achieved for both samples under full range and visible light illumination. Better performance is noticed for LaSrFeO 4 with apparent quantum efficiency approaches 0.31% and 0.19% under full range and visible light illumination, respectively. The p-type semiconductivity is verified by their cathodic photocurrent as well as negative Mott-Schottky slop during Photoelectrochemical measurement. The relative lower activity for La 2 SrFe 2 O 7 compared to LaSrFeO 4 is likely due to its higher defect concentration which facilitates charge recombination. Both compounds exhibit anisotropic phenomenon for charge migrations according to theoretical calculations. Their p-type semiconductivity, strong visible light absorption, chemical inertness and high abundance of constituent elements signify promising applications in the field of solar energy conversion and optoelectronics.

  9. Comparison of performance of three different types of respiratory protection devices.

    Science.gov (United States)

    Lawrence, Robert B; Duling, Matthew G; Calvert, Catherine A; Coffey, Christopher C

    2006-09-01

    Respiratory protection is offered to American workers in a variety of ways to guard against potential inhalation hazards. Two of the most common ways are elastomeric N95 respirators and N95 filtering-facepiece respirators. Some in the health care industry feel that surgical masks provide an acceptable level of protection in certain situations against particular hazards. This study compared the performance of these types of respiratory protection during a simulated workplace test that measured both filter penetration and face-seal leakage. A panel of 25 test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020, and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. The results of these tests produced a simulated workplace protection factor (SWPF). The geometric mean (GM) and the 5th percentile values of the SWPFs were computed by category of respiratory protection using the six overall SWPF values. The level of protection provided by each of the three respiratory protection types was compared. The GM and 5th percentile SWPF values without fit testing were used for the comparison, as surgical masks were not intended to be fit tested. The GM values were 36 for elastomeric N95 respirators, 21 for N95 filtering-facepiece respirators, and 3 for surgical masks. An analysis of variance demonstrated a statistically significant difference between all three. Elastomeric N95 respirators had the highest 5th percentile SWPF of 7. N95 filtering-facepiece respirators and surgical masks had 5th percentile SWPFs of 3 and 1, respectively. A Fisher Exact Test revealed that the 5th percentile SWPFs for all three types of respiratory protection were statistically different. In addition, both

  10. Concomitant glenohumeral pathologies in high-grade acromioclavicular separation (type III - V).

    Science.gov (United States)

    Markel, Jochen; Schwarting, Tim; Malcherczyk, Dominik; Peterlein, Christian-Dominik; Ruchholtz, Steffen; El-Zayat, Bilal Farouk

    2017-11-10

    Acromioclavicular joint (ACJ) dislocations are common injuries of the shoulder associated with physical activity. The diagnosis of concomitant injuries proves complicated due to the prominent clinical symptoms of acute ACJ dislocation. Because of increasing use of minimally invasive surgery techniques concomitant pathologies are diagnosed more often than with previous procedures. The aim of this study was to identify the incidence of concomitant intraarticular injuries in patients with high-grade acromioclavicular separation (Rockwood type III - V) as well as to reveal potential risk constellations. The concomitant pathologies were compiled during routine arthroscopically assisted treatment in altogether 163 patients (147 male; 16 female; mean age 36.8 years) with high-grade acromioclavicular separation (Rockwood type III: n = 60; Rockwood type IV: n = 6; Rockwood type V: n = 97). Acromioclavicular separation occurred less often in women than men (1:9). In patients under 35, the most common cause for ACJ dislocation was sporting activity (37.4%). Rockwood type V was observed significantly more often than the other types with 57.5% (Rockwood type III = 36.8%, Rockwood type IV 3.7%). Concomitant pathologies were diagnosed in 39.3% of the patients with that number rising to as much as 57.3% in patients above 35 years. Most common associated injuries were rotator cuff injuries (32.3%), chondral defects (30.6%) and SLAP-lesions (22.6%). Of all patients, 8.6% needed additional reconstructive surgery. Glenohumeral injuries are a much more common epiphenomenon during acromioclavicular separation than previously ascertained. High risk group for accompanying injuries are patients above 35 years with preexisting degenerative disease. The increasing use of minimally invasive techniques allows for an easier diagnosis and simultaneous treatment of the additional pathologies.

  11. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    OpenAIRE

    Xiao Wang; Wei Wang; Jingli Wang; Hao Wu; Chang Liu

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgG...

  12. Low Drift Type N Thermocouples for Nuclear Applications

    International Nuclear Information System (INIS)

    Scervini, M.; Rae, C.

    2013-06-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. In this work, undertaken as part of the European project METROFISSION, the drift of type N thermocouples has been investigated in the temperature range 600-1300 deg. C. The approach of this study is based on the attempt to separate the contributions of each thermo-element to drift. In order to identify the dominant thermo-element for drift, the contributions of both positive (NP) and negative (NN) thermo-elements to the total drift of 3.2 mm diameter MIMS thermocouples have been measured in each drift test using a pure Pt thermo-element as a reference. Conventional Inconel-600 sheathed type N thermocouples have been compared with type N thermocouples sheathed in a new alloy. At temperatures higher than 1000 deg. C conventional Inconel600 sheathed type N thermocouples can experience a

  13. On Type IIB moduli stabilization and N=4,8 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina); Marques, Diego [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France); Nunez, Carmen, E-mail: carmen@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and Departamento de Fisica, FCEN, Universidad de Buenos Aires, C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, Jose A. [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina)

    2011-08-01

    We analyze D=4 compactifications of Type IIB theory with generic, geometric and non-geometric, dual fluxes turned on. In particular, we study N=1 toroidal orbifold compactifications that admit an embedding of the untwisted sector into gauged N=4,8 supergravities. Truncations, spontaneous breaking of supersymmetry and the inclusion of sources are discussed. The algebraic identities satisfied by the supergravity gaugings are used to implement the full set of consistency constraints on the background fluxes. This allows to perform a generic study of N=1 vacua and identify large regions of the parameter space that do not admit complete moduli stabilization. Illustrative examples of AdS and Minkowski vacua are presented.

  14. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    Science.gov (United States)

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  15. Anomalous phase transition of InN nanowires under high pressure

    International Nuclear Information System (INIS)

    Tang Shun-Xi; Zhu Hong-Yang; Jiang Jun-Ru; Wu Xiao-Xin; Dong Yun-Xuan; Zhang Jian; Cui Qi-Liang; Yang Da-Peng

    2015-01-01

    Uniform InN nanowires were studied under pressures up to 35.5 GPa by using in situ synchrotron radiation x-ray diffraction technique at room temperature. An anomalous phase transition behavior has been discovered. Contrary to the results in the literature, which indicated that InN undergoes a fully reversible phase transition from the wurtzite structure to the rocksalt type structure, the InN nanowires in this study unusually showed a partially irreversible phase transition. The released sample contained the metastable rocksalt phase as well as the starting wurtzite one. The experimental findings of this study also reveal the potentiality of high pressure techniques to synthesize InN nanomaterials with the metastable rocksalt type structure, in addition to the generally obtained zincblende type one. (paper)

  16. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors

    Institute of Scientific and Technical Information of China (English)

    Shujing Guo; Liqiang Li; Zhongwu Wang; Zeyang Xu; Shuguang Wang; Kunjie Wu; Shufeng Chen; Zongbo Zhang; Caihong Xu; Wenfeng Qiu

    2017-01-01

    Silica is one of the most commonly used materials for dielectric layer in organic thin-film transistors due to its excellent stability,excellent electrical properties,mature preparation process,and good compatibility with organic semiconductors.However,most of conventional preparation methods for silica film are generally performed at high temperature and/or high vacuum.In this paper,we introduce a simple solution spin-coating method to fabricate silica thin film from precursor route,which possesses a low leakage current,high capacitance,and low surface roughness.The silica thin film can be produced in the condition of low temperature and atmospheric environment.To meet various demands,the thickness of film can be adjusted by means of preparation conditions such as the speed of spin-coating and the concentration of solution.The p-type and n-type organic field effect transistors fabricated by using this film as gate electrodes exhibit excellent electrical performance including low voltage and high performance.This method shows great potential for industrialization owing to its characteristic of low consumption and energy saving,time-saving and easy to operate.

  17. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Science.gov (United States)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  18. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Science.gov (United States)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  19. DEVELOPMENT OF NEW VALVE STEELS FOR APPLICATION IN HIGH PERFORMANCE ENGINES

    Directory of Open Access Journals (Sweden)

    Alexandre Bellegard Farina

    2013-12-01

    Full Text Available UNS N07751 and UNS N07080 alloys are commonly applied for automotive valves production for high performance internal combustion engines. These alloys present high hot resistance to mechanical strength, oxidation, corrosion, creep and microstructural stability. However, these alloys presents low wear resistance and high cost due to the high nickel contents. In this work it is presented the development of two new Ni-based alloys for application in high performance automotive valve as an alternative to the alloys UNS N07751 and UNS N07080. The new developed alloys are based on a high nickel-chromium austenitic matrix with dispersion of γ’ and γ’’ phases and containing different NbC contents. Due to the nickel content reduction in the developed alloys in comparison with these actually used alloys, the new alloys present an economical advantage for substitution of UNS N07751 and UNS N0780 alloys.

  20. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

    Science.gov (United States)

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  1. Influence of smartphone use styles on typing performance and biomechanical exposure.

    Science.gov (United States)

    Ko, Ping-Hsin; Hwang, Yaw-Huei; Liang, Huey-Wen

    2016-06-01

    Twenty-seven subjects completed 2-min typing tasks using four typing styles: right-hand holding/typing (S-thumb) and two-hand typing at three heights (B-low, B-mid and B-high). The styles had significant effects on typing performance, neck and elbow flexion and muscle activities of the right trapezius and several muscles of the right upper limb (p typed the fewest words (error-adjusted characters per minute: 78) with the S-thumb style. S-thumb style resulted in similar flexion angles of the neck, elbow and wrist, but significantly increased muscle activities in all tested muscles compared with the B-mid style. Holding the phone high or low reduced the flexion angles of the neck and right elbow compared with the B-mid style, but the former styles increased the muscle activity of the right trapezius. Right-hand holding/typing was not a preferable posture due to high muscle activities and slow typing speed. Practitioner Summary: Right-hand holding/typing was not favoured, due to increased muscle activities and slower typing speed. Holding the phone high or low reduced the flexion angles of the neck and right elbow, but the former styles increased the muscle activity of the right trapezius compared with holding the phone at chest level.

  2. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode

    International Nuclear Information System (INIS)

    Wang Chengxin; Yang Guowei; Liu Hongwu; Han Yonghao; Luo Jifeng; Gao Chunxiao; Zou Guangtian

    2004-01-01

    High-quality heterojunctions between p-type diamond single-crystalline films and highly oriented n-type ZnO films were fabricated by depositing the p-type diamond single-crystal films on the I o -type diamond single crystal using a hot filament chemical vapor deposition, and later growing a highly oriented n-type ZnO film on the p-type diamond single-crystal film by magnetron sputtering. Interestingly, anomalously high ideality factors (n>>2.0) in the prepared ZnO/diamond p-n junction diode in the interim bias voltage range were measured. For this, detailed electronic characterizations of the fabricated p-n junction were conducted, and a theoretical model was proposed to clarify the much higher ideality factors of the special heterojunction diode

  3. Low-resistance and highly transparent Ag/IZO ohmic contact to p-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.k [Department of Display Materials Engineering, Kyung Hee University, 1 Seochoen-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Yi, Min-Su [Department of Materials Science and Engineering, Kyungpook National University, Sangju, Gyeongbuk, 742-711 (Korea, Republic of); Lee, Sung-Nam [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan, 617-736 (Korea, Republic of)

    2009-05-29

    The electrical, structural, and optical characteristics of Ag/ZnO-doped In{sub 2}O{sub 3} (IZO) ohmic contacts to p-type GaN:Mg (2.5 x 10{sup 17} cm{sup -3}) were investigated. The Ag and IZO (10 nm/50 nm) layers were prepared by thermal evaporation and linear facing target sputtering, respectively. Although the as-deposited and 400 {sup o}C annealed samples showed rectifying behavior, the 500 and 600 {sup o}C annealed samples showed linear I-V characteristics indicative of the formation of an ohmic contact. The annealing of the contact at 600 {sup o}C for 3 min in a vacuum ({approx} 10{sup -3} Torr) resulted in the lowest specific contact resistivity of 1.8 x 10{sup -4} {Omega}.cm{sup 2} and high transparency of 78% at a wavelength of 470 nm. Using Auger electron spectroscopy, depth profiling and synchrotron X-ray scattering analysis, we suggested a possible mechanism to explain the annealing dependence of the electrical properties of the Ag/IZO contacts.

  4. On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials

    Directory of Open Access Journals (Sweden)

    Michael Schwall

    2018-04-01

    Full Text Available Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice thermal conductivity. Here, we present a detailed study of the phase separation in an n-type Heusler materials system, showing that the Ti x Zr y Hf z NiSn system is not a solid solution. We also show that this phase separation is key to the thermoelectric high efficiency of n-type Heusler materials. These results strongly underline the importance of phase separation as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands of a thermoelectric converter.

  5. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  6. Flexible Gallium Nitride for High-Performance, Strainable Radio-Frequency Devices.

    Science.gov (United States)

    Glavin, Nicholas R; Chabak, Kelson D; Heller, Eric R; Moore, Elizabeth A; Prusnick, Timothy A; Maruyama, Benji; Walker, Dennis E; Dorsey, Donald L; Paduano, Qing; Snure, Michael

    2017-12-01

    Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state-of-the-art values for electrical performance, with electron mobility exceeding 2000 cm 2 V -1 s -1 and sheet carrier density above 1.07 × 10 13 cm -2 . The influence of strain on the RF performance of flexible GaN high-electron-mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2018-04-01

    Full Text Available The AlInN/GaN high-electron-mobility-transistor (HEMT indicates better performances compared with the traditional AlGaN/GaN HEMTs. The present work investigated the pH sensor functionality of an analogous HEMT AlInN/GaN device with an open gate. It was shown that the Al0.83In0.17N/GaN device demonstrates excellent pH sense functionality in aqueous solutions, exhibiting higher sensitivity (−30.83 μA/pH for AlInN/GaN and −4.6 μA/pH for AlGaN/GaN and a faster response time, lower degradation and good stability with respect to the AlGaN/GaN device, which is attributed to higher two-dimensional electron gas (2DEG density and a thinner barrier layer in Al0.83In0.17N/GaN owning to lattice matching. On the other hand, the open gate geometry was found to affect the pH sensitivity obviously. Properly increasing the width and shortening the length of the open gate area could enhance the sensitivity. However, when the open gate width is too larger or too small, the pH sensitivity would be suppressed conversely. Designing an optimal ratio of the width to the length is important for achieving high sensitivity. This work suggests that the AlInN/GaN-based 2DEG carrier modulated devices would be good candidates for high-performance pH sensors and other related applications.

  8. High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor.

    Science.gov (United States)

    Dong, Yan; Son, Dong-Hyeok; Dai, Quan; Lee, Jun-Hyeok; Won, Chul-Ho; Kim, Jeong-Gil; Chen, Dunjun; Lee, Jung-Hee; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2018-04-24

    The AlInN/GaN high-electron-mobility-transistor (HEMT) indicates better performances compared with the traditional AlGaN/GaN HEMTs. The present work investigated the pH sensor functionality of an analogous HEMT AlInN/GaN device with an open gate. It was shown that the Al 0.83 In 0.17 N/GaN device demonstrates excellent pH sense functionality in aqueous solutions, exhibiting higher sensitivity (−30.83 μA/pH for AlInN/GaN and −4.6 μA/pH for AlGaN/GaN) and a faster response time, lower degradation and good stability with respect to the AlGaN/GaN device, which is attributed to higher two-dimensional electron gas (2DEG) density and a thinner barrier layer in Al 0.83 In 0.17 N/GaN owning to lattice matching. On the other hand, the open gate geometry was found to affect the pH sensitivity obviously. Properly increasing the width and shortening the length of the open gate area could enhance the sensitivity. However, when the open gate width is too larger or too small, the pH sensitivity would be suppressed conversely. Designing an optimal ratio of the width to the length is important for achieving high sensitivity. This work suggests that the AlInN/GaN-based 2DEG carrier modulated devices would be good candidates for high-performance pH sensors and other related applications.

  9. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  10. Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites

    International Nuclear Information System (INIS)

    Aminorroaya Yamini, Sima; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Mitchell, David R.G.; Dou, Shi Xue; Snyder, G. Jeffrey

    2014-01-01

    Graphical abstract: - Abstract: A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe–PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe–PbS compounds. Recently, the single-phase p-type quaternary PbTe–PbSe–PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast atomic mass solute atoms. Here, we present the thermoelectric efficiency of nanostructured p-type quaternary PbTe–PbSe–PbS composites and compare the results with corresponding single-phase quaternary lead chalcogenide alloys. We demonstrate that the very low lattice thermal conductivity achieved is attributed to phonon scattering at high-contrast atomic mass solute atoms rather than from the contribution of secondary phases. This results in a thermoelectric efficiency of ∼1.4 over a wide temperature range (650–850 K) in a p-type quaternary (PbTe) 0.65 (PbSe) 0.1 (PbS) 0.25 composite that is lower than that of single-phase (PbTe) 0.85 (PbSe) 0.1 (PbS) 0.05 alloy without secondary phases

  11. Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN

    International Nuclear Information System (INIS)

    Hwang, J. D.; Lin, C. C.; Chen, W. L.

    2006-01-01

    A transparent indium tin oxide (ITO) Ohmic contact on n-type gallium nitride (GaN) (dopant concentration of 2x10 17 cm -3 ) having a specific contact resistance of 4.2x10 -6 Ω cm 2 was obtained. In this study, ITO film deposition method was implemented by sputtering. We found that the barrier height, 0.68 eV, between ITO and n-type GaN is the same for both evaporated- and sputtered-ITO films. However, the 0.68 eV in barrier height renders the evaporated-ITO/n-GaN Schottky contact. This behavior is different from that of our sputtered-ITO/n-GaN, i.e., Ohmic contact. During sputtering, oxygen atoms on the GaN surface were significantly removed, thereby resulting in an improvement in contact resistance. Moreover, a large number of nitrogen (N) vacancies, caused by sputtering, were produced near the GaN surface. These N vacancies acted as donors for electrons, thus affecting a heavily doped n-type formed at the subsurface below the sputtered ITO/n-GaN. Both oxygen removal and heavy doping near the GaN surface, caused by N vacancies, in turn led to a reduction in contact resistivity as a result of electrons tunneling across the depletion layer from the ITO to the n-type GaN. All explanations are given by Auger analysis and x-ray photoelectron spectroscopy

  12. Development of neutron detector using sensor type surface barrier with (n,p) and (n,α) converters

    International Nuclear Information System (INIS)

    Madi Filho, Tufic

    1999-01-01

    A Si semiconductor detector, surface barrier type, with a slim film of a converter material capable to produce charged particles was used as a sensor of neutrons in an environment of a zero power reactor. Two types of converters were used to improve the detection efficiency: (1) the polyethylene, n(CH 2 ), which produces recoil protons from the (n,p) interaction and, (2) the 10 B which generates a particle from the (n,alpha) reaction. The optimal thickness of those converters was determined experimentally and specifically for the polyethylene a mathematical model R(ips) = ε p · N 0 ·(1-e -Σ·Χ ) ·e -μ ·Χ + ε n · N 0 · -Σ · Χ was used to fit to the experimental data. For the polyethylene converter the thickness was of 0.058 cm (62.64 mg.cm -2 ) while for the 10 B it was equal to 6.55 [μm (1.54 mg.cm -2 ). The converter of polyethylene or 10 B improved the detection efficiency to a factor of 4.7 and 3.0 respectively. The comparison of the spectrum of the background radiation with the spectra of the recoil protons and the a radiation from the 10 B it was concluded that the polyethylene presented better performance than the 10 B converter. (author)

  13. Determination of diacylhydrazines-type insect growth regulator JS-118 residues in cabbage and soil by high performance liquid chromatography with DAD detection.

    Science.gov (United States)

    Hu, J-Y; Deng, Z-B; Qin, D-M

    2009-12-01

    JS-118 is a diacylhydrazines-type insect growth regulator used extensively in China now. An analytical method for residues determination of JS-118 in cabbage and soil samples by high performance liquid chromatography with DAD detection was established and optimized. Primary secondary amine solid phase extraction cartridge was used for sample preparation. Mean recoveries for the analyte ranged from 96.6% to 107.0% with CV value less than 4.7%. The limit of quantification is 0.01 mg/kg. Direct confirmation of JS-118 residues in samples was realized by high performance liquid chromatography-mass spectrometry. The proposed method is simple, rapid and reliable to perform and could be utilized for monitoring of pesticides residues.

  14. Coated Porous Si for High Performance On-Chip Supercapacitors

    Science.gov (United States)

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  15. Study of Diffusion Barrier for Solder/ n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules

    Science.gov (United States)

    Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.

    2018-01-01

    This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.

  16. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  17. A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C60-PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites.

    Science.gov (United States)

    Li, Yan; He, Junlin; Chen, Jun; Niu, Yazhen; Zhao, Yilin; Zhang, Yuchan; Yu, Chao

    2018-03-15

    In this study, a dual-type responsive electrochemical immunosensor was developed for the quantitative detection of proprotein convertase subtilisin/kexin type 9 (PCSK9), a potential biomarker of cardiovascular disease in serum. N-doped graphene nanoribbons (N-GNRs) with good conductivity were used as the sensing matrix modifying the glassy carbon electrode. Palladium platinum alloy (PdPt) nanoparticles with high catalytic performance toward the reduction of hydrogen peroxide (H 2 O 2 ) were reduced onto amino-functionalized fullerene (n-C 60 -PdPt) and significantly amplified the electrochemical signal recorded by the amperometric i-t curve. Furthermore, staphylococcus protein A (SPA) with antibody orientation function was introduced to improve the immunoreaction efficiency. Accordingly, a label-free immunosensor was fabricated based on n-C 60 -PdPt/N-GNRs for the quick detection of PCSK9. Meanwhile, to realize ultrasensitive detection of PCSK9, Pt-poly (methylene blue) (Pt-PMB) nanocomposites synthesized by a one-pot method for the first time were used as a novel signal label, which exhibited uniform morphology as well as good conductivity and produced an electrochemical signal recorded by differential pulse voltammetry (DPV). Herein, a novel sandwich-type immunosensor was designed using n-C 60 -PdPt/N-GNRs as the sensing matrix and Pt-PMB as the signal label for sensitive detection of PCSK9. Under optimal conditions, the label-free immunosensor showed a linear range of 10pgmL -1 to 100ngmL -1 with a detection limit of 3.33pgmL -1 (S/N=3), and the sandwich-type immunosensor exhibited a linear range of 100 fg mL -1 to 100ngmL -1 with a detection limit of 0.033pgmL -1 (S/N=3) for PCSK9 detection, indicating its potential application in clinical bioassay analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    Science.gov (United States)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  19. p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties

    International Nuclear Information System (INIS)

    Wang, Ming-Zheng; Xie, Wei-Jie; Hu, Han; Yu, Yong-Qiang; Wu, Chun-Yan; Wang, Li; Luo, Lin-Bao

    2013-01-01

    Nitrogen doped p-type ZnS nanowires (NWs) were realized using thermal decomposition of triethylamine at a mild temperature. Field-effect transistors made from individual ZnS:N NWs revealed typical p-type conductivity behavior, with a hole mobility of 3.41 cm 2 V −1 s −1 and a hole concentration of 1.67 × 10 17  cm −3 , respectively. Further analysis found that the ZnS:N NW is sensitive to UV light irradiation with high responsivity, photoconductive gain, and good spectral selectivity. The totality of this study suggests that the solvothermal doping method is highly feasible to dope one dimensional semiconductor nanostructures for optoelectronic devices application

  20. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    International Nuclear Information System (INIS)

    Frigerio, J; Ballabio, A; Isella, G; Gallacher, K; Millar, R; Paul, D; Gilberti, V; Baldassarre, L; Ortolani, M; Milazzo, R; Napolitani, E; Maiolo, L; Minotti, A; Pecora, A; Bottegoni, F; Biagioni, P

    2017-01-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  10 19 cm −3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  10 20 cm −3 . Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved. (paper)

  1. Piezotronic effect tuned AlGaN/GaN high electron mobility transistor

    Science.gov (United States)

    Jiang, Chunyan; Liu, Ting; Du, Chunhua; Huang, Xin; Liu, Mengmeng; Zhao, Zhenfu; Li, Linxuan; Pu, Xiong; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    The piezotronic effect utilizes strain-induced piezoelectric polarization charges to tune the carrier transportation across the interface/junction. We fabricated a high-performance AlGaN/GaN high electron mobility transistor (HEMT), and the transport property was proven to be enhanced by applying an external stress for the first time. The enhanced source-drain current was also observed at any gate voltage and the maximum enhancement of the saturation current was up to 21% with 15 N applied stress (0.18 GPa at center) at -1 V gate voltage. The physical mechanism of HEMT with/without external compressive stress conditions was carefully illustrated and further confirmed by a self-consistent solution of the Schrödinger-Poisson equations. This study proves the cause-and-effect relationship between the piezoelectric polarization effect and 2D electron gas formation, which provides a tunable solution to enhance the device performance. The strain tuned HEMT has potential applications in human-machine interface and the security control of the power system.

  2. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range

    OpenAIRE

    Robert Kucharski; Łukasz Janicki; Marcin Zajac; Monika Welna; Marcin Motyka; Czesław Skierbiszewski; Robert Kudrawiec

    2017-01-01

    GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type) on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples) or dopant ionization (p-type samples). In the mid-in...

  3. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    In this work, we investigated the formation of n-type polysilicon films on alumina substrates by overdoping a p-type silicon layer obtained by aluminium induced crystallization of amorphous silicon (AIC), and subsequent epitaxy. The phosphorus doping of the AIC was carried out by thermal diffusion from a solid source. The structural quality of the n-type Si film was monitored by optical microscope and scanning electron microscope (SEM). The doping efficiency was determined by resistivity measurements and secondary ion mass spectroscopy (SIMS). The sheet resitivity changed from 2700{omega}/sq to 19.6{omega}/sq after thermal diffusion at 950 deg. C for 1h, indicating the overdoping effect. The SIMS profile carried out after the high temperature epitaxy exhibits a two steps phosphorus distribution, indicating the formation of an n{sup +}n structure.

  4. Alkylated selenophene-based ladder-type monomers via a facile route for high performance thin-film transistor applications

    KAUST Repository

    Fei, Zhuping; Han, Yang; Gann, Eliot; Hodsden, Thomas; Chesman, Anthony; McNeill, Christopher R.; Anthopoulos, Thomas D.; Heeney, Martin

    2017-01-01

    We report the synthesis of two new selenophene containing ladder-type monomers, cyclopentadiselenophene (CDS) and indacenodiselenophene (IDSe), via a twofold and fourfold Pd catalyzed coupling with a 1,1-diborylmethane derivative. Co-polymers with benzothiadiazole (BT) were prepared in high yield by Suzuki polymerization to afford co-polymers which exhibited excellent solubility in a range of non-chlorinated solvents. The CDS co-polymer exhibited a band gap of just 1.18 eV, which is amongst the lowest reported for donor-acceptor polymers. Thin-film transistors were fabricated using environmentally benign, non-chlorinated solvents with the CDS and IDSe co-polymers exhibiting hole mobility up to 0.15 and 6.4 cm2 /Vs, respectively. This high performance was achieved without the undesirable peak in mobility often observed at low gate voltages due to parasitic contact resistance.

  5. Alkylated selenophene-based ladder-type monomers via a facile route for high performance thin-film transistor applications

    KAUST Repository

    Fei, Zhuping

    2017-05-26

    We report the synthesis of two new selenophene containing ladder-type monomers, cyclopentadiselenophene (CDS) and indacenodiselenophene (IDSe), via a twofold and fourfold Pd catalyzed coupling with a 1,1-diborylmethane derivative. Co-polymers with benzothiadiazole (BT) were prepared in high yield by Suzuki polymerization to afford co-polymers which exhibited excellent solubility in a range of non-chlorinated solvents. The CDS co-polymer exhibited a band gap of just 1.18 eV, which is amongst the lowest reported for donor-acceptor polymers. Thin-film transistors were fabricated using environmentally benign, non-chlorinated solvents with the CDS and IDSe co-polymers exhibiting hole mobility up to 0.15 and 6.4 cm2 /Vs, respectively. This high performance was achieved without the undesirable peak in mobility often observed at low gate voltages due to parasitic contact resistance.

  6. Novel organic semiconductors and dielectric materials for high performance and low-voltage organic thin-film transistors

    Science.gov (United States)

    Yoon, Myung-Han

    Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on

  7. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor

    Science.gov (United States)

    Hou, H. W.; Liu, Z.; Teng, J. H.; Palacios, T.; Chua, S. J.

    2017-04-01

    In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15.5 and 2.7 kV/W and a low NEP of 0.58 and 10 pW/Hz0.5 were obtained at room temperature and 200 °C, respectively. The advantages of the GaN HEMT over other types of field effect transistors for high temperature terahertz detection are discussed. The physical mechanisms responsible for the temperature dependence of the responsivity and NEP of the GaN HEMT are also analyzed thoroughly.

  8. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario

    2008-11-28

    The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.

  9. High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source

    International Nuclear Information System (INIS)

    Balaji, S. Suresh; Elavarasan, A.; Sathish, M.

    2016-01-01

    Graphical abstract: N-doped graphene prepared via supercritical fluid processing with oxime nitrogen source (DMG) showed enhanced performance in electrochemical supercapacitor application. A maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g was achieved with a high specific capacity retention of 98% after 1000 cycles at 5 A/g. - Highlights: • N-functionalised graphene synthesized via supercritical fluid processing. • DMG, an oxime based nitrogen precursor. • Maximum specific capacitance of 286 F/g at 0.5 A/g in aqueous solution. • Pyridinic as well as quarternary nitrogen for enhanced capacitance. - Abstract: Heteroatom doped graphene has been proved for its promising applications in electrochemical energy storage systems. Here, nitrogen (N) doped graphene was prepared via two different techniques namely supercritical fluid assisted processing and hydrothermal heat treatment using dimethylglyoxime (DMG) as an oxime nitrogen precursor. The FT-IR and Raman spectra showed the N-containing functional group in the graphene. The XRD analysis revealed the complete reduction of graphene oxide during the supercritical fluid processing. The elemental analysis and X-ray photoelectron spectroscopy revealed the amount and nature of N-doping in the graphene, respectively. The surface morphology and physical nature of the samples were analyzed using scanning and transmission electron microscopic analysis. The electrochemical performance of prepared electrode materials was evaluated using cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy. The N-doped graphene prepared via supercritical fluid assisted processing exhibit enhanced capacitive behaviour with a maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g. The cycling studies showed 98% specific capacity retention with 100% coulombic efficiency over 1000 cycles at 5 A/g. The enhanced specific capacitance of N

  10. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Performance analysis of high efficiency InxGa1-xN/GaN intermediate band quantum dot solar cells

    Science.gov (United States)

    Chowdhury, Injamam Ul Islam; Sarker, Jith; Shifat, A. S. M. Zadid; Shuvro, Rezoan A.; Mitul, Abu Farzan

    2018-06-01

    In this subsistent fifth generation era, InxGa1-xN/GaN based materials have played an imperious role and become promising contestant in the modernistic fabrication technology because of some of their noteworthy attributes. On our way of illustrating the performance, the structure of InxGa1-xN/GaN quantum dot (QD) intermediate band solar cell (IBSC) is investigated by solving the Schrödinger equation in light of the Kronig-Penney model. In comparison with p-n homojunction and heterojunction solar cells, InxGa1-xN/GaN IBQD solar cell manifests larger power conversion efficiency (PCE). PCE strongly depends on position and width of the intermediate bands (IB). Position of IBs can be controlled by tuning the size of QDs and the Indium content of InxGa1-xN whereas, width of IB can be controlled by tuning the interdot distance. PCE can also be controlled by tuning the position of fermi energy bands as well as changing the doping concentration. In this work, maximum conversion efficiency is found approximately 63.2% for a certain QD size, interdot distance, Indium content and doping concentration.

  12. Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    Science.gov (United States)

    Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan

    2017-01-01

    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.

  13. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  14. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solution-processed high-LUMO-level polymers in n-type organic field-effect transistors: a comparative study as a semiconducting layer, dielectric layer, or charge injection layer

    International Nuclear Information System (INIS)

    Liu, Chuan; Xu, Yong; Liu, Xuying; Minari, Takeo; Sirringhaus, Henning; Noh, Yong-Young

    2015-01-01

    In solution-processed organic field-effect transistors (OFETs), the polymers with high level of lowest unoccupied molecular orbitals (LUMOs, > −3.5 eV) are especially susceptible to electron-trapping that causes low electron mobility and strong instability in successive operation. However, the role of high-LUMO-level polymers could be different depending on their locations relative to the semiconductor/insulator interface, or could even possibly benefit the device in some cases. We constructed unconventional polymer heterojunction n-type OFETs to control the location of the same polymer with a high LUMO level, to be in, under, or above the accumulation channel. We found that although the devices with the polymer in the channel suffer from dramatic instability, the same polymer causes much less instability when it acts as a dielectric modification layer or charge injection layer. Especially, it may even improve the device performance in the latter case. This result helps to improve our understanding of the electron-trapping and explore the value of these polymers in OFETs. (invited article)

  16. Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN ...

    Indian Academy of Sciences (India)

    Pt/Ru Schottky rectifiers; n-type GaN; temperature–dependent electrical properties; inhomogeneous barrier heights .... a 2 μm thick Si-doped GaN films which were grown by .... ted values of ap using (9) for two Gaussian distributions of bar-.

  17. Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes

    International Nuclear Information System (INIS)

    Zheng Hao; Mei, Z.X.; Zeng, Z.Q.; Liu, Y.Z.; Guo, L.W.; Jia, J.F.; Xue, Q.K.; Zhang, Z.; Du, X.L.

    2011-01-01

    High quality single crystalline n-type ZnO film was grown on p-type GaN substrate using molecular beam epitaxy. Transmission electron microscopy reveals a sharp ZnO/GaN interface. Light-emitting diode was fabricated from this heterostructure, and a turn-on voltage of ∼ 3.4 V was demonstrated. We found that the emission peak shifts from violet (430 nm) to near-ultraviolet (375 nm) when the driving current increases from 0.38 mA to 3.08 mA. This intriguing phenomenon can be understood by charged carrier's radical recombination occurring at both sides of the device, and the current enhancement of ZnO emission efficiency.

  18. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  19. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  20. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  1. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    Science.gov (United States)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically

  2. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  3. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  4. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  5. High mobility AlGaN/GaN devices for β"−-dosimetry

    International Nuclear Information System (INIS)

    Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan

    2016-01-01

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β"−-emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β"−-particle interactions with a metallic surface covering. We demonstrate that the source–drain current is modulated in dependence on the kinetic energy of the incident β"−-particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β"−-dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  6. Preliminary performance test of control rod position indicator for ballscrew type CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. H.; Hu, H.; Lee, J. S.; Kim, J. I.

    2003-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The prototype of control rod position indicator having the high performance for the ballscrew type CEDM was developed on the basis of RSPT technology identified through the survey. The characteristics of control rod position indicator was defined and documented through design procedure and preliminary performance test

  7. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  8. GaN/AlGaN-based UV photodetectors with performances exceeding the PMTS

    OpenAIRE

    Tut, Turgut

    2008-01-01

    Ankara : The Department of Physics and the Institute of Engineering and Science of Bilkent University, 2008. Thesis (Ph.D.) -- Bilkent University, 2008. Includes bibliographical references leaves 73-80. The recent developments in high Al-content AlxGa1−xN material growth technology made it possible to fabricate high performance solar-blind photodetectors operating in the ultraviolet (UV) spectral region with improved receiver sensitivity, low noise, low dark current density,...

  9. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    Science.gov (United States)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  10. Low drift type N thermocouples in out-of-pile advanced gas reactor mock-up test: metallurgical analysis

    International Nuclear Information System (INIS)

    Scervini, M.; Palmer, J.; Haggard, D.C.; Swank, W.D.

    2015-01-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of

  11. Low drift type N thermocouples in out-of-pile advanced gas reactor mock-up test: metallurgical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Scervini, M. [University of Cambridge, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB30FS Cambridge, (United Kingdom); Palmer, J.; Haggard, D.C.; Swank, W.D. [Idaho National Laboratory, Idaho Falls, ID 83415-3840, (United States)

    2015-07-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of

  12. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  13. High performance computing, supercomputing, náročné počítání

    Czech Academy of Sciences Publication Activity Database

    Okrouhlík, Miloslav

    2003-01-01

    Roč. 10, č. 5 (2003), s. 429-438 ISSN 1210-2717 R&D Projects: GA ČR GA101/02/0072 Institutional research plan: CEZ:AV0Z2076919 Keywords : high performance computing * vector and parallel computers * programing tools for parellelization Subject RIV: BI - Acoustics

  14. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Duan Xiao-Ling; Zhang Jin-Cheng; Xiao Ming; Zhao Yi; Ning Jing; Hao Yue

    2016-01-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage ( V B ) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. (paper)

  15. N-type doped nano-diamond in a first MEMS application

    Energy Technology Data Exchange (ETDEWEB)

    Dipalo, M.; Kusterer, J.; Janischowsky, K.; Kohn, E. [Dept. of Electron Devices and Circuits, University of Ulm, Albert Einstein Allee 45, 89081 Ulm (Germany)

    2006-09-15

    Nanocrystalline diamond is an interesting material for MEMS applications especially due to its outstanding mechanical, electrical and electrochemical properties. The current choice for doping is boron, resulting in p-type conduction. It has two difficulties: firstly, at high concentration (as needed for full activation) the lattice becomes highly stressed and may degrade the material's quality. Secondly, it contaminates the growth chamber, resulting in a memory effect. A recent alternative is n-type nitrogen doping, avoiding these disadvantages. However, nitrogen is mainly incorporated in the grain boundaries and thus inhomogeneously distributed. In turn this may limit the material's stability. Here we present a first trial to use nitrogen-doped nanocrystalline diamond (NCD), grown by hot filament CVD, in a water microjet as heater element. No stability problems were encountered even at high overdrive power. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    Science.gov (United States)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  17. Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS

    Science.gov (United States)

    Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.

  18. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    Science.gov (United States)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  19. Physics of integrated high-performance NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kugel, H.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Maingi, R.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Raman, R.; Redi, M.; Roquemore, L.; Sabbagh, S. A.; Skiner, C. H.; Sontag, A.; Soukhanovskii, V.; Stratton, B.; Stutman, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Wade, M.; Wilson, J. R.; Zhu, W.

    2005-01-01

    An overarching goal of magnetic fusion research is the integration of steady state operation with high fusion power density, high plasma β, good thermal and fast particle confinement, and manageable heat and particle fluxes to reactor internal components. NSTX has made significant progress in integrating and understanding the interplay between these competing elements. Sustained high elongation up to 2.5 and H-mode transitions during the I p ramp-up have increased β p and reduced l i at high current resulting in I p flat-top durations exceeding 0.8s for I p >0.8MA. These shape and profile changes delay the onset of deleterious global MHD activity yielding β N values >4.5 and β T ∼20% maintained for several current diffusion times. Higher ∫ N discharges operating above the non-wall limit are sustained via rotational stabilization of the RWM. H-mode confinement scaling factors relative to H98(y,2) span the range 1±0.4 for B T >4kG and show a stron (Nearly linear) residual scaling with B T . Power balance analysis indicates the electron thermal transport dominates the loss power in beam-heated H m ode discharges, but the core χ e can be significantly reduced through current profile modification consistent with reversed magnetic shear. Small ELM regimes have been obtained in high performance plasmas on NSTX, but the ELM type and associated pedestal energy loss are found to depend sensitively on the boundary elongation, magnetic balance, and edge collisionality. NPA data and TRANSP analysis suggest resonant interactions with mid-radius tearing modes may lead to large fast-ion transport. The associated fast-ion diffusion and/or loss likely impact(s) both the driven current and power deposition profiles from NBI heating. Results from experiments to initiate the plasma without the ohmic solenoid and integrated scenario with the TSC code will also be described. (Author)

  20. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

    Science.gov (United States)

    Fiedler, Sebastian Rainer; Augustin, Jürgen; Wrage-Mönnig, Nicole; Jurasinski, Gerald; Gusovius, Bertram; Glatzel, Stephan

    2017-09-01

    Biogas digestate (BD) is increasingly used as organic fertilizer, but has a high potential for NH3 losses. Its proposed injection into soils as a countermeasure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect of high nutrient concentrations on N2 losses as they may appear after injection of BD into soil has not yet been evaluated. Hence, we performed an incubation experiment with soil cores in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %) and application rate (0, 17.6 and 35.2 mL BD per soil core, 250 cm3) on the emission of N2O, N2 and CO2 after the usage of high loads of BD. To determine the potential capacity for gaseous losses, we applied anaerobic conditions by purging with helium for the last 24 h of incubation. Immediate N2O and N2 emissions as well as the N2 / (N2O+N2) product ratio depended on soil type and increased with WFPS, indicating a crucial role of soil gas diffusivity for the formation and emission of nitrogenous gases in agricultural soils. However, emissions did not increase with the application rate of BD. This is probably due to an inhibitory effect of the high NH4+ content of BD on nitrification. Our results suggest a larger potential for N2O formation immediately following BD injection in the fine-textured clayey silt compared to the coarse loamy sand. By contrast, the loamy sand showed a higher potential for N2 production under anaerobic conditions. Our results suggest that short-term N losses of N2O and N2 after injection may be higher than probable losses of NH3 following surface application of BD.

  1. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  2. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    Science.gov (United States)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  3. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  4. n/p-Type changeable semiconductor TiO{sub 2} prepared from NTA

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiuye; Wang Xiaodong; Jin Zhensheng, E-mail: zhenshengjin@henu.edu.cn; Yang Dagang; Zhang Shunli; Guo Xinyong; Yang Jianjun; Zhang Zhijun [Henan University, Key Laboratory of Special Functional Materials (China)

    2007-10-15

    A novel kind of nano-sized TiO{sub 2} (anatase) was obtained by high-temperature (400-700 deg. C) dehydration of nanotube titanic acid (H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2}, NTA). The high-temperature (400-700 deg. C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation ({lambda}{>=} 420nm, E{sub photon}=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light ({lambda}{>=} 365nm, E{sub photon}=3.40 eV)

  5. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  6. Bulk electronic structures of n-type superconductor Nd1.85Ce0.15CuO4 probed by high energy angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Tsunekawa, M.; Sekiyama, A.; Kasai, S.; Yamasaki, A.; Fujiwara, H.; Sing, M.; Shigemoto, A.; Imada, S.; Onose, Y.; Tokura, Y.; Muro, T.; Suga, S.

    2005-01-01

    We report on a high-energy angle-resolved photoemission (ARPES) study of the n-type high-T C cuprate, Nd 1.85 Ce 0.15 CuO 4 (NCCO). Our bulk sensitive results suggest a hole-like Fermi surface as seen by the so far reported low-energy ARPES studies. The soft X-ray Cu 2p core-level photoemission spectra show clear polar-angle dependence, suggesting the difference in electron states between the bulk and surface

  7. Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2 VTi(PO4 )3 using Concentrated Electrolytes.

    Science.gov (United States)

    Zhang, Huang; Jeong, Sangsik; Qin, Bingsheng; Vieira Carvalho, Diogo; Buchholz, Daniel; Passerini, Stefano

    2018-02-22

    Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na 2 VTi(PO 4 ) 3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  9. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.

    Science.gov (United States)

    Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang

    2016-11-01

    Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.

  10. Deep level transient spectroscopic analysis of p/n junction implanted with boron in n-type silicon substrate

    Science.gov (United States)

    Wakimoto, Hiroki; Nakazawa, Haruo; Matsumoto, Takashi; Nabetani, Yoichi

    2018-04-01

    For P-i-N diodes implanted and activated with boron ions into a highly-resistive n-type Si substrate, it is found that there is a large difference in the leakage current between relatively low temperature furnace annealing (FA) and high temperature laser annealing (LA) for activation of the p-layer. Since electron trap levels in the n-type Si substrate is supposed to be affected, we report on Deep Level Transient Spectroscopy (DLTS) measurement results investigating what kinds of trap levels are formed. As a result, three kinds of electron trap levels are confirmed in the region of 1-4 μm from the p-n junction. Each DLTS peak intensity of the LA sample is smaller than that of the FA sample. In particular, with respect to the trap level which is the closest to the silicon band gap center most affecting the reverse leakage current, it was not detected in LA. It is considered that the electron trap levels are decreased due to the thermal energy of LA. On the other hand, four kinds of trap levels are confirmed in the region of 38-44 μm from the p-n junction and the DLTS peak intensities of FA and LA are almost the same, considering that the thermal energy of LA has not reached this area. The large difference between the reverse leakage current of FA and LA is considered to be affected by the deep trap level estimated to be the interstitial boron.

  11. Effects of reduction temperature on the optoelectronic properties of diodes based on n-type Si and reduced graphene oxide doped with a conductive polymer

    International Nuclear Information System (INIS)

    Zeng, Jian-Jhou; Lin, Yow-Jon; Ruan, Cheng-He; Lin, Jian-Huang

    2013-01-01

    The effect of reduction temperature on the optoelectronic properties of diodes based on n-type Si and reduced graphene oxide (RGO) doped with a conductive polymer [poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS)] was examined in this study. It is found that conductivity of RGO-doped PEDOT:PSS films increases with increasing reduction temperature of graphene oxide (GO) sheets. The improvement of electrical conductivity is considered to mainly come from the carrier mobility enhancement. In addition, the ideality factor of n-type Si/RGO-doped PEDOT:PSS diodes decreases with increasing reduction temperature of GO sheets. The device-performance improvement originates from high-mobility hole transport combined with long-lifetime electron trapping in the RGO-doped PEDOT:PSS film. In addition, note that a suitable reduction temperature is an important issue for improving the device performance. (paper)

  12. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang

    2015-01-23

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  13. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang; Ying, Pengzhan; Wang, Lin; Wei, Guodong; Gao, Fengmei; Zheng, Jinju; Shang, Minhui; Yang, Zuobao; Yang, Weiyou; Wu, Tao

    2015-01-01

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  14. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  15. Design of high-activity single-atom catalysts via n-p codoping

    Science.gov (United States)

    Wang, Xiaonan; Zhou, Haiyan; Zhang, Xiaoyang; Jia, Jianfeng; Wu, Haishun

    2018-03-01

    The large-scale synthesis of stable single-atom catalysts (SACs) in experiments remains a significant challenge due to high surface free energy of metal atom. Here, we propose a concise n-p codoping approach, and find it can not only disperse the relatively inexpensive metal, copper (Cu), onto boron (B)-doped graphene, but also result in high-activity SACs. We use CO oxidation on B/Cu codoped graphene as a prototype example, and demonstrate that: (1) a stable SAC can be formed by stronger electrostatic attraction between the metal atom (n-type Cu) and support (p-type B-doped graphene). (2) the energy barrier of the prototype CO oxidation on B/Cu codoped graphene is 0.536 eV by the Eley-Rideal mechanism. Further analysis shows that the spin selection rule can provide well theoretical insight into high activity of our suggested SAC. The concept of n-p codoping may lead to new strategy in large-scale synthesis of stable single-atom catalysts.

  16. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    Science.gov (United States)

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  17. Formation of Ga2O3 by the oxidation of p-type GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pinnisch, Melanie; Reppin, Daniel; Stehr, Jan; Laufer, Andreas; Hofmann, Detlev M.; Meyer, Bruno K. [1. Physikalisches Institut, Justus-Liebig-University, Giessen (Germany)

    2010-07-01

    Both GaN and Ga{sub 2}O{sub 3} are wide band gap semiconductors with energies of 3.45 eV and 4.9 eV, respectively. While GaN can be achieved p- or n-type conducting by doping, Ga{sub 2}O{sub 3} is n-type or high resistive dependent on the presence of oxygen vacancies. We studied the conversion of p-type Mg doped GaN thin films to Ga{sub 2}O{sub 3} by thermal treatments in the temperature range from 600 C to 1200 C and in different atmospheres. Changes of the film properties were studied by means of X-ray diffraction, photo-electron spectroscopy and atomic force microscopy. Optical and magnetic resonance methods were used to investigate the evolution of the dopands and defects.

  18. Characterization of n and p-type ZnO thin films grown by pulsed filtered cathodic vacuum arc system

    International Nuclear Information System (INIS)

    Kavak, H.; Erdogan, E.N.; Ozsahin, I.; Esen, R.

    2010-01-01

    Full text : Semiconductor ZnO thin films with wide band gap attract much interest due to their properties such as chemical stability in hydrogen plasma, high optical transparency in the visible and nearinfrared region. Due to these properties ZnO oxide is a promising materials for electronic or optoelectronic applications such as solar cell (as an antireflecting coating and a transparent conducting material), gas sensors, surface acoustic wave devices. The purpose of this research is to improve the properties of n and p-type ZnO thin films for device applications. Polycrystalline ZnO is naturally n-type and very difficult to dope to make p-type. Therefore nowadays hardly produced p-type ZnO attracts a lot of attention. Nitrogen considered as the best dopant for p-type ZnO thin films.The transparent, conductive and very precise thickness controlled n and p-type semiconducting nanocrystalline ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) method. Structural, optical and electrical properties of these films were investigated. And also photoluminescence properties of these films were investigated. Transparent p-type ZnO thin films were produced by oxidation of PFCVAD deposited zinc nitride. Zinc nitride thin films were deposited with various thicknesses and under different oxygen pressures on glass substrates. Zinc nitride thin films, which were deposited at room temperatures, were amorphous and the optical transmission was below 70%. For oxidation zinc nitride, the sample was annealed in air starting from 350 degrees Celsium up to 550 degrees Celsium for one hour duration. These XRD patterns imply that zinc nitride thin films converted to zinc oxide thin films with the same hexagonal crystalline structures of ZnO. The optical measurements were made for each annealing temperature and the optical transmissions of ZnO thin films were found better than 90 percent in visible range after annealing over 350 degrees Celsium. By

  19. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  20. High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Chu [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shen, Y.G. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong (Hong Kong)

    2004-01-25

    High solar performance W-AlN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric function and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80C have been achieved for deposited W-AlN cermet solar coatings.

  1. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  2. The Effect of Selected Nonmusical Factors on Adjudicators' Ratings of High School Solo Vocal Performances

    Science.gov (United States)

    Howard, Sandra A.

    2012-01-01

    The purpose of this study was to examine the effect of differentiated performance attire and stage deportment on adjudicators' ratings of high school solo vocal performances. High school choral students (n = 153) and undergraduate (n = 97) and graduate music majors (n = 32) served as adjudicators (N = 282). Adjudicators rated recorded solo vocal…

  3. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests

    Directory of Open Access Journals (Sweden)

    XU Jun

    2017-08-01

    Full Text Available Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT. Good agreement is observed for predicting results performed by current method and traditional method.

  4. Low-temperature radiation damage in silicon - 1: Annealing studies on N-type material

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.

    1986-07-01

    The presence of electrically active defects in electron-irradiated P-doped n-type silicon was monitored using capacitance and loss factor measurements. Irradiations were performed at temperatures c - 0.14) eV and (E c - 0.24) eV in the gap are ascribed to the carbon interstitial and the divacancy, respectively. (author)

  5. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    Science.gov (United States)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  6. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    Science.gov (United States)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  7. N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

    Science.gov (United States)

    Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun

    2014-10-18

    N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.

  8. [Diagnostic values of type III Procollagen N-terminal peptide and combination assay of type III procollagen N-terminal peptide with CEA and CA 19-9 in gastric cancer].

    Science.gov (United States)

    Akazawa, S; Harada, A; Futatsuki, K

    1984-07-01

    It is known that interstitial collagens are initially synthesized as precursors (procollagen), which possess extra peptide segments at both ends of the molecules. The authors attempted to detect the aminoterminal peptide of type III procollagen (type III-N-peptide) and also to measure the carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) together in sera of patients with gastric cancer. The results showed that: (1) mean serum levels and positive ratios of the type III-N-peptide increased as the clinical stage of the patients with gastric cancer advanced; (2) serum levels of the type III-N-peptide were not correlated either with those of CEA or CA 19-9; (3) positive ratios of type III-N-peptide, CEA and CA 19-9 were 51.7%, 44.8% and 48.3%, respectively: (4) positive ratio in combination of the type III-N-peptide with CEA was 69.3% and that in combination of the type III-N-peptide with CEA and CA 19-9 was 72.4%. These results suggest that type III-N-peptide is available for diagnosis of gastric cancer and, that the combination assay of type III-N-peptide with CEA and CA 19-9 is more effective than a single assay for diagnosis.

  9. The impact of different cross-training modalities on performance and injury-related variables in high school cross country runners.

    Science.gov (United States)

    Paquette, Max R; Peel, Shelby A; Smith, Ross E; Temme, Mark; Dwyer, Jeffrey N

    2017-11-29

    There are many different types of aerobic cross-training modalities currently available. It is important to consider the effects that these different modalities have on running performance and injury risks. The purpose of this study was to compare movement quality, running economy and performance, injury-related biomechanical variables and, hip muscle strength before and after training with different cross-training modalities in high school runners. Thirty-one high school male runners trained for four weeks in one of three cross-training modalities, in addition to a running-only (RUN, n=9) group, for which training sessions replaced two easy runs per week: cycling (CYCLE; n=6), indoor elliptical (ELLIP; n=7) and, outdoor elliptical bike (EBIKE; n=9). Functional movement screen (FMS), running economy (RE), 3,000m performance, hip kinematics, hip muscle strength were assessed. Paired t-tests and Cohen's d effect sizes were used to assess mean differences for each variable before and after training within each group. EBIKE training was the only modality that improved FMS scores (d = 1.36) and RE before and after training (d = 0.48). All groups showed improvements in 3,000m performance but large effects were only found for the CYCLE (d = 1.50) and EBIKE (d = 1.41) groups. RUN (d = 1.25), CYCLE (d = 1.17) and, EBIKE (d = 0.82) groups showed improvements in maximal hip extensor strength. Outdoor cycling and elliptical bike cross-training may be the most effective cross-training modalities to incorporate in early season training to improve running performance in high school runners.

  10. P- and N-type implantation doping of GaN with Ca and O

    International Nuclear Information System (INIS)

    Zolper, J.C.; Wilson, R.G.; Pearton, S.J.

    1996-01-01

    III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼ 160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, the authors used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1,100 C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, the authors report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 microm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a f t of 2.7 GHz, and a f max of 9.4 GHz. O-implantation was also studied and shown to create a shallow donor level (∼ 25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or O in GaN at 1,125 C

  11. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    International Nuclear Information System (INIS)

    Chowdhury, Subhra; Biswas, Dhrubes; Chattaraj, Swarnabha

    2015-01-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)

  12. A k-out-of-n reliability system with an unreliable server and phase type repairs and services: the (N,T policy

    Directory of Open Access Journals (Sweden)

    Srinivas R. Chakravarthy

    2001-01-01

    Full Text Available In this paper we study a k-out-of-n reliability system in which a single unreliable server maintains n identical components. The reliability system is studied under the (N,T policy. An idle server takes a vacation for a random amount of time T and then attends to any failed component waiting in line upon completion of the vacation. The vacationing server is recalled instantaneously upon the failure of the Nth component. The failure times of the components are assumed to follow an exponential distribution. The server is subject to failure with failure times exponentially distributed. Repair times of the component, fixing times of the server, and vacationing times of the server are assumed to be of phase type. Using matrix-analytic methods we perform steady state analysis of this model. Time spent by a failed component in service, total time in the repair facility, vacation time of the server, non-vacation time of the server, and time until failure of the system are all shown to be of phase type. Several performance measures are evaluated. Illustrative numerical examples are presented.

  13. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High mobility AlGaN/GaN devices for β{sup −}-dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martin; Howgate, John; Ruehm, Werner [Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Thalhammer, Stefan, E-mail: stefan.thalhammer@physik.uni-augsburg.de [Universität Augsburg, Universitätsstraße 1, 86159 Augsburg (Germany)

    2016-05-21

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β{sup −}-emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β{sup −}-particle interactions with a metallic surface covering. We demonstrate that the source–drain current is modulated in dependence on the kinetic energy of the incident β{sup −}-particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β{sup −}-dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  16. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  17. Spacetimes of Weyl and Ricci type N in higher dimensions

    International Nuclear Information System (INIS)

    Kuchynka, M; Pravdová, A

    2016-01-01

    We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained. (paper)

  18. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2018-03-27

    N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers.

  19. Concentration determination of urinary metabolites of N,N-dimethylacetamide by high-performance liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Yamamoto, Shinobu; Matsumoto, Akiko; Yui, Yuko; Miyazaki, Shota; Kumagai, Shinji; Hori, Hajime; Ichiba, Masayoshi

    2017-01-01

    Objectives: N,N-Dimethylacetamide (DMAC) is widely used in industry as a solvent. It can be absorbed through human skin. Therefore, it is necessary to determine exposure to DMAC via biological monitoring. However, the precision of traditional gas chromatography (GC) is low due to the thermal decomposition of metabolites in the high-temperature GC injection port. To overcome this problem, we have developed a new method for the simultaneous separation and quantification of urinary DMAC metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods: Urine samples were diluted 10-fold in formic acid, and 1-μl aliquots were injected into the LC-MS/MS equipment. A C18 reverse-phase Octa Decyl Silyl (ODS) column was used as the analytical column, and the mobile phase consisted of a mixture of methanol and aqueous formic acid solution. Results: Urinary concentrations of DMAC and its known metabolites (N-hydroxymethyl-N-methylacetamide (DMAC-OH), N-methylacetamide (NMAC), and S- (acetamidomethyl) mercapturic acid (AMMA) ) were determined in a single run. The dynamic ranges of the calibration curves were 0.05-5 mg/l (r≥0.999) for all four compounds. The limits of detection for DMAC, DMAC-OH, NMAC, and AMMA in urine were 0.04, 0.02, 0.05, and 0.02 mg/l, respectively. Within-run accuracies were 96.5%-109.6% with relative standard deviations of precision being 3.43%-10.31%. Conclusions: The results demonstrated that the proposed method could successfully quantify low concentrations of DMAC and its metabolites with high precision. Hence, this method is useful for evaluating DMAC exposure. In addition, this method can be used to examine metabolite behaviors in human bodies after exposure and to select appropriate biomarkers. PMID:29213009

  20. Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors

    CSIR Research Space (South Africa)

    Raju, K

    2015-12-01

    Full Text Available :17629 | DOI: 10.1038/srep17629 www.nature.com/scientificreports Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors Kumar Raju1 & Kenneth I. Ozoemena1,2 High-performance electrochemical capacitors... OPEN w w w . n a t u r e . c o m / s c i e n t i f i c r e p o r t s / 2S C I E N T I F I C REPORTS | 5:17629 | DOI: 10.1038/srep17629 Hierarchical 1-D and 2-D materials maximize the supercapacitive properties due to their unique ability to permit ion...

  1. The annealing of interstitial carbon atoms in high-resistivity n-type silicon after proton irradiation

    CERN Document Server

    Kuhnke, M; Lindström, G

    2002-01-01

    The annealing of interstitial carbon C sub i after 7-10 MeV and 23 GeV proton irradiations at room temperature in high-resistivity n-type silicon is investigated. Deep level transient spectroscopy is used to determine the defect parameters. The annealing characteristics of the impurity defects C sub i , C sub i C sub s , C sub i O sub i and VO sub i suggest that the mobile C sub i atoms are also captured at divacancy VV sites at the cluster peripheries and not only at C sub s and O sub i sites in the silicon bulk. The deviation of the electrical filling characteristic of C sub i from the characteristic of a homogeneously distributed defect can be explained by an aggregation of C sub i atoms in the environment of the clusters. The capture rate of electrons into defects located in the cluster environment is reduced due to a positive space charge region surrounding the negatively charged cluster core. The optical filling characteristic of C sub i suggests that the change of the triangle-shaped electric field dis...

  2. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology.

    Science.gov (United States)

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Auttawong, S; Brake, J

    2015-03-01

    The objectives of this study were to evaluate the effects of the dietary inclusion of 2 coarsely ground corn (CC) levels (0 or 50%) in diets of broilers reared on 2 litter types (new wood shavings or used litter) on live performance, litter characteristics, gastrointestinal tract (GIT) development, apparent ileal digestibility (AID) of energy and nitrogen (N), and intestinal morphology. No interaction effects between CC level and litter type were observed on live performance. No litter effect was observed on live performance. Dietary inclusion of 50% CC increased BW at 35 d (Plitter treatment (litter N) increased absolute and relative proventriculus weight (Plitter type was observed for litter N, where the 50% CC treatment reduced litter N regardless of litter type (Plitter N was reduced by new litter only among birds fed 0% CC (Plitter pH (Plitter increased jejunum villi and ileum villi height (PLitter type affected some GIT traits and functions but did not affect live performance. © 2015 Poultry Science Association Inc.

  3. 17O knight shifts of the various types of CuO2 planes in Bi-cuprates high-Tc superconductors

    International Nuclear Information System (INIS)

    Le Noc, L.; Trokiner, A.; Schneck, J.; Pougnet, A.M.; Mellet, R.; Primot, J.; Savary, H.

    1992-01-01

    A 17 O NMR study has been performed on a 17 O enriched powder sample of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O y , also called n=3 phase (with Tc=110K) which belongs to the Bi-based superconductors family (Bi,Pb) 2 Sr 2 Ca n-1 Cu n O 2n+4 . The n=3 compound which contains in its unit cell two types of CuO 2 planes (labelled type I and II), is compared to the n=2 compound where only one type of CuO 2 planes (type I) is present. 17 O Knight shift measurements versus temperature, in the normal phase, have allowed us to evidence the distinct behaviours of the two types of planes present in the n=3 compound. The results are consistent with the existence of stronger electron correlations, or smaller charge carrier density in the type II planes. 14 refs., 3 figs

  4. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    Science.gov (United States)

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  5. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors

    Science.gov (United States)

    Tian, Xun; Ma, Hongru; Li, Zhe; Yan, Shaocun; Ma, Lei; Yu, Feng; Wang, Gang; Guo, Xuhong; Ma, Yanqing; Wong, Chingping

    2017-08-01

    Flute type micropores activated carbon (FTMAC) has been successfully obtained from cotton stalk via KOH-chemical activation method. The synthesized carbon material exhibits an ordered pore structure with high specific surface area of 1964.46 m2 g-1 and pore volume of 1.03 m3 g-1. The assembled FTMAC-based electrode delivers a high specific capacitance of 254 F g-1 at a current density of 0.2 A g-1 in 1 M H2SO4 aqueous electrolyte. It still can maintain 221 F g-1at a current density of 10 A g-1, demonstrating a good rate capacity (87% retention), as well as long cyclic stability of 96% capacitance retention after 10000 charging and discharging cycles at current density of 1 A g-1. Moreover, the symmetric supercapacitor can deliver a high energy density of 18.14 W h kg-1 and a power density of 450.37 W kg-1 which is operated in the voltage range of 0-1.8 V.

  6. Improved performance of AlGaN/GaN HEMT by N2O plasma pre-treatment

    International Nuclear Information System (INIS)

    Mi Min-Han; Zhang Kai; Zhao Sheng-Lei; Wang Chong; Zhang Jin-Cheng; Ma Xiao-Hua; Hao Yue

    2015-01-01

    The influence of an N 2 O plasma pre-treatment technique on characteristics of AlGaN/GaN high electron mobility transistor (HEMT) prepared by using a plasma-enhanced chemical vapor deposition (PECVD) system is presented. After the plasma treatment, the peak transconductance (g m ) increases from 209 mS/mm to 293 mS/mm. Moreover, it is observed that the reverse gate leakage current is lowered by one order of magnitude and the drain current dispersion is improved in the plasma-treated device. From the analysis of frequency-dependent conductance, it can be seen that the trap state density (D T ) and time constant (τ T ) of the N 2 O-treated device are smaller than those of a non-treated device. The results indicate that the N 2 O plasma pre-pretreatment before the gate metal deposition could be a promising approach to enhancing the performance of the device. (paper)

  7. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  8. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun, E-mail: jikunchen@seas.harvard.edu [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zha, Hao [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Xia, Xugui; Qiu, Pengfei; Li, Yulong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Chuanjing; Han, Yunsheng [Nuctech Company Limited, Beijing (China); Shi, Xun; Chen, Lidong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jin, Qingxiu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Chen, Huaibi, E-mail: chenhb@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-08-15

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range.

  9. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    International Nuclear Information System (INIS)

    Chen, Jikun; Zha, Hao; Xia, Xugui; Qiu, Pengfei; Li, Yulong; Wang, Chuanjing; Han, Yunsheng; Shi, Xun; Chen, Lidong; Jin, Qingxiu; Chen, Huaibi

    2015-01-01

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range

  10. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.

    Science.gov (United States)

    Li, Shaohui; Chen, Jingwei; Cui, Mengqi; Cai, Guofa; Wang, Jiangxin; Cui, Peng; Gong, Xuefei; Lee, Pooi See

    2017-02-01

    Lithium-ion capacitors (LICs) are promising electrical energy storage systems for mid-to-large-scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery-type anode side. Herein, a high-performance LIC by well-defined ZnMn 2 O 4 -graphene hybrid nanosheets anode and N-doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg -1 at specific power of 180 W kg -1 , and the specific energy remains 98 Wh kg -1 even when the specific power achieves as high as 21 kW kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of a highly Si-doped GaN current spreading layer at the n+-GaN/multi-quantum-well interface on InGaN/GaN blue-light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, C. S.; Cho, H. K.; Choi, R. J.; Hahn, Y. B.; Lee, H. J.; Hong, C. H.

    2004-01-01

    Highly Si-doped GaN thin current spreading layer (CSL) with various carrier concentrations were inserted before the n + -GaN/multi-quantum-well (MQW) interface controlled by the growth rate and the modulated Si-doping in InGaN/GaN blue light-emitting diodes (LEDs), and their effects were investigated by using capacitance-voltage (C-V), current-voltage (I-V), and output power measurements. The LEDs with a highly Si-doped CSL show enhanced I-V characteristics and increased output power with increasing carrier concentration up to some critical point in the CSL. This means that proper high Si-doping in some limited area before the interface may enhance the device performance through the current spreading effect.

  12. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  13. Performance assessment of gate material engineered AlInN/GaN underlap DG MOSFET for enhanced carrier transport efficiency

    Science.gov (United States)

    Pardeshi, Hemant M.; Raj, Godwin; Pati, Sudhansu; Mohankumar, N.; Sarkar, Chandan Kumar

    2013-08-01

    In the work proposed, performance of dual material gate (DMG) AlInN/GaN underlap DG MOSFET has been analyzed and compared with the corresponding performance of single material gate (SMG) AlInN/GaN underlap DG MOSFET using Sentaurus TCAD device simulation. A systematic, quantitative investigation of key device metrics for DMG-DG device is presented and a comparison with SMG-DG device is done for a wide range of gate and underlap lengths. The key idea in this paper is to demonstrate the improved performance exhibited by DMG-DG device over SMG-DG device, due to enhanced carrier transport efficiency and suppressed short channel effect (SCE). Simulation reveals an improvement in drain current, drain induced barrier lowering (DIBL), Ion/Ioff, Delay and Energy Delay Product (EDP) for DMG-DG MOSFET as compared to SMG-DG MOSFET. Very high drain current of 6.7 mA/μm, low DIBL of 1.62 mV/V, high Ion/Ioff ratio of 4.044e107, low delay of 0.001 ps and low EDP of 1.37e-31 J s/μm are obtained for DGM-DG device. However, subthreshold slope (SS) for DMG-DG device is on higher side than SMG-DG. The proposed AlInN/GaN Heterostructure Underlap DGM-DG MOSFET shows excellent promise as one of the candidates to substitute present MOSFET for future high speed applications.

  14. Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties.

    Science.gov (United States)

    Sun, Yucong; Shao, Changlu; Li, Xinghua; Guo, Xiaohui; Zhou, Xuejiao; Li, Xiaowei; Liu, Yichun

    2018-04-15

    P-type bismuth oxychloride (p-BiOCl) nanosheets were uniformly grown on n-type zinc ferrite (n-ZnFe 2 O 4 ) electrospun nanofibers via a solvothermal technique to form hierarchical heterostructures of p-BiOCl/n-ZnFe 2 O 4 (p-BiOCl/n-ZnFe 2 O 4 H-Hs). The density and loading amounts of the BiOCl nanosheets with exposed {0 0 1} facets were easily controlled by adjusting the reactant concentration in the solvothermal process. The p-BiOCl/n-ZnFe 2 O 4 H-Hs exhibited enhanced visible-light photocatalytic activities for the degradation of Rhodamine B (RhB). The apparent first-order rate of the p-BiOCl/n-ZnFe 2 O 4 H-Hs and its normalized constant were about 12.6- and 8-fold higher than pure ZnFe 2 O 4 nanofibers. This suggests that both the improved charge separation efficiency from the uniform p-n heterojunctions and the enlarged active surface sites from the hierarchical structures increase the photocatalytic performances. Furthermore, the p-BiOCl/n-ZnFe 2 O 4 H-Hs could be efficiently separated from the solution with an external magnetic field via the ferromagnetic behavior of ZnFe 2 O 4 nanofibers. The magnetic p-BiOCl/n-ZnFe 2 O 4 H-Hs with enhanced visible-light photocatalytic performances might have potential applications in water treatment. Copyright © 2018. Published by Elsevier Inc.

  15. Ge1−xSix on Ge-based n-type metal–oxide semiconductor field-effect transistors by device simulation combined with high-order stress–piezoresistive relationships

    International Nuclear Information System (INIS)

    Lee, Chang-Chun; Hsieh, Chia-Ping; Huang, Pei-Chen; Cheng, Sen-Wen; Liao, Ming-Han

    2016-01-01

    The considerably high carrier mobility of Ge makes Ge-based channels a promising candidate for enhancing the performance of next-generation devices. The n-type metal–oxide semiconductor field-effect transistor (nMOSFET) is fabricated by introducing the epitaxial growth of high-quality Ge-rich Ge 1−x Si x alloys in source/drain (S/D) regions. However, the short channel effect is rarely considered in the performance analysis of Ge-based devices. In this study, the gate-width dependence of a 20 nm Ge-based nMOSFET on electron mobility is investigated. This investigation uses simulated fabrication procedures combined with the relationship of the interaction between stress components and piezoresistive coefficients at high-order terms. Ge 1−x Si x alloys, namely, Ge 0.96 Si 0.04 , Ge 0.93 Si 0.07 , and Ge 0.86 Si 0.14 , are individually tested and embedded into the S/D region of the proposed device layout and are used in the model of stress estimation. Moreover, a 1.0 GPa tensile contact etching stop layer (CESL) is induced to explore the effect of bi-axial stress on device geometry and subsequent mobility variation. Gate widths ranging from 30 nm to 4 μm are examined. Results show a significant change in stress when the width is < 300 nm. This phenomenon becomes notable when the Si in the Ge 1−x Si x alloy is increased. The stress contours of the Ge channel confirm the high stress components induced by the Ge 0.86 Si 0.14 stressor within the device channel. Furthermore, the stresses (S yy ) of the channel in the transverse direction become tensile when CESL is introduced. Furthermore, when pure S/D Ge 1−x Si x alloys are used, a maximum mobility gain of 28.6% occurs with an ~ 70 nm gate width. A 58.4% increase in mobility gain is obtained when a 1.0 GPa CESL is loaded. However, results indicate that gate width is extended to 200 nm at this point. - Highlights: • A 20 nm Ge-based n-channel metal–oxide semiconductor field-effect transistor is investigated

  16. Radioactivity monitor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Reeve, D.R.; Crozier, A.

    1977-01-01

    The coupling of a homogeneous radioactivity monitor to a liquid chromatograph involves compromises between the sensitivity of the monitor and the resolution and speed of analysis of the chromatograph. The theoretical relationships between these parameters are considered and expressions derived which make it possible to calculate suitable monitor operating conditions for most types of high-performance liquid chromatography

  17. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET

    International Nuclear Information System (INIS)

    Rahi Shiromani Balmukund; Asthana Pranav; Ghosh Bahniman

    2014-01-01

    We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AlGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gate1) with two different work functions (gate = 4.2 eV, gate1 = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10 −6 A/μm, the off current remains as low as 9.1 × 10 −14 A/μm. So I ON /I OFF ratio of ≃ 10 8 is achieved. Point subthreshold swing has also been reduced to a value of ≃ 41 mV/decade for TiO 2 gate material. (semiconductor devices)

  18. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-01-01

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K

  19. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  20. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Han [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China); Kettle, Jeff [School of Electronics, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT Wales (United Kingdom); Horie, Masaki, E-mail: mhorie@mx.nthu.edu.tw [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China)

    2014-04-01

    The synthesis, characterisation, and device performance of a series of cyclopentadithiophene (CPDT)-naphthalenediimide (NDI) donor-acceptor-donor (D-A-D) polymers is reported. The monomers with various alkyl chains are synthesised via direct arylation using palladium complex catalyst. The monomers are then polymerised by oxidative polymerisation using FeCl{sub 3} to provide high molecular weight polymers (M{sub n} = 21,800–76,000). The polymer films show deep-red absorption including near-infrared region up to 1100 nm to give optical bandgap of approximately 1.16 eV. The polymers exhibit only n-type semiconducting properties giving the highest electron mobility of 9 × 10{sup -3} cm{sup 2} V{sup −1} s{sup −1} in organic field-effect transistors (OFETs). Organic photovoltaic (OPV) devices are fabricated from solutions of the polymers as acceptors and poly(3-hexylthiophene) (P3HT) as a donor. - Highlights: • Cyclopentadithiophene–naphthalenediimide oligomers were prepared by direct arylation. • The oligomers were polymerised by oxidative reaction using iron(III)chloride. • The polymer films show deep-red absorption up to 1100 nm with a bandgap of 1.1 eV. • The polymers exhibit only n-type semiconducting properties in OFETs and OPVs.

  1. THE INFLUENCE OF DIFFERENT INNOVATION TYPES UPON THE INNOVATIVE PERFORMANCE – EVIDENCE FROM EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Gabriela Lucia SIPOS

    2015-06-01

    Full Text Available Innovation represents a widely debated topic in the context of current economy, being an opportunity to achieve corporate competitiveness within an environment of uncertainty. The main purpose of this paper is to analyze the impact of different innovation types on the innovative performance in the case of 31 European countries, using the simple and the multiple linear regressions across countries. In this regard we have considered different types of innovation, such as product, process, marketing and organizational innovation, while the innovative performance was synthetically expressed by Summary Innovation Index 2013.The main result of our study is that in order to achieve high innovative performance it is necessarily to implement product and process innovation simultaneously with organizational and marketing innovation. Thus, the findings of this paper can represent a guidance for companies to identify the most appropriate types of innovation that have the greatest influence on achieving high innovative performance.

  2. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  3. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  4. Performance of indigenously fabricated pyramid type solar desalination unit at Nawabshah

    International Nuclear Information System (INIS)

    Memon, A.H.; Rajpar, A.H.; Memon, N.A.

    2010-01-01

    The performance of locally fabricated pyramid type solar desalination unit was studied and compared with the conventional basin type solar still. Both stills were initially filled with same quantity of brackish water. Their performance was studied in terms of the quality of water produced, quantity of water desalinated per hour and total quantity of water desalinated per day during the time under study. The experiments were conducted and various parameters were recorded from 9-15 hours daily. These results showed that pyramid solar still produced 20% higher desalinated water as compared to the conventional double slope basin type solar still. This study showed that the productivity rate of soar still is dependent upon geometrical configuration of solar still. It was observed that the units can highly reduce the salinity, TDS (Total Dissolved Solids) and EC (Electrical Conductivity) of the saline ground water providing the availability of safe drinking water. (author)

  5. Impaired fat oxidation after a single high-fat meal in insulin-sensitive nondiabetic individuals with a family history of type 2 diabetes.

    Science.gov (United States)

    Heilbronn, Leonie K; Gregersen, Søren; Shirkhedkar, Deepali; Hu, Dachun; Campbell, Lesley V

    2007-08-01

    Individuals with insulin resistance and type 2 diabetes have an impaired ability to switch appropriately between carbohydrate and fatty acid oxidation. However, whether this is a cause or consequence of insulin resistance is unclear, and the mechanism(s) involved in this response is not completely elucidated. Whole-body fat oxidation and transcriptional regulation of genes involved in lipid metabolism in skeletal muscle were measured after a prolonged fast and after consumption of either high-fat (76%) or high-carbohydrate (76%) meals in individuals with no family history of type 2 diabetes (control, n = 8) and in age- and fatness-matched individuals with a strong family history of type 2 diabetes (n = 9). Vastus lateralis muscle biopsies were performed before and 3 h after each meal. Insulin sensitivity and fasting measures of fat oxidation were not different between groups. However, subjects with a family history of type 2 diabetes had an impaired ability to increase fatty acid oxidation in response to the high-fat meal (P FAT)/CD36 (P fat meal in both groups, but it was not changed after the high-carbohydrate meal. In conclusion, an impaired ability to increase fatty acid oxidation precedes the development of insulin resistance in genetically susceptible individuals. PGC1alpha and FAT/CD36 are likely candidates in mediating this response.

  6. Effect of surface passivation by SiN/SiO2 of AlGaN/GaN high-electron mobility transistors on Si substrate by deep level transient spectroscopy method

    International Nuclear Information System (INIS)

    Gassoumi, Malek; Mosbahi, Hana; Zaidi, Mohamed Ali; Gaquiere, Christophe; Maaref, Hassen

    2013-01-01

    Device performance and defects in AlGaN/GaN high-electron mobility transistors have been correlated. The effect of SiN/SiO 2 passivation of the surface of AlGaN/GaN high-electron mobility transistors on Si substrates is reported on DC characteristics. Deep level transient spectroscopy (DLTS) measurements were performed on the device after the passivation by a (50/100 nm) SiN/SiO 2 film. The DLTS spectra from these measurements showed the existence of the same electron trap on the surface of the device

  7. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface

    International Nuclear Information System (INIS)

    Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Okushi, Hideyo

    2007-01-01

    The properties of phosphorus incorporation for n-type doping of diamond are discussed and summarized. Doping of (0 0 1)-oriented diamond is introduced and compared with results achieved on (1 1 1) diamond. This review describes detailed procedures and conditions of plasma-enhanced chemical vapour deposition (CVD) growth and characteristics of electrical properties of phosphorus-doped diamond. The phosphorus incorporation was characterized by SIMS analysis including mapping. n-type conductivity is evaluated by Hall-effect measurements over a temperature regime of 300-1000 K. The crystal perfection of (0 0 1)-oriented n-type diamond is also evaluated by x-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction and cathodoluminescence analyses. The results show that phosphorus atoms are incorporated into the diamond network during (0 0 1) CVD diamond growth and that phosphorus acts as a donor as in (1 1 1)-oriented diamond. This result eliminates the restriction on substrate orientation, which had previously created a bottleneck in the development of diamond electronic devices. (review article)

  8. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Kyoung-Shin Choi

    2013-06-30

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  9. Role of oxygen in enhancing N-type conductivity of CuInS2 thin films

    International Nuclear Information System (INIS)

    Rabeh, M. Ben; Kanzari, M.; Rezig, B.

    2007-01-01

    Post-growth treatments in air atmosphere were performed on CuInS 2 films prepared by the single-source thermal evaporation method. Their effect on the structural, optical and electrical properties of the films was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical reflection and transmission and resistance measurements. The films were annealed from 100 to 350 deg. C in air. The stability of the observed N-type conductivity after annealing depends strongly on the annealing temperature. Indeed it is shown that for annealing temperatures above 200 deg. C the N-type conductivity is stable. The resistance of the N-CuInS 2 thin films correlates well with the corresponding annealing temperature. The samples after annealing have direct bandgap energies of 1.45-1.50 eV

  10. P-type sp3-bonded BN/n-type Si heterodiode solar cell fabricated by laser-plasma synchronous CVD method

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Nagata, Takahiro; Chikyo, Toyohiro; Sato, Yuhei; Watanabe, Takayuki; Hirano, Daisuke; Takizawa, Takeo; Nakamura, Katsumitsu; Hashimoto, Takuya; Nakamura, Takuya; Koga, Kazunori; Shiratani, Masaharu; Yamamoto, Atsushi

    2009-01-01

    A heterojunction of p-type sp 3 -bonded boron nitride (BN) and n-type Si fabricated by laser-plasma synchronous chemical vapour deposition (CVD) showed excellent rectifying properties and proved to work as a solar cell with photovoltaic conversion efficiency of 1.76%. The BN film was deposited on an n-type Si (1 0 0) substrate by plasma CVD from B 2 H 6 + NH 3 + Ar while doping of Si into the BN film was induced by the simultaneous irradiation of an intense excimer laser with a pulse power of 490 mJ cm -2 , at a wavelength of 193 nm and at a repetition rate of 20 Hz. The source of dopant Si was supposed to be the Si substrate ablated at the initial stage of the film growth. The laser enhanced the doping (and/or diffusion) of Si into BN as well as the growth of sp 3 -bonded BN simultaneously in this method. P-type conduction of BN films was determined by the hot (thermoelectric) probe method. The BN/Si heterodiode with an essentially transparent p-type BN as a front layer is supposed to efficiently absorb light reaching the active region so as to potentially result in high efficiency.

  11. PERSONALITY TYPE AND TRANSLATION PERFORMANCE OF PERSIAN TRANSLATOR TRAINEES

    Directory of Open Access Journals (Sweden)

    Reza Shaki

    2017-09-01

    Full Text Available The study investigated the relationship between the personality typology of a sample of Iranian translation students and their translation quality in terms of expressive, appellative, and informative text types. The study also attempted to identify the personality types that can perform better in English to Persian translation of the three text types. For that purpose, the personality type and the translation quality of the participants was assessed using Myers-Briggs Type Indicator (MBTI personality test and translation quality assessment (TQA, respectively. The analysis of the data revealed that the personality type of the participants seemed relevant to the translation quality of all the text types. The translation quality of the participants with intuitive and thinking types was significantly better than the sensing type counterparts in translating expressive texts. The participants with intuitive and feeling types also performed better than their counterparts with sensing type in translation of the informative text. Moreover, the participants with intuitive, feeling, and thinking personality types performed more successfully than the participants with sensing type in translation of the appellative text. The findings of the study are discussed in light of the existing research literature.

  12. Improving the high performance concrete (HPC behaviour in high temperatures

    Directory of Open Access Journals (Sweden)

    Cattelan Antocheves De Lima, R.

    2003-12-01

    Full Text Available High performance concrete (HPC is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.

    El hormigón de alta resistencia (HAR es un material de gran interés para la comunidad científica y técnica, debido a las claras ventajas obtenidas en término de resistencia mecánica y durabilidad. A causa de estas características, el HAR, en sus diversas formas, en algunas aplicaciones está reemplazando gradualmente al hormigón de resistencia normal, especialmente en estructuras expuestas a ambientes severos. Sin embargo, la microestructura muy densa y la baja permeabilidad t

  13. P-type doping of GaN

    International Nuclear Information System (INIS)

    Wong, R.K.

    2000-01-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover

  14. P-type doping of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Raechelle Kimberly [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  15. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  16. ''114''-type nitrides LnAl(Si{sub 4-x}Al{sub x})N{sub 7}O{sub δ} with unusual [AlN{sub 6}] octahedral coordination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Saifang; Ouyang, Xin [School of Materials Science and Technology, China University of Geosciences, Beijing (China); Department of Chemical and Materials Engineering, University of Auckland (New Zealand); Huang, Zhaohui; Fang, Minghao; Liu, Yan-gai [School of Materials Science and Technology, China University of Geosciences, Beijing (China); Cao, Peng; Gao, Wei [Department of Chemical and Materials Engineering, University of Auckland (New Zealand); Zujovic, Zoran; Soehnel, Tilo [School of Chemical Sciences, University of Auckland (New Zealand); Price, Jason R. [Australian Synchrotron, Clayton, VIC (Australia); Avdeev, Maxim [Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Que, Meidan [School of Electronic and Information Engineering, Xi' an Jiaotong University (China); Suzuki, Furitsu; Kido, Tsuyoshi; Kaji, Hironori [Institute for Chemical Research, Kyoto University (Japan)

    2017-03-27

    Aluminum-nitrogen six-fold octahedral coordination, [AlN{sub 6}], is unusual and has only been seen in the high-pressure rocksalt-type aluminum nitride or some complex compounds. Herein we report novel nitrides LnAl(Si{sub 4-x}Al{sub x})N{sub 7}O{sub δ} (Ln=La, Sm), the first inorganic compounds with [AlN{sub 6}] coordination prepared via non-high-pressure synthesis. Structure refinements of neutron powder diffraction and single-crystal X-ray diffraction data show that these compounds crystallize in the hexagonal Swedenborgite structure type with P6{sub 3}mc symmetry where Ln and Al atoms locate in anticuboctahedral and octahedral interstitials, respectively, between the triangular and Kagome layers of [SiN{sub 4}] tetrahedra. Solid-state NMR data of high-purity La-114 powders confirm the unusual [AlN{sub 6}] coordination. These compounds are the first examples of the ''33-114'' sub-type in the ''114'' family. The additional site for over-stoichiometric oxygen in the structure of 114-type compounds was also identified. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High-Speed, High-Performance DQPSK Optical Links with Reduced Complexity VDFE Equalizers

    Directory of Open Access Journals (Sweden)

    Maki Nanou

    2017-02-01

    Full Text Available Optical transmission technologies optimized for optical network segments sensitive to power consumption and cost, comprise modulation formats with direct detection technologies. Specifically, non-return to zero differential quaternary phase shift keying (NRZ-DQPSK in deployed fiber plants, combined with high-performance, low-complexity electronic equalizers to compensate residual impairments at the receiver end, can be proved as a viable solution for high-performance, high-capacity optical links. Joint processing of the constructive and the destructive signals at the single-ended DQPSK receiver provides improved performance compared to the balanced configuration, however, at the expense of higher hardware requirements, a fact that may not be neglected especially in the case of high-speed optical links. To overcome this bottleneck, the use of partially joint constructive/destructive DQPSK equalization is investigated in this paper. Symbol-by-symbol equalization is performed by means of Volterra decision feedback-type equalizers, driven by a reduced subset of signals selected from the constructive and the destructive ports of the optical detectors. The proposed approach offers a low-complexity alternative for electronic equalization, without sacrificing much of the performance compared to the fully-deployed counterpart. The efficiency of the proposed equalizers is demonstrated by means of computer simulation in a typical optical transmission scenario.

  18. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  19. Effect of Elliptical High Intensity Interval Training on Metabolic Risk Factor in Pre- and Type 2 Diabetes Patients: A Pilot Study.

    Science.gov (United States)

    Fex, Annie; Leduc-Gaudet, Jean-Philippe; Filion, Marie-Eve; Karelis, Antony D; Aubertin-Leheudre, Mylène

    2015-07-01

    The purpose of the current study was to examine the impact of 12 weeks of elliptical high intensity interval training (HIIT) on metabolic risk factors and body composition in pre- and type 2 diabetes patients. Sixteen pre- (n = 8) and type 2 diabetes (n = 8) participants completed this study. Fasting blood glucose, HbA1c, anthropometric measurements, body composition (DXA), blood pressure, resting heart rate, VO2max, and dietary factors, as well as total and physical activity energy expenditure, were measured. The HIIT program on the elliptical was performed 3 times a week for 12 weeks. After the intervention, we observed a significant improvement for fasting blood glucose, waist and hip circumference, appendicular fat mass, leg lean body mass and appendicular lean body mass, systolic blood pressure, resting heart rate, and VO2max (P body composition in pre- and type 2 diabetes patients.

  20. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  1. High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction.

    Science.gov (United States)

    Yu, Jingjing; Javaid, Kashif; Liang, Lingyan; Wu, Weihua; Liang, Yu; Song, Anran; Zhang, Hongliang; Shi, Wen; Chang, Ting-Chang; Cao, Hongtao

    2018-03-07

    A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 10 7 , and a specific detectivity up to 3.3 × 10 14 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.

  2. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  3. Action Regulation Introducing Stress Management Techniques and High Performance in Soccer

    Directory of Open Access Journals (Sweden)

    Saha Soumendra

    2015-01-01

    Full Text Available Fifty-two high performing soccer players of South-East Asian contingent were selected by three expert soccer instructors on the basis of their consistent high performance and on the basis of their performance on psychomotor and psychobiological parameters. All of these players were subjected to pre-intervention analyses of Sc orienting reflex indices (phasic components of electrodermal activity as well as sympathovagal activity based on HRV indices which were assessed simultaneously while the players were engaged in psychomotor reaction ability performances. Structural equations were done to identify the path regression related to performance excellence, which were suggestive of incoherence between the predictors. Short-term intensive self-regulation as well as action-regulation training modules was developed to foster ideomotor orientation in the players, which however was found effective in modification of the intrinsic psychobiological mechanism leading towards excellence in performance in the high-performer soccer players. Thus they were randomly categorised into four groups, comprising of one no-intervention control group (N = 13; experimental group I (N = 13 who received action-regulation training; experimental group II (N = 13, who received training of electromyography (EMG biofeedback, and experimental group III (N = 13, who received combined training of action - regulation and electromyography (EMG biofeedback (for 15 min.s/day, for 3 days per week, for 12 weeks. Repeated measure of ANOVA and multiple linear and polynomial regression analyses along with the predictive structural analyses were done to identify relationships between the psychobiological processes, in relation to the cognitive-affective and affective-motivational aspects of sports behaviour, revealed by the projective analyses of emotionality. These models were aptly able to explain the efficacy of the action-regulation intervention techniques, in inducing the cognitive

  4. Diffusion barrier performances of thin Mo, Mo-N and Mo/Mo-N films between Cu and Si

    International Nuclear Information System (INIS)

    Song Shuangxi; Liu Yuzhang; Mao Dali; Ling Huiqin; Li Ming

    2005-01-01

    In this work, we have studied the diffusion barrier performances of Mo, Mo-N and Mo/Mo-N metallization layers deposited by sputtering Mo in Ar/N 2 atmospheres, respectively. Samples were subsequently annealed at different temperatures ranging from 400 to 800 deg C in vacuum condition. The film properties and their suitability as diffusion barriers and protective coatings in silicon devices were characterized using four-point probe measurement, X-ray diffractometry, scanning electron microscopy, Auger electron spectroscopy and transmission electron microscopy analyses. Experimental results revealed that the Mo (20 nm)/Mo-N (30 nm) layer was able to prevent the diffusion reaction between Cu and Si substrate after being annealed at 600 deg C for 30 min. The adhesion between layers and the content of N atoms are the key parameters to improve the properties of Mo-based barrier materials. The Mo layer interposed between Cu and Mo-N diluted the high nitrogen concentration of the barrier and so enhanced the barrier performances

  5. Mood states and motor performance: a study with high performance voleybol athletes

    Directory of Open Access Journals (Sweden)

    Lenamar Fiorese Vieira

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p62 The objective of this research was to investigate the relationship between the sporting performance and mood states of high performance volleyball athletes. Twenty-three adult athletes of both sexes were assessed. The measurement instrument adopted was the POMS questionnaire. Data collection was carried out individually during the state championships. Dada were analyzed using descriptive statistics; the Friedman test for analysis of variance and the Mann-Whitney test for differences between means. The results demonstrated that both teams exhibited the mood state profi le corresponding to the “iceberg” profile. In the male team, vigor remained constant throughout all phases of the competition, while in the female team this element was unstable. The male team’s fatigue began low, during the training phase, with rates that rose as the competition progressed, with statistically significant differences between the fi rst and last matches the team played. In the female team, the confusion factor, which was at a high level during training, reduced progressively throughout the competition, with a difference that was signifi cant to p ≤ 0.05. With relation to performance and mood profi le, the female team exhibited statistically significant differences between the mean vigor and fatigue factors of high and low performance athletes. It is therefore concluded that the mood state profi le is a factor that impacts on the motor performance of these high performance teams.

  6. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance, a Novel Antimicrobial Resistance Multilocus Typing Scheme for Tracking Global Dissemination of N. gonorrhoeae Strains.

    Science.gov (United States)

    Demczuk, W; Sidhu, S; Unemo, M; Whiley, D M; Allen, V G; Dillon, J R; Cole, M; Seah, C; Trembizki, E; Trees, D L; Kersh, E N; Abrams, A J; de Vries, H J C; van Dam, A P; Medina, I; Bharat, A; Mulvey, M R; Van Domselaar, G; Martin, I

    2017-05-01

    A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes ( penA , mtrR , porB , ponA , gyrA , parC , and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA , porB , gyrA , and parC ; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) ( n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs ( n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 ( n = 100; 13.0%), ST-42 and ST-91 ( n = 45; 5.9%), ST-64 ( n = 44; 5.72%), and ST-139 ( n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NG-STAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 ( n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 ( n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 ( n = 196; 98.0%). All isolates of NG-STAR ST-42, ST-43, ST-63, ST-81, and ST-160 ( n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains. © Crown copyright 2017.

  7. Cantilever-type electrode array-based high-throughput microparticle sorting platform driven by gravitation and negative dielectrophoretic force

    International Nuclear Information System (INIS)

    Kim, Youngho; Kim, Byungkyu; Lee, Junghun; Kim, Younggeun; Shin, Sang-Mo

    2011-01-01

    In this paper, we describe a cantilever-type electrode (CE) array-based high-throughput sorting platform, which is a tool used to separate microparticles using gravitation and negative dielectrophoretic (n-DEP) force. This platform consists of meso-size channels and a CE array, which is designed to separate a large number of target particles by differences in their dielectric material properties (DMP) and the weight of the particles. We employ a two-step separation process, with sedimentation as the first step and n-DEP as the second step. In order to differentiate the weight and the DMP of each particle, we employ the sedimentation phenomena in a vertical channel and the CE-based n-DEP in an inclined channel. By using three kinds of polystyrene beads with diameters of 10, 25 and 50 µm, the optimal population (10 7 beads ml −1 ) of particles and the appropriate length (25 mm) of the vertical channel for high performance were determined experimentally. Conclusively, by combining sedimentation and n-DEP schemes, we achieve 74.5, 94.7 and 100% separation efficiency for sorting microparticles with a diameter of 10, 25 and 50 µm, respectively.

  8. High Performance Enhancement-Mode AlGaN/GaN MIS-HEMT with Selective Fluorine Treatment

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-01-01

    Full Text Available A novel enhancement-mode (E-mode Metal-Insulator-Semiconductor- (MIS- HEMT with selective fluorine ion (F− treatment is proposed and its mechanism is investigated. The HEMT features the Selective F− treatment both in the AlGaN channel region and in the thick passivation layer between the gate and drain (SFCP-MIS-HEMT. First, the F− in the passivation layer not only extends the depletion region and thus enhances the average electric field (E-field between the gate and drain by the assisted depletion effect but also reduces the E-field peak at the gate end, leading to a higher breakdown voltage (BV. Second, in the AlGaN channel region, the F− region realizes the E-mode and the region without F− maintains a high drain current (ID. Third, MIS structure suppresses the gate leakage current, increasing the gate swing voltage and the BV. Compared with a MIS-HEMT with F− treatment in whole channel (FC-MIS-HEMT, SFCP-MIS-HEMT increases the BV by 46% and the saturation drain current (ID,sat by 28%.

  9. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  10. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wen-Ping, Gu; Huan-Tao, Duan; Jin-Yu, Ni; Yue, Hao; Jin-Cheng, Zhang; Qian, Feng; Xiao-Hua, Ma

    2009-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current I Dsat , maximal transconductance g m , and the positive shift of threshold voltage V TH at high drain-source voltage V DS . The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with V DS = 20 V and V GS = 0 V applied to the device for 10 4 sec, the SiN passivation decreases the stress-induced degradation of I Dsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of I Dsat , which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Development of High Performance CFRP/Metal Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  12. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  13. Magnetron sputtered TiN thin films toward enhanced performance supercapacitor electrodes

    KAUST Repository

    Wei, Binbin

    2018-04-09

    Supercapacitors as a new type of energy storage devices bridging the gap between conventional capacitors and batteries have aroused widespread concern. Herein, binder-free titanium nitride (TiN) thin film electrodes for supercapacitors prepared by reactive magnetron sputtering technology are reported. The effect of N2 content on the supercapacitor performance is evaluated. A highest specific capacitance of 27.3 mF cm−2 at a current density of 1.0 mA cm−2, together with excellent cycling performance (98.2% capacitance retention after 20,000 cycles at 2.0 mA cm−2) is achieved in a 0.5 M H2SO4 aqueous electrolyte. More importantly, a symmetric supercapacitor device assembled on the basis of TiN thin films can deliver a maximum energy density of 17.6 mWh cm−3 at a current density of 0.2 mA cm−2 and a maximum power density of 10.8 W cm−3 at a current density of 2 mA cm−2 with remarkable cycling stability. As a consequence, TiN thin films demonstrate great potential as promising supercapacitor electrode materials.

  14. Magnetron sputtered TiN thin films toward enhanced performance supercapacitor electrodes

    KAUST Repository

    Wei, Binbin; Liang, Hanfeng; Zhang, Dongfang; Qi, Zhengbing; Shen, Hao; Wang, Zhoucheng

    2018-01-01

    Supercapacitors as a new type of energy storage devices bridging the gap between conventional capacitors and batteries have aroused widespread concern. Herein, binder-free titanium nitride (TiN) thin film electrodes for supercapacitors prepared by reactive magnetron sputtering technology are reported. The effect of N2 content on the supercapacitor performance is evaluated. A highest specific capacitance of 27.3 mF cm−2 at a current density of 1.0 mA cm−2, together with excellent cycling performance (98.2% capacitance retention after 20,000 cycles at 2.0 mA cm−2) is achieved in a 0.5 M H2SO4 aqueous electrolyte. More importantly, a symmetric supercapacitor device assembled on the basis of TiN thin films can deliver a maximum energy density of 17.6 mWh cm−3 at a current density of 0.2 mA cm−2 and a maximum power density of 10.8 W cm−3 at a current density of 2 mA cm−2 with remarkable cycling stability. As a consequence, TiN thin films demonstrate great potential as promising supercapacitor electrode materials.

  15. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  16. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  17. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    DEFF Research Database (Denmark)

    Febvrier, Arnaud le; Van Nong, Ngo; Abadias, Gregory

    2018-01-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over......-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale....

  18. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    Science.gov (United States)

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  19. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes

    Science.gov (United States)

    Chen, Zhuo; Hou, Liqiang; Cao, Yan; Tang, Yushu; Li, Yongfeng

    2018-03-01

    Boron and nitrogen co-doped graphene-like carbon (BNC) with a gram scale was synthesized via a two-step method including a ball-milling process and a calcination process and used as electrode materials for supercapacitors. High surface area and abundant active sites of graphene-like carbon were created by the ball-milling process. Interestingly, the nitrogen atoms are doped in carbon matrix without any other N sources except for air. The textual and chemical properties can be easily tuned by changing the calcination temperature, and at 900 oC the BNC with a high surface area (802.35 m2/g), a high boron content (2.19 at%), a hierarchical pore size distribution and a relatively high graphitic degree was obtained. It shows an excellent performance of high specific capacitance retention about 78.2% at high current density (199 F/g at 100 A/g) of the initial capacitance (254 F/g at 0.25 A/g) and good cycling stability (90% capacitance retention over 1000 cycles at 100 A/g) measured in a three-electrode system. Furthermore, in a two-electrode system, a specific capacitance of 225 F/g at 0.25 A/g and a good cycling stability (93% capacitance retention over 20,000 cycles at 25 A/g) were achieved by using BNC as electrodes. The strategy of synthesis is facile and effective to fabricate multi-doped graphene-like carbon for promising candidates as electrode materials in supercapacitors.

  20. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  1. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  2. Ohmic contacts to n+-GaN capped AlGaN/AlN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wang Liang; Mohammed, Fitih M.; Ofuonye, Benedict; Adesida, Ilesanmi

    2007-01-01

    Investigations of Ti/Al/Mo/Au Ohmic contact formation, premetallization plasma treatment effects, and interfacial reactions for n + -GaN capped AlGaN/AlN/GaN heterostructures are presented. Ti thickness played an important role in determining contact performance. Transmission electron microscopy studies confirmed that thick Ti layer was necessary to fully consume the GaN cap and the top of AlGaN to enable a higher tunneling current flow. A direct correlation of plasma treatment conditions with I-V linearity, current level, and contact performance was established. The plasma-affected region is believed to extend over 20 nm into the AlGaN and GaN

  3. Overview of JT-60U results toward high integrated performance in reactor-relevant regime

    International Nuclear Information System (INIS)

    Fujita, T.

    2003-01-01

    Recent JT-60U results toward high integrated performance are reported with emphasis on the projection to the reactor-relevant regime. N-NB and EC power increased up to 6.2 MW and 3 MW, respectively. A high β p H-mode plasma with full non-inductive current drive has been obtained at 1.8 MA and the fusion triple product reached 3.1x10 20 m -3 keVs. High beta with β N =2.7 was maintained for 7.4 s. NTM suppression with EC was accomplished using a real-time feedback control system and improvement in β N was obtained. A stable existence of current hole was observed. High DT-equivalent fusion gain of 0.8 was maintained for 0.55 s in a plasma with a current hole. The current profile control in high bootstrap current reversed shear plasmas was demonstrated using N-NB and LH. A new operation scenario has been established in which a plasma with high bootstrap current fraction and ITBs is produced without the use of OH coil. ECCD study was undertaken in a reactor-relevant high T e regime. A new type of AE mode has been proposed and found to explain the observed frequency chirp quite well. High confinement reversed shear plasmas with T e >T i were obtained. Ar exhaust with EC heating was obtained in a high β p mode plasma. Impurity accumulation related to strong ITBs in a reversed shear plasma and degradation of ITB by ECH in a weak positive shear plasma have been found. Dedicated measurement of ELM dynamics and SOL plasma flow advanced the physics understanding. N-NB heating in an Ar-seed plasma extended the density region to 95% of Greenwald density with HH y2 =0.9. The enhancement of pedestal pressure was obtained with an increase of β p in a high triangularity configuration. (author)

  4. Highly active GaN-stabilized Ta{sub 3}N{sub 5} thin-film photoanode for solar water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Miao; Hisatomi, Takashi; Sasaki, Yutaka; Nakabayashi, Mamiko; Shibata, Naoya; Nishiyama, Hiroshi; Katayama, Masao; Yamada, Taro; Domen, Kazunari [School of Engineering, the University of Tokyo (Japan); Japan Technological Research Association of Artificial Photosynthetic Chemical Process, Tokyo (Japan); Suzuki, Sayaka; Teshima, Katsuya [Faculty of Engineering, Shinshu University, Nagano (Japan)

    2017-04-18

    Ta{sub 3}N{sub 5} is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering-nitridation process to fabricate high-performance Ta{sub 3}N{sub 5} film photoanodes owing to successful synthesis of the vital TaO{sub δ} precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta{sub 3}N{sub 5} by forming a crystalline nitride-on-nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm{sup -2} was obtained with a CoPi/GaN/Ta{sub 3}N{sub 5} photoanode at 1.2 V{sub RHE} under simulated sunlight, with O{sub 2} and H{sub 2} generated at a Faraday efficiency of unity over 12 h. Our vapor-phase deposition method can be used to fabricate high-performance (oxy)nitrides for practical photoelectrochemical applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Ternary Hollow Mesoporous TiN/N-Graphene/Pt Hybrid Results in Enhanced Electrocatalytic Performance for Methanol Oxidation and Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Liu, Baocang; Huo, Lili; Zhang, Geng; Zhang, Jun

    2016-01-01

    Highlights: • A novel hollow mesoporous ternary @M-TiN/N-G/Pt electrocatalysts were synthesized. • The @M-TiN/N-G/Pt electrocatalysts displayed outstanding activity and stability toward MOR and ORR. • The activity and stability of @M-TiN/N-G/Pt electrocatalysts were higher than Pt/TiN, @M-TiN/Pt, and Pt/C catalysts. • The excellent electrocatalytic performance rooted in its unique configuration. • Several reasons were proposed to explain the enhanced electrocatalytic performance of @M-TiN/N-G/Pt. - Abstract: A novel hollow mesoporous TiN/N-graphene (N-G) hybrid architecture (@M-TiN/N-G) composed of N-doped graphene wrapped mesoporous TiN nanoparticle shells was constructed for the first time. It can be used as an efficient support for creating a highly efficient ternary @M-TiN/N-G/Pt electrocatalyst with superior catalytic activity and stability for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) through decorating well-dispersed Pt nanoparticles on @M-TiN/N-G surface. By optimizing the content of N-G in catalysts, the @M-TiN/N-G/Pt catalysts display superior catalytic activity and stability toward MOR and ORR to traditional Pt/C and graphene-free Pt/TiN and @M-TiN/Pt catalysts. The various characterization results reveal that the outstanding electrocatalytic performance of @M-TiN/N-G/Pt catalyst roots in its large surface area, high porosity, strong interaction among Pt, TiN, and N-G, excellent electron transfer property facilitated by N-doped graphene, and small size of Pt and TiN nanocrystals. The synthetic approach may be available for constructing other graphene based hollow metal nitrides, carbides, and phosphides for various electrocatalytic applications.

  6. Investigation of new approaches for InGaN growth with high indium content for CPV application

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Muhammad; Salvestrini, Jean Paul, E-mail: salvestr@metz.supelec.fr [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Université de Lorraine & CentraleSupelec, LMOPS, EA4423, 57070 Metz (France); Sundaram, Suresh; Streque, Jérémy; Gmili, Youssef El [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Puybaret, Renaud; Voss, Paul L. [Georgia Institute of Technology, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Belahsene, Sofiane; Ramdane, Abderahim; Martinez, Anthony; Patriarche, Gilles [CNRS, UPR LPN, Route de Nozay, 91460 Marcoussis (France); Fix, Thomas; Slaoui, Abdelillah [CNRS, ICUBE - Université de Strasbourg (France); Ougazzaden, Abdallah [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Georgia Institute of Technology, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France)

    2015-09-28

    We propose to use two new approaches that may overcome the issues of phase separation and high dislocation density in InGaN-based PIN solar cells. The first approach consists in the growth of a thick multi-layered InGaN/GaN absorber. The periodical insertion of the thin GaN interlayers should absorb the In excess and relieve compressive strain. The InGaN layers need to be thin enough to remain fully strained and without phase separation. The second approach consists in the growth of InGaN nano-structures for the achievement of high In content thick InGaN layers. It allows the elimination of the preexisting dislocations in the underlying template. It also allows strain relaxation of InGaN layers without any dislocations, leading to higher In incorporation and reduced piezo-electric effect. The two approaches lead to structural, morphological, and luminescence properties that are significantly improved when compared to those of thick InGaN layers. Corresponding full PIN structures have been realized by growing a p-type GaN layer on the top the half PIN structures. External quantum efficiency, electro-luminescence, and photo-current characterizations have been carried out on the different structures and reveal an enhancement of the performances of the InGaN PIN PV cells when the thick InGaN layer is replaced by either InGaN/GaN multi-layered or InGaN nanorod layer.

  7. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    Science.gov (United States)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  8. Can pions created in high-energy heavy-ion collisions produce a Centauro-type effect?

    International Nuclear Information System (INIS)

    Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.

    1995-01-01

    We study a Centauro-type phenomenon in high-energy heavy-ion collisions by assuming that pions are produced semiclassically both directly and in pairs through the isovector channel. The leading-particle effect and the factorization property of the scattering amplitude in the impact-parameter space are used to define the classical pion field. We show that the Centauro-type effect is strongly suppressed if a large number of pions are produced in isovector pairs. Our conclusion is supported through the calculation of two pion correlation parameters, f 2 0- and f 2 00 , as well as f 2, n - 0 and the average number of neutral pions (left-angle n 0 right-angle n- ) a a function of negative pions (n - ) produced

  9. Parameters of compensating centers in n-type Si highly compensated by irradiation. Parametry kompensiruyushchikh tsentrov v n-Si sil'no kompensirovannym oblucheniem

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, P M; Fistul' , V I [Moskovskij Gosudarstvennyj Univ., Moscow (USSR)

    1990-06-01

    Resuls of investigations into effect of {gamma}- and neutron irradiation on defect formation in high-ohmic n-Si

    using technique of capacity temperature dependence (CTD) are given. Radiation dose varied from 4.8x10{sup 17} up to 1.7x10{sup 18} cm{sup -2}. CTD technique is shown to be successfully applied to investigate into defect formation at irradiation of highly compensated silicon. Rate of admission of Ec-0.40 eV deep acceptor levels in n-Si at pulsed electron irradiation does not depend on fine impurity cocentration. Positions of energy levels of deep acceptors introduced into n-Si do not coincide and constitute, respectively, E{sub c}-0.40 and E{sub c}-049 eV.

  10. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  11. Performance, carcass and ruminal fermentation characteristics of heifers fed concentrates differing in energy level and cereal type (corn vs. wheat)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C.; Carro, M.D.; Fuentetaja, A.; Medel, P.

    2017-07-01

    A total of 144 beef heifers (218 ± 26.4 kg body weight) were housed in 24 pens (6 animals each) and used in a 168-day feedlot study to evaluate the influence of cereal type and energy level on performance, carcass quality and ruminal fermentation. Four concentrates were formulated according to a 2×2 factorial arrangement of treatments, with two energy levels (1,452 vs. 1,700 kcal net energy/kg) and two main cereals (wheat vs. corn). Concentrate and straw were offered ad libitum. Concentrate intake and body weight were recorded on days 42, 84, 126 and 168. Ruminal fluid was obtained by ruminocentesis from 3 heifers per pen on days 1, 84 and 168; and carcass weight, classification and yield, were determined in the same animals. Heifers fed high-energy diets had lower intake (6.97 vs. 7.29 kg fresh matter/d; p=0.011), and lower concentrate to gain ratio (5.15 vs. 5.66 kg/kg; p=0.002) than those fed low energy concentrates, and tended (p=0.069) to be heavier along the time. Neither carcass yield and classification, nor ruminal pH, volatile fatty acids nor NH3-N concentrations were affected (p>0.050) by energy level. Total volatile fatty acids concentration tended (p=0.070) to be greater in heifers fed corn-based than wheat-based concentrates. No energy level x cereal type interactions were observed. These results indicate that high energy concentrates decreased feed intake and feed conversion but had minor effects on carcass performance. Cereal type had no effects on performance and ruminal fermentation and no interactions between cereal type and energy were detected.

  12. Performance, carcass and ruminal fermentation characteristics of heifers fed concentrates differing in energy level and cereal type (corn vs. wheat)

    International Nuclear Information System (INIS)

    Carrasco, C.; Carro, M.D.; Fuentetaja, A.; Medel, P.

    2017-01-01

    A total of 144 beef heifers (218 ± 26.4 kg body weight) were housed in 24 pens (6 animals each) and used in a 168-day feedlot study to evaluate the influence of cereal type and energy level on performance, carcass quality and ruminal fermentation. Four concentrates were formulated according to a 2×2 factorial arrangement of treatments, with two energy levels (1,452 vs. 1,700 kcal net energy/kg) and two main cereals (wheat vs. corn). Concentrate and straw were offered ad libitum. Concentrate intake and body weight were recorded on days 42, 84, 126 and 168. Ruminal fluid was obtained by ruminocentesis from 3 heifers per pen on days 1, 84 and 168; and carcass weight, classification and yield, were determined in the same animals. Heifers fed high-energy diets had lower intake (6.97 vs. 7.29 kg fresh matter/d; p=0.011), and lower concentrate to gain ratio (5.15 vs. 5.66 kg/kg; p=0.002) than those fed low energy concentrates, and tended (p=0.069) to be heavier along the time. Neither carcass yield and classification, nor ruminal pH, volatile fatty acids nor NH3-N concentrations were affected (p>0.050) by energy level. Total volatile fatty acids concentration tended (p=0.070) to be greater in heifers fed corn-based than wheat-based concentrates. No energy level x cereal type interactions were observed. These results indicate that high energy concentrates decreased feed intake and feed conversion but had minor effects on carcass performance. Cereal type had no effects on performance and ruminal fermentation and no interactions between cereal type and energy were detected.

  13. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  14. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges

    International Nuclear Information System (INIS)

    Moriyama, N; Ohno, Y; Kitamura, T; Kishimoto, S; Mizutani, T

    2010-01-01

    We study the phenomenon of change in carrier type in carbon nanotube field-effect transistors (CNFETs) caused by the atomic layer deposition (ALD) of a HfO 2 gate insulator. When a HfO 2 layer is deposited on a CNFET, the type of carrier changes from p-type to n-type. The so-obtained n-type device has good performance and stability in air. The conductivity of such a device with a channel length of 0.7 μm is 11% of the quantum conductance 4e 2 /h. The contact resistance for electron current is estimated to be 14 kΩ. The n-type conduction of this CNFET is maintained for more than 100 days. The change in carrier type is attributed to positive fixed charges introduced at the interface between the HfO 2 and SiO 2 layers. We also propose a novel technique to control the type of conduction by utilizing interface fixed charges; this technique is compatible with Si CMOS process technology.

  15. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  16. The spa typing of methicillin-resistant Staphylococcus aureus isolates by High Resolution Melting (HRM) analysis.

    Science.gov (United States)

    Fasihi, Yasser; Fooladi, Saba; Mohammadi, Mohammad Ali; Emaneini, Mohammad; Kalantar-Neyestanaki, Davood

    2017-09-06

    Molecular typing is an important tool for control and prevention of infection. A suitable molecular typing method for epidemiological investigation must be easy to perform, highly reproducible, inexpensive, rapid and easy to interpret. In this study, two molecular typing methods including the conventional PCR-sequencing method and high resolution melting (HRM) analysis were used for staphylococcal protein A (spa) typing of 30 Methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered from clinical samples. Based on PCR-sequencing method results, 16 different spa types were identified among the 30 MRSA isolates. Among the 16 different spa types, 14 spa types separated by HRM method. Two spa types including t4718 and t2894 were not separated from each other. According to our results, spa typing based on HRM analysis method is very rapid, easy to perform and cost-effective, but this method must be standardized for different regions, spa types, and real-time machinery.

  17. Study of various n-type organic semiconductors on ultraviolet detective and electroluminescent properties of optoelectronic integrated device

    Science.gov (United States)

    Deng, Chaoxu; Shao, Bingyao; Zhao, Dan; Zhou, Dianli; Yu, Junsheng

    2017-11-01

    Organic optoelectronic integrated device (OID) with both ultraviolet (UV) detective and electroluminescent (EL) properties was fabricated by using a thermally activated delayed fluorescence (TADF) semiconductor of (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as an emitter. The effect of five kinds of n-type organic semiconductors (OSCs) on the enhancement of UV detective and EL properties of OID was systematically studied. The result shows that two orders of magnitude in UV detectivity from 109 to 1011 Jones and 3.3 folds of luminance from 2499 to 8233 cd m-2 could be achieved. The result shows that not only the difference of lowest unoccupied molecular orbital (LUMO) between active layer and OSC but also the variety of electron mobility have a significant effect on the UV detective and EL performance through adjusting electron injection/transport. Additionally, the optimized OSC thickness is beneficial to confine the leaking of holes from the active layer to cathode, leading to the decrease of dark current for high detective performance. This work provides a useful method on broadening OSC material selection and device architecture construction for the realization of high performance OID.

  18. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Yulong Zhang

    2018-05-01

    Full Text Available High performance silicon combined structure (micropillar with Cu nanoparticles solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  19. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Science.gov (United States)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  20. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  1. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    International Nuclear Information System (INIS)

    Chen, W.; De Geronimo, G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-01-01

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  2. Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering

    Science.gov (United States)

    Kuo, Dong-Hau; Li, Cheng-Che; Tuan, Thi Tran Anh; Yen, Wei-Chun

    2015-01-01

    Mg-doped InGaN (Mg-InGaN) films have been deposited directly on Si (100) substrates by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. The cermet targets with a constant 5% indium content were made by hot pressing the mixture of metallic In, Ga, and Mg powders and ceramic GaN powder. The Mg-InGaN films had a wurtzite structure with a preferential () growth plane. The SEM images showed that Mg-InGaN films were smooth, continuous, free from cracks and holes, and composed of nanometer-sized grains. As the Mg dopant content in Mg-InGaN increased to 7.7 at.%, the film was directly transformed into p-type conduction without a post-annealing process. It had high hole concentration of 5.53 × 1018 cm-3 and electrical mobility of 15.7 ± 4.2 cm2 V-1 s-1. The over-doping of Mg in InGaN degraded the electrical properties. The bandgap of Mg-InGaN films decreased from 2.92 eV to 2.84 eV, as the Mg content increased from 7.7% to 18.2%. The constructed p-type Mg-InGaN/ n-type GaN diode was used to confirm the realization of the p-type InGaN by sputtering technique.

  3. High cycle fatigue of Type 422 stainless steel

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.; Sabatini, R.L.

    1978-01-01

    High cycle fatigue testing has been carried out on Type 422 stainless steel to determine the performance of cyclically stressed disks and blades in the main and auxiliary HTGR helium circulators. Tests were performed at 316, 482, and 538 0 C (600, 900, and 1000 0 F) in air for the fully reversible and mean load conditions. Goodman's analysis is shown to be valid in predicting failure at 316 0 C (600 0 F), marginally valid at 482 0 C (900 0 F), and probably invalid at 538 0 C (1000 0 F). Metallographic analyses were conducted to characterize the nature of failure for the temperatures and loading conditions investigated

  4. High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq).

    Science.gov (United States)

    Jiao, Yang; Li, Ran; Wu, Chao; Ding, Yibin; Liu, Yanning; Jia, Danmei; Wang, Lifeng; Xu, Xiang; Zhu, Jing; Zheng, Min; Jia, Junling

    2018-01-15

    Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine.

  5. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M.F.; Ethier, S.; Wichmann, N.

    2009-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  6. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M F; Ethier, S; Wichmann, N

    2007-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores

  7. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao; Ng, Tien Khee; Wei, Nini; Prabaswara, Aditya; Alias, Mohd Sharizal; Janjua, Bilal; Shen, Chao; Ooi, Boon S.

    2016-01-01

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  8. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao

    2016-01-08

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  9. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Science.gov (United States)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  10. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Directory of Open Access Journals (Sweden)

    Abdul Halim N. Syafira

    2017-01-01

    Full Text Available Light emitting diode (LED employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW light emitting diode (LED is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED. Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW is also increases from 2.8V to 3.1V.

  11. Spacetimes of Weyl and Ricci type N in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Kuchynka, M.; Pravdová, Alena

    2016-01-01

    Roč. 33, č. 11 (2016), s. 115006 ISSN 0264-9381 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : Weyl type N * Ricci type N * higher dimensions Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://iopscience.iop.org/article/10.1088/0264-9381/33/11/115006

  12. Towards the next generation 23% efficient n-type cells with low cost manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Yelundur, Vijay [Suniva Inc., Norcross, GA (United States)

    2017-04-19

    Suniva, Inc., in collaboration with the University Center for Excellence in Photovoltaics (UCEP) at the Georgia Institute of Technology (GIT) proposed this comprehensive three year program to enable the development of an advanced high performance product that will help the US regain its competitive edge in PV. This project was designed to overcome cost and efficiency barriers through advances in PV science, technology innovation, low-cost manufacturing and full production of ~22.5% efficient n-type Si cells in Norcross, GA. At the heart of the project is the desire to complement the technology being developed concurrently under the Solarmat and ARPAe initiatives to develop a differentiated product superior in both performance and cost effectiveness to the competing alternatives available on the market, and push towards achieving SunShot objectives while ensuring a sustainable business model based on US manufacturing. A significant reduction of the costs in modules produced today will need to combine reductions in wafer costs, cell processing costs as well as module fabrication costs while delivering a product that is not only more efficient under test conditions but also increases the energy yield in outdoor operations. This project will result in a differentiated high performance product and technology that is consistent with sustaining PV manufacturing in the US for a longer term and further highlights the need for continued support for developing the next generation concepts that can keep US manufacturing thriving to support the growing demand for PV in the US and consistent with the US government’s mandates for energy independence.

  13. Development and application of a window-type environmental cell in high voltage electron microscope

    International Nuclear Information System (INIS)

    Wakasugi, Takenobu; Isobe, Shigehito; Umeda, Ayaka; Wang, Yongming; Hashimoto, Naoyuki; Ohnuki, Somei

    2013-01-01

    Highlights: ► A window-type environmental cell for a high voltage electron microscope (HVEM) is developed. ► In situ HVEM image of Pd under an H2 gas pressure is obtained. ► The effect of the window materials on the resolution and contamination of the HVEM image is tested. -- Abstract: A close type of an environmental cell was developed for a high voltage electron microscope. Using this cell allowed an in situ observation of hydrogenation in Pd particles under H 2 gas of 0.05 MPa at RT. Two types of window films, Tri-Acetyl-Cellulose (TAC) and Silicon Nitride (SiN), were used for testing the contamination on the sample, as well as the strength for pressure. We confirmed the hydrogenation in diffraction patterns and images, and additionally the image resolution of 0.19 nm was obtained by using a SiN film with a thickness of 17 nm

  14. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Jing; Lin, Juqiang; Huang, Zufang; Sun, Liqing; Shao, Yonghong; Lu, Peng; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    The molecular characterization of ABO blood types, which is clinically significant in blood transfusion, has clinical and anthropological importance. Polymerase chain reaction sequence-based typing (PCR-SBT) is one of the most commonly used methods for the analysis of genetic bases of ABO blood types. However, such methods as PCR-SBT are time-consuming and are high in demand of equipments and manipulative skill. Here we showed that membrane electrophoresis based SERS method employed for studying the molecular bases of ABO blood types can provide rapidand easy-operation with high sensitivity and specificity. The plasma proteins were firstly purified by membrane electrophoresis and then mixed with silver nanoparticles to perform SERS detection. We use this method to classify different blood types, including blood type A (n=13), blood type B (n=9) and blood type O (n=10). Combination of principal component analysis (PCA) and liner discriminant analysis (LDA) was then performed on the SERS spectra of purified albumin, showing good classification results among different blood types. Our experimental outcomes represent a critical step towards the rapid, convenient and accurate identification of ABO blood types.

  15. Highly n -doped graphene generated through intercalated terbium atoms

    Science.gov (United States)

    Daukiya, L.; Nair, M. N.; Hajjar-Garreau, S.; Vonau, F.; Aubel, D.; Bubendorff, J. L.; Cranney, M.; Denys, E.; Florentin, A.; Reiter, G.; Simon, L.

    2018-01-01

    We obtained highly n -type doped graphene by intercalating terbium atoms between graphene and SiC(0001) through appropriate annealing in ultrahigh vacuum. After terbium intercalation angle-resolved-photoelectron spectroscopy (ARPES) showed a drastic change in the band structure around the K points of the Brillouin zone: the well-known conical dispersion band of a graphene monolayer was superposed by a second conical dispersion band of a graphene monolayer with an electron density reaching 1015cm-2 . In addition, we demonstrate that atom intercalation proceeds either below the buffer layer or between the buffer layer and the monolayer graphene. The intercalation of terbium below a pure buffer layer led to the formation of a highly n -doped graphene monolayer decoupled from the SiC substrate, as evidenced by ARPES and x-ray photoelectron spectroscopy measurements. The band structure of this highly n -doped monolayer graphene showed a kink (a deviation from the linear dispersion of the Dirac cone), which has been associated with an electron-phonon coupling constant one order of magnitude larger than those usually obtained for graphene with intercalated alkali metals.

  16. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  17. Comparative performance of five Mexican plancha-type cookstoves using water boiling tests

    Directory of Open Access Journals (Sweden)

    Paulo Medina

    Full Text Available While plancha-type cookstoves are very popular and widely disseminated in Latin America, few peer review articles exist documenting their detailed technical performance. In this paper we use the standard Water Boiling Tests (WBT to assess the energy and emission performance of five plancha-type cookstoves disseminated in about 450 thousand Mexican rural homes compared to the traditional 3-stone fire (TSF. In the high-power phase, average modified combustion efficiencies (MCE for plancha-type stoves were 97±1% which was higher than TSF 93±4%, and reductions in CO and PM2.5 total emissions were on average 44%. Time to boil and specific fuel consumption, however, were increased in plancha-type stoves compared to the open fire as a result of the reduced overall thermal efficiency of the plancha during WBT. In the simmering phase, plancha-type stoves showed much more consistent performance reductions compared to the TSF. MCE for plancha stoves were on average 98±1% and 95±3% for the TSF, while reductions in CO and PM2.5 total emissions were on average 55%. In this phase 27% average savings in fuel use are achieved by plancha-type stoves. Removal of the plancha rings resulted in savings of specific fuel consumption (SFC, thermal efficiency (TE, and time to boil; however, CO and PM2.5 emissions increased significantly as flue air is drawn through the comal surface rather than through the combustion zone, resulting in suboptimal combustion conditions.International Workshop Agreement (IWA energy performance Tiers for plancha-type stoves ranged from 0 to 1. However, these results contrast sharply with the well documented reductions in fuel consumption during daily cooking activities achieved by these stoves. IWA indoor emissions Tiers are 4 for both PM2.5 and CO using locally measured values for fugitive emissions. Optimization of combustion chamber design on these stoves in Mexico is desirable to further reduce indoor emissions and to reduce the

  18. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li; Branford-White, Christopher J.; Wang Zhengtao; Bligh, S.W. Annie

    2007-01-01

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL -1 and the limit of quantitation is 0.79 nmol mL -1 . The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported

  19. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); Branford-White, Christopher J. [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom); Wang Zhengtao [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210038 (China)], E-mail: wangzt@shutcm.edu.cn; Bligh, S.W. Annie [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom)], E-mail: a.bligh@londonmet.ac.uk

    2007-12-12

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL{sup -1} and the limit of quantitation is 0.79 nmol mL{sup -1}. The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported.

  20. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  3. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  4. Electrical transport in n-type ZnMgSSe grown by molecular beam epitaxy on GaAs

    International Nuclear Information System (INIS)

    Marshall, T.; Petruzzello, J.A.; Herko, S.P.

    1994-01-01

    Significant progress in improving the Performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn 1-y Mg y S x Se 1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer. 29 refs., 4 figs

  5. Effect of Family Type on Secondary School Students\\' Performance ...

    African Journals Online (AJOL)

    This study investigated the effect of family type on Secondary School students\\' performance in physics in Ilorin metropolis. The sample comprised one hundred Senior Secondary II students from four schools in Ilorin metropolis. The instrument for the study titled \\"Effect of Family type on Students\\' Performance in Physics ...

  6. Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors

    International Nuclear Information System (INIS)

    Akiyama, T; Briand, D; De Rooij, N F

    2012-01-01

    This paper presents the experimentally obtained gauge factor (GF) of 4H-SiC piezoresistors, fabricated out of the n-type epitaxial layer and characterized on millimeter-size SiC cantilever beams at room temperature. It was found that the GF is dependent on the piezoresistor's length and width. Piezoresistors narrower than approximately 30 µm showed a width-dependent GF. The highest GF of 20.8 was obtained with a single element piezoresistor in transverse orientation. In longitudinal orientation, the highest GF was −10, which was obtained with a clustered piezoresistor with plural identical elements. Essential factors to consider for the design of optimum 4H-SiC piezoresistors for a Wheatstone bridge configuration are presented. (paper)

  7. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    Science.gov (United States)

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  8. S/N dual-doped carbon nanosheets decorated with Co x O y nanoparticles as high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Wang, XiaoFei; Zhu, Yong; Zhu, Sheng; Fan, JinChen; Xu, QunJie; Min, YuLin

    2018-03-01

    In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g-1 after 400th cycles at 1000 mA g-1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.

  9. Lifetime degradation of n-type Czochralski silicon after hydrogenation

    Science.gov (United States)

    Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.

    2018-04-01

    Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.

  10. Oxide p-n Heterojunction of Cu2O/ZnO Nanowires and Their Photovoltaic Performance

    Directory of Open Access Journals (Sweden)

    Seung Ki Baek

    2013-01-01

    Full Text Available Oxide p-n heterojunction devices consisting of p-Cu2O/n-ZnO nanowires were fabricated on ITO/glass substrates and their photovoltaic performances were investigated. The vertically arrayed ZnO nanowires were grown by metal organic chemical vapor deposition, which was followed by the electrodeposition of the p-type Cu2O layer. Prior to the fabrication of solar cells, the effect of bath pH on properties of the absorber layers was studied to determine the optimal condition of the Cu2O electrodeposition process. With the constant pH 11 solution, the Cu2O layer preferred the (111 orientation, which gave low electrical resistivity and high optical absorption. The Cu2O (pH 11/ZnO nanowire-based solar cell exhibited a higher conversion efficiency of 0.27% than the planar structure solar cell (0.13%, because of the effective charge collection in the long wavelength region and because of the enhanced junction area.

  11. Electrospun N-Doped Porous Carbon Nanofibers Incorporated with NiO Nanoparticles as Free-Standing Film Electrodes for High-Performance Supercapacitors and CO2 Capture.

    Science.gov (United States)

    Li, Qi; Guo, Jiangna; Xu, Dan; Guo, Jianqiang; Ou, Xu; Hu, Yin; Qi, Haojun; Yan, Feng

    2018-04-01

    Carbon nanofibers (CNF) with a 1D porous structure offer promising support to encapsulate transition-metal oxides in energy storage/conversion relying on their high specific surface area and pore volume. Here, the preparation of NiO nanoparticle-dispersed electrospun N-doped porous CNF (NiO/PCNF) and as free-standing film electrode for high-performance electrochemical supercapacitors is reported. Polyacrylonitrile and nickel acetylacetone are selected as precursors of CNF and Ni sources, respectively. Dicyandiamide not only improves the specific surface area and pore volume, but also increases the N-doping level of PCNF. Benefiting from the synergistic effect between NiO nanoparticles (NPs) and PCNF, the prepared free-standing NiO/PCNF electrodes show a high specific capacitance of 850 F g -1 at a current density of 1 A g -1 in 6 m KOH aqueous solution, good rate capability, as well as excellent long-term cycling stability. Moreover, NiO NPs dispersed in PCNF and large specific surface area provide many electroactive sites, leading to high CO 2 uptake, and high-efficiency CO 2 electroreduction. The synthesis strategy in this study provides a new insight into the design and fabrication of promising multifunctional materials for high-performance supercapacitors and CO 2 electroreduction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  13. The chest features of patients with the novel influenza type A H1N1 on high resolution CT

    International Nuclear Information System (INIS)

    Shi Yuxin; Li Shujuan; Zhou Su; Shi Suodi; Zhang Zhiyong

    2010-01-01

    Objective: To explore the chest features of patients with the novel influenza type A H1N1 on HRCT. Methods: One hundred and seventy-two chest HRCT examinations on 163 cases with Influenza type A H1N1 (9 cases were reexamed) were retrospectively analyzed using standard pulmonary window and mediastinal window, respectively. HRCT imaging appearances were summarized. Results: Ninety-seven cases showed normal on chest HRCT, while the others showed abnormalities of parenchymal and interstitial. Among them, HRCT identified ground-glass opacity in 35 cases (53.0%), centrilobular nodules in 30 cases (45.5%), thickening of intralobular septa in 31 cases (47.0%), intralobular thin reticulation and micro-nodule in 8 cases (12.1%), single-lobular inflammation in 19 cases (28.8%), consolidation of lung (the large consolidation and multiple small consolidations) in 15 cases (22.7%), pulmonary atelectasis in 3 cases (4.5%), and irregular lines in 2 cases (3.0%). Pleurisy was also revealed including 8 cases with right pleurisy, 5 cases with left pleurisy, 5 cases with left pleurisy, and 19 cases with bilateral pleurisy. Mediastinal and axillary lymphadenopathy were found in 7 cases, who were spared of pleural effusion. All above abnormalities resolved quickly after anti-virus treatment. Conclusion: Parenchymal and interstitial abnormalities, mediastinum and axillary fossa lymphadenopathy, and pleural effusion were the common findings on HRCT in patients with Influenza type A H1N1, which were similar to those of other viral pneumonia. (authors)

  14. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  15. Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers

    DEFF Research Database (Denmark)

    Robach, P.; Schmitt, L.; Brugniaux, J.V.

    2006-01-01

    LHTL enhances aerobic performance in athletes, and if any positive effect may last for up to 2 weeks after LHTL intervention. Eighteen swimmers trained for 13 days at 1,200 m while sleeping/living at 1,200 m in ambient air (control, n=9) or in hypoxic rooms (LHTL, n=9, 5 days at simulated altitude of 2......The "living high-training low" model (LHTL), i.e., training in normoxia but sleeping/living in hypoxia, is designed to improve the athletes performance. However, LHTL efficacy still remains controversial and also little is known about the duration of its potential benefit. This study tested whether......,500 m followed by 8 days at simulated altitude of 3,000 m, 16 h day(-1)). Measures were done before 1-2 days (POST-1) and 2 weeks after intervention (POST-15). Aerobic performance was assessed from two swimming trials, exploring .VO(2max) and endurance performance (2,000-m time trial), respectively...

  16. Positron annihilation measurements in high-energy alpha-irradiated n-type gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sandip; Mandal, Arunava; SenGupta, Asmita [Visva-Bharati, Department of Physics, Santiniketan, West Bengal (India); Roychowdhury, Anirban [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal (India)

    2015-07-15

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τ{sub avg} = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ{sub 2} (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τ{sub avg} at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25-800 C resemble the behaviour of τ{sub avg} indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C. (orig.)

  17. Search for the optimally suited cantilever type for high-frequency MFM

    International Nuclear Information System (INIS)

    Koblischka, M R; Wei, J D; Kirsch, M; Lessel, M; Pfeifer, R; Brust, M; Hartmann, U; Richter, C; Sulzbach, T

    2007-01-01

    To optimize the performance of the high-frequency MFM (HF-MFM) technique [1-4], we performed a search for the best suited cantilever type and magnetic material coating. Using a HF-MFM setup with hard disk writer poles as test samples, we carried out HF-MFM imaging at frequencies up to 2 GHz. For HF-MFM, it is an essential ingredient that the tip material can follow the fast switching of the high-frequency fields. In this contribution, we investigated 6 different types of cantilevers (i) the 'standard' MFM tip (Nanoworld Pointprobe) with 30 nm CoCr coating, (ii) a 'SSS' (Nanoworld SuperSharpSilicon TM ) cantilever with a 10 nm CoCr coating, (iii) a (Ni, Zn)-ferrite coated pointprobe tip (iv) a Ba 3 Co 2 Fe 23 O 41 (BCFO) coated pointprobe tip, (v) a low-coercivity NiCo alloy coated tip, and (vi) a permalloy-coated tip

  18. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  19. Offline analysis of context contribution to ERP-based typing BCI performance

    Science.gov (United States)

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Oken, Barry; Fried-Oken, Melanie

    2013-12-01

    Objective. We aim to increase the symbol rate of electroencephalography (EEG) based brain-computer interface (BCI) typing systems by utilizing context information. Approach. Event related potentials (ERP) corresponding to a stimulus in EEG can be used to detect the intended target of a person for BCI. This paradigm is widely utilized to build letter-by-letter BCI typing systems. Nevertheless currently available BCI typing systems still require improvement due to low typing speeds. This is mainly due to the reliance on multiple repetitions before making a decision to achieve higher typing accuracy. Another possible approach to increase the speed of typing while not significantly reducing the accuracy of typing is to use additional context information. In this paper, we study the effect of using a language model (LM) as additional evidence for intent detection. Bayesian fusion of an n-gram symbol model with EEG features is proposed, and a specifically regularized discriminant analysis ERP discriminant is used to obtain EEG-based features. The target detection accuracies are rigorously evaluated for varying LM orders, as well as the number of ERP-inducing repetitions. Main results. The results demonstrate that the LMs contribute significantly to letter classification accuracy. For instance, we find that a single-trial ERP detection supported by a 4-gram LM may achieve the same performance as using 3-trial ERP classification for the non-initial letters of words. Significance. Overall, the fusion of evidence from EEG and LMs yields a significant opportunity to increase the symbol rate of a BCI typing system.

  20. A note on glN type-I integrable defects

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2014-01-01

    Type-I quantum defects are considered in the context of the gl N spin chain. The type-I defects are associated with the generalized harmonic oscillator algebra, and the chosen defect matrix is that of the vector nonlinear Schrödinger (NLS) model. The transmission matrices relevant to this particular type of defects are computed via the Bethe ansatz methodology. (paper)

  1. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets

    International Nuclear Information System (INIS)

    Li, Pengfei; Shivananju, B N; Li, Shaojuan; Bao, Qiaoliang; Zhang, Yupeng

    2017-01-01

    In this work, a high performance vertical-type photodetector based on two-dimensional (2D) CH 3 NH 3 PbI 3 perovskite nanosheets was fabricated. The low trap density of the perovskite nanosheets and their short carrier diffusion distance result in a significant performance enhancement of the perovskite-based photodetector. The photoresponsivity of this vertical-type photodetector is as high as 36 mA W −1 at visible wavelength, which is much better than traditional perovskite photodetectors (0.34 mA W −1 ). Compared with traditional planar-type perovskite-based photodetectors, this vertical-type photodetector also shows the advantages of low-voltage operation and large responsivity. These results may pave the way for exploiting high performance perovskite-based photodetectors with an ingenious device design. (paper)

  2. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.

    Science.gov (United States)

    Cai, Jie; Niu, Haitao; Li, Zhenyu; Du, Yong; Cizek, Pavel; Xie, Zongli; Xiong, Hanguo; Lin, Tong

    2015-07-15

    Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

  3. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  4. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide

    International Nuclear Information System (INIS)

    Okano, M; Iwamoto, T; Furuse, M; Fuchino, S; Ishii, I

    2006-01-01

    A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track

  5. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide

    Science.gov (United States)

    Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.

    2006-06-01

    A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.

  6. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  7. Body Image of Highly Trained Female Athletes Engaged in Different Types of Sport

    Science.gov (United States)

    Glapa, Agata; Banio, Adrianna; Firek, Wiesław; Ingarden, Anna; Malchrowicz-Mośko, Ewa; Markiewicz, Paweł; Płoszaj, Katarzyna; Ingarden, Mateusz; Maćkowiak, Zuzanna

    2018-01-01

    Background The aim of the study was to evaluate differences in body image across different types of sports in highly trained female athletes. Methods 242 female individuals, aged 13–30 years (M = 20.0, SD = 4.5), representing aesthetic sports (n = 56) and nonaesthetic sports (n = 186), were recruited from different sports clubs in Poland. Body image, BMI, age, the level of competition attained, and the training background of participants were recorded. Results One-way ANOVA showed differences in the body image of athletes engaged in different types of sport (F(11,230) = 4.10, p sport explained 7.1% (β = –0.263, p sporting activities at an early stage. PMID:29662894

  8. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    Science.gov (United States)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  9. Performance of the INTPIX6 SOI pixel detector

    International Nuclear Information System (INIS)

    Arai, Y.; Miyoshi, T.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Turala, M.; Kucewicz, W.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ  m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241 Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e − . The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e − . The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  10. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  11. Bixbyite-type phases in the system Ta-Zr-O-N

    Energy Technology Data Exchange (ETDEWEB)

    Luedtke, Tobias; Orthmann, Steven; Lerch, Martin [Technische Univ. Berlin (Germany). Inst. fuer Chemie

    2017-06-01

    Phase-pure tantalum/zirconium oxide nitrides and nitrides were synthesized by the ammonolysis of amorphous oxide precursors. The nitrogen-rich oxide nitrides with variable anion composition and the nitride TaZrN3 crystallize in the cubic bixbyite-type structure (space group Ia3). The nitrogen content of these compounds has a significant influence on the cell parameters, the atomic positions, and the optical band gap. The results extend the already well-studied Ta-Zr-O-N system by new oxide nitrides in addition to the already known baddeleyite- and anosovite-type phases. TaZrN{sub 3} can be considered as a thermodynamically stable ternary variant of metastable Ta{sub 2}N{sub 3}.

  12. Influence of a BGaN back-barrier on DC and dynamic performances of an AlGaN/GaN HEMT: simulation study

    Science.gov (United States)

    Guenineche, Lotfi; Hamdoune, Abdelkader

    2016-05-01

    In this paper, we study the effect of a BGaN back-barrier on the DC and RF performances of an AlGaN/GaN high electron mobility transistor. Using TCAD Silvaco, we examine some variations of thickness and boron concentration in the BGaN back-barrier layer. First, we fix the thickness of the back-barrier layer at 5 nm and we vary the concentration of the boron in BGaN from 1% to 4%. Second, we fix the concentration of the boron in BGaN to only 2% and we vary the thickness of the back-barrier layer from 20 nm to 110 nm. The BGaN back-barrier layer creates an electrostatic barrier under the channel layer and improves the performances of the device by improving the electron confinement in the two-dimensional electron gas. The DC and AC characteristics are improved, respectively, by a greater concentration of boron and by a thicker BGaN layer. For 4% boron concentration and 5 nm thick back-barrier layer, we obtain a maximum drain current of 1.1 A, a maximum transconductance of 480 mS mm-1, a cut-off frequency of 119 GHz, and a maximum oscillation frequency of 311 GHz.

  13. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  14. The Effects of Assertive Training on Performance in Highly Anxious Adolescents.

    Science.gov (United States)

    Wehr, Sara H.; Kaufman, Melvin E.

    1987-01-01

    Investigated the effects of assertive training on measures of assertiveness, state anxiety, and mathematics performance in highly anxious ninth graders (N=96). Found that assertive training resulted in increased assertiveness and decreased state anxiety, with no significant effect on mathematics performance, and no significant effect due to sex.…

  15. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  16. Ultra-high performance size-exclusion chromatography in polar solvents.

    Science.gov (United States)

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage.

    Science.gov (United States)

    Zhou, Wei; Wang, Jinxian; Zhang, Feifei; Liu, Shumin; Wang, Jianwei; Yin, Dongming; Wang, Limin

    2015-02-28

    A SnO2-N-doped graphene (SnO2-NG) composite is synthesized by a rapid, facile, one-step microwave-assisted solvothermal method. The composite exhibits excellent lithium storage capability and high durability, and is a promising anode material for lithium ion batteries.

  18. High-performance analysis of filtered semantic graphs

    OpenAIRE

    Buluç, A; Fox, A; Gilbert, JR; Kamil, S; Lugowski, A; Oliker, L; Williams, S

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry \\attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices ...

  19. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  20. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Tran Thien [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Pozina, Galia; Son, Nguyen Tien; Kordina, Olof; Janzén, Erik; Hemmingsson, Carl [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of two electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.

  1. The Effect of Carpal Tunnel Release on Typing Performance.

    Science.gov (United States)

    Zumsteg, Justin W; Crump, Matthew J C; Logan, Gordon D; Weikert, Douglas R; Lee, Donald H

    2017-01-01

    To describe the effect of carpal tunnel release (CTR) on typing performance. We prospectively studied 27 patients undergoing open CTR. Patient demographics and clinical characteristics including nerve conduction studies, electromyography results, and duration of symptoms were collected. Before surgery and at 8 time points after surgery, ranging from 1 to 12 weeks, typing performance for an approximately 500-character paragraph was assessed via an on-line platform. The Michigan Hand Questionnaire (MHQ) and the Boston Carpal Tunnel Questionnaire functional component (BCTQ-F) and symptom severity component (BCTQ-S) component were completed before surgery and at 1, 3, 6, and 12 weeks after surgery. We used repeated-measures analyses of variance and follow-up dependent-samples t tests to analyze change in typing performance across sessions, and linear regressions to assess relationships between typing performance and demographic and outcome measures. We compared typing speed with the MHQ, BCTQ-F, and BCTQ-S using the Pearson correlation test. Average typing speed decreased significantly from 49.7 ± 2.7 words per minute (wpm) before surgery to 45.2 ± 3.1 wpm at 8 to 10 days after surgery. Mean typing speed for the group exceeded the preoperative value between weeks 2 and 3, with continued improvement to 53.5 ± 3.5 wpm at 12 weeks after surgery. No clinical or demographic variables were associated with the rate of recovery or the magnitude of improvement after CTR. The MHQ, BCTQ-F, and BCTQ-S each demonstrated significant improvement from preoperative values over the 12-week period. The MHQ and BCTQ-F scores correlated well with typing speed. On average, typing speed returned to preoperative levels between 2 and 3 weeks after CTR and typing speed showed improvement beyond preoperative levels after surgery. The MHQ and BCTQ-F correlate well with typing speed after CTR. Prognostic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc

  2. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electronic structure and optical properties of N vacancy and O filling on n-GaN (0001) surface

    Science.gov (United States)

    Lu, Feifei; Liu, Lei; Xia, Sihao; Diao, Yu; Feng, Shu

    2018-06-01

    In the X-ray photoelectron spectroscopy experiment, we observed that the valence band spectrum of the n-GaN (0001) surface appeared a bump near 1.9 eV after Ar etching and the N/Ga ratio became smaller, while the bump disappeared upon exposure to air. In order to analyze this phenomenon theoretically, we mainly study the electronic structure and optical properties of n-GaN (0001) surface with N vacancy and filled with O atom based on the first principles of density functional theory. The results suggest that the n-GaN (0001) surface exhibits semi-metallic property. The introduction of N vacancy reduces the n-type conductivity, whereas the filling of O atom enhances conductivity. The density of state near -1.9eV shows a good agreement between the clean n-type surface and the O-atom-filled surface, while the N vacancy surface has a higher density of states, which is similar to the experimentally observed phenomenon. It is also found that the existence of N vacancy reduces the photoemission properties of the n-GaN (0001) surface and the filling of O atom alleviates the defect caused by vacancy. This study shows that N vacancy increases the doping difficulty of n-type GaN films, however, the filling of O atom may compensate for the diminished photoelectric properties induced by N vacancy and be conducive to prepare high-performance optoelectronic devices with the contact of n-GaN and metal.

  4. N,O-Type Carborane-Based Materials

    Directory of Open Access Journals (Sweden)

    José Giner Planas

    2016-05-01

    Full Text Available This review summarizes the synthesis and coordination chemistry of a series of carboranyl ligands containing N,O donors. Such carborane-based ligands are scarcely reported in the literature when compared to other heteroatom-containing donors. The synthetic routes for metal complexes of these N,O-type carborane ligands are summarized and the properties of such complexes are described in detail. Particular attention is paid to the effect that the incorporation of carboranes has into the coordination chemistry of the otherwise carbon-based ligands and the properties of such materials. The reported complexes show a variety of properties such as those used in magnetic, chiroptical, nonlinear optical, catalytic and biomedical applications.

  5. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p-n diodes and InGaN LEDs

    Science.gov (United States)

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-12-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal-organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p-n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm-3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10-3-3.4 × 10-3 Ω·cm2, and the turn-on voltages of the diodes.

  6. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.

    2017-11-27

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  7. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-01-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  8. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    Science.gov (United States)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  9. Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jiayu; Peng, Changqing; Zhang, Lili; Fu, Yongsheng; Li, Hang; Zhao, Xianmin; Zhu, Junwu; Wang, Xin

    2017-01-01

    Highlights: •N-doped carbon@MoSe 2 core/branch was prepared via a facile calcining method. •N-doped carbon core and MoSe 2 branch can be simultaneously constructed. •PANI played vital roles in the reduction of MoO 3 and elemental Se. •The core/branch structure remarkably improved the lithium storage performance. -- Abstract: Here, we report a one-step simultaneous-construction approach to synthesize N-doped carbon@MoSe 2 core/branch nanostructures by heating a mixture of MoO 3 /PANI hybrids and Se powders in argon atmosphere, without requiring a cumbersome multi-step process or highly toxic reducing agents. It is found that in the construction process, PANI played a crucial role in the reduction of MoO 3 and Se to form MoSe 2 nanosheet branches, while PANI itself was decomposed and carbonized into N-doped carbon nanorod cores. Interestingly, the coexistence of 1D and 2D nanostructures in the N-doped carbon@MoSe 2 core/branch system leads to excellent lithium storage performance, including a large discharging capacity of 1275 mA h g −1 , a high reversible lithium extraction capacity of 928 mA h g −1 and a coulombic efficiency of 72.8%. After 100 cycles, the NDC@MS electrode still delivers a reversible capacity of 906 mA h g −1 with a capacity retention ratio of 97.6%. The superior electrochemical properties can be attributed to the unique core/branch nanostructure of NDC@MS and the synergistic effect between the N-doped carbon nanorod cores and MoSe 2 nanosheet branches.

  10. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1996-01-01

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour

  11. Student Engagement in High-Performing Schools: Relationships to Mental and Physical Health

    Science.gov (United States)

    Conner, Jerusha O.; Pope, Denise

    2014-01-01

    This chapter examines how the three most common types of engagement found among adolescents attending high-performing high schools relate to indicators of mental and physical health. [This article originally appeared as NSSE Yearbook Vol. 113, No. 1.

  12. Origin of n-type conductivity in two-dimensional InSe: In atoms from surface adsorption and van der Waals gap

    Science.gov (United States)

    Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun

    2018-04-01

    Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.

  13. GaN transistors on Si for switching and high-frequency applications

    Science.gov (United States)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  14. Interface States in AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors

    International Nuclear Information System (INIS)

    Feng Qian; Du Kai; Li Yu-Kun; Shi Peng; Feng Qing

    2013-01-01

    Frequency-dependent capacitance and conductance measurements are performed on AlGaN/GaN high electron mobility transistors (HEMTs) and NbAlO/AlGaN/GaN metal-insulator-semiconductor HEMTs (MISHEMTs) to extract density and time constants of the trap states at NbAlO/AlGaN interface and gate/AlGaN interface with the gate-voltage biased into the accumulation region and that at the AlGaN/GaN interface with the gate-voltage biased into the depletion region in different circuit models. The measurement results indicate that the trap density at NbAlO/AlGaN interface is about one order lower than that at gate/AlGaN interface while the trap density at AlGaN/GaN interface is in the same order, so the NbAlO film can passivate the AlGaN surface effectively, which is consistent with the current collapse results

  15. Ge{sub 1−x}Si{sub x} on Ge-based n-type metal–oxide semiconductor field-effect transistors by device simulation combined with high-order stress–piezoresistive relationships

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Chun, E-mail: changchunlee@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University 200, Chung Pei Rd., Chungli City, Taoyuan County 32023, Taiwan, ROC (China); Hsieh, Chia-Ping [Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC (China); Huang, Pei-Chen; Cheng, Sen-Wen [Department of Mechanical Engineering, Chung Yuan Christian University 200, Chung Pei Rd., Chungli City, Taoyuan County 32023, Taiwan, ROC (China); Liao, Ming-Han [Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC (China)

    2016-03-01

    The considerably high carrier mobility of Ge makes Ge-based channels a promising candidate for enhancing the performance of next-generation devices. The n-type metal–oxide semiconductor field-effect transistor (nMOSFET) is fabricated by introducing the epitaxial growth of high-quality Ge-rich Ge{sub 1−x}Si{sub x} alloys in source/drain (S/D) regions. However, the short channel effect is rarely considered in the performance analysis of Ge-based devices. In this study, the gate-width dependence of a 20 nm Ge-based nMOSFET on electron mobility is investigated. This investigation uses simulated fabrication procedures combined with the relationship of the interaction between stress components and piezoresistive coefficients at high-order terms. Ge{sub 1−x}Si{sub x} alloys, namely, Ge{sub 0.96}Si{sub 0.04}, Ge{sub 0.93}Si{sub 0.07}, and Ge{sub 0.86}Si{sub 0.14}, are individually tested and embedded into the S/D region of the proposed device layout and are used in the model of stress estimation. Moreover, a 1.0 GPa tensile contact etching stop layer (CESL) is induced to explore the effect of bi-axial stress on device geometry and subsequent mobility variation. Gate widths ranging from 30 nm to 4 μm are examined. Results show a significant change in stress when the width is < 300 nm. This phenomenon becomes notable when the Si in the Ge{sub 1−x}Si{sub x} alloy is increased. The stress contours of the Ge channel confirm the high stress components induced by the Ge{sub 0.86}Si{sub 0.14} stressor within the device channel. Furthermore, the stresses (S{sub yy}) of the channel in the transverse direction become tensile when CESL is introduced. Furthermore, when pure S/D Ge{sub 1−x}Si{sub x} alloys are used, a maximum mobility gain of 28.6% occurs with an ~ 70 nm gate width. A 58.4% increase in mobility gain is obtained when a 1.0 GPa CESL is loaded. However, results indicate that gate width is extended to 200 nm at this point. - Highlights: • A 20 nm Ge-based n

  16. High dose effect of gamma and neutrons on the N-JFET electronic components

    International Nuclear Information System (INIS)

    Assaf, Jamal-Eddin

    2006-11-01

    Two types of N-JFET components have been irradiated by high doses of thermal neutrons and gamma rays up to 2000x10 12 n/cm 2 and 1000 kGy, respectively. The static tests show a decrease of the g m and I d s parameters. The behaviour of electronic noise on the output was the principal dynamic test after irradiation. The result of this test gives an increase of the noise with radiation dose increasing. The noise was described as the Equivalent Noise of Charge (ENC) at the output of the measurements set-up. The quantities and the qualities of the noise depend on the N-JEET type and the type of radiation (neutrons or gamma). Other tests were carried out like the relaxation or recovery phenomena after radiation, and the superposed effects of gamma and neutrons.(author)

  17. A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type 1.

    Science.gov (United States)

    Breivik, Lars; Oftedal, Bergithe E V; Bøe Wolff, Anette S; Bratland, Eirik; Orlova, Elizaveta M; Husebye, Eystein S

    2014-07-01

    An important characteristic of autoimmune polyendocrine syndrome type 1 (APS 1) is the existence of neutralizing autoantibodies (nAbs) against the type I interferons (IFN) -α2 and -ω at frequencies close to 100%. Type 1 IFN autoantibodies are detected by antiviral neutralizing assays (AVA), binding assays with radiolabelled antigens (RLBA), enzyme-linked immunosorbent assay (ELISA), or by reporter-based cell assays. We here present a simple and reliable version of the latter utilizing a commercially available cell line (HEK-Blue IFN-α/β). All 67 APS 1 patients were positive for IFN-ω nAbs, while 90% were positive for IFN-α2 nAbs, a 100% and 96% correlation with RLBA, respectively. All blood donors and non-APS 1 patients were negative. The dilution titer required to reduce the effect of IFN-ω nAbs correlated with the RLBA index. This cell-based autoantibody assay (CBAA) is easy to perform, suitable for high throughput, while providing high specificity and sensitivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Memory performance on the Auditory Inference Span Test is independent of background noise type for young adults with normal hearing at high speech intelligibility.

    Science.gov (United States)

    Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan

    2014-01-01

    Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise.

  19. Memory performance on the Auditory Inference Span Test is independent of background noise type for young adults with normal hearing at high speech intelligibility

    Directory of Open Access Journals (Sweden)

    Niklas eRönnberg

    2014-12-01

    Full Text Available Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR on listening effort, as a function of working memory capacity (WMC and updating ability (UA. The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing MLL. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech-fragments and vocal sounds in the background noise.

  20. A parametric study on characteristics for nuclear design of high-performance research reactor

    International Nuclear Information System (INIS)

    Joe, D. G.; Lee, C. S.; Lee, B. C.; Seo, C. G.; Chae, H. T.; Park, C.

    2003-01-01

    A conceptual design of advanced research reactor with high neutron performance has been performed at KAERI based on design and operation experience obtained from HANARO. In this study, nuclear characteristics of design parameters such as various types of fuel assemblies, structural materials of core and fuel assembly, and the number of absorber rods were analyzed. Among rod, plate and tube type fuel assemblies considered, tube type assembly seems to be preferable as a high performance research reactor fuel because of high thermal margin and neutron flux in reflector. Aluminium block as a structural material of core was shown to be superior to flow tube due to higher reactivity and thermal flux in reflector. The stiffener to fix plates in th fuel assembly had the no impact on fast flux in central trap. The reduction of thermal flux in reflector caused by the stiffener was about 7%. If the control absorber rods of 4 mm thickness were chosen, it would be possible to operate the reactor with fresh fuel assemblies from the initial core