WorldWideScience

Sample records for high performance glazings

  1. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  2. Establishing the value of advanced glazings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E; Selkowitz, S.

    1999-01-01

    Numerous glazing technologies are under development worldwide to improve the performance of building facades. High-performance glazings can provide substantial energy and related environmental benefits, but often at greatly increased first cost when compared to conventional design solutions. To increase market viability, we discuss strategies to reduce the actual and owner-perceived costs associated with developing and producing advanced window systems, specifically switchable electrochromic glazings, and we also suggest marketing strategies designed to appeal to early adopter and mainstream purchasers. These strategies may be applicable to a broad range of advanced glazing materials.

  3. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  4. Mathematical modeling of optical glazing performance

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.

    1994-01-01

    Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like

  5. Highly insulating glazing in new multi-storey buildings; Hoejisolerende glaspartier i nye etageboliger

    Energy Technology Data Exchange (ETDEWEB)

    Engelund Thomsen, K.; Schmidt, H.; Aggerholm, S.

    2001-07-01

    The purpose of this report is to illustrate how highly insulating types of glazing can be used in multi-storey buildings for housing in new ways. These are energy efficient and provide good indoor climate and also satisfy requirements to high architectural quality. The project has resulted in a number of design proposal demonstrating how new types of glazing can be fitted into multi-storey buildings and how new facade expressions, space and lighting effects can be obtained by using highly insulating glass areas. The project is collaboration between the architects Boje Lundgaard and Lene Tranberg's Tegnestue, KAB Bygge og Boligadministration and Danish Building and Urban Research. Calculations of heat demand suggest that it is possible to meet the targets outlined in the Danish Government's action plan for energy. Energy 21 by using new types of highly insulating glazing in new buildings. Another 33% reduction of the heating demand is targeted in relation to existing requirements in the Danish Building Regulations 1995 (BR 95) and the Danish Building Regulations for Small Dwellings 1998 (BR-S 98). The project builds on experience gained from 'High-insulated Glass House' (Wittchen and Aggerholm, 1999) built on the housing estage Egebjerggaard in Ballerup, a suburb of Copenhagen. Examples of existing multi-storey buildings with glass facades show extensive use of glazing as early as 1830 in Spain. Walls preceding the curtain wall were built from wood and glass and rested on stone corbels at about 1 m from the load-bearing facade. The first multi-storey buildings with facades entirely made from glass date from the 1920s. The architect Le Corbusier was the first to create a building system that facilitated the construction of non-loadbearing facades. Various conditions must be especially considered at the design of facades with highly insulating glass areas, i.a. type of glass and glazing, solar shadings, frame constructions and airtightness

  6. Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

    International Nuclear Information System (INIS)

    Favoino, Fabio; Fiorito, Francesco; Cannavale, Alessandro; Ranzi, Gianluca; Overend, Mauro

    2016-01-01

    Highlights: • The features and properties of photovoltachromic switchable glazing are presented. • The different possible control strategies for the switchable glazing are presented. • Thermal and daylight performance are co-simulated for rule-based and optimal control. • A novel building performance simulation framework is developed for this aim. • Switchable glazing performance is compared for different controls and climates. - Abstract: The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains. This paper addresses these challenges by presenting a novel simulation framework for the performance evaluation of responsive building envelope technologies and, particularly, of switchable glazing. This is achieved by integrating a building energy simulation tool and a lighting simulation one, in a control optimisation framework to simulate advanced control of adaptive building envelopes. The performance of a photovoltachromic glazing is evaluated according to building energy use, Useful Daylight Illuminance, glare risk and load profile matching indicators for a sun oriented office building in different temperate climates. The original architecture of photovoltachromic cell provides an automatic control of its transparency as a function of incoming solar irradiance. However, to fully explore the building integration potential of photovoltachromic technology, different control strategies are evaluated, from passive and simple rule based controls, to

  7. Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Chang Heon Cheong

    2014-10-01

    Full Text Available Cooling load in highly glazed residential building can be excessively large due to uncontrolled solar energy entering the indoor space. This study focuses on the cooling load reduction and changes in the daylighting properties via the application of a double window system (DWS with shading with various surface reflectivities in highly glazed residential buildings. Evaluation of thermal and daylighting performances is carried out using simulation tools. The reductions in cooling load and energy cost through the use of DWS are evaluated through a comparative simulation considering conventional windows: a single window and a double window. Three variables of window types, natural ventilation, and shading reflectivity are reflected in the study. According to our results, implementation of DWS reduced cooling load by 43%–61%. Electricity cost during the cooling period was reduced by a maximum of 24%. However, a shading device setting that prioritizes effective cooling load reduction can greatly decrease the daylighting factor and luminance level of indoor space. A DWS implementing shading device with highly reflective at all surfaces is appropriate option for the more comfortable thermal and visual environment, while a shading device with low reflectivity at rear of the surface can contribute an additional 4% cooling load reduction.

  8. Ancient Wall Tiles – The Importance of the Glaze/Ceramic Interface in Glaze Detachment

    Directory of Open Access Journals (Sweden)

    Marisa COSTA

    2014-04-01

    Full Text Available One of the most severe pathologies suffered by early industrially produced tiles in Portugal in late nineteenth century is glaze detachment in wall tiles placed in the lower part of the façade. It is known that salts crystallize provoking the glaze detachment, destroying the waterproofing and the beauty of the wall tile and this is one of the crucial factors towards this occurrence. The present work questions the importance of the thickness of glaze/ceramic body interface, in what concerns glaze detachment provoked by salt crystallization. SEM-EDS was used to perform all the observations that lead to the conclusion that the exuberance of the interface between glaze and ceramic body has no influence in the resistance of the glaze to salt crystallization though time, being the porous network more determinant. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3815

  9. Energy efficient glazed office buildings with double skin facades in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Bo; Blomsterberg, Aake (WSP Environmental (Sweden)). e-mail: bo.eriksson@wspgroup.se

    2009-07-01

    Many modern office buildings have highly glazed facades. Their energy efficiency and indoor climate are, however, being questioned. Therefore more and more of these buildings are being built with double skin facades, which can provide improvements: A project BESTFACADE, with participants from Austria, Germany, Greece, Portugal (France) and Sweden, was therefore funded by the European Commission (IEE) to actively promote well-performing concepts of double skin facades. Included were best practice guidelines, which included the determination of the energy use and thermal comfort by simulations for warm, mild and cold climates. The main conclusion is that the choice of glazing properties such as glazing area, U-value (thermal transmittance) of the glazing and its profiles, g-value (the total solar energy transmittance) of the glazing and type of solar shading are crucial for the energy and indoor climate performance of an office. The choice of control strategies for ventilation of the cavity and operation of solar shading are crucial. The above choices are very dependant on the climate. Choices which are optimal in a cold climate, will not work very well in a warm climate, and vice versa. From an energy and indoor climate point of view a highly glazed office with a double skin facade is often preferred to a single

  10. Solar Glazing Tips for School Construction

    Science.gov (United States)

    Smith, Jonathan

    2012-01-01

    Glazing can be optimized to enhance passive solar heating and daylight harvesting by exceeding the prescriptive limits of the energy code. This savings can be garnered without the high cost of external overhangs or expensive glazing products. The majority of savings from solar glazing are attributable to the increase in solar heating and…

  11. Evacuated aerogel glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev

    2008-01-01

    This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space ......) combined with a solar energy transmittance above 0.75.......This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space...... between the glass panes is filled with monolithic silica aerogel evacuated to a rough vacuum of approximately 1-10 hPa. The aerogel glazing does not depend on use of low emissive coatings that have the drawback of absorbing a relatively large part of the solar radiation that otherwise could reduce...

  12. Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2015-01-01

    Highlights: • We simulated a number of glazing and interior roller shade alternatives. • Office room has been simulated for three window-to-wall ratios in a cold climate. • Daylighting and energy performances have been assessed for each alternative. • Maximum energy savings have been estimated in the office with a 30% glazed area. • Energy saving decreases for larger glazed area and fabric transmittance. - Abstract: The energy and visual performances of the façades are defined by many parameters including façade size, properties of glazings and shadings, and their arrangements as well as control strategies. In this study, a number of combinations of internal woven roller shades and four double glazings have been proposed and assessed in integrated manner in order to improve the energy efficiency and visual comfort in new or existing office buildings. Office rooms facing south, east, north and west have been simulated for cold climate, by varying glazed areas and proposed glazing and shading alternatives. Results have been calculated, compared and analyzed in terms of the energy consumptions, energy saving potentials, daylight autonomy, useful daylight illuminance and discomfort glare free time, for each of the combinations. Simulation results show that the choice of glazing and shading alternatives can have substantial impact on energy and visual performances of the office space. Regardless of façade orientation, the maximum energy saving is achieved for a window-to-wall ratio (WWR) of 30%. Saving potential decreases significantly for larger glazed area and for each façade orientation. For all façade orientations and glazed areas (except for 30% WWR in the north wall), a bare low-e coated double glazing (U = 1.616 W/m"2 K, SHGC = 0.209, τ_v = 0.301) is found to be the most energy efficient choice. For 30% north glazing, the energy efficiency can be maximized with a different bare low-e coated double glazing (U = 1.628 W/m"2 K, SHGC = 0.370, τ_v = 0

  13. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  14. Data in support of energy performance of double-glazed windows.

    Science.gov (United States)

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  15. Calcium in ancient glazes and glasses: a XAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, J.P. [New University of Lisbon, CENIMAT, Materials Science Dept., Caparica (Portugal); Figueiredo, M.O. [New University of Lisbon, CENIMAT, Materials Science Dept., Caparica (Portugal); Crystallography and Mineralogy Centre, IICT, and INETI/IGM, Dept. Min. Resources, Alfragide (Portugal)

    2008-07-15

    Ceramic tiles used to manufacture artistic panels during the XVI to the XVIII centuries were decorated with high-lead soda-lime glazes, incorporating a diversity of chromophore cations, as ascertained by SRXRF (synchrotron radiation X-ray fluorescence). Previous X-ray absorption spectroscopy (XAS) studies have shown that sodium and lead are hosted by the glassy matrix in those glazes. However, the possible role of calcium as a modifier of the tetrahedral silica network is not fully clarified, despite being recognized that calcium cations alter some fundamental properties of glazes, namely transparency. An X-ray absorption fine structure (XAFS) study of glazes with varied colorings was therefore undertaken at Ca K- and L-edges. Well crystallized oxide minerals were used to model distinct coordination environments by oxygen atoms - close to octahedral geometry in calcite and dodecahedral in gypsum - while fluorite was chosen to mimic ideal cubic coordination. A first XAS approach suggested a minor variation in the energy separation between L{sub 2}-L{sub 3} absorption edges when comparing blue and yellow glazes, irrespective of the period of manufacture. A further study on the X-ray absorption near-edge structure (XANES) carried out at the K-edge corroborated this difference and, along with the theoretical spectra modeling performed with the FEFF code, allowed interpreting of the Ca 1s absorption spectra of glazes as arising from a non-regular high-coordination environment within the silica matrix. (orig.)

  16. Retrofit electrochromic glazing in a UK office

    Directory of Open Access Journals (Sweden)

    Ruth Kelly Waskett

    2014-12-01

    Full Text Available Electrochromic (EC glazing is now considered a viable alternative to fixed transmittance glazing. It has the potential to enable occupants to control daylight glare and solar heat gain without the use of blinds or external shading devices, giving users more access to daylight with all its inherent benefits. Furthermore, EC glazing can reduce energy consumption by decreasing cooling loads and electric lighting usage. Most research to date has studied the effects of EC glazing in scale models, computer simulations and full scale test rooms, and some of these studies have included human participants. However, there is a general lack of understanding regarding the performance and suitability of EC glazing in real-world working environments. A case study of the first UK retrofit application of EC glazing is being conducted in two adjacent offices in a university campus building. The offices are occupied by administration staff and have large southeastfacing windows. The existing double glazed units were replaced with commercially-available EC glazed units in 2012. Over a period of more than 18 months, the rooms were monitored intensively to record the effect of the EC glazing on both the physical room environment and the occupants themselves. A large amount of data from the monitoring programme is currently undergoing detailed analysis. Initial findings emerging from the installation and post-installation period are described in this paper.

  17. PIXE analysis of Moroccan architectural glazed ceramics of 14th-18th centuries

    International Nuclear Information System (INIS)

    Zucchiatti, A.; Azzou, A.; El Amraoui, M.; Haddad, M.; Bejjit, L.; Ait Lyazidi, S.

    2009-01-01

    The PIXE analysis of glazes and ceramic bodies of a set of architectural glazed ceramics (mostly the zellige mosaics), sampled from seven Moroccan monuments from the 14th to the 18th century AD, has been performed. We have identified high lead glazes, opacified with tin-oxide, laid over a calciferous body to produce hard tiles easy to chisel as required by the zellige technique. The analysis has revealed significant differences between the monuments examined: in particular in the formulation of the base glass and in the use of stains to produce coloured glazes. We observed the peculiarity of materials used in Marrakech and we could distinguish, both in terms of glazes and ceramic bodies, the two almost contemporary Madersas dedicated to the sultan Bou Inan, one in Meknes the other in Fez. The PIXE measurements integrate a broad range of spectrometric investigations performed in the past few years. (author)

  18. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  19. Study on 95 alumina ceramic metallizing and glazing technique

    International Nuclear Information System (INIS)

    Zhou Qun; Wang Wei

    2007-12-01

    Electric heater is a component of pressurizer in NPP. So the connector of heater must suit for special requirement with high reliability. It need join 95% alumina ceramic and special metal together. Traditional technique is to glazing ceramic at first, then sintering metal powder on ceramic. It result in melting glaze when metallizing at high temperature. The research on high temperature glaze hasn't got ideal result. In another way, the experiments prove low temperature metallizing couldn't get enough strength. Base on present conditions, a new technique is introduced. It is first metallizing then glazing. It can not only provide high strength with high temperature metallizing , but also avoid melting glaze at high temperature. Compared with other ways, the experiments prove it is feasible. The test data can satisfy requirement. This research has been put into production. (authors)

  20. Data in support of energy performance of double-glazed windows

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-06-01

    Full Text Available This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy (“Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network” (Shakouri Hassanabadi and Banihashemi Namini, 2012 [1], “Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates” (Banihashemi et al., 2015 [2]. A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  1. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  2. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  3. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  4. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  5. Low-cost solar collectors using thin-film plastics absorbers and glazings

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  6. Optical And Environmental Properties Of NCAP Glazing Products

    Science.gov (United States)

    van Konynenburg, Peter; Wipfler, Richard T.; Smith, Jerry L.

    1989-07-01

    The first large area, commercially available, electrically-controllable glazing products sold under the tradename VARILITETM are based on a new liquid crystal film technology called NCAP. The glazing products can be switched in milliseconds between a highly translucent state (for privacy and glare control) to a transparent state (for high visibility) with the application of an AC voltage. The optical and environmental properties are demonstrated to meet the general requirements for architectural glazing use. The first qualified indoor product is described in detail.

  7. Infrared reflecting glazing for automotive application. New developments to improve fuel efficiency and thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, R.; Wahl, A.; Kleinhempel, R. [Southwall Europe GmbH, Grossroehrsdorf (Germany); Coda, M.; Boman, L. [Southwall Technologies Inc., Palo Alto, CA (United States)

    2011-04-15

    Solar control coatings in automotive glazing improve the thermal comfort for passengers, degrease solar irradiation into the cabin and reduce fading of materials. In IRR glazing solar radiation reduction is performed by silver based low-e-stacks with high visual transmittance and high near infrared reflectance. The proposed ARB regulation for Califormia published 2009 demanded for reduced total solartransmittance Tts of <50% of automotive glazing in new cars from 2012 on and of <40% starting 2016. Unfortunately, the regulation was ceased last minute and of March 2010 due to some technical concerns related to proper operation of electronic communication devices. Nevertheless, the technical goals regarding the total solar energy transmittance became a widely accepted performance target for solar heat protection glazing in upcoming new car models for the next years. In order to achieve the challenging new Tts target <40% major steps forward in coating design and optimization of layer properties are required. (orig.)

  8. LARGE SCALE GLAZED

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    OF SELECTED EXISTING BUILDINGS IN AND AROUND COPENHAGEN COVERED WITH MOSAIC TILES, UNGLAZED OR GLAZED CLAY TILES. ITS BUILDINGS WHICH HAVE QUALITIES THAT I WOULD LIKE APPLIED, PERHAPS TRANSFORMED OR MOST PREFERABLY, INTERPRETED ANEW, FOR THE LARGE GLAZED CONCRETE PANELS I AM DEVELOPING. KEYWORDS: COLOR, LIGHT...

  9. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    to 1000 m²/g), the material is proposed to serve as substrate for catalytic materials. • The special pore structure of aerogel could be used for gas filters in the 20 to 100 nm region. • The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of the lowest for an inorganic......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  10. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  11. Effect of Window Glazing on Colour Quality of Transmitted Daylight

    Directory of Open Access Journals (Sweden)

    Rajendra Dangol

    2017-12-01

    Full Text Available In this study, the colour quality of the daylight transmitted through different window glazing types is evaluated. The analysis considered four different types of window glazing: laminated, monolithic, coated and applied film glazing ranging in luminous transmittance from around 0.97 to <0.1. The spectral transmittance data of different window glazing types are taken from the International Glazing Data Base (IGDB, which is maintained by Lawrence Berkeley National Laboratories (LBNL. The study showed that the CIE CRI does not always seem to be the suitable method to predict the colour quality of daylight in building for particular situations. However, in the context of this study, the prediction of colour rendering properties of window glazing by other metrics such as Colour Quality Scale (version 9, Memory CRI, Ra,D65 (adjusted CRI metric with D65 as the reference illuminant performed better. For most of the daylit situations inside the building, the chromaticity difference criterion was not met. Judging the colour quality of such situations requires different method.

  12. Use of a new borate raw material for glaze formulation

    International Nuclear Information System (INIS)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-01-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO), and sodium oxide (Na 2 O), its content in B 2 O 3 being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  13. Climate and energy use in glazed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wall, M.

    1996-11-01

    One objective of the thesis has been to elucidate the relationship between building design and the climate, thermal comfort and energy requirements in different types of glazed spaces. Another object has been to study the effect of the glazed spaces on energy requirements in adjacent buildings. It has also been the object to develop a simple calculation method for the assessment of temperatures and energy requirements in glazed spaces. The research work has mainly comprised case studies of existing buildings with glazed spaces and energy balance calculations using both the developed steady-state method and a dynamic building energy simulation program. Parameters such as the geometry of the building, type of glazing, orientation, thermal inertia, airtightness, ventilation system and sunshades have been studied. These parameters are of different importance for each specific type of glazed space. In addition, the significance of each of these parameters varies for different types of glazed spaces. The developed calculation method estimates the minimum and mean temperature in glazed spaces and the energy requirements for heating and cooling. The effect of the glazed space on the energy requirement of the surrounding buildings can also be estimated. It is intended that the method should be applied during the preliminary design stage so that the effect which the design of the building will have on climate and energy requirement may be determined. The method may provide an insight into how glazed spaces behave with regard to climate and energy. 99 refs

  14. Development of ceramic glaze with photocatalytic activity

    International Nuclear Information System (INIS)

    Tezza, V.B.; Uggioni, E.; Carrera, A.A. Duran; Bernardin, A.M.

    2011-01-01

    Glazes were developed by adding anatase in commercial ceramic plates as an agent of photocatalysis. The glazes were coated on ceramic tiles, which were fired between 800 and 1000°C. The formulations were characterized (SEM, XRD), and the wettability was determined by measuring the water contact angle. The microstructural analysis (SEM) showed that the anatase particles can disperse properly in the glaze matrix. The X-ray diffraction shows that from 1000°C, the glaze becomes very reactive, and particles of anatase are transformed into titanite or rutile, depending on the glaze used. The determination of the contact angle shows the clear influence of the glaze type and sintering temperature on the wettability characteristics of the obtained layer. (author)

  15. Chromogenic switchable glazing: Towards the development of the smart window

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M.

    1995-06-01

    The science and technology of chromogenic materials for switchable glazings in building applications is discussed. These glazings can be used for dynamic control of solar and visible energy. Currently many researchers and engineers are involved with the development of products in this field. A summary of activities in Japan, Europe, Australia, USA and Canada is made. The activities of the International Energy Agency are included. Both non-electrically activated and electrically activated glazings are discussed. Technologies covered in the first category are photochromics, and thermochromics and thermotropics. A discussion of electrically activated chromogenic glazings includes dispersed liquid crystals, dispersed particles and electrochromics. A selection of device structures and performance characteristics are compared. A discussion of transparent conductors is presented. Technical issues concerning large-area development of smart windows are discussed.

  16. Fireplace insert and its parameters depend on the used glazing

    Science.gov (United States)

    Papučík, Štefan; Čaja, Alexander

    2016-06-01

    The contribution deals with the analysis of the impact of using double glass to change the performance and emission parameters of the fireplace insert. Conventional fireplace inserts are equipped with heat-resistant glass, which is resistant to high temperatures. For this type of inserts are required to be radiant constituent maximized. Prevailing part of heat is into the interior gets just by radiation through the glazed part. The hot water fireplace inserts is the requirement that the radiant constituent to the environment to a minimum. Therefore, instead of a single glass using double glazing which is intended to reduce this part of heat transfer. The temperature in the furnace is increased, and transmitted most of the heat into the water.

  17. Determination of critical breakage conditions for double glazing in fire

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Ke; Su, Yanfei; Lu, Wei; Wang, Qingsong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2017-01-01

    Highlights: • Critical heat fluxes of exposed and ambient panes are 6 kW/m"2 and 25 kW/m"2. • Critical temperature difference of fire side pane is around 60 °C. • The ambient pane survives three times longer due to radiation filter and air gap. • Heat transfer in double glazing is revealed by a heat flux based theoretical model. - Abstract: Double glazing unit normally demonstrates better fire resistance than single glazing, but the knowledge on its thermal behavior and heat transfer mechanism during fire is limited. In this work, nine double glazing units were heated by a 500 × 500 mm"2 pool fire. The incident heat flux, temperature on four surfaces, breakage time and cracking behavior were obtained. The critical breakage conditions for interior and exterior panes were determined through gradually decreasing the glass-burner distance from 750 mm to 450 mm. It is established that in double glazing the pane at ambient side can withstand significantly more time than the pane exposed to fire. The critical temperature difference for interior pane is 60 °C; the critical temperature of exterior pane breakage is much higher due to no frame-covered area. In addition, the heat flux at the time of crack initiation is 6 kW/m"2 for the pane at fire side, while more than 25 kW/m"2 for ambient side pane. To reveal the heat transfer mechanism in glazing-air-glazing, theoretical and numerical investigations are also performed, which agrees well with the experimental results.

  18. 77 FR 37477 - Federal Motor Vehicle Safety Standards; Glazing Materials

    Science.gov (United States)

    2012-06-21

    ... items of glazing are also defined according to their construction characteristics. For example, item 1... a boil and a bake test to determine whether safety glazing can withstand exposure to high... (150[emsp14][deg]F) water for three minutes and then placed in boiling water for three hours. The bake...

  19. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  20. THE EFFECT OF OPACIFIERS ON SURFACE ROUGHNESS OFCERAMIC GLAZES

    Directory of Open Access Journals (Sweden)

    R. Sarjahani

    2016-03-01

    Full Text Available Surface smoothness of ceramic glazes is always an important characteristic of ceramic glazes as a point of surface engineering studies. Surface roughness affects chemical resistivity, glossiness and stainabiliy of glazes. In fact, less surface roughness improves cleanability of the surface by the least usage amount of detergents. In this investigation, surface topography of two common opaque glazes, zirconia and titania-based, has been investigated. Crystallinity of the surface has been studied from SEM images, and comparison of EDS elemental results with phase analysis results of XRD. Surface roughness profile measured by Marsurf M300, shows that titania-based glaze is almost 24% percentage more smooth than zirconia based glaze. Surface smoothness is in relation with crystallinity of glaze surface, crystal type and crystal distribution in amorphous matrix phase

  1. Design and evaluation of daylighting applications of holographic glazings

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, K.; Ehrlich, C.; Ward, G.

    1996-12-01

    According to the contractual agreement, BTP would develop a computer model of the POC holographic structures and then simulate the performance of alternative designs using the RADIANCE lighting and rendering computer program [Ward 1990]. The RADIANCE model would then be used to evaluate the daylight performance of alternative designs of holographic glazings in a prototypical office space. The simulation process would be validated against actual photometric measurements of holographic glazing samples developed by POC. The results would be used to evaluate the potential for increased electric lighting savings through increased daylight illuminance levels at distances more than 15 ft--20 ft (4.6 m--6.1 m ) from the window wall.

  2. Experimental performance investigation of glazing system combined with internal roller blinds

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Jensen, Rasmus Lund; Iversen, Tore Dahl

    2016-01-01

    Modern low-energy buildings are often associated with efficient shading devices, as an inevitable component to reduce the peak heat gain in the building and to improve visual comfort. Internal shading devices may have inferior performance compared to external shading, but these are still the most...... used in practice due to lower cost, simplicity and better acceptance between architects and users. The interplay between glazing systems and internal shading devices has been studied and in everyday practice this interplay is described by the solar shading coefficient and the total g......-value of the system (window + roller blind). Solar shading coefficient in such practice is assumed to be independent of the window properties and solar incidence angle. This paper is aimed to illustrate the deviation between the actual and assumed performance of the window system with internal roller blind. This task...

  3. Energy Labelling of Glazings and Windows in Denmark: Calculated and Measured Values

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Svend; Mogensen, Morten Møller

    2002-01-01

    The influence of windows on the energy consumption in buildings is well known and in order to encourage the development and the appropriate use of high performance glazings and windows in Denmark, an Energy Labelling and Rating system is being developed. During this work a need for establishing...

  4. Advanced connection systems for architectural glazing

    CERN Document Server

    Afghani Khoraskani, Roham

    2015-01-01

    This book presents the findings of a detailed study to explore the behavior of architectural glazing systems during and after an earthquake and to develop design proposals that will mitigate or even eliminate the damage inflicted on these systems. The seismic behavior of common types of architectural glazing systems are investigated and causes of damage to each system, identified. Furthermore, depending on the geometrical and structural characteristics, the ultimate horizontal load capacity of glass curtain wall systems is defined based on the stability of the glass components. Detailed attention is devoted to the incorporation of advanced connection devices between the structure of the building and the building envelope system in order to minimize the damage to glazed components. An innovative new connection device is introduced that results in a delicate and functional system easily incorporated into different architectural glazing systems, including those demanding maximum transparency.

  5. Analytical investigations of glazed Islamic pottery

    International Nuclear Information System (INIS)

    Pernicka, E.; Krejsa, P.

    1977-11-01

    The composition of the glazes of 14 fragments of medieval ceramics from Sistan in the south-west of Afghanistan has been determined quantitatively by means of electron probe microanalysis. The results were compared with materials and recipes, which are described in a Persian treatise on the manufacutre of glazed ceramic objects dated 1300 A.D. The mineral ''muzzarad'' which was used for the black underglaze painting, could be identified as chromite. The light blue colouring of the glaze was accomplished by admixtue of Cu, while Co was used for the dark blue painting. Most probably the Co pigment originated from Kashan in Persia. Only two glazes Pb was found, one of which contained also Sn. Based on the results of the quantitative analyses, a frit composition was calculated, which agrees with the medieval description of one identifies another so far unknown material mentioned in the treatise (qamsari) as dolomitic sandstone. (author)

  6. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  7. 49 CFR 238.421 - Glazing.

    Science.gov (United States)

    2010-10-01

    ... in this paragraph; (ii) The name of the manufacturer; and (iii) The type or brand identification of...; and (C) The type or brand identification of the material. (d) Glazing securement. Each exterior window... words conveying that meaning, in letters at least 3/8 of an inch high. [64 FR 25660, May 12, 1999, as...

  8. Indoor Climate of Large Glazed Spaces

    DEFF Research Database (Denmark)

    Hendriksen, Ole Juhl; Madsen, Christina E.; Heiselberg, Per

    In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crui...... it is cruicial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.......In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate...

  9. Development of Simplified and Dynamic Model for Double Glazing Unit Validated with Full-Scale Facade Element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2012-01-01

    The project aims at developing simplified calculation methods for the different features that influence energy demand and indoor environment behind “intelligent” glazed façades. This paper describes how to set up simplified model to calculate the thermal and solar properties (U and g value......) together with comfort performance (internal surface temperature of the glazing) of a double glazing unit. Double glazing unit is defined as 1D model with nodes representing different layers of material. Several models with different number of nodes and position of these are compared and verified in order...... to find a simplified method which can calculate the performance as accurately as possible. The calculated performance in terms of internal surface temperature is verified with experimental data collected in a full-scale façade element test facility at Aalborg University (DK). The advantage...

  10. Comparative Study of Single-glazed and Double-glazed Windows in Terms of Energy Efficiency and Economic Expenses

    Directory of Open Access Journals (Sweden)

    Samaneh Forughian

    2017-06-01

    Full Text Available Saving fossil fuels and the use of clean sources of energy lead to reduce in building operating costs, protect the environment and people's health. Windows are the most vulnerable part of building where energy loss occurs. Double-glazed windows are very effective in keeping inside temperature isolated from outside; thereby, saving electrical and thermal energy. The current study estimates the numerical changes in cooling and heating load in case of replacement double-glazed window with single-glazed window and calculates saving level for this replacement. In this context, this paper presents a model of real samples taken in Mashhad climate. To ensure the accuracy of the simulation results, real results were compared with electricity and gas bills. To calculate energy related parameters such as cooling load, heating load, the consumption of gas and electricity, the energy simulation software (Design Builder was used. The research method was a quantitative analysis based on energy consumption modeling, associated with building windows which comes in four sections. The field study was also used to compare with real electricity and gas bills. As the first stage, samples of the plan were identified, based on the observation of climate models and library studies. Then, simulation parameters such as window materials and internal and external walls were considered. The simulation was performed based software’s parameters and model limitations were determined based on thermal, lighting, climatic and architectural parameters. Finally, the experimental and practical data were used to determine the validity of the model under Mashhad climate conditions. Overall, the results indicated that double-glazed windows could save 50% of entire building loads, 0.2% on power consumption, 16.2% on gas and 12.4% on overall households’ energy consumption.

  11. Mill Glaze: Myth or Reality?

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Since the mid-1980s, a condition called “mill glaze” (also called planer’s glaze) has sometimes been blamed for the failure of a coating on smooth flat-grained siding and some other wood products. The exact cause of this problem has been a subject of controversy. Many people believe that the coating fails as a result of the planing and/or drying processes. They...

  12. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  13. Monolithic Silica aerogel in superinsulating glazings

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1988-01-01

    . This phenomenon is considered being the main obstacle to incorporate the material in clear glazings but a significant improvement of the optical quality of aerogel has been observed during the last five years. A number of prototypical evacuated 500x500x28 mm aerogel double glazed units employing a new edge seal...... competetion in heating dominated climates....

  14. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  15. Experimental investigation of flame impingement on vertical and inclined glazing facades

    Directory of Open Access Journals (Sweden)

    Quinn Michael

    2013-11-01

    Full Text Available Breakage and fallout of glazing systems create openings in an enclosure that affect the fire growth and the development of post flashover flames emerging outside of the openings. The behaviour of glazing is the result of its thermally induced stress response to the heat fluxes from the fire in an enclosure. In recent times building façade designs have evolved and now incorporate many different shapes, orientations and materials. The conventional single and double glazing panels have been surpassed by composite type glazing systems which include glazing and transparent resins. This paper presents experimental testing of these composite glazing panels subjected to localized fires, which have the same fire load. The effect of localized fire on the materials tested as seen in the final char patterns on both glazing systems is note-worthy. The paper also includes details of comparative calculations with EN 1991-1-2. Furthermore, results of detailed material analysis testing of the intermediate transparent resin within the glazing sandwich panels are included.

  16. Triple vacuum glazing: Heat transfer and basic mechanical design constraints

    Energy Technology Data Exchange (ETDEWEB)

    Manz, H.; Brunner, S.; Wullschleger, L. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Laboratory for Applied Physics in Building, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2006-12-15

    Given the major role played by windows with regard to energy losses from buildings in cold climates, low thermal transmittance is an indispensable property of glazing in low-energy buildings. Evacuation offers the only means of achieving negligible gaseous conduction in glazing cavities. Application of low-emittance coatings to glass sheet surfaces inside the cavity reduces the radiative heat transfer. The feasibility of double vacuum glazing using arrays of support pillars between the glass sheets has been shown by other authors. This type of glazing is commercially manufactured today. Based on these achievements, our study set out to investigate heat transfer in triple vacuum glazing by means of (i) an analytical thermal network model and (ii) a numerical finite difference model. The study focused on the impact of the following parameters on thermal transmittance: emittances of glass sheet surfaces inside the cavity, support pillar radius, support pillar separation and thermal conductivity of support pillar material. The design procedure for triple vacuum glazing taking into account not only thermal but also mechanical stresses due to atmospheric pressure, i.e., to enable identification of favourable parameter sets, is presented. Our findings suggest that use of the triple vacuum glazing concept can significantly reduce the thermal transmittances achieved by the best insulation glazing units currently on the market. E.g., a centre-of-glazing thermal transmittance of less than 0.2Wm{sup -2}K{sup -1} is achievable using stainless steel support pillars, 6mm/4mm/6mm sheets of untempered soda-lime glass and four low-emittance coatings ({epsilon}=0.03). (author)

  17. Effect of window glazing on colour quality of transmitted daylight

    NARCIS (Netherlands)

    Dangol, R.; Kruisselbrink, T.W.; Rosemann, A.L.P.

    2017-01-01

    In this study, the colour quality of the daylight transmitted through different window glazing types is evaluated. The analysis considered four different types of window glazing: laminated, monolithic, coated and applied film glazing ranging in luminous transmittance from around 0.97 to <0.1. The

  18. A comparative study on the effect of glazing and cooling for compound parabolic concentrator PV systems – Experimental and analytical investigations

    International Nuclear Information System (INIS)

    Bahaidarah, Haitham M.; Gandhidasan, P.; Baloch, Ahmer A.B.; Tanweer, Bilal; Mahmood, M.

    2016-01-01

    Highlights: • We model glazed and unglazed PV-CPC systems with and without active water cooling. • Model is validated with experimental results and found good agreement. • Significant increase in the maximum power output is observed with active cooling. • Unglazed PV-CPC system is recommended for greater electric power output. • Levelized cost of energy found was found lower for unglazed CPC with cooling. - Abstract: A key barrier to achieving the economic viability and widespread adoption of photovoltaic (PV) technology for the direct conversion of solar radiation to electricity is the losses related to the high operating temperatures of typical flat-type PV modules. This technical and economic study addresses the cost reduction of PV systems by proposing a methodology for the improvement of solar cell efficiency using low-concentration PV technology and compound parabolic concentrators (CPCs). A theoretical model was developed to evaluate the performance of PV-CPC systems considering their optical, thermal and electrical properties. The model was implemented to investigate glazed and unglazed PV-CPC systems with and without active cooling and it was validated against experimental data. A laboratory-scale bench-top PV string was designed and built with symmetrically truncated CPC modules in these four configurations. The constructed glazed and unglazed PV-CPC systems were used for measurements at the geographic location of Dhahran and showed a very good agreement of 3.8–6.5% between the calculated and experimental results. The effect of glazing was studied and from the electrical point of view, glazing was found to reduce the power output. From the thermal point of view, glazing increased the thermal gain of the PV-CPC system. An unglazed PV-CPC system is recommended for greater electric power output, and glazed system is recommended for higher thermal gain. For economic feasibility, levelized cost of energy (LCE) analysis was performed using annual

  19. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze

    International Nuclear Information System (INIS)

    Santos, Daniela Micheline dos; Nagay, Bruna Egumi; Freitas da Silva, Emily Vivianne; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da; Goiato, Marcelo Coelho

    2016-01-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008 h). Data were submitted to the ANOVA and Tukey Test (p < 0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. - Highlights: • We analyzed the influence of polishing on two acrylic resins for ocular prosthesis. • We performed different analyzes of esthetic, mechanical and physical properties. • The glaze is an inadequate surface treatment to ocular prosthesis acrylic resin.

  20. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Micheline dos, E-mail: danielamicheline@foa.unesp.br [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil); Nagay, Bruna Egumi; Freitas da Silva, Emily Vivianne; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil); Moreno, Amália [Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, UNESP, Sorocaba, Sao Paulo (Brazil); Goiato, Marcelo Coelho [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil)

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008 h). Data were submitted to the ANOVA and Tukey Test (p < 0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. - Highlights: • We analyzed the influence of polishing on two acrylic resins for ocular prosthesis. • We performed different analyzes of esthetic, mechanical and physical properties. • The glaze is an inadequate surface treatment to ocular prosthesis acrylic resin.

  1. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    Science.gov (United States)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  2. Fabricate-On-Demand Vacuum Insulating Glazings

    Energy Technology Data Exchange (ETDEWEB)

    McCamy, James W. [PPG Industries, Inc., Pittsburgh, PA (United States)

    2017-09-19

    PPG proposed to design a fabricate-on-demand manufacturing process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulated glazing (VIG) units. To do so, we focused on improving three areas of VIG manufacturing that drive high costs and limit the ability for smaller manufacturers to enter the market: edge sealing, pillar design/placement, and evacuating the VIG.

  3. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  4. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M

    2011-01-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al 2 O 3 -SiO 2 , have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO 2 , ZrO 2 , V 2 O 5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm 2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO 2 -Al 2 O 3 , were examined with use of DTA, XRD and SEM methods.

  5. Environmental assessment of electrochromic glazing production

    International Nuclear Information System (INIS)

    Syrrakou, E.; Papaefthimiou, S.; Yianoulis, P.

    2005-01-01

    The life cycle analysis method was used to determine the environmental impacts associated with the production of an electrochromic (EC) glazing (called ECD). This paper describes the inventory analysis for all the basic materials used during the manufacture of the ECD, i.e. K-Glass, tungsten oxide (WO 3 ), poly-methyl methacrylate (PMMA), propylene carbonate (PC), lithium perchlorate (LiClO 4 ) and acetic silicone sealant. K-Glass, PC and PMMA account for the 98% of the total device mass and the CO 2 emissions during their production processes are 810 g. The total embodied energy was estimated to be 49 MJ/ECD, with 32.1 MJ/unit of them derived from the K-Glass. The comparison of the total embodied energies of the ECD and various insulating glass units concluded that mass-produced EC glazings could easily compete with them in terms of environmental performance, anticipating cost attenuation and overall thermal and optical behavior. The above analysis could be implemented for the reduction of the embodied energy of the ECD life cycle, since it is proposed as an energy saving device. (Author)

  6. New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab

    Science.gov (United States)

    Artioli, G.; Angelini, I.; Nestola, F.

    2013-02-01

    A scarab found in grave 25 of the Monte Prama necropolis, near Cabras, Oristano, Sardinia, is of special importance for the archaeological interpretation and dating of this important archaeological site. The object has been misinterpreted in the past as composed by bone: recent archaeometric analyses showed that it is a glazed steatite of Egyptian origin and that the altered surface contains interesting phases crystallized during the high-temperature interaction of the Mg-rich talc core with the alkali-rich glass used for glazing. A novel single crystal X-ray diffraction analysis of one of the phases indicates that it is a new compound having the milarite-osumilite structure type, with a peculiar composition close to (Na1.52K0.12□0.36)(Mg3)(Mg1.72Cu0.16Fe0.12)(Si11.4Al0.6)O30, not reported for naturally occurring minerals. The structural and crystal chemical features of the compound, together with the known high-temperature stability of the series, allow a complete interpretation of the glazing process and conditions, based on direct application of the glaze on the steatite core with subsequent treatment at temperatures above 1000 °C.

  7. Glazed Tiles as Floor Finish in Nigeria

    Directory of Open Access Journals (Sweden)

    Toyin Emmanuel AKINDE

    2013-09-01

    Full Text Available Tile is no doubt rich in antiquity; its primordial  show, came as mosaic with primary prospect in sacred floor finish before its oblivion, courtesy of, later consciousness towards wall finish in banquets, kitchens, toilets, restaurants and even bars. Today, its renaissance as floor finish is apparent in private and public architectural structures with prevalence in residential, recreational, commercial, governmental and other spaces. In Nigeria, the use of glazed tiles as floor finish became apparent, supposedly in mid-twentieth century; and has since, witnessed ever increasing demands from all sundry; a development that is nascent and has necessitated its mass  production locally with pockets of firms in the country. The latter however, is a resultant response to taste cum glazed tiles affordability, whose divergent sophistication in design, colour, size and shape is believed preferred to terrazzo, carpet and floor flex tile. Accessible as glazed tile and production is, in recent times; its dearth of a holistic literature in Nigeria is obvious. In the light of the latter, this paper examine glazed tiles as floor finish in Nigeria, its advent, usage, production, challenge, benefit and prospect with the hope of opening further frontier in discipline specifics.

  8. Glazing façade modules : daylighting performance simulation for Bragança, Coimbra, Évora and Faro

    OpenAIRE

    Sacht, Helenice Maria; Bragança, L.; Almeida, Manuela Guedes de; Caram, Rosana

    2012-01-01

    The daylighting performance improvement is one better strategy to reduce the artificial lighting consumption in buildings and obviously requires solar radiation from the exterior. Daylighting comes not only from direct sunlight but also from illumination provided by the sky on overcast days. Particular attention must be given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy consumption. Visual comfort of glazing façades is a fundamental ...

  9. 24 CFR 3280.113 - Glass and glazed openings.

    Science.gov (United States)

    2010-04-01

    ... glazing material is considered to be any glazing material capable of passing the requirements of Safety... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations § 3280.113... shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...

  10. Key design features of multi-vacuum glazing for windows: A review

    Directory of Open Access Journals (Sweden)

    Ali Hassan

    2017-01-01

    Full Text Available The use of vacuum glazed windows is increasing due to their application in mod-ern building design. Among various types of vacuum glazed windows reported in literature, thermal transmittance of single glass sheet (conventional window i. e 6 W/m2k is reduced by 66 and 77% using air filled double glazed and air filled triple glazed windows, respectively. Using low emittance coatings thermal transmittance of double glazed windows is reduced by 53%, however it offsets the visibility by reduc-ing light transmittance by 5%. Stresses due to temperature/pressure gradients if not eliminated may lead to reduction in service life of vacuum glazed windows. Vacuum created between the glass sheets is used to reduce conductive heat transfer. Degrada-tion in the vacuum is caused by number of factors such as, permeation of gaseous molecules through glass sheets, leakage through sealing, thermal/optical desorption, and photo-fragmentation of organic species have been critically reviewed and future trends are outlined.

  11. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  12. A preliminary study on Fe valence of porcelain glaze by XAFS

    International Nuclear Information System (INIS)

    Zhang Maolin; Wang Changsui; Jin Pujun; Wei Shiqiang; Xu Wei; Chen Dongliang; Wu Ziyu

    2008-01-01

    Ru ware was a famous celadon in Song dynasty, whose structure analysis of glaze had always been a difficulty in scientifically analysis of ancient porcelains. The X-ray absorption fine structure spectrum (XAFS) of Fe element in glaze of Ru ware excavated in Qingliang temple was obtained. Fe valence state in porcelain glaze samples was stud/ed by Principle Component Analysis (PCA) along with linear combination fitting method. The main wavelength of the samples was also obtained by color/meter. The results show that the cyan glaze samples have great Fe 2+ /Fe 3+ , while the yellow glaze samples have small Fe 2+ /Fe 3+ . The work also showed that X-ray absorption fine structure spectrum was very suitable in nondestructive analysis of ancient ceramics. (authors)

  13. PV-PCM integration in glazed building. Co-simulation and genetic optimization study

    DEFF Research Database (Denmark)

    Elarga, Hagar; Dal Monte, Andrea; Andersen, Rune Korsholm

    2017-01-01

    . An exploratory step has also been considered prior to the optimization algorithm: it evaluates the energy profiles before and after the application of PCM to PV module integrated in glazed building. The optimization analysis investigate parameters such as ventilation flow rates and time schedule to obtain......The study describes a multi-objective optimization algorithm for an innovative integration of forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and optimize the parameters that most affect thermal and energy performances. 1-D model, finite difference method FDM...

  14. CHARACTERIZATION OF THE INTERACTION BETWEEN GLAZES AND CERAMIC BODIES

    Directory of Open Access Journals (Sweden)

    Maria Kavanova

    2017-07-01

    Full Text Available The paper presents the study of stress relations of ceramic body - glaze systems of model and real, both historical and contemporary ceramics. The systems were characterized in terms of chemical composition, linear thermal coefficients and degradation effects. The results show that calculation of stress relations between ceramic body and glaze is affected predominantly by the difference in values of thermal expansion coefficients. Calculated results provide relevant information about the accordance of the glaze - ceramic body and for the characterization of surface defects.

  15. The use of micro-XRD for the study of glaze color decorations

    Energy Technology Data Exchange (ETDEWEB)

    Pradell, T.; Molina, G. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, Castelldefels (Spain); Molera, J.; Pla, J. [Universitat de Vic, GRTD, Escola Politecnica Superior, Vic (Spain); Labrador, A. [BM16-ESRF, LLS, BP 220, Grenoble Cedex (France); Lund University, MAX IV Laboratory, Lund (Sweden)

    2013-04-15

    The compounds responsible for the colors and decorations in glass and glazed ceramics include: coloring agents (transition-metal ions), pigments (micro- and nanoprecipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron radiation micro-X-ray diffraction (SR-micro-XRD) has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth-dependent composition and crystal structure. Their nature and distribution across the glass/glaze decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro-XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and Renaissance tin-glazed ceramics from the 10th to the 17th century AD. (orig.)

  16. Development and sensitivity study of a simplified and dynamic method for double glazing facade and verified by a full-scale façade element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for double glazing facade to calculate its thermal and solar properties (U and g value) together with comfort performance (internal surface temperature of the glazing). Double glazing is defined as 1D model with nodes representing......, taking the thermal mass of the glazing into account. In addition, angle and spectral dependency of solar characteristic is also considered during the calculation. By using the method, it is possible to calculate whole year performance at different time steps, which makes it a time economical and accurate...

  17. Evacuation and assembly of aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    1999-01-01

    The application of monolithic silica aerogel as transparent insulation material for windows has been investigated for some years. It has been realised that a major problem of an industrial production of aerogel glazings will be the time for evacuation of the aerogel material. However, in a previous...... process, it can be considered as semi-online, and especially the capital cost is significantly lower for this method in comparison with a true online process. So hereby, a major obstacle is overcome with respect to a first industrial production of aerogel glazings.The apparatus has been constructed...

  18. Radioactivity Measurements on Glazed Ceramic Surfaces.

    Science.gov (United States)

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  19. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  20. The provenance study of Chinese ancient architectonical colored glaze by INAA

    International Nuclear Information System (INIS)

    Cheng Lin; Feng Songlin; Li Rongwu; Lue Zhirong; Li Guoxia

    2008-01-01

    The colored glazes are very popular and famous in Chinese ancient architectures. In order to exactly locate the provenance of ancient architectonical colored glazes, 196 pieces of ancient colored glaze bodies and porcelain bodies fired in Xiyue Temple and Lidipo kiln are analyzed by INAA. The results of factor analysis and some archaeological questions are reported and discussed in this paper

  1. The provenance study of Chinese ancient architectonical colored glaze by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Radiation Center, Beijing Normal University, Beijing 100875 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenglin@bnu.edu.cn; Feng Songlin [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li Rongwu [Department of Physics, Beijing Normal University, Beijing 100049 (China); Lue Zhirong [Shan' xi Provincial Institute of Cultural Relics and Archaeology, Xi' an 710054 (China); Li Guoxia [Institute of Physical Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2008-12-15

    The colored glazes are very popular and famous in Chinese ancient architectures. In order to exactly locate the provenance of ancient architectonical colored glazes, 196 pieces of ancient colored glaze bodies and porcelain bodies fired in Xiyue Temple and Lidipo kiln are analyzed by INAA. The results of factor analysis and some archaeological questions are reported and discussed in this paper.

  2. Development of a simplified and dynamic method for double glazing façade with night insulation and validated by full-scale façade element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2013-01-01

    The study aims to develop a simplified calculation method to simulate the performance of double glazing fac¸ ade with night insulation. This paper describes the method to calculate the thermal properties (Uvalue) and comfort performance (internal surface temperature of glazing) of the double...... with night insulation is calculated and compared with that of the facade without the night insulation. Based on standards EN 410 and EN 673, the method takes the thermal mass of glazing and the infiltration between the insulation layer and glazing into account. Furthermore it is capable of implementing whole...

  3. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  4. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  5. Surface Abrasion of Glazed Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Esposito, L.

    2000-02-01

    Full Text Available The characteristics of the proper surface of glazed ceramic tiles have a considerable influence on their mechanical response to the various stresses coming from the environment. In this regard, one of the most important parameters to define the correct use of these products is the wear behaviour of the proper surface. Since the glaze layer is the physical interface between the environment and ceramic body, its characteristics also determine the service life of the tile. The objective of the research reported here was to assess the influence of hardness, fracture toughness and porosity of the glaze layer on the wear behaviour of the proper surface of glazed ceramic tiles. The results obtained show a clear relationship between the characteristics of the glaze layer and the material removal in the form of normalised weight loss, which can be considered a useful tool to predict the wear behaviour of these products.

    Las características de la propia superficie de los azulejos cerámicos esmaltados tiene una influencia considerable en la respuesta mecánica de éstos a las distintas tensiones provenientes del entorno. De acuerdo con esto, uno de los parámetros más importantes que definen la correcta utilización de estos productos es el comportamiento ante el desgaste de la propia superficie. Debido a que la capa de esmalte es la conexión física entre el entorno y el cuerpo cerámico, sus características también determinan vida útil del azulejo. El objetivo de la investigación de la que damos cuenta aquí fue calcular la influencia de la dureza, resistencia a la fractura y porosidad de la capa de esmalte en el comportamiento ante el desgaste de la propia superficie de los azulejos cerámicos esmaltados. Los resultados obtenidos muestran una clara relación entre las características de la capa de esmalte y la eliminación del material en forma de pérdida de peso normalizada, que puede ser considerada como una herramienta útil para

  6. Ceramic glaze analysis by simultaneous in-beam PGAA and XRFS

    International Nuclear Information System (INIS)

    Anderson, D.L.

    1995-01-01

    Twenty-one ready-to-use hobby glazes, of which 18 were labeled 'safe for food containers' (SFFC), were analyzed for Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Gd, Hf, K, Mn, Na, Pb, Si, Sm, Sr, Ti, Zn, and Zr by neutron capture prompt γ-ray activation analysis (PGAA). Simultaneously, Pb was also determined by X-ray fluorescence spectrometry (XRFS) using Pb K X-rays induced by the γ-ray component of the neutron beam. The XRFS limits of detection were 200-400 μg Pb x g -1 (dry weight), a factor of ∼100 better than those for PGAA. Pb concentrations (by dry weight: with weight losses ranging from 28 to 49% after air-drying) found were 0.16-27.2% in the SFFC glazes and 0.86-32% in the other glazes. The SFFC glazes contained from -1 , and Co, Cr and Cu (elements which may enhance Pb leaching from fired glazes) were found in concentrations up to 1.2, 2.7, and 5.6%, respectively. Method accuracy was demonstrated with the analysis of soil, fly ash, and glass standard reference materials. (author) 13 refs.; 2 figs.; 3 tabs

  7. Surface characterization of polymers used in fabrication of interim prostheses after treatment with photopolymerized glaze

    International Nuclear Information System (INIS)

    Santos, Daniela Micheline dos; Commar, Betina Chiarelo; Rocha Bonatto, Liliane da; Freitas da Silva, Emily Vivianne; Sônego, Mariana Vilela; Rangel, Elidiane Cipriano; Pesqueira, Aldieris Alves; Goiato, Marcelo Coelho

    2017-01-01

    The material used for interim prostheses fabrication must present excellent physical properties for greater longevity in the face of environmental conditions, which can occur in the oral cavity. The purpose of this study was to evaluate the effect of a photopolymerized glaze on the physical and mechanical properties of polymers used for the fabrication of interim prostheses, before and after thermocycling and immersion in staining solutions. One hundred samples of composite and acrylic resins were fabricated: Dencor chemically activated acrylic resin (CAAR) (n = 20) and heat-polymerized acrylic resin (HPAR) (n = 20), Charisma (n = 20), Structur (n = 20), and Protemp (n = 20). A mechanical polishing was performed on half of the samples, and a chemical polishing was performed on the remaining samples. Subsequently, all samples were submitted to thermocycling and immersion in coffee staining solution for 21 days. Analysis of color and microhardness, as well as atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive x-ray spectrometry (EDS) were performed. The data were submitted to repeated-measures analysis of variance (ANOVA), followed by the Tukey test (α = 0.05) and the Student t-test (α = 0.05). It was verified that the glaze decreased the chromatic alteration values, and increased the microhardness values of the samples, with the exception of the Charisma resin. The samples that did not receive chemical polishing had the greatest number of surface irregularities. This study concluded that the groups with glaze presented less color alteration. In addition, Charisma and Structur resins exhibited the greatest chromatic stability. As to the microhardness, the values were greater when the samples were treated with the glaze, with the exception of the Charisma group. - Highlights: • Polymers used in fabrication of interim prostheses were analyzed. • The influence of a chemical polishing on these polymers was analyzed.

  8. Surface characterization of polymers used in fabrication of interim prostheses after treatment with photopolymerized glaze

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Micheline dos, E-mail: danielamicheline@foa.unesp.br [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil); Commar, Betina Chiarelo; Rocha Bonatto, Liliane da; Freitas da Silva, Emily Vivianne; Sônego, Mariana Vilela [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil); Rangel, Elidiane Cipriano [Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Univ Estadual Paulista (UNESP), Tres de Março Av., 511, Sorocaba, Sao Paulo, 18087-180 (Brazil); Pesqueira, Aldieris Alves; Goiato, Marcelo Coelho [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil)

    2017-02-01

    The material used for interim prostheses fabrication must present excellent physical properties for greater longevity in the face of environmental conditions, which can occur in the oral cavity. The purpose of this study was to evaluate the effect of a photopolymerized glaze on the physical and mechanical properties of polymers used for the fabrication of interim prostheses, before and after thermocycling and immersion in staining solutions. One hundred samples of composite and acrylic resins were fabricated: Dencor chemically activated acrylic resin (CAAR) (n = 20) and heat-polymerized acrylic resin (HPAR) (n = 20), Charisma (n = 20), Structur (n = 20), and Protemp (n = 20). A mechanical polishing was performed on half of the samples, and a chemical polishing was performed on the remaining samples. Subsequently, all samples were submitted to thermocycling and immersion in coffee staining solution for 21 days. Analysis of color and microhardness, as well as atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive x-ray spectrometry (EDS) were performed. The data were submitted to repeated-measures analysis of variance (ANOVA), followed by the Tukey test (α = 0.05) and the Student t-test (α = 0.05). It was verified that the glaze decreased the chromatic alteration values, and increased the microhardness values of the samples, with the exception of the Charisma resin. The samples that did not receive chemical polishing had the greatest number of surface irregularities. This study concluded that the groups with glaze presented less color alteration. In addition, Charisma and Structur resins exhibited the greatest chromatic stability. As to the microhardness, the values were greater when the samples were treated with the glaze, with the exception of the Charisma group. - Highlights: • Polymers used in fabrication of interim prostheses were analyzed. • The influence of a chemical polishing on these polymers was analyzed.

  9. Changes to Glazed Dental Ceramic Shade, Roughness, and Microhardness after Bleaching and Simulated Brushing.

    Science.gov (United States)

    Rodrigues, Carlos Roberto Teixeira; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2017-09-05

    To evaluate shade stability, surface roughness, microhardness, and compressive strength of a glazed feldspathic ceramic subjected to bleaching and simulated brushing. Eighty-eight glazed feldspathic ceramic specimens were made from microparticulate leucite and divided into eight groups (n = 10). The whitening products used were: Opalescence Trèswhite Supreme (Ultradent), Opalescence®\\ PF 15% (Ultradent), and Oral-B 3D White Whitestrips. All substances for whitening were used for 4 hours/day for a period of 14 days; the control group was not bleached. Next, half of the specimens were individually brushed. Microhardness and surface roughness data were subjected to three-way ANOVA and Tukey test. The diametrical tensile strength data were subjected to two-way ANOVA. The shade change data were analyzed using Kruskal-Wallis, Mann-Whitney, and the Student-Newman-Keuls test. The significance level was set at 5%. Glazed feldspathic ceramic surface microhardness was significantly affected by bleaching agents (p = 0.007). Initially, glazed ceramic microhardness was significantly higher than that observed after contact with the bleaching agents, whether or not brushing was performed. The specimens submitted to bleaching in preloaded trays presented lower surface roughness values after brushing (p = 0.037). The surface roughness was significantly lower in the brushed specimens (p = 0.044). The diametrical tensile strength was not significantly affected by the application of bleaching agents (p = 0.563) or by brushing (p = 0.477). When the specimens were brushed, however, shade change was significantly influenced by the bleaching agent used (p = 0.041). Bleaching agents associated with brushing cycles can alter surface properties and shade stability of glazed feldspathic ceramics, though such findings may not reflect the performance of unglazed feldspathic ceramics. © 2017 by the American College of Prosthodontists.

  10. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    Science.gov (United States)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  11. Gothic green glazed tile from Malbork Castle: Multi-analytical study

    Czech Academy of Sciences Publication Activity Database

    Svorová Pawełkowicz, S.; Rohanová, D.; Svora, Petr

    2017-01-01

    Roč. 5, č. 1 (2017), č. článku 27. ISSN 2050-7445 Institutional support: RVO:61388980 Keywords : Antimony-doped tin oxide (ATO) * Green glazed tile * Malbork Castle * Medieval technology * Opacifiers * Silica-lead glaze Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  12. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  13. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China)], E-mail: chenglin@bnu.edu.cn; Li Rongwu [Department of Physics, Beijing Normal University, Beijing 100049 (China); Pan Qiuli [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China); Li Guoxia; Zhao Weijuan [Institute of Physical Engineering, Zhengzhou University, Zhengzhou 450052 (China); Liu Zhiguo [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China)

    2009-01-15

    The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.

  14. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence

    Science.gov (United States)

    Cheng, Lin; Li, Rongwu; Pan, Qiuli; Li, Guoxia; Zhao, Weijuan; Liu, Zhiguo

    2009-01-01

    The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.

  15. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  16. The glass-like glazed coating made of cathode-ray tube faceplates cullet

    Directory of Open Access Journals (Sweden)

    N.І. Zavgorodnya

    2016-05-01

    Full Text Available The tendency of the current time is to find ways of expedient municipal solid waste recycling as a secondary raw material with similar physicochemical and mechanical characteristics for the purpose of efficient use of resources and reduction of harmful impact on the environment. Due to the termination the production of monitors and television sets with cathode-ray tubes, a significant part of them is grow out of use in the form of dimensional waste. Kinescopes of these electric devices contain valuable components including the screen and conical glass and cathode-luminophors. Existing trends in the world of CRT faceplates cullet recycling argue for reasonability of recycling ways of this valuable secondary raw materials. Aim: The aim of researches is to determine the impact of the full replacement of quartz sand by faceplates cullet and using the zinc sulfide, reconstituted of used cathode-luminophors, as a secondary raw material in the production of glass-like glaze on the basic properties of color glaze. Materials and Methods: Cathode-ray tube faceplates are cut off during removal process, washed from dirt, dried, crushed by press, milled in a cheek grinder and finally crushed in a barrel mill. The slurried impurity (clay, dyes of desired color, including ZnS, water are added to this powder. The received mix is processed of wet grinding for slip production. Slip is surfaced on glass-ceramic tile, dried up, burned at maximum temperature of 900ºС. Results: Experimental research has shown that glass-forming, modifying and intermediate oxides of inorganic substances are added to the glaze with the CRT faceplates cullet. The Chasiv Yar clay belongs to the group with significant gas emission. The water vapor arising during the clay dehydration plays role of the "carrier" of heavy non-volatile components, considerably accelerates gas processes and increases activity of gas components. Zinc sulphide, dissolved in the silicate glaze melts when heated

  17. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  18. Solar assisted biogas plants: Pt. 4. Optimum area for blackening and double glazing over a fixed-dome biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jayashankar, B.C.; Kishor, J.; Goyal, I.C.; Sawhney, R.L.; Sodha, M.S.

    The economic analysis of a fixed-dome biogas plant of rated capacity 8 m/sup 3/, above which a part of the ground is blackened and doubly glazed in the cold climate of Srinagar is presented. Blackening and glazing of the ground cannot alone maintain the slurry temperature at 35/sup 0/C, which is the optimum temperature in the mesophilic range for the anaerobic digestion of cattle dung, and so a part of the biogas must be burnt. The electrical simulation experiments have been performed to determine the loss or gain of heat from the underground biodigestor to the ambient atmosphere through the ground if a part of the ground above is blackened and double glazed. Economic analysis of the system shows that the optimum area to be blackened and glazed would have a radius 1.5 times that of the biodigestor.

  19. Solar distillation between a simple and double-glazing

    Directory of Open Access Journals (Sweden)

    Abderrahmane KHECHEKHOUCHE

    2017-12-01

    Full Text Available The south-east region of Algeria suffers from a great socio-economic problem that affects a large population. Faced with the unavailability of drinking water, solar distillation; which appears to be a suitable and inexpensive solution; was adopted by local researchers. Improving the productivity of a solar greenhouse distiller is the subject of several researches in the world. As it is well known, distiller with simple glazing is wildly studied but unfortunately has feeble efficiency. Double glazing is a method that increases the efficiency of a flat solar collector. The idea is to use the same technique on a single-slope solar distiller (50 x 50 cm. Two glass plates separated by 1 cm between them air is trapped. Experience shows that this technique has a negative effect on the productivity of the distiller with a rate of 88.63%; it means 9 times. So double glazing is not recommended in the single slope solar distiller.

  20. Measurement of the total solar energy transmittance (g-value) for complex glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Four different complex glazings have been investigated in the Danish experimental setup METSET.The purpose of the measurements is to increase the confidence in the calorimetric measurements and to perform measurements and corrections according to a method developed in the ALTSET project...

  1. Experimental Study of the Slit Spacing and Bed Height on the Thermal Performance of Slit-Glazed Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Seyyed Mahdi Taheri Mousavi

    2017-01-01

    Full Text Available The thermal performances of three slit-glazed solar air heaters (SGSAHs were investigated experimentally. Three SGSAHs with different bed heights (7 cm, 5 cm, and 3 cm were fabricated with multiple glass panes used for glazing. The length, width, and thickness of each pane were 154 cm, 6 cm, and 0.4 cm, respectively. Ambient air was continuously withdrawn through the gaps between the glass panes by fans. The experiments were conducted for four different gap distances between the glass panes (0.5 mm, 1 mm, 2 mm, and 3 mm and the air mass flow rate was varied between 0.014 kg/s and 0.057 kg/s. The effects of air mass flux on the outlet temperature and thermal efficiency were studied. For the SGSAH with bed height of 7 cm and glass pane gap distance of 0.5 mm, the highest efficiency was obtained as 82% at a mass flow rate of 0.057 kg/s and the air temperature difference between the inlet and the outlet (∆T was maximum (27°C when the mass flow rate was least. The results demonstrate that for lower mass flow rates and larger gaps, the performance of SGSAH with a bed height of 3 cm was better compared to that of others. However, for higher mass flow rates, the SGSAH with 7 cm bed height performed better.

  2. Development of lime based mortars for repairing glazed tile coatings of historic buildings in the city of Ovar, Portugal

    Directory of Open Access Journals (Sweden)

    B. Teixeira

    2008-01-01

    Full Text Available Portugal is one of the European countries in which built heritage is a testimony of its history. In this context, the legacy of the decorative glazed tile coatings of facades must be preserved and restored. This research is dedicated to the conservation of such facades in the city of Ovar, considered an example due to its rich heritage in glazed tiles, a high percentage of which requires a deep intervention. Therefore, this work is focused on the study of lime renders serving as a support for this type of tile facades. For this, samples were collected from several buildings in the city, targeting their mechanical and physical study with the aim of producing compatible mortars to be used for application of detached tiles in these buildings and generally for the repair of the facades with glazed tile coatings. For this purpose, four lime mortar formulations with different volumetric ratios were composed. The aggregates used were: ordinary river sand and local gravel. In three of the mixtures, metakaolin was added, with the intention of acting as an artificial pozzolan and thus improving the performance of these mortars. The use of a pozzolanic addition promotes hardening of lime mortars in cases when the ingression of carbon dioxide is low as is the case of mortars placed below glazed tile coatings. These mortars were also tested in the laboratory taking into account their physical and mechanical characteristics. The mechanical characteristics determined were: modulus of elasticity by two different methods, compressive strength and flexural strength. In turn, the physical characteristics determined were: water vapour permeability and water absorption by total immersion and capillary action. The best mechanical behaviour (compressive and flexural was observed in the mortar with pozzolanic additions. Similarly, the value of the modulus of elasticity was better in mortars with pozzolanic additions. The performance of these mortars was also adequate

  3. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Gao, Yanfeng; Zou, Ruqiang

    2014-01-01

    Highlights: • VO 2 and PCM were combined in passive building application for the first time. • Synergetic performance of them is demonstrated in a full size room. • Synergetic application has a better performance than the solo ones. • The materials interact with each other in synergetic application. • ESI can be used to evaluate the performance of the synergetic application. - Abstract: One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO 2 ) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO 2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The

  4. Topographic characterization of glazed surfaces

    International Nuclear Information System (INIS)

    Froeberg, Linda; Hupa, Leena

    2008-01-01

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface

  5. Topographic characterization of glazed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Froeberg, Linda [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)], E-mail: lfroberg@abo.fi; Hupa, Leena [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)

    2008-01-15

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface.

  6. Time-Dependent Effects of Glaze Ice on the Aerodynamic Characteristics of an Airfoil

    Directory of Open Access Journals (Sweden)

    Narges Tabatabaei

    2018-01-01

    Full Text Available The main objective of this study is to estimate the dynamic loads acting over a glaze-iced airfoil. This work studies the performance of unsteady Reynolds-averaged Navier-Stokes (URANS simulations in predicting the oscillations over an iced airfoil. The structure and size of time-averaged vortices are compared to measurements. Furthermore, the accuracy of a two-equation eddy viscosity turbulence model, the shear stress transport (SST model, is investigated in the case of the dynamic load analysis over a glaze-iced airfoil. The computational fluid dynamic analysis was conducted to investigate the effect of critical ice accretions on a 0.610 m chord NACA 0011 airfoil. Leading edge glaze ice accretion was simulated with flat plates (spoiler-ice extending along the span of the blade. Aerodynamic performance coefficients and pressure profiles were calculated and validated for the Reynolds number of 1.83 × 106. Furthermore, turbulent separation bubbles were studied. The numerical results confirm both time-dependent phenomena observed in previous similar measurements: (1 low-frequency mode, with a Strouhal number Sth≈0,013–0.02, and (2 higher frequency mode with a Strouhal number StL≈0,059–0.69. The higher frequency motion has the same characteristics as the shedding mode and the lower frequency motion has the flapping mode characteristics.

  7. Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings

    International Nuclear Information System (INIS)

    Gil-Lopez, Tomas; Gimenez-Molina, Carmen

    2013-01-01

    Highlights: ► Glazed façade area is the part that produces greatest energy losses and gains. ► A potential for energy savings has been detected in residential buildings. ► Active glazing comprising two laminated glass panels with a circulating water chamber. ► Analysis of energy performance, economic viability and impact on carbon footprint. ► Natural gas condensing boilers is the less contaminating and more efficient option. -- Abstract: In general, the glazed façade area of a building is the part that produces the greatest energy losses and gains. The basic aim of this work is to achieve a more efficient heat control in closed spaces. To this end, an exhaustive study has been made of active glazing comprising two laminated glass panels with a circulating water chamber. Not only has the energy consumption been analysed but also the energy efficiency according to fuel type, the amount of CO 2 emitted into the atmosphere and the economic cost. The results of this study, from the points of view of economic feasibility and energy efficiency, show that the solution of double glazing with a circulating water chamber is a less polluting and more efficient option than the systems currently used. This solution is able to reduce the energy losses and gains that are produced through the glazed façade of a building by 18.26% for calorific and frigorific energy compared to the total consumption of the building. The layout of the proposed installation facilitates its integration into any type of residential building, either under construction or being renovated. Moreover, its zero visual impact means it can even be implemented in places with strict town-planning regulations.

  8. Optimum Design Parameters of Box Window DSF Office at Different Glazing Types under Sub Interval of Intermediate Sky Conditions (20-40 klux)

    Science.gov (United States)

    Elayeb, O. K.; Alghoul, M. A.; Sopian, K.; Khrita, N. G.

    2017-11-01

    Despite Double skin façade (DSF) buildings are widely deployed worldwide, daylighting strategy is not commonly incorporated in these buildings compare to other strategies. Therefore, further theoretical and experimental studies would lead to adopting daylighting strategy in DSF office buildings. The aim of this study is to investigate the daylighting performance of office building at different design parameters of box window DSF using different glazing types under sub interval of intermediate sky conditions (20-40) klux using the (IES VE) simulation tool from Integrated Environmental Solutions - Virtual Environment. The implemented design parameters are window wall ratio (WWR) of internal façade (10-100) %, cavity depth (CD) of DSF (1-2.5) m and different glazing types. The glazing types were selected from the list available in the (IES VE) simulation tool. After series of evaluations, bronze tinted coating (STOPSOL) is implemented for the exterior façade while clear float, clear reflective coating (STOPSOL), grey and brown tinted coating (Anti-sun float) and blue coating tinted (SUNCOOL float) are implemented for the interior façade. In this paper, several evaluation parameters are used to quantify the optimum design parameters that would balance the daylighting requirements of a box window DSF office versus sky conditions range (20-40) klux. The optimum design parameters of DSF office building obtained under different glazing types are highlighted as follows. When using bronze tinted coating (STOPSOL) for the exterior façade, the glazing types of interior façade that showed superior daylighting performance of DSF office at (CD of 1.0m with WWR of 70%), (CD of 1.5m with WWR of 70%), (CD of 2.0m with WWR of 70%) and (CD of 2.0m with WWR of 70%) are grey tinted coating (Anti-sun float), clear reflective coating (STOPSOL), brown tinted coating (Anti-sun float), and clear float glazing respectively. Blue Coating tinted (SUNCOOL float) of interior façade glazing

  9. Measurement of natural radioactivity in commercial granites and glazing stones from Aswan area, Egypt

    International Nuclear Information System (INIS)

    Ahmad, F.; Shousha, H.A.

    2005-01-01

    Ornamental stones are considered as an important source of the mineral wealth in Egypt. These rocks have characteristics that enable them to be used in decoration as being hard, able to be polished and have low water absorption. A knowledge of radioactivity present in these natural rock samples helps to assess the possible radiological hazards to human health and hence take safety precautions if necessary. For the first time, the natural radioactivity of glazing stones used in granite possessing was measured. The concentration of natural radionuclides U-238, Th-232 and K-40 for eighteen ore and three processed granite samples from Aswan area have been determined using a shielded high purity germanium detector coupled to a computerized multichannel analyzer. Also, the gamma activities of 13 glazing stones, which are used in processing of granite, were measured. The average values of the measured activities for granite were 66.15 ± 4.48, 86.12 ± 5.43 and 1902.03 ± 50.64 Bq/kg and for glazing stones were 44.05 ± 3.54, 51.58 ± 4.44 and 87.55 ± 5.46 Bq/kg for U-238, Th-232 and K-40, respectively. The main absorbed dose rates were 167.04 ± 7.52 and 56.72 ± 7.00 n Gy/h at one meter above the ground level for granite and glazing stones, respectively. The average estimated radium equivalent was 335.75 ± 16.48 and 124.55 ± 11.36 Bq/kg for granite and glazing stones, respectively. This value is comparable with the reported values for many countries (370 Bq/kg). The external hazard index varied from 0.5 ± 0.02 to 1.79 ± 0.09 mGy/y for granite and from 0.042 ± 0.011 to 0.852 ± 0.080 mGy/y for glazing stones. Cs-137 concentration ranged from 0.15 ± 0.07 to 3.31 ± 0.29 Bq/kg for granite and from 0.29 ± 0.02 to 1.49 ± 0.010 Bq/kg for glazing stones. For glazing stones, the measured samples are acceptable for use and safe to the workers in granite processing. The radon exhalation rate for granite samples was calculated using nuclear track detector (CR-39). It was

  10. [Chemical composition and chromaticity characteristic of Jilan glaze of Ming and Qing official kilns].

    Science.gov (United States)

    Wu, Jun-ming; Zhang, Mao-lin; Li, Qi-jiang; Wu, Juan; Quan, Kui-shan; Cao, Jian-wen

    2012-08-01

    Color glazes of Ming and Qing official kilns are excellent representatives of the famous ancient Chinese porcelains. The study of official ware with Jilan glaze has been an important topic. But it made slow progress due to the rarity of samples with strict production management and using system. The recipes, chemical composition and chromaticity characteristic of the Jilan samples excavated from official kilns in the Ming and Qing dynasties were first discussed by systematical testing with the energy dispersive X-ray fluorescence (EDXRF) and color difference meter. The results showed that the porcelain stone content in Jilan bodies of official kiln in the Ming dynasty is higher than the samples of the Qing dynasty. The manganese content in Jilan glazes of the Ming dynasty is higher than that in the Qing dynasty, while the glaze ash addition and the lightness value in the glaze are opposite.

  11. 49 CFR 571.205(a) - Glazing equipment manufactured before September 1, 2006 and glazing materials used in vehicles...

    Science.gov (United States)

    2010-10-01

    ... injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor... material that will minimize the loss of transparency, and instructions for removing frost and ice, and, at...

  12. Next generation structural silicone glazing

    Directory of Open Access Journals (Sweden)

    Charles D. Clift

    2015-06-01

    Full Text Available This paper presents an advanced engineering evaluation, using nonlinear analysis of hyper elastic material that provides significant improvement to structural silicone glazing (SSG design in high performance curtain wall systems. Very high cladding wind pressures required in hurricane zones often result in bulky SSG profile dimensions. Architectural desire for aesthetically slender curtain wall framing sight-lines in combination with a desire to reduce aluminium usage led to optimization of silicone material geometry for better stress distribution.To accomplish accurate simulation of predicted behaviour under structural load, robust stress-strain curves of the silicone material are essential. The silicone manufacturer provided physical property testing via a specialized laboratory protocol. A series of rigorous curve fit techniques were then made to closely model test data in the finite element computer analysis that accounts for nonlinear strain of hyper elastic silicone.Comparison of this advanced design technique to traditional SSG design highlights differences in stress distribution contours in the silicone material. Simplified structural engineering per the traditional SSG design method does not provide accurate forecasting of material and stress optimization as shown in the advanced design.Full-scale specimens subject to structural load testing were performed to verify the design capacity, not only for high wind pressure values, but also for debris impact per ASTM E1886 and ASTM E1996. Also, construction of the test specimens allowed development of SSG installation techniques necessitated by the unique geometry of the silicone profile. Finally, correlation of physical test results with theoretical simulations is made, so evaluation of design confidence is possible. This design technique will introduce significant engineering advancement to the curtain wall industry.

  13. Use of a new borate raw material for glaze formulation; Utilizacion de una nueva materia prima boracica para la formulacion de esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-07-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO{sub 2}), aluminium oxide (Al{sub 2}O{sub 3}), boron oxide (B{sub 2}O{sub 3}), calcium oxide (CaO), and sodium oxide (Na{sub 2}O), its content in B{sub 2}O{sub 3} being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  14. Chemical behavior and spectroscopic properties of rare earth borates in glazes

    Energy Technology Data Exchange (ETDEWEB)

    Lezhnina, Marina M., E-mail: marina@fh-muenster.de [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Kätker, Heike [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Kaiser, Martin [Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin (Germany); Stegemann, Linda [University of Muenster, Physical Institute, Heisenbergstr. 11, 48149 Muenster (Germany); Voss, Eckhard [Wendel GmbH, Am Güterbahnhof 30, 35683 Dillenburg (Germany); Resch-Genger, Ute [Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin (Germany); Strassert, Cristian [University of Muenster, Physical Institute, Heisenbergstr. 11, 48149 Muenster (Germany); Kynast, Ulrich [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany)

    2016-02-15

    Efficient Near UV excited materials (350<λ<400 nm) responding with green line emission are sparse in comparison to higher energy UV excited emitters (λ<350 nm), while corresponding red line emitters are more abundant, albeit typically also restricted to excitation wavelengths below 400 nm. This situation is disadvantageous for several important actual and potential applications. Among these, excitation with high power UV-LEDs and laser diodes are of particular interest. Here we present results on green emitting YBO{sub 3}:Ce, Tb, which can be excited with 370–380 nm radiation at quantum efficiencies of up to 60% and decay times in excess of 2 ms. Moreover, as powderous phosphors typically require stable matrices to be hosted in, we investigated low melting, lead- and fluoride-free glasses for their capability to accommodate the phosphor and yet retain its optical properties. In these, we even observed an increase of the quantum efficiencies of up to 70% at decay times approaching 3 ms. Finally, we characterized the thermal quenching behavior, which showed a clear advantage of the phosphors in glassy matrices. - Highlights: • YBO3:Ce, Tb revisited as a reference material for Near UV excitation. • Absolute quantum yields determined independently at different institutions. • Efficient luminescence from glazing YBO{sub 3}:Ce,Tb with glass forming compositions. • Glaze composites retain or surpass pure phosphor’s optical performance.

  15. [Environmental lead poisoning from lead-glazed earthenware used for storing drinks].

    Science.gov (United States)

    Sabouraud, S; Coppéré, B; Rousseau, C; Testud, F; Pulce, C; Tholly, F; Blanc, M; Culoma, F; Facchin, A; Ninet, J; Chambon, P; Medina, B; Descotes, J

    2009-12-01

    Current unusual environmental sources of lead exposure mainly include traditional medicines, either ayurvedic remedies or others, traditional cosmetics (kohl, surma), and the use of traditional earthenware, for storage or cooking. We report two cases of lead poisoning in adults initially identified by paroxysmal abdominal pain or anemia. In both cases, the environmental investigation evidenced one main source of lead exposure, namely a lead-glazed earthenware jug in which a drink was stored, "kefir" in the first case, and "kombucha" tea in the second one. It is recommended to search for lead intoxication in patients with unexplained anemia. Environmental sources of lead can be multiple. Their relative importance has to be ranked during the environmental investigation and among these, lead-glazed earthenware must be considered as a source of high lead exposure when drinks are stored inside and thus can soak.

  16. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    International Nuclear Information System (INIS)

    Vieira Ferreira, L.F.; Ferreira Machado, I.; Ferraria, A.M.; Casimiro, T.M.; Colomban, Ph.

    2013-01-01

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO 2 . All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  17. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Ferreira, L.F., E-mail: LuisFilipeVF@ist.utl.pt [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ferreira Machado, I. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Department of Technology and Design, School of Technology and Management, Polytechnic Institute of Portalegre, P-7300-110 Portalegre (Portugal); Ferraria, A.M. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Casimiro, T.M. [Instituto de Arqueologia e Paleociências da Universidade Nova de Lisboa, Departamento de História, Avenida de Berna 26-C, 1069-061 Lisboa (Portugal); Colomban, Ph. [Laboratoire de Dynamique, Interaction et Réactivité, UMR7075 CNRS-Université Pierre et Marie-Curie, Paris 6, 4 Place Jussieu, C49 batF, 75252 Paris Cedex 05 (France)

    2013-11-15

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO{sub 2}. All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  18. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    International Nuclear Information System (INIS)

    Cheng Lin; Li Meitian; Kim Youshi; Fan Changsheng; Wang Shanghai; Pan Qiuli; Liu Zhiguo; Li Rongwu

    2011-01-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  19. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin, E-mail: chenglin@bnu.edu.c [Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Radiation Center, Beijing 100875 (China); Li Meitian; Kim Youshi [Beijing Normal University, Beijing 100875 (China); Fan Changsheng; Wang Shanghai [Jiangxi Provincial Institute of Archaeology, Jiangxi Province 330025 (China); Pan Qiuli; Liu Zhiguo [Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Radiation Center, Beijing 100875 (China); Li Rongwu [Beijing Normal University, Beijing 100875 (China)

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  20. Study parameters process for production of red glazed ceramic plates with waste of stones

    International Nuclear Information System (INIS)

    Santos, J.C.; Taguchi, S.P.; Silva, A.C.

    2014-01-01

    The volume of fine waste's solid dimension stone industry has required a destination appropriate for them due to environmental and economic issues. The main goal of this work was to study the produce plates of glazed pottery with dimension stone waste. For analyzing the crystal structure, the test was conducted X-ray and X-ray fluorescence to determine the chemical composition of clay and the waste. Particle size was analysed too. Ceramic duo type (120x30x10mm) were sintered at 1280° C for 15 and 60 minutes. Characterized the samples for water absorption. The glaze had a strong anchorage in the ceramic base, but the high melting temperature caused cracks in the ceramic base, increasing the water absorption values. Thus, flux was added, based on the phase diagram Na_2O: CaO: SiO_2, which reduced the melting temperature of the glaze to 980 °C, enabling to produce the ceramic at 1100°C for 30 minutes, more uniform surface and best technological properties. (author)

  1. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  2. [Adhesion of oral microorganisms on dental porcelain polished and glazed].

    Science.gov (United States)

    Wang, Yi-ning; Wen, Guo-jiang; Shi, Bin; Pan, Xin-hua

    2003-09-01

    This study compared the roughness of porcelain polished or glazed surfaces and the adhesion of oral streptococcus mutans to them in vitro. 30 porcelain samples were made. Porcelain samples in group A were polished with diamond paste. Porcelain samples were glazed in group B and were polished with Al2O3 (240#) bur in group C. Their roughness values were measured by profilometer. Standardized cell suspensions were incubated with test samples for one hour at 37 degrees C, then retained cells were counted by image analysis (percentage area of a microscopic field covered by cells). Roughness values of group A, B, C were respectively (0.1987 +/- 0.057) microm, (0.1990 +/- 0.091) microm, (0.4260 +/- 0.174) microm. There was no significantly difference between group A and group B. The roughness samples in group C were significantly rougher than that in the other groups. The amount of retained cells in group A, group B, group C was respectively (15.92 +/- 4.37)%, (16.39 +/- 6.31)% and (41.48 +/- 12.1)%. There was no significant difference between the cell adhesion on porcelain surface glazed and polished, but more bacteria adhered on the porcelain surface in group C. Porcelain surface polished treatment was clinically acceptable compared with its glazed. They all exhibited the least amount of bacteria adhesion. The more porcelain surface was rough, the more bacteria adhered on it.

  3. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.

    Science.gov (United States)

    Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C

    2013-09-01

    Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Thermal performance of a room with a double glazing window using glazing available in Mexican market

    International Nuclear Information System (INIS)

    Aguilar, J.O.; Xamán, J.; Olazo-Gómez, Y.; Hernández-López, I.; Becerra, G.; Jaramillo, O.A.

    2017-01-01

    Highlights: • Thermal evaluation of a Room coupled with different types of Double Glazing Window (DGW) is analyzed. • Four cases were simulated: Case 1: DGW (clear); Case 2: DGW (absorbent), Case 3: DGW (Low-e) and Case 4: DGW (reflective). • Case 4 presents the better energy saving of all cases analyzed, ∼73% lower than Case 1. • Cases 2 and 3 have a similar thermal behavior, almost 34% less than Case 1. • The global balance costs indicate that Case 4 is the better option for energy saving in warm climate. • Case 4 allows us to save up to $20.29 USD per kW h in a year in comparison to Case 1. - Abstract: A thermal evaluation of a four configurations of double glass window (DGW) coupling to a room is presented. The DGW consists of two vertical semitransparent walls separated by a 12 mm air gap. The effect of varying the ambient temperature and the incident solar radiation in the warm climate conditions in México is analyzed. Numerical simulations were conducted for four configurations; Case 1: clear glass + air gap + clear glass (Reference); Case 2: clear glass + air gap + absorbent glass; Case 3: clear glass + air gap + Low-e glass; and Case 4: clear glass + air gap + reflective glass. Optical transmittance and specular reflectance were measured individually and in one sample piece for each case. The results showed that Case 4 reduces the heat flux to the indoors by up to 73%, with respect to Case 1. Moreover, Cases 2 and 3 had a similar behavior, obtaining a reduction of indoor heat flow close to 33.5% with respect to Case 1. Case 4 is the best option for energy savings in a warm climate, where it is possible to save up to $20.29 USD per kW h per year, in comparison to Case 1. In addition, the payback period for Case 4 is 3.7 years. Therefore, the use of reflective double pane window is highly recommended in Mexican warm climates.

  5. Analytical investigations of glazed Islamic pottery

    International Nuclear Information System (INIS)

    Pernicka, E.; Krejsa, P.

    1978-08-01

    42 fragments of medieval glazed pottery from seven sites in Iran, Afghanistan and India were analyzed by instrumental neutron activation analysis (INAA). In addition a secondary clay standard and some samples were analyzed by X-ray fluorescence for their main components. The results of the trace analysis formed the basis for cluster analysis using the graphtheoretical method of the minimum spanning tree. The samples were partitioned into five clusters, which were compared with the provenance of their respective members. Preliminary results indicate that pottery from the north of Afganistan can be differentiated from the southern one, while the southern ware seems to be homogeneous over a large area from Herat to Ghazni. Some of the pottery samples from Sistan have a different composition, which is due to a different production technique. The mass probably consisted of a 4 : 1 mixture of quartz and clay or a 15 : 4 : 1 mixture of quartz, clay and frit for the glaze. A similar recipe is described by Abu'l-Quasim, a medieval Persian potter. (author)

  6. Characteristics of ancient Egyptian glazed ceramic objects from Fatimid and Mamluk periods as revealed by ion beam analysis

    International Nuclear Information System (INIS)

    Sadek, Hamada; Abd El Hady M M

    2012-01-01

    Ion beam analysis (PIXE, μPIXE) has been successfully applied in analysis of archaeological materials, it has many advantages. In this work Ion Beam Analysis (IBA) used in analysis of ancient Egyptian glazed ceramic from 10th to the 16th centuries (Fatimid and Mamluk periods). Glazed ceramic samples from Al-Fustat Excavation store have been chosen to represent different colours (green, blue, brown, black ...etc), the colours of glaze depend on many factors such as oxides present in the glaze layer, fluxes and the conditions in which objects had been manufactured in the past. Ion Beam allows the identification of elemental composition of the glaze layer i.e., the information about colorants used in glaze, which is of great importance for compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship between ancient cultures with the environment.

  7. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    batch. Furthermore the production time has been reduced to 1/3 of the initial production time through detailed theoretical and experimental analyses of especially the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most...... insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance above 85% and a U-value of 0.7 W/m2 K for about 14 mm aerogel thickness, which for a 20 mm thickness corresponds to a U-value of approximately 0.5 W/m2K...

  8. The provenance study of Chinese ancient color glaze from Shanxi by INAA and factor analysis

    International Nuclear Information System (INIS)

    Cheng, L.; Ding, X.L.; Feng, S.L.; Feng, X.Q.; Lu, Z.R.

    2005-01-01

    This paper reports the results of the provenance study of Chinese ancient color glaze in Shanxi. The minor and trace elements of body of color glaze in different dynasty from Xiyue temper kiln and that of Lidipo kiln in Ming Dynasty determined by INAA, some of ancient porcelain from Lidipo kiln were measured, also. The factor analysis showed that provenances of the ancient color glazes from Xiyue Temple that were produced during Song Dynasty to the early Qing Dynasty were in the place of the Xiyue kiln, and body material of ancient color have little been changed, on the other hand, that of Later Qing Dynasty were-produced from Lidipo kiln. Different color glazes were measured by SRXRF and it proved the colored elements were Fe and Cu.

  9. Study of the composition and viscosity of engobe and glazed from dimension stones wastes for application in red tile

    International Nuclear Information System (INIS)

    Hastenreiter, L.L. G.; Santos, J.C.; Taguchi, S.P.

    2014-01-01

    The dimension stones wastes has some constituents that may be employed in the ceramic. This work is about the production of engobe and glaze for ceramic coating. Chemical characterization of the residue and Clay (XRF) was performed. Several compositions were tested in order to decrease the melting temperature of the glaze to 980°C, enabling to produce the ceramic at 1100°C for 15 to 60 minutes, it presenting more uniform and better technological properties of the surface. The viscosities of some compositions of glaze and engobe were studied, to be applied on the red tile (100x100mm) to obtain the ceramic coating. These were analyzed for resistance to abrasion, according to NBR 13 818/1997 and it was found that the ceramic was classified as PEI 1 and may be used, eg in residential bathrooms and dormitories with no doors to the outside. (author)

  10. Neutron activation analysis of the arovenance relation of tang tri-color glazed potteryies of huangye kiln and yaozhou kiln

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Guo Min

    2006-01-01

    The technique of neutron activation analysis (NAA) has been employed to measure the content of 29 kinds of elements in the Tang Tri-color glazed potteryies of Huangye kiln and Yaozhou kiln. Then a fuzzy cluster analysis has been conducted to the NAA data. The results indicate that the places of origin of raw materials of body samples in the Tang Tri-color glazed potteryies of Huangye kiln are very concentrated, and that the places of origin of raw materials of body and glaze samples are scattered the places of origin of raw materials of the body and glaze raw material cover that of the body raw material. The source of raw materials of samples in the Tang Tri-color glazed potteryies of Huangye kiln is obviously different from that of samples in the Tang Tri-color glazed potteryies of Yaozhou kiln. (authors)

  11. Evaluation of green tea extract as a glazing material for shrimp frozen by cryogenic freezing.

    Science.gov (United States)

    Sundararajan, Srijanani; Prudente, Alfredo; Bankston, J David; King, Joan M; Wilson, Paul; Sathivel, Subramaniam

    2011-09-01

    Solutions of green tea (Camellia sinensis) extract (GTE) in distilled water were evaluated as a glazing material for shrimp frozen by cryogenic freezing. Total of 2%, 3%, and/or 5% GTE solutions (2GTE, 3GTE, 5GTE) were used for glazing. Distilled water glazed (GDW) and nonglazed shrimp (NG) served as controls. The GTE was characterized by measuring color, pH, (o) Brix, total phenols, and % antiradical activity. Individual catechins were identified by HPLC. The freezing time, freezing rate, and energy removal rate for freezing shrimp by cryogenic freezing process were estimated. The frozen shrimp samples were stored in a freezer at -21 °C for 180 d. Samples were analyzed for pH, moisture content, glazing yield, thaw yield, color, cutting force, and thiobarbituric acid reactive substances (TBARS) after 1, 30, 90, and 180 d. The HPLC analysis of GTE revealed the presence of catechins and their isomers and the total polyphenol content was 148.10 ± 2.49 g/L. The freezing time (min) and energy removal rate (J/s) were 48.67 ± 2.3 and 836.67 ± 78.95, respectively. Glazed samples had higher moisture content compared to NG shrimp after 180 d storage. GTE was effective in controlling the lipid oxidation in shrimp. Glazing with GTE affected a* and b* color values, but had no significant effect on the L* values of shrimp. © 2011 Institute of Food Technologists®

  12. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks.

    Science.gov (United States)

    Tekçe, Neslihan; Fidan, Sinan; Tuncer, Safa; Kara, Dilan; Demirci, Mustafa

    2018-02-01

    To investigate the effect of accelerated aging on surface properties of glazed CAD/CAM resin blocks using a 2D surface profilometer and a 3D non-contact optical profilometer. Three types of CAD/CAM resin restorative materials, LAVA Ultimate (3M ESPE, St Paul, MN, USA), VITA Enamic (Vita Zahnfabrik H. Rauter, Bad Säckingen, Germany), and Cerasmart (GC Corparation, Tokyo, Japan) were used for this study. CAD/CAM blocks were cut in 3-mm thickness slabs and divided into three groups; Group 1: control group (specimens polished with 600 grit SCI paper); Group 2: specimens sandblasted, silanized, and glazed with Optiglaze Color (GC); Group 3: glazed specimens subjected to 5000 thermocycles (n=15). The surface roughness (R a and R z ) was evaluated using a profilometer and a 3D scanning instrument. Data were analyzed using two-way ANOVA and Tukey's post-hoc test ( P .05). For VITA and Cerasmart, the specimens in Group 1 exhibited significantly higher R a values than Group 2 ( P .05). Glaze material Optiglaze Color makes CAD/CAM resin surfaces smooth and glazed CAD/CAM surfaces seem resistant to deterioration under 5000 thermocycles.

  13. Orthodontic bracket bonding to glazed full-contour zirconia

    Directory of Open Access Journals (Sweden)

    Ji-Young Kwak

    2016-05-01

    Full Text Available Objectives This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods Glazed zirconia (except for the control, Zirkonzahn Prettau disc surfaces were pre-treated: PO (control, polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z or a silane primer (Monobond-S, S was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S. Metal bracket-bonded specimens were stored in water for 24 hr at 37℃, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10. Results Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z (4.60 ± 1.08 MPa and all other groups (13.38 ± 2.57 - 15.78 ± 2.39 MPa, p < 0.05. For AA-Z, most of the adhesive remained on the bracket. Conclusions For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

  14. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Energy Technology Data Exchange (ETDEWEB)

    Van Pevenage, J., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Verhaeven, E. [Department of Conservation and Restoration, University College Antwerp, Blindestraat 9, B-2000 Antwerp (Belgium); Vekemans, B. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Lauwers, D., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Herremans, D.; De Clercq, W. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Vincze, L. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Moens, L., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Vandenabeele, P. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium)

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661–1722), and the samples of group B produced under emperor Qianlong (1735–1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated. - Highlights: • Fully described methodology for the analysis of silicate glazes of Chinese porcelain samples • The combination of a semi-quantitative analysis of silicate glazes, multi-variate data and statistical analysis. • The use of Seger formula to understand better the composition of the glazes. • New insights into the glaze composition and structure of Chinese porcelain glazes of different time periods.

  15. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    International Nuclear Information System (INIS)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661–1722), and the samples of group B produced under emperor Qianlong (1735–1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated. - Highlights: • Fully described methodology for the analysis of silicate glazes of Chinese porcelain samples • The combination of a semi-quantitative analysis of silicate glazes, multi-variate data and statistical analysis. • The use of Seger formula to understand better the composition of the glazes. • New insights into the glaze composition and structure of Chinese porcelain glazes of different time periods

  16. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  17. Partial Rarefaction as Way to Reduce Distortion Curve of double-glazed unit

    Science.gov (United States)

    Plotnikov, Alexander

    2017-10-01

    Use of Insulated Glass Units (IGU) as glazing on building façades causes optical distortions of mirrored images of neighboring buildings in glazed surfaces. Optical distortions are caused by varying distances between glass panes in IGUs as a result of climate factors. This paper examines available engineering solutions that reduce such distortions: use of more rigid outer glasses, encasing the building in a shell of single glass panes, known as the ‘double façade’, and use of vacuum IGUs. A new way is proposed to reduce optical distortions by installing additional pointed or linear supports and creating pre-stress with partial rarefaction inside the IGU. Overpressure that can cause IGU expansion and glass deformation was calculated. In the urban environment of Moscow, reduction of air pressure with simultaneous increase of air pressure inside the IGU during summer heat waves can be as high as 5%, and this figure determines the level of rarefaction.

  18. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  19. Low emissivity insulating glazing materials: principle and examples; Les vitrages isolants a basse emissivite: principe et exemples

    Energy Technology Data Exchange (ETDEWEB)

    Prost, A. [Saint-Gobain Recherche, 93 - Aubervilliers (France)

    1996-12-31

    One of the stakes of flat glass industry is the limitation of thermal losses from indoor to outdoor through glass walls (K coefficient) in order to increase energy savings. Thermal insulation performances of a double glazing can be reinforced by the application of a highly reflective (low emissive) film with respect to thermal infrared radiation. The low emissive character is obtained with the use of surface-deposited materials that can be described using the Drude model: vacuum pulverization of metals, and vacuum pulverization or pyrolysis deposition of doped semi-conductor oxides. (J.S.)

  20. A systematization of glaze spalling in azulejos

    Directory of Open Access Journals (Sweden)

    João Manuel Mimoso

    2016-01-01

    Full Text Available The detachment of the glaze in azulejos is the ultimate form of decay, since it leads to the loss of the pictorial content. The detachment is usually considered in a diffuse way, however a close observation allows recognizing several types, often related to crazing, which this paper proposes to systematize.

  1. Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique

    Science.gov (United States)

    Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi

    2018-05-01

    Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.

  2. Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs

    Science.gov (United States)

    Spanard, Jan-Marie A.

    2014-02-01

    Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.

  3. Optimising the performance of the window

    Energy Technology Data Exchange (ETDEWEB)

    Luther, M.B. [Deakin Univ., Geelong, VIC (Australia); Boland, J. [South Australia Univ., Adelaide, SA (Australia)

    1996-12-31

    Glass is a versatile material in the design and performance of windows. Advancements in the technologies of the glass material have produced variable degrees of window thermal performance. A closer look at the glazing system itself in reference to overall building thermal performance will hopefully explain when, where and how the window is a benefit under specific climatic conditions. The optimization of equatorially facing window area for either single or double glazing systems is investigated in another paper in this conference, and it is now queried as to how the design of the window itself can benefit the annual performance of a residence. Two locations were investigated, each for a hot summer and cold winter week. Separate glazing analysis programs are also used independent of the thermal residential program CHEETAH. Three glazing systems, single 3 mm, double 3 mm, and a spectrally-selective double 3 mm system were investigated. There appears to be little difference in the total overall performance between a clear and a selective double insulated glazing system. It is further suggested that there is room for future improvement to thermal simulation programs by incorporating rigorous glazing simulation. 9 figs., 8 refs.

  4. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    Science.gov (United States)

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  6. Study on sources of colored glaze of Xiyue Temple in Shanxi province by INAA and multivariable statistical analysis

    International Nuclear Information System (INIS)

    Cheng Lin; Feng Songlin

    2005-01-01

    The major, minor and trace elements in the bodies of ancient colored glazes which came from the site of Xiyue Temple and Lidipo kiln in Shanxi province, and were unearthed from the stratums of Song, Yuan, Ming, Early Qing and Late Qing dynasty were analyzed by instrumental neutron activation analysis (INAA). The results of multivariable statistical analyses show that the chemical compositions of the colored glaze bodies are steady from Song to Early Qing dynasty, but distinctly different from that in Late Qing. Probably, the sources of fired material of ancient colored glaze from Song to Early Qing came from the site of Xiyue Temple. The chemical compositions of three pieces of colored glazes in Ming dynasty and that in Late Qing are similar to that of Lidipo kiln. From this, authors could conclude that the sources of the materials of ancient coloured glazes of Xiyue Temple in Late Qing dynasty were fired in Lidipo kiln. (authors)

  7. High-performance commercial building facades

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to

  8. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  9. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  10. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  11. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Science.gov (United States)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated.

  12. 2004 Survey of United States architects on the subject of switchable glazings

    International Nuclear Information System (INIS)

    Sottile, G.M.

    2005-01-01

    The 21st century has ushered in an era marked by the growing integration of technology and other scientific advances into commercial buildings and residential homes. Of particular interest to many architects, developers and builders are 'switchable' glazing, a new category of technologically advanced glass and plastic building materials that can be used to control light, glare and heat entering an office or a home. Interest in switchable glazing technology is influenced by a variety of factors, including a growing movement to offer sustainable, energy-efficient building solutions, and the emerging desire by users to maintain greater control over their working and living environments. This paper examines the movement toward sustainable development and the end-user needs that are driving it. Further, it presents the results of a proprietary survey research study of United States architects on the subject of switchable glazing. This study includes an examination of the attributes most desired by architects regarding smart window technology, and provides additional insight into the potential application of this smart material to the building community

  13. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  14. Assessment of five control strategies of an adjustable glazing at three different climate zones

    Directory of Open Access Journals (Sweden)

    Volker Ritter

    2015-11-01

    Full Text Available The energy demand for operating modern office spaces is often driven by either the annual heating demand, cooling demand or the demand for electrical lighting. The irradiation of the sun directly and indirectly affects the demand of all three. Consequently, the glazing of higher office buildings is often treated with coating that allows a fixed transmittance. Due to changing exterior conditions and interior needs, a fix-transmittance value is a compromise and most often doesn’t provide optimal thermal and visual conditions. The team in the research project named Fluidglass develops a new glazing in which the transmittance of the glazing can be adjusted. This is possible by colouring a fluid, which is circulated in chambers of the glazing. The concentration of the colorant can be infinitely adjusted. In addition, this window allows collecting heat in the exterior fluid and allows the interior fluid chamber to operate as heating panel. This paper presents a first assessment of different control strategies for adjusting the colorant concentration with a simplified model. The assessed control strategies result in considerably different overall energy demands. Certain control strategies have high potential for reducing the energy demand for heating and cooling depending on the locations (Munich 20–30% , Madrid 50–70% , Dubai 50–60%. However, certain control strategies increase the electricity demand for lighting, which needs to be considered in the further development. In general, control strategies that only consider the solar irradiation are less promising strategies in temperate climate than strategies that also take the interior temperature into account. The results of controls that also respect the thermal comfort based on a Predicted Mean Vote (PMV index can achieve low energy demand, presuming that a deviation from the highest level of comfort is acceptable. At this stage of research, none of the studied control strategies shows to be

  15. Characterization of glazes, enamels and oxides by XRF

    International Nuclear Information System (INIS)

    Mbarek, Iheb

    2009-01-01

    The purpose of this work is to control the technique of X-ray fluorescence, both in qualitative and quantitative characterization for ceramic glazes, enamels and oxides. it's a recent subject of investigation, its purpose is to discover the presence of toxic substances (Pb, Cd, Sn, As ..) and their quantities if it exists in the manufacturing materials.

  16. Determination of levels of polychlorinated biphenyls (PCBs) present in caulk and window glazing material samples from older buildings

    Science.gov (United States)

    Levels of polychlorinated biphenyls (PCBs) in caulk and window glazing material samples from older buildings were determined, using a method developed for this purpose. This method was evaluated by analyzing a combination of 47 samples of caulk, glazing materials, including quali...

  17. Characterization of the interaction between glazes and ceramic bodies

    Czech Academy of Sciences Publication Activity Database

    Kavanová, M.; Kloužková, A.; Kloužek, Jaroslav

    2017-01-01

    Roč. 61, č. 3 (2017), s. 267-275 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glazes * ceramic s * thermal analysis * coefficients of the thermal expansion * dilatometry Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 0.439, year: 2016

  18. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  19. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade...

  20. Mössbauer analysis of the firing process of the sky-green glaze of the imitative ancient Chinese Ru porcelain

    Science.gov (United States)

    Songhua, Chen; Zhengyao, Gao; Guoju, Hu; Xiande, Chen

    1994-12-01

    The variation of the Mössbauer parameters of the imitative ancient Ru porcelain skygreen glaze with the firing conditions is studied in detail in the present paper. The Mössbauer spectra show that the sky-green glaze contains three kinds of iron minerals, i.e. the structural iron (Fe2+ and Fe3+); Fe2O3 and Fe3O4. The relative intensity of the paramagnetic peak Fe2+ increases and the magnetic ratio of the magnetic peak decreases with increasing temperature. Based on the variation of the quadrupole splitting ( QS) of the paramagnetic peak Fe2+, the phase transformation characteristics of the sky-green glaze in the firing process is discussed. The coloring mechanism of the sky-green glaze and the variation of its magnetism in the firing process are also investigated in the present paper.

  1. PIXE and {mu}-PIXE analysis of glazes from terracotta sculptures of the della Robbia workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, Alessandro E-mail: zucc@ge.infn.it; Bouquillon, Anne; Lanterna, Giancarlo; Franco, Lucarelli; Mando, Pier Andrea; Prati, Paolo; Salomon, Joseph; Vaccari, Maria Grazia

    2002-04-01

    A series of PIXE analyses has been performed on glazes from terracotta sculptures of the Italian Renaissance and on reference standards. The problems related to the investigation of such heterogeneous materials are discussed and the experimental uncertainties are evaluated, for each element, from the PIXE analysis of standard glasses. Some examples from artefacts coming from Italian collections are given. This research has been conducted in the framework of the COST-G1 European action.

  2. PIXE and μ-PIXE analysis of glazes from terracotta sculptures of the della Robbia workshop

    International Nuclear Information System (INIS)

    Zucchiatti, Alessandro; Bouquillon, Anne; Lanterna, Giancarlo; Franco, Lucarelli; Mando, Pier Andrea; Prati, Paolo; Salomon, Joseph; Vaccari, Maria Grazia

    2002-01-01

    A series of PIXE analyses has been performed on glazes from terracotta sculptures of the Italian Renaissance and on reference standards. The problems related to the investigation of such heterogeneous materials are discussed and the experimental uncertainties are evaluated, for each element, from the PIXE analysis of standard glasses. Some examples from artefacts coming from Italian collections are given. This research has been conducted in the framework of the COST-G1 European action

  3. Comfort Study of Office Buildings with Large Glazed Areas

    Directory of Open Access Journals (Sweden)

    Violeta Motuzienė

    2017-09-01

    Full Text Available In the buildings with large glazed areas the biggest problem is the space overheating during the warm season. This causes increased energy demand for cooling. The survey was carried out during the warm and cold seasons in two office buildings with large glazed areas. The methodology was prepared for evaluating indoor climate parameters using objective and subjective evaluation. The measurements have shown that there are problems with lighting in workplaces of both buildings during both the warm and cold seasons. The biggest problem is too dry air during the cold period, an acceptable temperature is also not always in the building No. 2. The survey has shown that some employees are dissatisfied with the indoor climate in the workplace, the bigger dissatisfaction is in building No. 2. Assessing according to the O. Fanger methodology was obtained that the number of PPD is in the normal range during the cold period, whereas close to the limit when the building can not be operated in the warm period.

  4. Nondestructive determination of lead, cadmium, tin, antimony, and barium in ceramic glazes by radioisotope X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Anderson, D.L.; Cunningham, W.C.

    1996-01-01

    Quantitation capabilities of radioisotope X-ray fluorescence spectrometry (RXRFS) for determining lead, cadmium, tin, antimony, and barium in ceramic glazes were investigated. Twenty-one air-dried glazes and 85 fired glazes on test tiles were analyzed by using 109 Cd and 57 Co excitation sources. Accurate Pb determinations, with limits of detection (LODs) of about 0.3 mg/cm 2 for 5 min counting times, were achieved by using the 75 keV Κ α1 X-ray photopeak and a Pb foil calibration procedure. Cd, Sn, Sb, and Ba concentrations were determined with LODs from about 0.5 to 1.5 mg/cm 2 . For Pb and Ba, results obtained by using absorption corrections based only on element concentrations determined by RXRFS and an iterative approach led to analytical biases of ≤4% relative to results obtained by using corrections based on known total element compositions. Biases were more severe for Cd, Sn, and Sb because lower X-ray energies were involved and sensitivities varied as a function of matrix Pb content. Pb concentrations were above LODs (1.3-40 mg/cm 2 ) in 39 of 47 fired open-quotes food-safeclose quotes glazes and in 33 of the other 38 fired glazes (0.4-39 mg/cm 2 ). 15 refs., 9 figs., 9 tabs

  5. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  6. A fast atom bombardment study of the lead isotope ratios in early nineteenth century Niagara Peninsula pottery glazes

    International Nuclear Information System (INIS)

    Miller, J.M.; Jones, T.R.B.; Kenney, Tina; Rupp, D.W.

    1986-01-01

    The application of fast atom bombardment (FAB) mass spectrometry to the determination of lead isotope ratios in nineteenth century pottery glazes from the Niagara Peninsula has been investigated with the aim of determining the source of the lead used in the glazes. Methods of sampling have been compared, including direct analysis of glass chips, analysis of powdered glaze scrapings, analysis of acid extracts of the former, and simple acid leaching of the surface of a piece of pottery. The latter method gave the best results. The FAB data, as obtained on an older mass spectrometer, can distinguish lead from igneous vs. sedimentary deposits, but is not adequate to determine specific mining locations. Although newer FAB instrumentation can narrow this range, the overlap of data from the Niagara Peninsula and England precludes a simple answer to the archeological question as to English vs. Canadian origin of the lead used in the Jordan pottery glazes. However, the data do suggest that the potter used a local source for the lead

  7. Directional and hemispherical solar energy transmittance of single and double glazing

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugot-Le Goff, le A; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Solar and visual light transmittance, color appearance, thermal emissivity, and other optical properties of architectural glazing are in general angular dependent. Realistic computation of solar properties, therefore, requires the angular behavior to be known. Determination of these properties for

  8. Trombe wall and glazings facades: Energy efficiency for different Portuguese Climates

    Directory of Open Access Journals (Sweden)

    Sacht, H. M.

    2013-09-01

    Full Text Available High performance glass and Trombe walls in the façade was studied in this research. The paper reports results of an ongoing investigation on a new façade system concept, designed as: “Façade Modules for Eco-Efficient Refurbishment of Buildings”, especially on energy efficiency of Trombe wall and glazing modules arrangement. Computational simulation was carried out by using the software DesignBuilder. Two double glazing types and Trombe walls were considered for three different climates in Portugal and four solar orientations. Results obtained for heating energy needs were compared to all façade configurations. The use of Trombe wall and the double self-cleaning glass in the façade point towards a significant decrease of heating energy needs. The great majority of the façades combinations presented energy needs lower than the maximum allowed by the Portuguese regulation (RCCTE.Esta investigación aborda el estudio de fachadas con cristales de altas prestaciones y muros Trombe. El artículo presenta los resultados de la investigación en curso sobre un nuevo concepto en sistemas de fachada, denominado "Módulos de fachada para el acondicionamiento ecoeficiente de edificios", especialmente enfocado a la eficiencia energética de muros Trombe y módulos con doble acristalamiento. Haciendo uso del software DesignBuilder se realizaron simulaciones de una estancia, analizando distintos conjuntos de fachadas modulares. Para la realización de las simulaciones se consideraron dos tipos de módulos de doble acristalamiento, dos configuraciones de muros Trombe, tres climas diferentes en Portugal y cuatro orientaciones solares. Se compararon los requerimientos de calefacción de cada una de las configuraciones, observándose que tanto los muros Trombe como los módulos de doble acristalamiento presentaron disminuciones significativas en cuanto a requerimientos de calefacción. De las configuraciones analizadas, la mayoría presentó demandas energ

  9. IEA-SHC Task 27: Environmental performance assessment of glazing and windows - context, overview, main concerns

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, J.L. [Centre Scientifique et Technique du Batiment, Sustainable Development Dept., Saint-Martin D' Heres (France); Krogh, H. [Danish Building and Urban Research, Energy and Indoor Climate Div., Hoersholm (Denmark); Tarantini, Mario [The Italian National Agency for New Technology, Energy and the Environment, Bologna (Italy)

    2006-07-01

    While all industrial sectors are integrating the environment concern into their culture and strategy, actors of the construction field seem to be torn between motivation and suspicion in front of this new topic. In most countries, the economic situation of the passed years for building was not suitable for investing in new long-term approaches, and the strong particularities of the building world appear as many complicating elements for introducing new concepts easily. But now the awareness for a sustainable development of all human activities is also growing in our sector, and it is time to take benefit of some favourable habits like the use of multi-criteria analysis: beyond performances, suitability for use, and durability, environmental quality criteria will just widen the actual scope of the technical assessment of building products. The first question is a double one : Who will use environmental criteria related to the building products, and for which purpose? Because actors in the field are many, we will have several distinct answers, which may call for different tools. In other industrial sectors, two approaches have been experimented: the Life Cycle Analysis (LCA) and the environmental labelling. Between LCA and green labels, several relevant tools are in development for the building products, each of them adapted to specific users and objectives, and most often of limited use in other contexts. A short review of the studies already performed on the environmental quality of glazing and windows revealed quite a small amount of available matter, and justifies the work undertaken within the programme of IEA/SHCP/Task 27, which will be presented in the third part of this paper. (au)

  10. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  11. Childhood Blood Lead Reductions Following Removal of Leaded Ceramic Glazes in Artisanal Pottery Production: A Success Story

    OpenAIRE

    Donald E. Jones, MS; Mario Covarrubias Pérez; Bret Ericson; Daniel Estrada Sánchez; Sandra Gualtero; Andrea Smith-Jones, MS; Jack Caravanos, DrPH, CIH

    2013-01-01

    Background. Lead exposure within artisanal ceramics workshop communities in Mexico continues to be a major source of childhood lead poisoning. Artisanal ceramics workshops expose children through direct ingestion, contaminated soil, and food prepared in lead-glazed pottery. Conversion to non-lead glazes alone may not effectively reduce exposure. This paper describes a model comprehensive intervention and environmental remediation of an artisanal ceramics workshop in the state of Hidalgo, Mexi...

  12. Application of large-area chromogenics to architectural glazings

    Science.gov (United States)

    Selkowitz, Stephen E.

    1990-03-01

    Glass plays a significant role in the design of building envelopes today. Since its emergence during the last century as a major building material, glass has evolved into an ubiquitous and versatile building design element, performing functions today that would have been unimaginable a few years ago. The optical clarity and transparency of glass that we take for granted is one of its most unique features. Glass windows keep out the cold wind and rain without blocking the view, but also perform many more complex functions which require variable properties and tradeoffs between conflicting conditions. The glazing that provides view must also provide visual privacy at other times and must sometimes become totally opaque (for audiovisual shows, for example). Transparent glass admits daylight, providing good color rendition and offsetting electric lighting energy needs, but it can also create discomfort and disability glare conditions. The sun provides desirable warmth in winter but its heat is unwelcome in summer when it contributes to thermal discomfort and cooling energy requirements. And glass is an important element in the appearance and aesthetics of a building, both interior and exterior.

  13. Vacuum window glazings for energy-efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  14. Analysis of Damage in Laminated Architectural Glazing Subjected to Wind Loading and Windborne Debris Impact

    Directory of Open Access Journals (Sweden)

    Daniel S. Stutts

    2013-05-01

    Full Text Available Wind loading and windborne debris (missile impact are the two primary mechanisms that result in window glazing damage during hurricanes. Wind-borne debris is categorized into two types: small hard missiles; such as roof gravel; and large soft missiles representing lumber from wood-framed buildings. Laminated architectural glazing (LAG may be used in buildings where impact resistance is needed. The glass plies in LAG undergo internal damage before total failure. The bulk of the published work on this topic either deals with the stress and dynamic analyses of undamaged LAG or the total failure of LAG. The pre-failure damage response of LAG due to the combination of wind loading and windborne debris impact is studied. A continuum damage mechanics (CDM based constitutive model is developed and implemented via an axisymmetric finite element code to study the failure and damage behavior of laminated architectural glazing subjected to combined loading of wind and windborne debris impact. The effect of geometric and material properties on the damage pattern is studied parametrically.

  15. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    International Nuclear Information System (INIS)

    Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck

    2011-01-01

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  16. Radioactivity measurement of primordial radionuclides in and dose evaluation from marble and glazed tiles used as covering building materials in Turkey

    International Nuclear Information System (INIS)

    Turhan, S.; Varinlioglu, A.

    2012-01-01

    Measurements of the natural radioactivity arising from primordial radionuclides ( 226 Ra, 232 Th and 40 K) in marble and glazed tile samples used covering building materials in Turkey were carried out by gamma-ray spectrometer with a high purity germanium detector. The mean activity concentrations of the 226 Ra, 232 Th and 40 K in marble and glazed tile samples were found as 8.2, 5.5 and 58.1 Bq kg -1 and 81.2, 65.4 and 450.1 Bq kg -1 , respectively. The radiation doses received by occupants of buildings in which the sample marble and glazed tiles might be used are estimated using measured activity concentrations of constituent primordial radionuclides and dose conversion factors evaluated by the European Commission from models of tile use. Results obtained are presented for each radionuclide, analysed and compared with relevant national and international legislation, guidance and report, and with the results obtained from other studies. Results show that the use of such decorative building materials in the construction of domestic homes or workplaces in Turkey is unlikely to lead to any significant radiation exposure to the occupants. (authors)

  17. The effect of glaze on the quality of frozen stored Alaska pollack (Theragra chalcogramma fillets under stable and unstable conditions

    Directory of Open Access Journals (Sweden)

    Peter Žoldoš

    2011-01-01

    Full Text Available Frozen fillets (n = 288 of Alaska pollack (Theragra chalcogramma were used to evaluate the effect of glaze on lipid oxidation and microbiological indicators during 6 months of freezing storage under stable (−18 °C and unstable temperature (varying from −5 to −18 °C conditions. The amount of glaze, moisture, fat and protein content were measured. Despite the low fat content in Alaska pollack, a positive effect of glazing and stable freezing conditions of storage on the range of oxidative changes of lipids expressed as thiobarbituric acid reactive substances was found. Total counts of viable cells slightly rose before the end of the storage period in both groups with commercially glazed fish. The average counts of psychrotrophs in each group ( were at the same level, ranging from 9.1 ×103 CFU·g-1 to 1.1 × 104 CFU·g-1. According to the microbiological results fillets stored under unstable conditions were considered to be acceptable, but sensory evaluation showed that at the end of frozen storage they could not be consumed because of rancidity. Based on our results, glaze application ranged from 10 to 15% guarantee of final quality, however, prevention of temperature fluctuation during storage is important to keep the quality of the frozen fillets. This is the first similar study in Alaska pollack.

  18. Elimination of the dirty crust of white alterated glaze from excavated ceramics using the laser cleaning alternative

    OpenAIRE

    Aura Castro, Elvira; Saiz Mauleón, María Begoña; Domenech Carbo, Mª Teresa

    2006-01-01

    The laser technique has been applied to the cleaning process of glazed decorated ceramics from excavation sites. The use of this method arises as the only possible alternative in the process of cleaning pieces with crusts of dirt that are extremely hard and strongly stuck over altered and friable white glaze layers. The study carried out has allowed to fix the optimal laser parameters in the elimination of the dark dirty layer found on several fragments from different periods. The study has b...

  19. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  20. Measurement of transient thickness between the body and glaze layers of ancient porcelains using microprobe EDXRF technique

    International Nuclear Information System (INIS)

    Peng Zicheng

    2004-01-01

    The oxide contents of TiO 2 , MnO, SrO and Fe 2 O 3 in the body and glaze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an International Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the glaze one. Therefore, the transient thickness (TT) between the body and glaze layers can be measured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161 μm, while that for the LHD porcelains is 258 μm, which are consistent with a range of 0.15-0.3 mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manufacturing the respective porcelains. (authors)

  1. Flexible edge seal for vacuum insulating glazing units

    Science.gov (United States)

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  2. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  3. Innovations for glazing of buildings; Innovationen fuer die Verglasung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. Thermische und Optische Systeme

    1998-02-01

    There are two main aspects in the development of new glazing. On the one hand, windows with extremely low thermal conductivity are wanted. On the other hand, solar irradiation should contribute to thermal gains during the heating season. A large number of different coatings and window systems is suited for many different applications. In particular for the prevention of overheating in the summer, there is a huge interest in glazing regulating the irradiation itself without additional mechanical devices. Indeed, innovations have sprung using several of these ideas. (orig.) [Deutsch] Bei der Entwicklung neuer Verglasungen spielen zwei Gesichtspunkte eine hervorragende Rolle. Zum einen ist man an Fenstern mit sehr geringen Waermeverlusten interessiert. Zum anderen soll aber auch die solare Einstrahlung waehrend der Heizperiode zu thermischen Gewinnen beitragen. Die Vielfalt der einsetzbaren Beschichtungen und Fenstersysteme ermoeglicht eine breite Palette von Anwendungsmoeglichkeiten. Insbesondere um Ueberhitzungsprobleme im Sommer auszuschliessen, ist man an Verglasungen interessiert, die die Einstrahlung selber, d.h. ohne mechanische Zusaetze, regeln. Tatsaechlich fuehren hierfuer verschiedene Ansaetze zu Neuentwicklungen. (orig.)

  4. Modelling the optical and thermal properties of advanced glazing overview of recent developments

    NARCIS (Netherlands)

    Rosenfeld, J.L.J.; Platzer, W.J.; Dijk, H.A.L. van; Maccari, A.

    2001-01-01

    The recently completed ALTSET project was part of the European Commission's Standards, Measurement and Testing programme. Its objective was the development of European standard test procedures for the determination of angular-dependent light and total solar energy transmittance for complex glazings

  5. Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Wu, Jing; Wang, Xiliang; Liu, Zhongbing; Wu, Zhenghong

    2017-01-01

    A system model that can accurately simulate the instantaneous solar transmittance through multilayer glazing façade (MGF) and shading device can provide a solid foundation for the thermal and daylighting performance calculation of MGF as well as indoor visual comfort evaluation. Traditional optical models for venetian blind and glazing façade meet with their limitations to analyze new prototype of shading blind like photovoltaic (PV) blind which has quite different surface optical properties compared with conventional venetian blind. The present study proposed a new system model for MGF using shading blind with arbitrary geometrical and optical features which is suitable for a wide range of applications. Three major calculation types for modeling of shading blinds cover all the possible situations in application. Guess Integer-Valued Function is adopted for delivering a general description on direct radiation transport. The direct-direct, direct-diffuse and diffuse-diffuse radiation transports are separately considered. A series of experiments were carried out to validate the model under various parameter settings and different weather conditions. Parametric study revealed some new findings in the evaluations of influence of ambient radiation situations, geometrical and optical features of blind space on both solar transmittance and solar absorption by blind layer. - Highlights: • Solar transport through glazing façades with PV blind with arbitrary geometry is simulated. • Ray-tracing and radiosity method are coupled in calculation. • Guess Integer-Valued Function is used in calculation of direct radiation transport. • Experiment and simulated data are compared for model validation. • Parametric study is conducted for evaluating the impact of different factors on the system.

  6. GLASS AND PERFORATED METAL DOUBLE SKIN FAÇADE PERFORMANCE IN HOT HUMID CLIMATE

    Directory of Open Access Journals (Sweden)

    Nissa Aulia Ardiani

    2017-12-01

    Full Text Available The construction of a sustainable building in Indonesia has increased in recent years. Middle- to high-rise buildings are encouraged to enhance its performance to reduce energy demands. With maximum temperature 34°C, most of the buildings in Indonesia utilize mechanical air conditioning to achieve indoor thermal comfort. In this research, the performance of campus building with Double Skin Façade (DSF in Indonesia would be quantitatively assessed and simulated by utilizing Autodesk Revit and Green Building Studio. In respect to façade material, actual cavity width, inner and outer layer façade type, and also weather condition, these simulations are expected to produce comparison result between four DSF material configurations which are perforated metal, single glazing, double glazing, and triple glazing. From the simulation, the results show that perforated metal DSF could consume 5%-23.16% more energy for space cooling compared to building with glass DSF.

  7. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www.......synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...

  8. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  9. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    International Nuclear Information System (INIS)

    Guilherme, A.; Pessanha, S.; Carvalho, M.L.; Santos, J.M.F. dos; Coroado, J.

    2010-01-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (μ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial μ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 μm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of μm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  10. Performance investigation of heat insulation solar glass for low-carbon buildings

    International Nuclear Information System (INIS)

    Cuce, Erdem; Young, Chin-Huai; Riffat, Saffa B.

    2014-01-01

    Highlights: • U-value of HISG is found to be 1.10 W/m 2 K. • Maximum temperature difference is achieved by HISG with 12.70 °C. • HISG provides two times better insulation than standard double glazed windows. • HISG generates over 40 W electricity from a glazing surface of 0.66 m 2 . • 100% of UV in incoming solar radiation is absorbed by HISG. - Abstract: Heat insulation solar glass (HISG), which has been recently developed by Professor Chin-Huai Young in Taiwan is an extraordinary glazing technology for low/zero carbon buildings. HISG differs from traditional glazing technologies with its ability of producing electricity. It also offers some additional features such as thermal insulation, sound insulation, self-cleaning and energy saving. In this work, thermal insulation, power generation and optical performance of HISG are experimentally investigated. Thermal insulation performance of HISG is analysed through standardized co-heating test methodology, and the results are compared with different traditional double glazed window samples. For the power generation and optical performance of HISG, two samples (air filled HISG and Argon filled HISG) are experimentally investigated in real and simulated operating conditions. The results indicate that both configurations show similar performance in terms of power generation. Under a solar intensity of 850 W/m 2 , over 40 W electrical power is achieved from HISG samples with a glazing area of 0.66 m 2 . Performance of samples under solar simulator is not found to be promising due to the absence of UV and IR parts in the artificial light source. In terms of thermal insulation ability, HISG is also found to be attractive. The average U-value of HISG is determined to be 1.10 W/m 2 K, which is two times better than standard double glazed windows. Some simulation results for two different cities (Taipei, Taiwan and Nottingham, UK) demonstrating the energy saving potential of HISG are also presented

  11. Effect of sodium dodecylbenzene sulfonate on the dispersion stability of ceramic glaze suspension

    Energy Technology Data Exchange (ETDEWEB)

    Satchawan, Suphapan; Naksata, Wimol; Rattanakawin, Chairoj; Thiansem, Sakdiphon; Arqueropanyo, Orn-anong [Chiang Mai University, Chiang Mai (Thailand); Panya, Preecha [Kamphaengphet Rajabhat University, Kamphaengphet (Thailand); Sooksamiti, Ponlayuth [The Office of Primary Industries and Mines Region 3, Chiang Mai (Thailand); Scales, Peter J. [The University of Melbourne, Parkville Victoria (Australia)

    2014-06-15

    Sodium dodecylbenzene sulfonate (SDBS) was used to render the stability of ceramic glaze dispersion which is composed of limestone, feldspar, quartz, kaolin and ferric oxide. The measured zeta potential showed negative values for the systems in deionized water and 0.001 M MgCl{sub 2} media at pH above 2, but a positive value was observed in 0.1M MgCl{sub 2} at pH higher than 6.7. Adsorption of SDBS in aqueous suspensions of ceramic glaze in deionized water and in 0.001 M MgCl{sub 2}, within the concentration range studied, followed both the Langmuir and Freundlich isotherms, but the Freundlich isotherm was more favored. Adsorption of SDBS in 0.1M MgCl{sub 2} corresponded to the Freundlich isotherm. From dispersion stability investigation, SDBS could render the suspension in deionized water and in 0.001 mM MgCl{sub 2} more than in 0.1 mM MgCl{sub 2}.

  12. Effect of sodium dodecylbenzene sulfonate on the dispersion stability of ceramic glaze suspension

    International Nuclear Information System (INIS)

    Satchawan, Suphapan; Naksata, Wimol; Rattanakawin, Chairoj; Thiansem, Sakdiphon; Arqueropanyo, Orn-anong; Panya, Preecha; Sooksamiti, Ponlayuth; Scales, Peter J.

    2014-01-01

    Sodium dodecylbenzene sulfonate (SDBS) was used to render the stability of ceramic glaze dispersion which is composed of limestone, feldspar, quartz, kaolin and ferric oxide. The measured zeta potential showed negative values for the systems in deionized water and 0.001 M MgCl 2 media at pH above 2, but a positive value was observed in 0.1M MgCl 2 at pH higher than 6.7. Adsorption of SDBS in aqueous suspensions of ceramic glaze in deionized water and in 0.001 M MgCl 2 , within the concentration range studied, followed both the Langmuir and Freundlich isotherms, but the Freundlich isotherm was more favored. Adsorption of SDBS in 0.1M MgCl 2 corresponded to the Freundlich isotherm. From dispersion stability investigation, SDBS could render the suspension in deionized water and in 0.001 mM MgCl 2 more than in 0.1 mM MgCl 2

  13. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  14. Intelligent Glazed Facades for Fulfilment of Future Energy Regulations

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2010-01-01

    This project aims at testing technologies for control of heat transfer, irradiation, mass transport and energy storage in order to investigate the potential of a intelligent dynamic glazed facade. Furthermore a development of algorithms for control of the technologies included in the facade......, for use in the design phase, is done. The methods used are initially based on thermal building calculations. This analysis shows that a dynamic adaptive facade is the only way in which future office buildings can fulfil the energy regulations. By designing the facade according to the usage...

  15. The characterisation of the daylighting properties of special glazings and solar shading devices

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Bakker, L.G.

    1998-01-01

    Within the EU DGXII R&D Programme JOULE a project, called REVIS. started in 1998 and will be completed within 2.5 years, with the objective to develop detailed daylight product information of novel products of glazings and solar shading devices. This involves a test procedure, definition of product

  16. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  17. Daylight and solar control in buildings. General evaluation and optimization of a new angle selective glazing facade

    Energy Technology Data Exchange (ETDEWEB)

    Frontini, Francesco

    2011-07-01

    Buildings account for almost 40% of the overall energy consumption in Europe. For the future energy scenarios, the building envelope, especially the facades, becomes really important as it provides the necessary area for the installation of PV modules or solar collectors to produce energy, using renewable energy sources. A new multifunctional building integrated photovoltaic (BIPV) glazed facade for this application is presented here. The new angle-selective see through facade combines four important tasks in one element: solar control, glare protection, visual contact and electricity generation. Mathematical analysis and complex simulations with the software Radiance are performed to optimize the geometry and to assess the visual impact and optical properties of the new window. In order to evaluate the impact of the new facade in building spaces a new method for modelling the total solar energy transmittance, in building energy simulations software, for complex glazing facades is presented. The new black-box-model (BBM) is implemented into ESP-r software and is validated. The BBM is used to assess the impact of modelling accurately the g-value of complex facade within building simulation. It is shown that the new method can significantly increase the accuracy of heating/cooling loads and room temperatures. (orig.)

  18. Design, construction and performance evaluation of aBox type solar cooker with a glazing wiper mechanism

    Directory of Open Access Journals (Sweden)

    Zeleke Ademe

    2018-01-01

    Full Text Available This research work describes the performance evaluation of a double-glazed box-type solar oven with three reflectors and with a vapor wiper mechanism fabricated using locally available materials. The box cooker has external box dimensions of 600 mm × 600 mm × 250 mm and pyramidal internal box dimensions of 460 mm × 460 mm top face and 300 mm × 300 mm bottom face with depth of 150 mm. The thermal performance was tested as per the ASAE International Test procedure and Bureau of Indian Standards (BIS for testing the thermal performance of a box-type solar cooker. The obtained test results after employing required calculations were figures of merit F1 = 0.123 Km2/W, F2 = 0.540, the standard cooking power P50 = 36 W and the cumulative efficiency to be 22%, whereas with the application of the wiper mechanism, it was found that F1 = 0.123, F2 = 0.827, the standard cooking power (P50 = 51 W, and the cumulative efficiency to be 31.4%. The standard boiling time of 1.43 kg of water was calculated to be 53.54 and 88.84 minutes for the cooker with and without the application of wiper mechanism respectively. The thermal distribution of the cooker was modeled using interior box geometry as a boundary condition with ANSYS 15.0. The temperature distribution inside the box was simulated and the maximum wall temperature was found to be 139 ℃. This was lower than the experimental results by 22 ℃. The method of modeling and simulation of the cooker with and without a wiper mechanism is similar except for the variation of the transmittance of the glass due to shading of vapor which can be deducted from the cumulative efficiency for the latter case. The results show that using the vapor wiper mechanism increases the cumulative efficiency by 9.4% and reduces the boiling time by 35.3 minutes. Finally, the techno-economic analysis shows that the cooker with a vapor wiper mechanism has a good reliability for outdoor cooking of food and is economically feasible.

  19. A preliminary study on coloring mechanism of Jun copper red glaze

    International Nuclear Information System (INIS)

    Tian Shibing; Liu Yuzhen; Zhang Maolin; Wang Lihua; Wang Cangsui; Xie Yaning

    2009-01-01

    The origin of a red color glazes decorated on the ancient Jun porcelain has been attributed to the presence of combined copper clusters and cuprous oxide, or cuprous oxide alone. For better understanding of the color-forming mechanism, X-ray absorption at the Cu-edge by the red area of a Jun porcelain shard was carried out. By comparing the XANFS spectra of the sample with metal copper and cubic Cu 2 O, we found that the spectra of the red layer of sample were similar to the spectrum combination of 37% Cu 2 O and 63% metal copper,while the spectra from surface of the red spot mainly resembled that of cubic Cu 2 O. The EXAFS results showed that monovalence copper cations were isolated in the glaze matrix, and copper atoms were formed to metallic copper clusters or mutimers dominantly distributed in the inner layer. These can be responsible to the optical properties of the red decoration with the presence of colloidal composition containing copper particles and the Cu + ions. In conclusion, a preliminary non-destructive elemental analysis using synchrotron radiation-induce X-ray fluorescence (SR-XRF) is demonstrated, and mechanism about the formation of the complicated structures is discussed. (authors)

  20. Long-term ageing tests on glazing materials for solar collectors; Langzeit-Alterungsuntersuchung an Abdeckungsmaterialien fuer thermische Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch, F.; Brunold, S.; Haeuselmann, T.; Frank, E.; Frei, U.

    2008-02-15

    This report made by the Swiss Institute for Solar Technology at the University of Applied Sciences in Rapperswil, Switzerland, for Swiss Federal Office of Energy (SFOE) takes a look at the results of a project that investigated the long-term behaviour of glazing materials for solar collectors. The locations tested and their associated meteorological data are presented and the tests made concerning the optical characteristics of several different types of glazing are discussed. Soiling and degradation are also looked at. An overview of the solar transmission of the various materials is presented. Details on the various materials such as glass, polymethyl metacrylate (PMMA), polycarbonate (PC), fluorised plastics, unsaturated polyester (UP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) are presented.

  1. Oil and the Translucent. Varnishing and glazing in practice, recipes and historiography, 1100-1600

    NARCIS (Netherlands)

    Bol, M.A.H.

    2012-01-01

    This dissertation studies for the first time the history of varnishing and glazing in relation to the use of drying oils in the workshop of the medieval painter until the late sixteenth century. Results from technical research and historical reconstructions will be combined with an analysis of

  2. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2016-01-01

    Highlights: • Various alternatives of glazing and venetian blind were simulated for office space. • Daylighting and energy performances were assessed for each alternative. • Large uncertainties were estimated in the energy consumptions and UDI values. • Glazing design parameters were prioritised by performing sensitivity analysis. • WWR, glazing type, blind orientation and slat angle were identified top in priority. - Abstract: Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and

  3. Desenvolvimento do pigmento condutor SnO2 -Sb2O3 e sua aplicação em vidrados semicondutores Development of a SnO2 -Sb2O3 conductor pigment and its applications in semiconductor glazes

    Directory of Open Access Journals (Sweden)

    R. Aguiar

    2004-06-01

    Full Text Available Esmaltes semicondutores são utilizados no recobrimento de isoladores elétricos para evitar descargas superficiais nos isoladores, associadas a grandes diferenças de potencial, proporcionando uma melhora no desempenho sob poluição ambiental. Como os vidrados utilizados nas indústrias cerâmicas são isolantes, uma maneira de torná-los semicondutores é adicionando óxidos condutores. Misturou-se ao esmalte porcentagens variadas do pigmento condutor SnO2 dopado com 5% de Sb2O3. O esmalte foi aplicado sobre peças de porcelana a verde e queimado a 1250 ºC. Por microscopia eletrônica de varredura verificou-se que a concentração de pigmento na superfície das amostras é baixa e não influencia a condutividade elétrica. Na fratura, a porcentagem de pigmento ficou próxima de 35%. Assim, a superfície ficou com aspecto visual de ótima qualidade. A resistividade elétrica ocorreu pelo interior do vidrado, obtendo-se valores próximos de 10(4 Ohm.m.Semiconductor glazes are employed on electrical insulators to avoid surface discharge under conditions of intense electric fields, providing better performance in polluted environments. Semiconductor enamels are of great interest for electrical insulator coatings to avoid surface discharges, related to large potential differences. This enhances the performance of the insulator under polluted environments. Glazes used in ceramic industries are not conductive. The addition of conductive oxides to the glaze composition results in a semiconductor enamel. Sb2O3-doped SnO2 was mixed with the enamel in different concentrations. The resulting enamel was applied over green porcelain and fired at 1250 ºC. Scanning electron microscopy characterization was performed and it was verified that the pigment concentration on the surface is low and does not affect the electrical conductivity. The pigment concentration on the fracture surface is approximately 35%. The insulator surface presents a high quality

  4. Optical Characterization and Energy Simulation of Glazing for High-Performance Windows

    International Nuclear Information System (INIS)

    Jonsson, Andreas

    2010-01-01

    This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements. Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out. To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency. Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using

  5. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  6. Elemental oxides analysis of the medieval period glazed ware from Gogha, Gulf of Khambhat, Gujarat, India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Khedekar, V.; Rao, B.R.

    for elemental oxides using scanning electron microscope and energy dispersive spectrum. The results indicate that silicon oxide content of the glazed sherds varies between approx. 73 and 77%, forming three-fourths of the total composition, while it ranges from...

  7. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray fluorescence spectrometry, multivariate data analysis and Seger formulas

    OpenAIRE

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    Abstract: In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing...

  8. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings

    Directory of Open Access Journals (Sweden)

    Claes G. Granqvist

    2016-12-01

    performance and durability that make TC glazings of considerable interest for building-related applications. Finally, we briefly describe recent developments towards TC light scattering and draw some final conclusions.

  9. Glazed pottery of the South-Eastern Crimea from the excavations of the Tsarev settlement

    Directory of Open Access Journals (Sweden)

    Iudin Nikita I.

    2015-09-01

    Full Text Available The article deals with the findings of glazed ceramics produced in the South-Eastern Crimea, and then excavated at the Tsarev settlement. Their typology, chronology and topography are being introduced by the author. On the basis of the 165 analyzed fragments and whole vessels the author suggests a 4-level classification scheme, which includes the production center, functional purpose of the items, morphological characteristics and ornamentation of the vessels. Basic types and variations of vessels’ shapes are being described according to three major chronological periods: 1. Early 1300s, 2. 1330s, 3. The second half of the 14th century. Notably, the earliest findings of ceramics dated by the first two periods were located on the South-Eastern part of the Tsarev settlement. Most of all, its are the bowls on a circular underpan lacking ornamentation and covered with green transparent glazing. Since the second half of the 14th century the vessels from the South-Eastern Crimea had been widely spread on the entire area of the settlement. The assortment of vessels’ shapes used at this time along with jars and bowls, was now widened by aftobes and apothecary amphoras.

  10. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto

    2005-01-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 μg of enamel /mm 2 weared surface. There was no statistical difference (α=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  11. Daylighting in linear atrium buildings at high latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Matusiak, Barbara

    1998-12-31

    This thesis proposes new criteria for visual comfort based on knowledge of visual perception and a method for estimating the modelling ability of light by using inter-reflection calculations. Simplified calculations are presented for the daylight factor in linear building structures, using the projected solid angle principle, for uniform sky and for CIE overcast sky conditions. The calculations are compared with experimental results. Simple diagrams are created based on calculations of the mean daylight factor in rooms adjacent to a narrow street. These diagrams and presented formulas and tables can be used as a simple design tool. Daylighting strategies for linear atrium buildings at high latitudes are developed and examined. These strategies are divided into three groups: (1) the atrium space and facades as light conductor/reflector, (2) the glass roof as a light conductor, and (3) light reflectors on the neighbouring roof. The atrium space and facade strategies are subdivided into passive and active. The strategies connected to the glazed roof includes different configurations of glazing: horizontal, single pitched, double pitched, and the use of laser cut panels and prismatic panels in the glazed roof. The shapes of reflectors on the neighbouring roof are a flat reflector, a parabolic reflector and a parabolic concentrator. Strategies from all three groups are examined on a physical model of scale 1:20 in the artificial sky of mirror box type. Simulations with artificial sun have also been done. The results from model studies are compared with computer simulations. All the active daylighting systems designed for use in the atrium space or on the atrium facades have a huge potential for use in atrium buildings. From the strategies connected with the glazed roof the negatively sloped glass is found to be the best alternative for glazed roofs at high latitudes. Among the roof reflectors, the flat one performs best. 82 refs., 122 figs., 27 tabs.

  12. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  13. Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2015-01-01

    Highlights: • Optimization using Genetic Algorithm–Fuzzy System approach. • Overall exergy efficiency has been evaluated with different optimization tools. • Comparative analysis has been done. • GA–FS is very efficient and fast technique. • Overall exergy efficiency has been improved. - Abstract: In this paper, Genetic Algorithm–Fuzzy System (GA–FS) approach is used to identify the optimized parameters of the glazed photovoltaic thermal (PVT) system and to improve its overall exergy efficiency. The fuzzy knowledge base is used to improve the efficiency of Genetic Algorithm (GA). It is observed that three GA parameters, namely: (i) crossover probability (P cross ), (ii) mutation probability (P mut ) and (iii) population size are changing dynamically during the program, according to fuzzy knowledge base to maximize the efficiency of the GA. Here, overall exergy efficiency is considered as an objective function during the optimization process for GA–FS approach. The effort has been made to identify the different optimized parameters like; length and depth of the channel, velocity of flowing fluid, overall heat transfer coefficient from solar cell to ambient and flowing fluid and overall back loss heat transfer coefficient from flowing fluid to the ambient to maximize the overall exergy efficiency using GA–FS approach. Performance of glazed PVT using GA–FS approach has been compared with performance using GA approach and without GA. It has also been observed that the GA–FS approach is a better approach as compared to GA approach because it converges faster as compare to GA because the use of the fuzzy knowledge base with GA and take less time for identification of optimized system parameters.

  14. High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on ?-TiAl

    OpenAIRE

    Walker, J.C.; Ross, I.M.; Reinhard, C.; Rainforth, W.M.; Hovsepian, P.Eh.

    2009-01-01

    This paper details the effect of temperature on the frictional behaviour of highly novel CrAlYN/CrN multilayer coatings, deposited by High Power Impulse Magnetron Sputtering (HIPIMS) on a Titanium Aluminide alloy used as fan blade material in the aerospace and a turbo-charger wheel in the automotive industries. The work was the first to discover the high temperature oxide 'glaze' layer formation which occurred on CrN multilayer-type coatings at higher temperatures and has received significant...

  15. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  16. Study on the glaze ice accretion of wind turbine with various chord lengths

    Science.gov (United States)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  17. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.L. [Universidade Nova de Lisboa, REQUIMTE-CQFB, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Universidade Nova de Lisboa, Departamento de Conservacao e Restauro, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Muralha, V.S.F. [Universidade Nova de Lisboa, Research Unit VICARTE, Vidro e Ceramica para as Artes, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Mirao, J. [Universidade de Evora, Laboratorio HERCULES, Evora (Portugal); Veiga, J.P. [Universidade Nova de Lisboa, CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2014-03-15

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara-a-Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified. (orig.)

  18. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    International Nuclear Information System (INIS)

    Coutinho, M.L.; Muralha, V.S.F.; Mirao, J.; Veiga, J.P.

    2014-01-01

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara-a-Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified. (orig.)

  19. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    Science.gov (United States)

    Coutinho, M. L.; Muralha, V. S. F.; Mirão, J.; Veiga, J. P.

    2014-03-01

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara- a- Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified.

  20. Thermal insulation with glazings and windows. Implementation of requirements and outlook on future development; Waermeschutz mit Verglasungen und Fenstern. Umsetzung der Anforderungen und Ausblick auf Weiterentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Froelich, H. [Institut fuer Fenstertechnik e.V., Rosenheim (Germany)

    1997-06-01

    In the past, windows and glazings were often considered as being a weak point as regards thermal insulation in the external envelope of a building. Increasing demands on thermal insulation in construction have been seen as a challenge by all those involved. The development of new glazings and of improved frames made it possible to use large sized windows and glazed facade elements even after the new Heat Loss Regulation (Waermeschutzverordnung) dated 1st January 1995 came into effect. In this connection, the possible consideration of energy gain from the outside via transparent building elements is very important. The individual components of windows, window elements and light facades such as frames, glazings, panels and additional components e.g. roller shutters have to be designed very precisely now. Apart from thermal properties the other criteria such as fire resistance, sound insulation, solar protection and safety have to be taken into account. The new Building Regulations of the Laender (Landesbauordnung) and the Building Products Regulation (Bauregelliste) of the Deutsches Institut fuer Bautechnik regulate which evidence of usability and conformity are necessary for the various building products such as frame, glass, window, roller shutter, radiator guards, etc. For the time being, it is still mainly referred to national regulations. In future, an increasing number of European standards will be completed and also implemented. There will also be some decisive changes as regards windows and glazings. To a larger extent the effects of thermal bridges will be taken into account. For determining thermal properties there increasingly exists the possibility of carrying out calculations. As regards thermal insulation today, windows and glazings are highly developed building products when correctly designed and manufactured. These building products enable energy saving construction also of large sized dimensions. (orig.) [Deutsch] Fenster und Verglasungen wurden in

  1. A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M.O., E-mail: ondina.figueiredo@lneg.pt [CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal); National Laboratory of Energy and Geology (LNEG), Apartado 7586, 2721-866 Alfragide (Portugal); Silva, T.P. [National Laboratory of Energy and Geology (LNEG), Apartado 7586, 2721-866 Alfragide (Portugal); CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal); Veiga, J.P. [CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Speciation of cobalt in ancient Chinese porcelain glazes studied by X-ray absorption near-edge spectroscopy. Black-Right-Pointing-Pointer Blue pigmenting role of tetrahedral Co{sup 2+} ions. Black-Right-Pointing-Pointer Uncertainties in deducing a formal valence state for cobalt ions from the edge energy. - Abstract: The composition of cobalt blue pigments used in ancient blue-and-white Chinese glazes is known to have changed between the 14th and the 17th century and ratios of some main chemical components plus trace elements are relevant guide-lines to establish the porcelain manufacture period. Once archaeological findings of Chinese porcelains can contribute to set up dating processes, a study of blue-and-white porcelain shards recovered during recent excavations in Lisbon Old-City was carried out by non-destructive laboratory X-ray fluorescence spectrometry for chemical characterization, combined with X-ray absorption spectroscopy (XAS) using synchrotron radiation to ascertain the formal valence and coordination of pigmenting cobalt ions. Following a preliminary extended X-ray absorption fine-structure study that revealed a coordination of divalent cobalt ions slightly above four, a detailed analysis of the near-edge region of Co 1s X-ray absorption spectra (XANES) was carried out on the blue-and-white glazes from those archaeological Chinese porcelain fragments. Pre-edge features and edge details are discussed in comparison with XANES spectra obtained from model compounds with well known crystal structure - Co{sub 3}O{sub 4}, CoAl{sub 2}O{sub 4} and Co{sub 2}SiO{sub 4}, plus a cobalt-based blue pigment (cerulean). Present chemical data validate the manufacture period of studied Chinese porcelains advanced by Art Historians on the single basis of stylistic features (late 16th and medium 17th century). Spectroscopic results confirm a coordination environment of pigmenting Co{sup 2+} ions close to tetrahedral and

  2. A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains

    International Nuclear Information System (INIS)

    Figueiredo, M.O.; Silva, T.P.; Veiga, J.P.

    2012-01-01

    Highlights: ► Speciation of cobalt in ancient Chinese porcelain glazes studied by X-ray absorption near-edge spectroscopy. ► Blue pigmenting role of tetrahedral Co 2+ ions. ► Uncertainties in deducing a formal valence state for cobalt ions from the edge energy. - Abstract: The composition of cobalt blue pigments used in ancient blue-and-white Chinese glazes is known to have changed between the 14th and the 17th century and ratios of some main chemical components plus trace elements are relevant guide-lines to establish the porcelain manufacture period. Once archaeological findings of Chinese porcelains can contribute to set up dating processes, a study of blue-and-white porcelain shards recovered during recent excavations in Lisbon Old-City was carried out by non-destructive laboratory X-ray fluorescence spectrometry for chemical characterization, combined with X-ray absorption spectroscopy (XAS) using synchrotron radiation to ascertain the formal valence and coordination of pigmenting cobalt ions. Following a preliminary extended X-ray absorption fine-structure study that revealed a coordination of divalent cobalt ions slightly above four, a detailed analysis of the near-edge region of Co 1s X-ray absorption spectra (XANES) was carried out on the blue-and-white glazes from those archaeological Chinese porcelain fragments. Pre-edge features and edge details are discussed in comparison with XANES spectra obtained from model compounds with well known crystal structure – Co 3 O 4 , CoAl 2 O 4 and Co 2 SiO 4 , plus a cobalt-based blue pigment (cerulean). Present chemical data validate the manufacture period of studied Chinese porcelains advanced by Art Historians on the single basis of stylistic features (late 16th and medium 17th century). Spectroscopic results confirm a coordination environment of pigmenting Co 2+ ions close to tetrahedral and substantiate the dual role of cobalt as network former plus modifier in the glaze of ancient Chinese porcelains.

  3. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  4. Thermal performance of natural airflow window in subtropical and temperate climate zones - A comparative study

    International Nuclear Information System (INIS)

    Chow Tintai; Lin Zhang; Fong Kwongfai; Chan Lokshun; He Miaomiao

    2009-01-01

    Airflow window is highly useful in conserving building energy, and lessens the comfort problems caused by glazing. In this study, the thermal performance of a natural airflow window was examined through the use of a dynamic model, developed based on the integrated energy balance and airflow networks. The validity of the model was first tested by measured data obtained from a prototype installed at an environmental chamber. The application in the subtropical and temperate climate zones were then examined with the typical weather data of Hong Kong and Beijing. The findings confirmed that the natural airflow window can achieve substantial energy saving in both cities, and the reversible window frame is only required for Beijing, a location with hot summer and cold winter. The space cooling load via fenestration in Hong Kong, a subtropical city, can be reduced to 60% of the commonly used single absorptive glazing. In Beijing, as an example of the temperate climate, this can be reduced to 75% of the commonly used double glazing configuration in the summer period, and the space heat gain can be improved by 46% in the winter period.

  5. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  6. Assessment of the Economic and Environmental Impact of Double Glazed Façade Ventilation Systems in Mediterranean Climates

    Directory of Open Access Journals (Sweden)

    Pere Alavedra

    2013-09-01

    Full Text Available Free convection is the most often used method in order to reduce solar load gains on a building with double glazed façades (DGFs. However, depending on the climate factors, the thermal performance of a DGF may not be satisfactory and extra energy costs are required to obtain suitable comfort conditions inside the building. Forced ventilation systems are a feasible alternative to improve the thermal performance of a DGF in Mediterranean climates where large solar gains are a permanent condition throughout the year. In this paper the feasibility of using diverse forced ventilation methods in DGF is evaluated. In addition, an economical comparison between different mechanical ventilation systems was performed in order to demonstrate the viability of DGF forced ventilation. Moreover, an environmental study was carried out to prove the positive energetic balance on cooling loads between free and forced convection in DGF for Mediterranean climates. For this investigation, a CFD model was used to simulate the thermal conditions in a DGF for the different ventilation systems. Results obtained for heat flux, temperature and reductions in solar load gains were analyzed and applied for the economic and environmental research.

  7. Evaluation of the effect of polishing on flexural strength of feldspathic porcelain and its comparison with autoglazing and over glazing

    Directory of Open Access Journals (Sweden)

    Jalali H.

    2005-06-01

    Full Text Available Statement of Problem: Ceramic restorations are popular because they can provide the most natural replacement for teeth. However, the brittleness of ceramics is a primary disadvantage. There are various methods for strengthening ceramics such as metal framework, ceramic cores, and surface strengthening mechanisms through glazing, work hardening and ion exchange. Purpose: The purpose of this study was to evaluate the effect of polish on flexural strength of feldspathic porcelain and to compare it with overglaze and autoglaze. Materials and Methods: In this experimental study, one brand of feldspathic porcelain (colorlogic, Ceramco was used and forty bars (25×6×3 mm were prepared according to ISO 6872 and ADA No. 69. The specimens were randomly divided into four groups: overglazed, auto glazed, fine polish and coarse polish (clinic polish. Flexural strength of each specimen was determined by three point bending test (Universal Testing Machine, Zwick 1494, Germany. Collected data was analyzed by ANOVA and post-hoc test with P<0.05 as the limit of significance. Results: A significant difference was observed among the studied groups (P<0.0001. According to post-hoc test, flexural strength in overglaze and fine polish group were significantly stronger than clinic polish and autoglaze group (P<0.001. Although the mean value for overglazed group was higher than fine polish group, this was not statistically significant (P=0.9. Also no statistical difference was seen between autoglazed and coarse polish group (P=0.2. Conclusion: Based on the findings of this study, flexural strength achieved by fine polish (used in this study can compete with overglazing the feldespathic porcelains. It also can be concluded that a final finishing procedure that involves fine polishing may be preferred to simple staining followed by self-glazing.

  8. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    International Nuclear Information System (INIS)

    Guilherme, A; Manso, M; Pessanha, S; Carvalho, M L; Zegzouti, A; Elaatmani, M; Bendaoud, R; Coroado, J; Santos, J M F dos

    2013-01-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  9. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    Science.gov (United States)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  10. The effects of window alternatives on energy efficiency and building economy in high-rise residential buildings in moderate to humid climates

    International Nuclear Information System (INIS)

    Yaşar, Yalçın; Kalfa, Sibel Maçka

    2012-01-01

    Highlights: ► We investigated energy and economy efficiency of window alternatives in Trabzon. ► Energy consumptions of eight window alternatives were simulated and discussed. ► Window alternatives’s life cycle costs were calculated and compared. ► We suggested appropriate energy and economy efficient window alternatives. ► The study defines useful guidelines to select appropriate window alternatives. - Abstract: Currently, focused efforts are being made to determine the influence of windows on the energy consumption and economy of high-rise buildings. Certain window designs and appropriate glazing systems reduce building energy consumption for heating and cooling and contribute to building economy. This paper addresses double-glazed window units that are composed of tinted glass; clear reflective glass; low emissivity (low-e) glass; and smart glass (one surface consists of a high-performance, heat-reflective glass, and other surface has a low-emissivity coated). These materials reduce the heating and cooling loads of buildings by providing solar control and heat conservation. The aim of this study was to investigate the effects of these alternative units, rather than readily available double-glazed units, in two types of flats. The flats have the same construction and operating system, but they have different plan types with regard to building energy consumption and building economy as it relates to life cycle cost analysis. For this study, we selected buildings in Trabzon, in Climate Region II of Turkey, due to its moderate-humid climate. F- and C-type high-rise residential blocks, with flats composed of two to three bedrooms, constructed by the Republic of Turkey’s Prime Ministry Housing Development Administration of Turkey (TOKİ) are used as models for the simulation. The flat plans in these blocks are modeled using DesignBuilder v.1.8 energy simulation software. The simulation results show that smart-glazed units and those with low emissivity

  11. Practice for dispersing pigments and other materials into water-based suspensions with a high intensity mixer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 In preparing ceramic glazes and slurries for use, it is often necessary to add pigments to develop a desired fired color, to incorporate viscosity control agents for developing, or providing to develop the desired thickness of the glaze on the ware, to add materials which stabilize the suspension, control bacterial growth, and develop the desired hardness of the glaze on the ware to allow moving and handling before firing. While it is convenient to add these materials to the glaze or slurry in the dry form, it is often possible to use slurries where these materials are dispersed in a slurry and the slurry then added to the liquid glaze. Regardless of the state of the additions (dry or slurry), the dispersion can be done efficiently and effectively by the use of a high intensity mixer (sometimes referred to as a dissolver) and the procedure used is described here. 1.2 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if...

  12. Buildings sector demand-side efficiency technology summaries

    Energy Technology Data Exchange (ETDEWEB)

    Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  13. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  14. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Dose rate measurements in the beta-photon radiation field from UO2 pellets and glazed ceramics containing uranium

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1986-01-01

    In the nuclear fuel cycle, the handling of UO 2 pellets results in a significant exposure, mainly due to beta rays. Depth dose distributions have been investigated at source-to-detector distances of 5 to 80 cm using LiF detectors of different thicknesses. Detailed data for the dose equivalent quantities H(0.07), H(3) and H(10) are presented. These data are compared with those found for the use of glazed tiles and ceramics containing natural uranium. (author)

  16. Glazed clay pottery and lead exposure in Mexico: Current experimental evidence.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Tristán-López, Luis Antonio; Medrano-Gómez, Karen Itzel; Torres-Domínguez, Juan Alejandro; Ríos, Camilo; Montes, Sergio

    2017-11-01

    Lead exposure remains a significant environmental problem; lead is neurotoxic, especially in developing humans. In Mexico, lead in human blood is still a concern. Historically, much of the lead exposure is attributed to the use of handcrafted clay pottery for cooking, storing and serving food. However, experimental cause-and-effect demonstration is lacking. The present study explores this issue with a prospective experimental approach. We used handcrafted clay containers to prepare and store lemonade, which was supplied as drinking water to pregnant rats throughout the gestational period. We found that clay pots, jars, and mugs leached on average 200 µg/l lead, and exposure to the lemonade resulted in 2.5 µg/dl of lead in the pregnant rats' blood. Neonates also showed increased lead content in the hippocampus and cerebellum. Caspase-3 activity was found to be statistically increased in the hippocampus in prenatally exposed neonates, suggesting increased apoptosis in that brain region. Glazed ceramics are still an important source of lead exposure in Mexico, and our results confirm that pregnancy is a vulnerable period for brain development.

  17. Research on Properties of Foamed Concrete Reinforced with Small Sized Glazed Hollow Beads

    Directory of Open Access Journals (Sweden)

    Chi Hu

    2016-01-01

    Full Text Available Foamed concrete (400 kg/m3 was prepared through a physical foaming method using ordinary Portland cement (42.5R, vegetable protein foaming agent, fly ash, and glazed hollow beads (GHB, K46 as raw materials. The performance of cement paste as well as the structure and distribution of air voids was characterized by rheometry, SEM, and XRD analyses with imaging software. The effects of GHBs on the compressive strength and thermal conductivity of the foamed concrete sample were also explored. Results show that the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the test sample mixed with 2.4 wt% GHBs are 94.44%, 182.10 μm, 2.39 MPa, and 0.0936 w/(m·k, respectively. Excessive amount of GHBs (>2.4 wt% increases the amount of air voids with diameter smaller than 50 μm in the hardened foamed concrete as well as the degree of open porosity. Moreover, the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the sample mixed with 4.0 wt% GHBs are 88.54%, 140.50 μm, 2.05 MPa, and 0.0907 w/(m·k, respectively.

  18. Telluride School, Telluride, Colorado solar-energy-system performance evaluation, February 1982-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.

    1982-01-01

    The Telluride School solar site is an elementary/junior-senior high school in Colorado with a passive/active hybrid solar energy system designed to supply 40% of the heating load. It is equipped with a 1428 square foot, double glazed Trombe wall, a 1392 square foot greenhouse with collection tube, and an auxiliary oil-fired boiler. Monthly performance data are tabulated for the overall system and for the Trombe wall, greenhouse, and greenhouse storage. System operation is illustrated by graphs of typical Trombe wall insolation and temperatures and typical greenhouse insolation and temperatures. (LEW)

  19. Glazed yard climate in the Kredittkassen office block in Middelthunsgt. 17. [Oslo, Norway]. Glassgaardsklima i Kredittkassens kontorbygg i Middelthunsgt. 17

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V; Harsem, T T

    1986-09-01

    The report deals with the glazed yard climate in the Kredittkassen head office block in Oslo (Norway). The climate has been simulated by means of the computer program Royal-DEBAK. Considered in particular are the summery and bright sunny day conditions together with the annual power required and energy consumption. The use of insulating glasses, indoor curtains, ventilation systems in the narrow zone of the glass roof, and cooling systems in the floor are important parts of the concept. 9 drawings.

  20. Applications of a glazing incidence X-ray fluorescence analysis to forensic samples

    International Nuclear Information System (INIS)

    Ninomiya, Toshio; Nomura, Shigeaki; Taniguchi, Kazuo; Ikeda, Shigero.

    1995-01-01

    A glazing incidence X-ray fluorescence analysis (GIXF) has been applied to forensic samples: a counterfeit 100-dollar bill, fragments of polyvinyl tapes, a trace of semen, illegal drugs, fingerprints and fake V.S.O.P brandy. Strontium could not be detected on the magnet-respondent letter of the counterfeit bill and Br was detected on the magnet-nonrespondent part of the counterfeit bill, while such phenomena could not be noticed on a true bill. Fragments of black vinyl tapes related to a sexual assault case could be discriminated from each other. Zinc as a characteristic ingredient could be detected in a trace of semen. Bromine was detected in each of what is called a pure methamphetamine crystal and K, Ca, Fe, Zn etc. were detected in heroin powders. Lead was sharply detected in gunshot residues attached to a finger after gunfiring. Sulfur as a contaminant was abundant in fake V.S.O.P brandy, while no S was detected in genuine V.S.O.P brandy. (author)

  1. Applications of a glazing incidence X-ray fluorescence analysis to forensic samples

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Toshio [Hyogo Prefecture, Kobe (Japan). Forensic Science Lab.; Nomura, Shigeaki; Taniguchi, Kazuo; Ikeda, Shigero

    1995-06-01

    A glazing incidence X-ray fluorescence analysis (GIXF) has been applied to forensic samples: a counterfeit 100-dollar bill, fragments of polyvinyl tapes, a trace of semen, illegal drugs, fingerprints and fake V.S.O.P brandy. Strontium could not be detected on the magnet-respondent letter of the counterfeit bill and Br was detected on the magnet-nonrespondent part of the counterfeit bill, while such phenomena could not be noticed on a true bill. Fragments of black vinyl tapes related to a sexual assault case could be discriminated from each other. Zinc as a characteristic ingredient could be detected in a trace of semen. Bromine was detected in each of what is called a pure methamphetamine crystal and K, Ca, Fe, Zn etc. were detected in heroin powders. Lead was sharply detected in gunshot residues attached to a finger after gunfiring. Sulfur as a contaminant was abundant in fake V.S.O.P brandy, while no S was detected in genuine V.S.O.P brandy. (author).

  2. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Leona, Marco

    2009-09-01

    Scientific studies of works of art are usually limited by severe sampling restrictions. The identification of organic colorants, a class of compounds relevant for attribution and provenance studies, is further complicated by the low concentrations at which these compounds are used and by the interference of the protein-, gum-, or oil-binding media present in pigment and glaze samples. Surface-enhanced resonance Raman scattering (SERRS) was successfully used to identify natural organic colorants in archaeological objects, polychrome sculptures, and paintings from samples smaller than 25 microm in diameter. The key factors in achieving the necessary sensitivity were a highly active stabilized silver colloid, obtained by the reproducible microwave-supported reduction of silver sulfate with glucose and sodium citrate, and a non-extractive hydrolysis sample treatment procedure that maximizes dye adsorption on the colloid. Among the examples presented are the earliest so far found occurrence of madder lake (in a 4,000 years old Egyptian object dating to the Middle Kingdom period), and the earliest known occurrence in Europe of the South Asian dyestuff lac (in the Morgan Madonna, a 12th century polychrome sculpture from Auvergne, France).

  3. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Byzantine Glazed Ceramics in the Cities of the Northern Black Sea Region in the Golden Horde Period (Second Half of the 13th to the Late 14th Century

    Directory of Open Access Journals (Sweden)

    Bocharov Sergei G.

    2012-03-01

    Full Text Available Glazed ceramics of Byzantine origin, which came has been found on town sites of the Northern Black Sea region referring to the Golden Horde period (second half of the 13th – late 14th cc., is characterized in the article. Materials from the urban centers of the Crimea (Solkhat, Sudak, Kaffa, Chersonese, Cembalo, the Azov Sea region (Azaq, and the lower reaches of the Don and Kuban rivers are discussed. The applied principles of ceramics classification have been formulated. On their basis, six major groups of Byzantine ceramic imports have been identified. For each group, a description of morphological and technological features, ornamentation methods and motifs has been provided; chronological framework of their arrival in the region has been specified. Conclusions have been offered as to the extent of distribution and the role played by diverse groups of Byzantine glazed ceramics in the cities of the Northern Black Sea region.

  5. Focused R&D For Electrochromic Smart Windowsa: Significant Performance and Yield Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2003-01-31

    There is a need to improve the energy efficiency of building envelopes as they are the primary factor governing the heating, cooling, lighting and ventilation requirements of buildings--influencing 53% of building energy use. In particular, windows contribute significantly to the overall energy performance of building envelopes, thus there is a need to develop advanced energy efficient window and glazing systems. Electrochromic (EC) windows represent the next generation of advanced glazing technology that will (1) reduce the energy consumed in buildings, (2) improve the overall comfort of the building occupants, and (3) improve the thermal performance of the building envelope. ''Switchable'' EC windows provide, on demand, dynamic control of visible light, solar heat gain, and glare without blocking the view. As exterior light levels change, the window's performance can be electronically adjusted to suit conditions. A schematic illustrating how SageGlass{reg_sign} electrochromic windows work is shown in Figure I.1. SageGlass{reg_sign} EC glazings offer the potential to save cooling and lighting costs, with the added benefit of improving thermal and visual comfort. Control over solar heat gain will also result in the use of smaller HVAC equipment. If a step change in the energy efficiency and performance of buildings is to be achieved, there is a clear need to bring EC technology to the marketplace. This project addresses accelerating the widespread introduction of EC windows in buildings and thus maximizing total energy savings in the U.S. and worldwide. We report on R&D activities to improve the optical performance needed to broadly penetrate the full range of architectural markets. Also, processing enhancements have been implemented to reduce manufacturing costs. Finally, tests are being conducted to demonstrate the durability of the EC device and the dual pane insulating glass unit (IGU) to be at least equal to that of conventional

  6. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  7. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  8. Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.

    Science.gov (United States)

    Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J

    2004-11-01

    The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.

  9. Microchemical and microstructural characterisation of medieval and post-medieval ceramic glaze coatings

    Science.gov (United States)

    Alaimo, R.; Bultrini, G.; Fragalà, I.; Giarrusso, R.; Montana, G.

    A large number of ceramic samples (from the 10th to the 19th century), found during the excavation of Sicilian archaeological sites (Syracuse, Caltagirone, Sciacca and Piazza Armerina), have been studied by combining scanning electron microscopy, energy-dispersive X-ray spectrometry and optical microscopy. Attention has been focused on the microchemical and microstructural properties of the painted surfaces to investigate the nature of the enamels and pigments in the decorative layers. The general perspective has been the identification of consistent archeometric criteria, other than the standard stylistic considerations, which can be used for a reliable recognition of the production sites. The results collected for each ceramic typology were used to cluster the different ceramic reference groups in a wide database suitable for a reliable discrimination of the provenance of artefacts. Moreover, the same compositional and microstructural data allow the identification of the raw materials used for pigments. There is evidence of some differences with existing information found in the literature concerning the formulas used in ancient times. Finally, attention has also been devoted to identify the technological aspects of the manufacturing techniques and firing conditions adopted for each typology of glaze coating depending on different ceramic materials .

  10. Shading Performance on Terraced House Facades in Putrajaya, Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Ahmad Sanusi

    2015-01-01

    Full Text Available This study evaluates shading performance on house facades of selected three terraced houses in Putrajaya, Malaysia as the case studies. Terraced house type is selected for the case study because it is the most popular house type built in this country to house an increase of the urban population. Its total number built in urban area increases from 27% of the total dwellings in 1980 to 40% in 1990, and to slightly more than 60 per cent in 2000. The Case Study A, B, and C are atypical style of terraced house facade designs built in Putrajaya. These postmodern designs exhibit a range of complex geometric elements blending of colonial and traditional elements with colorful styles on the house facade. In this study, the time at which the sun path perpendicular to the house facade will be used to gain the results of shading performances when the house facades have their maximum exposure to the direct sunlight. The house facade was divided into two main parts which are opaque and glazing surface elements. The amount of shading area on the opaque and glazing surface was simulated using the SunTool program. In conclusion, the Case Study C had the highest average percentage of the shading area, which is 64.43%, followed by the Case Study A 60.41% and Case Study B 56.29%. These results showed that the facade designs had excellent horizontal shading elements with roof overhangs for high angle sunlight but they had weak vertical shading elements due to a lack of considerations of louvered elements to block low angle sunlight.

  11. Effect of incorporation of natural chemicals in water ice-glazing on freshness and shelf-life of Pacific saury (Cololabis saira) during -18 °C frozen storage.

    Science.gov (United States)

    Luo, Haibo; Wang, Weihua; Chen, Wei; Tang, Haiqing; Jiang, Li; Yu, Zhifang

    2017-12-14

    Microbial spoilage and lipid oxidation are two major factors causing freshness deterioration of Pacific saury (Cololabis saira) during frozen storage. To provide a remedy, the effects of several natural chemicals incorporated alone or in combination in traditional water ice-glazing on the freshness and shelf-life of Pacific saury during frozen storage at -18 °C were investigated. Pacific sauries were subjected to individual quick freezing followed immediately by dipping into cold tap water (control) or solutions containing nisin, chitosan, phytic acid (single-factor experiment) or their combinations ((L 9 (3 4 ) orthogonal experiment) for 10 s at 1 °C and then packaged in polypropylene bags before frozen storage at -18 °C. The storage duration tested was up to 12 months. All ice-glazing treatments with individual chemicals could significantly (P shelf-life of Pacific saury could be extended up to 12 months at -18 °C. The study indicated that the combination treatment with natural chemicals could be commercially utilized to maintain the freshness and prolong the shelf-life of Pacific saury. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Metallic nano-particles in lustre glazed ceramics from the 15th century in Seville studied by PIXE and RBS

    International Nuclear Information System (INIS)

    Polvorinos del Rio, A.; Castaing, J.; Aucouturier, M.

    2006-01-01

    Lustre ceramics, found in a workshop located in Triana (Sevilla), have been analysed to determine the composition of glazes including the metallic particle layers giving rise to the lustre effect. PIXE and RBS were used for the elemental composition and the sub-surface concentration profiles, respectively. Copper and silver at the origin of the lustre are detected by PIXE. RBS gives access to the detailed distribution of the elements in the surface layers. The simulation of RBS spectra confirms the occurrence of thin layers (less than 300 nm) containing metallic silver and/or copper. The results are compared with those obtained on other types of lustre ceramics

  13. High-performance vacuum tubes for more energy efficiency. Building-integrated CPC vacuum tube collectors unite several functions.; Hochleistungs-Vakuumroehren fuer mehr Energieeffizienz. Gebaeudeintegrierte CPC-Vakuumroehren-Kollektoren vereinen mehrere Funktionen

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2013-10-15

    The performance of solar collectors primarily contributes to increased efficiency and reduced operating costs of solar thermal systems. With the use of building-integrated CPC vacuum tube collectors an extremely high energy yield is achieved on a smaller collector gross area. As a building-integrated system solution the CPC facade provide panels in addition to its use as spandrel panels within the glazed buildings not only an architectural design element, but unite as a multifunctional component for several functions. [German] Die Leistungsfaehigkeit der Solarkollektoren traegt primaer zur Effizienzsteigerung und Reduzierung der Betriebskosten einer Solarthermieanlagen bei. Mit dem Einsatz gebaeudeintegrierter CPC-Vakuumroehrenkollektoren wird auf einer kleineren Kollektorbruttoflaeche ein extrem hoher Energieertrag erreicht. Als gebaeudeintegrierte Systemloesung bieten die CPC-Fassadenkollektoren neben dem Einsatz als Bruestungselemente auch innerhalb der verglasten Gebaeuden nicht nur ein architektonisches Gestaltungselement, sondern vereinen als multifunktionaler Bestandteil noch mehrere Funktionen.

  14. INCREASING YIELDS AND BROADENING MARKETS: PROCESS INNOVATIONS IN THE MANUFACTURING OF ENERGY-SAVING WINDOW GLAZINGS

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2005-04-01

    The goal of this project was to develop and implement advanced thin film process technology which would significantly improve the manufacturability of both static and dynamic high performance energy saving coatings for windows. The work done has been aimed at improvements to the process that will result in increases in yield, and this was divided into four main areas, dealing with improvements in substrate preparation methods, reductions in the incidence of problems caused by particulate contamination, use of in-situ optical monitoring to improve process control, and overall system integration to enable simplified, and therefore lower cost operation. Significant progress has been made in each of the areas. In the area of substrate preparation, the enhanced washing techniques which have been developed, in combination with a new inspection technique, have resulted in significant reductions in the number of EC devices which are rejected because of substrate problems. Microscopic inspection of different defects in electrochromic devices showed that many were centered on particles. As a result, process improvements aimed at reducing the incidence of particles throughout the entire process have been implemented. As a result, the average number of defects occurring per unit area has been significantly reduced over the period of this project. The in-situ monitoring techniques developed during this project have become an indispensable part of the processing for EC devices. The deposition of several key layers is controlled as a result of in-situ monitoring, and this has facilitated significant improvements in uniformity and repeatability. Overall system integration has progressed to the stage where the goal of a closed-loop monitoring and control system in within reach, and it is anticipated that this will be achieved during the scale-up phase. There has been a clear increase in the yield occurring over the period of this project (Sept 1999 to September 2003), which is

  15. Influencing Factors on the Interface Microhardness of Lightweight Aggregate Concrete Consisting of Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Lightweight aggregate concrete consisting of glazed hollow bead (GHB as lightweight aggregate is studied for the influence of nanosilica (NS content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV and hydration degree of cement paste (HD nearby the interface zone (1 mm between GHB and cement paste at different periods of aging. Due to the sampling limitation, the interface zone in this test is within 1 mm away from the surface of lightweight aggregate. The HD of cement paste was determined through chemically combined water (CCW test. The results were expected to reflect the influence of various factors on the interface zone structure. Results showed that the rational control of the four factors studied could fully mobilize the water absorption and desorption properties of GHB to improve the characteristics of the interfacial transition zone.

  16. Experimental Study on Hygrothermal Deformation of External Thermal Insulation Cladding Systems with Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Houren Xiong

    2016-01-01

    Full Text Available This research analyzes the thermal and strain behavior of external thermal insulation cladding systems (ETICS with Glazed Hollow Beads (GHB thermal insulation mortar under hygrothermal cycles weather test in order to measure its durability under extreme weather (i.e., sunlight and rain. Thermometers and strain gauges are placed into different wall layers to gather thermal and strain data and another instrument measures the crack dimensions after every 4 cycles. The results showed that the finishing coat shrank at early stage (elastic deformation and then the finishing coat tends to expand and become damaged at later stage (plastic deformation. The deformation of insulation layer is similar to that of the finishing coat but its variation amplitude is smaller. Deformation of substrate expanded with heat and contracted with cold due to the small temperature variation. The length and width of cracks on the finishing coat grew as the experiment progressed but with a decreasing growth rate and the cracks stopped growing around 70 cycles.

  17. Full scale investigation on aerogel windows exposed to real climatic conditions

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Nielsen, Lars Thomsen

    -filling and hard low-emissivity coatings. The energy saving is reached without significant change in the indoor thermal comfort level.Highly insulating glazing types as aerogel glazings and triple-layered low-energy glazings lead to outside surface temperatures on the glazing that often are below the dew point...

  18. Evaluation of the Energy and Comfort Performance of a Plus-Energy House under Scandinavian Summer Conditions

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Kazanci, Ongun Berk

    2016-01-01

    The thermal indoor environment and the energy performance of a plus-energy house are evaluated in the present study. The study case is EMBRACE, a two-storey dwelling of 59 m2 designed to host a single family. The building includes a semi-outdoor space covered by a glazed envelope, where the therm...

  19. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished; Utilizacao do metodo radiometrico na avaliacao in vitro do desgaste provocado ao esmalte dental humano por porcelanas dentais glazeadas e polidas

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese]. E-mail: katekawa@usp.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@curiango.ipen.br

    2005-07-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 {mu}g of enamel /mm{sup 2} weared surface. There was no statistical difference ({alpha}=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  20. Feasibility study on the sol-gel deposition of nanostructured materials based on oxides and fluorides for coatings on solar collector glazing

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De

    2005-10-15

    This illustrated annual report reviews work done at the Federal Institute of Technology (EPFL) in Lausanne, Switzerland, on the architectural integration of thermal solar collectors into buildings. This is often limited by their black colour and the visibility of the tubes and corrugations of the absorber sheets. Although a certain freedom in the choice of colour would be desirable, the coloured appearance should not cause excessive performance degradation. Multi-layered thin film interference filters on the collector glazing can produce a coloured reflection while transmitting the non-reflected radiation entirely to the absorber. The paper describes suitable optical interference filters which have been designed and optimised by numerical simulation and that will be manufactured by the sol-gel dip-coating process. Light scattering has to be avoided, which implies a need for particle sizes much smaller than the wavelengths of the incoming light. The paper proposes that corresponding thin films should therefore consist of nano-structured materials. The sol-gel deposition of all proposed materials has been demonstrated successfully. The paper presents the results of the work using various materials including titanium-silicon mixed oxides, gold-silicon dioxide, porous silicon dioxide, magnesium fluoride and quaternary films.

  1. High-insulated glass house, Egebjerggaard, Ballerup; Det hoejisolerede glashus. Egebjerggaard, Ballerup

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Aggerholm, S.

    1999-11-01

    New, super-insulating transparent and translucent glazing offers new perspectives for use of glass in architecture to achieve new facade idioms, spatial and light effects and low energy consumption. The new types of glazing are being tested in practice through the construction of a super-insulated glass house for Ballerup Ejendomsselskab in the district of Egebjerggaard west of Copenhagen. The project is based on SBI Report 220, Super-insulated glass houses (1993), in which use of new, super-insulating transparent and translucent glazing is analysed in relation to architecture, light conditions, indoor climate and energy consumption - for a detached house and a terraced house. (EHS)

  2. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  3. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R.; Kerrigan, P.

    2012-02-01

    Project Home Again is a development in New Orleans, LA created to provide new homes to victims of Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness. These techniques include the use of high density spray foam insulation, LoE3 glazing, and supplemental dehumidification to maintain comfortable humidity levels without unnecessary cooling.

  4. KONSEKUENSI ENERGI AKIBAT PEMAKAIAN BIDANG KACA PADA BANGUNAN TINGGI DI DAERAH TROPIS LEMBAB

    Directory of Open Access Journals (Sweden)

    Anik Juniwati Santoso

    2005-01-01

    Full Text Available Glazing elemen of the high-rise building plays an importan role in determining energy performance of the building . Apart from aesthetic consideration, glazing provides view outside and allows internal spaces to be lit naturally. In tropical climate, however, this can be disadvantage as it brings heat inside. Using computer simulation, the present study invitigates these two conctradictory function in terms of energi consumption in four cases of high-rise building in Surabaya. It appears from the study that provision of thermally good glazing contributes more in energy saving than that of glazing for daylighting. Abstract in Bahasa Indonesia : Bidang kaca sebagai elemen fasad bangunan tinggi ikut menentukan karakter arsitektur dan kinerja energi sebuah bangunan. Bidang kaca disamping diperlukan untuk penyediaan pemandangan juga untuk untuk penerangan alami. Fungsi yang disebut terakhir sering kali disertai oleh peningkatan panas pada bangunan, khususnya di daerah beriklim tropis lembab. Penyelidikan konsekuensi energi akibat bidang kaca ini dilakukan dengan simulasi komputer pada empat bangunan bertingkat di Surabaya. Hasil penelitian menunjukkan bahwa penghematan energi dengan jalan peningkatan kemampuan termal kaca lebih besar dibanding dengan peningkatan kemampuan untuk pencahayaan almi. Kata kunci: bangunan tinggi, bidang kaca, energi, iklim tropis lembab.

  5. Improvement of performance of the HARBEMAN house; Habiman hausu no seino kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Tohoku Univ., Sendai (Japan). Dept. of Aeronautics and Space Eng.; Fujino, T. [Mitsubishi Heavy Industires Ltd., Tokyo (Japan)

    1998-12-05

    A natural energy autonomous house (HARBEMAN house) was built in 1996 in Sendai. This house combinedly utilizes solar thermal, photovoltaic, sky radiation cooling, rainwater energies and so on. In order to utilize a lot kind of natural energies more efficiently, we will improve thermal performance of the solar collector, the sky radiator, and so on. The effect of thermal insulation, tank size, and window glazing on thermal performance will also be examined. This article reports on the improved performance of the HARBEMAN house. (author)

  6. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  7. Current-day matters of administration and law in the field of high-rise construction

    Science.gov (United States)

    Voskresenskaya, Elena; Snetkov, Vitaly; Tebryaev, Alexander

    2018-03-01

    The article touches upon main reasons for high-rise construction: increase in energy consumption and limited availability of site in the big cities of Russia. Increase in energy consumption is related with construction, transportation and applying of ventilation and air conditioning systems. Nowadays, there are developed a lot of design and engineer solutions, that include autonomous systems as well as passive methods with low energy consumption rate, which are interrelated with local climate conditions. Certain architectural solutions contribute to energy consumption decrease: building orientation with respect to the cardinal directions, taking into account the prevailing cold wind directions, maximum glazing of the southern facades and minimum glazing of the northern ones, what plays a big role in hard climate conditions. Limited availability of site for construction in the big cities resulted in rapid development of the high-rise construction, which today prevails in terms of quantitative indicators of civil engineering.

  8. Investigation of Released Cadmium and Lead from Different Colors of Over Glaze Designs to Food Stuff in Different Conditions

    Directory of Open Access Journals (Sweden)

    H. Hashemi-Moghaddam

    2012-03-01

    Full Text Available In this paper, leaching of lead and cadmium was investigated from porcelain over glaze designs between different colors.  Also the effect of microwave heating was considered on leaching of lead and cadmium.  Dishes were selected with a decor with the dominant color of gray, red, yellow, blue, and dark blue. Amounts of cadmium and lead which leached from the container by acetic acid and orange juice were measured according to the standard ASTM C738.  The results showed that especially in the red and dark blue colors cadmium and lead could be released easily by either acetic acid or orange juice, and these amounts were much higher than the permissible standard amount. Also microwave heating could enhance releasing of lead and cadmium from decorated dinnerware. 

  9. Measure Guideline. Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, John [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR; Haglund, Kerry [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  10. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

    2011-01-21

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  11. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  12. Recycling liquid effluents in a ceramic industry

    International Nuclear Information System (INIS)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-01-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  13. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  14. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    According to the Danish energy protocol, Energy 21, one of the goals with highest priority is to reduce the CO2-emission. Energy consumption for domestic heating is a major contributor to the CO2-emission; hence one of the primary efforts to reach the goal is by saving energy in the households...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  15. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  16. Energy Saving Assessment of Semi-Transparent Photovoltaic Modules Integrated into NZEB

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2017-01-01

    Full Text Available Photovoltaic semi-transparent materials (STPV integrated into glazing systems can offer good potential for energy saving to buildings, influencing heating loads, cooling loads, and lighting, as well as electricity production. Moreover, with the new stringent regulations issued by various European countries, following the Energy Performance of Buildings Directive (EPBD, 2010/31/EC, the building envelope, including the glazing elements, needs to have high thermal performance to guarantee Nearly Zero Energy Building (NZEB behavior. This work presents an assessment of energy saving potential of 4 different types of STPV with respect to conventional double pane glass. Dye sensitized solar modules (DSM and thin film modules were considered in the study. Simulations based on an IEA reference office building (STD and on reference buildings prescribed by the new Italian building energy performance regulation (NZEB were carried out. All the glazing peculiarities could be simulated using only one simulation tool, namely IDA ICE 4.7.1. Dye sensitized solar modules resulted as the best performing devices for all orientations and climate zones. The work also evidenced how the requirements of NZEB seem to be too stringent for insulation properties, especially for the climate zone of Rome.

  17. Assessing the performance of the 'Simple Model of the Atmospheric Radiative Transfer of Sunshine' (SMARTS2) in a first tier of software using empirical weather data

    International Nuclear Information System (INIS)

    Askar, H.K.; Batty, W.J.

    2005-01-01

    Software is being developed to assess the performance of a new form of triple glazing system that can be used in hot arid countries. The method includes the insertion of an angled glazing element within the window cavity to maximize the reflection of incident direct insolation while maintaining an acceptable level of day lighting. SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) is used as a first tier platform to provide solar input (i.e. direct, diffused and albedo) for tilted surfaces for simulations of optical performance, using the visible band of the electromagnetic spectrum. Results, thus, obtained can be used in a ray-tracing algorithm to calculate an optimal angle of insertion of the suggested element that corresponds to the solar geometry of particular latitudes. General weather files of eight countries were used for the analysis, which included an examination of detailed annual solar data and turbidity (i.e. dust) levels for Kuwait. SMARTS2 performance as a solar model was assessed within the narrow visible band

  18. High Performance Building Facade Solutions - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  19. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    Science.gov (United States)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  20. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  1. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó

    2014-01-01

    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  2. Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Joud Al Dakheel

    2017-10-01

    Full Text Available Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption.

  3. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  4. Development and characterisation of a new anti-slip glaze with smooth texture and easy-cleaning for porcelain stoneware; Desarrollo y caracterizacion de un nuevo esmalte antideslizante de textura lisa y de facil limpieza para baldosas de gres porcelanico

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Albert, E.; Martin Nunez, J. A.; Fraga Chiva, D.; Calvet Roures, I.; Cada Castello, J. B.

    2016-05-01

    Since conventional anti-slip enamels show some disadvantages, directly related to the surface roughness which prevents the adequate surface cleaning of tile, an anti-slip enamel exhibiting glass-ceramic nature has been designed, characterized by being stain-resistant and presenting a smooth texture and touch soft. To do this, new matte frits and raw materials with similar nature have been used, refractory enough to be suitable in enamel compositions for porcelain stoneware. The glass-ceramic glaze thus prepared was characterized by various instrumental techniques (X-ray fluorescence [XRF], scanning electron microscopy [SEM], X-ray diffraction [XRD], mechanical profilometry and microhardness measurements), in order to check the nature of crystallized phases, their morphology, surface roughness and microhardness of the finished tile. In addition, the quality of the glazed piece has been evaluated by the regulations of chemical resistance, stain-resistance and slipperiness. The enamel obtained has devitrified in crystals of silicoaluminates of calcium and barium and complies with standards of anti-slip and stain-resistence, as it has a surface roughness similar to a non-slip enamel. (Author)

  5. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  6. Correlation between the green-like coloration and the structural and electronic properties of celadon glazes (I Correlação entre a coloração esverdeada e as propriedades estruturais e eletrônicas de esmaltes celadon (I

    Directory of Open Access Journals (Sweden)

    M. Hidaka

    2012-09-01

    Full Text Available Celadon glazes have been investigated by means of ordinary X-ray fluorescence analysis, and X-ray diffraction and X-ray absorption spectra using synchrotron radiation. The tentative glazes are prepared by mixing raw celadon materials of Masuda feldspar, limestone, quartz, and extra-added Fe2O3 of about 1wt% at thermal treatment till about 1300 °C. It is found that the glaze-colors strongly depend on the Fe2O3 amount and the high-temperature treatment under oxidizing and deoxidizing in the used kiln. Especially, the characteristic color of blue-green, white-green-brown, and white-blue-green result from complex hybridized 3d5L and 3d6L bands. The 3d6L hybridization is induced by an electronic exchange interaction between an empty 3d6 orbital of Fe ions and an occupied 2p orbital of surrounding O ions in the (SiO2 - Al2O3 - CaO basic complex ceramics of glass-state under the deoxidizing thermal treatment.Esmaltes celadon foram investigados por meio de análise de fluorescência de raios X, e difração de raios X e espectros de absorção de raios X usando radiação síncrotron. Os esmaltes foram preparados por mistura de matérias-primas de celadon de feldspato Masuda, calcita, quartzo e 1 peso% a mais de Fe2O3 com tratamento térmico até 1300 °C. Foi verificado que as cores dos esmaltes dependem fortemente do teor de Fe2O3 e do tratamento térmico a alta temperatura sob atmosfera oxidante e desoxidante. As cores características verde azulada, marron esverdeada esbranquecida resultam das bandas de hibridização complexa 3d5L and 3d6L. A hibridização 3d6L é induzida por interação de troca eletrônica entre o orbital vazio 3d6 e íons Fe e um orbital 2p ocupado com íons oxigênio vizinhos nas cerâmicas complexas básicas (SiO2 - Al2O3 - CaO no estado vítreo sob tratamento térmico desoxidante.

  7. Study on ancient Chinese imitated GE ware by INAA and WDXRF

    International Nuclear Information System (INIS)

    Xie Guoxi; Feng Songlin; Feng Xiangqian; Wang Yanqing; Zhu Jihao; Yan Lingtong; Li Yongqiang; Han Hongye

    2007-01-01

    Imitated GE ware was one of the most famous products of Jingdezhen porcelain field in Ming dynasty (AD 1368-1644). The exterior features of its body and glaze are very marvelous. Black foot, purple mouth and crazing glaze are the main features of imitated GE ware. Until now, the key conditions of resulting these features are not clearly identified. In order to find the critical elements for firing these features, instrumental neutron activation analysis (INAA) and wavelength-dispersive X-ray fluorescence (WDXRF) were used to determine the element abundance patterns of imitated GE ware body and glaze. The experimental data was compared with that of imitated Longquan celadon and of Longquan celadon. The analytical results indicated that Fe, Ti and Na were the critical elements. The body of imitated GE ware which contains high Fe and Ti are the basic conditions of firing its black body, black foot and purple mouth. The glaze of imitated GE ware which contains high Na is the main condition of producing its crazing glaze. Na is the critical element which enlarges the difference in expansion coefficients between the glaze and body of imitated GE ware. Furthermore, Zijin soil was added into kaolin to make the body rich in Fe and Ti. And something which was rich in Na was used to produce crazing glaze in the manufacturing process of imitated GE ware

  8. Study on ancient Chinese imitated GE ware by INAA and WDXRF

    Science.gov (United States)

    Xie, Guoxi; Feng, Songlin; Feng, Xiangqian; Wang, Yanqing; Zhu, Jihao; Yan, Lingtong; Li, Yongqiang; Han, Hongye

    2007-11-01

    Imitated GE ware was one of the most famous products of Jingdezhen porcelain field in Ming dynasty (AD 1368-1644). The exterior features of its body and glaze are very marvelous. Black foot, purple mouth and crazing glaze are the main features of imitated GE ware. Until now, the key conditions of resulting these features are not clearly identified. In order to find the critical elements for firing these features, instrumental neutron activation analysis (INAA) and wavelength-dispersive X-ray fluorescence (WDXRF) were used to determine the element abundance patterns of imitated GE ware body and glaze. The experimental data was compared with that of imitated Longquan celadon and of Longquan celadon. The analytical results indicated that Fe, Ti and Na were the critical elements. The body of imitated GE ware which contains high Fe and Ti are the basic conditions of firing its black body, black foot and purple mouth. The glaze of imitated GE ware which contains high Na is the main condition of producing its crazing glaze. Na is the critical element which enlarges the difference in expansion coefficients between the glaze and body of imitated GE ware. Furthermore, Zijin soil was added into kaolin to make the body rich in Fe and Ti. And something which was rich in Na was used to produce crazing glaze in the manufacturing process of imitated GE ware.

  9. Study on ancient Chinese imitated GE ware by INAA and WDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoxi [Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yu Quan Lu, Beijing 100049 (China); Graduated University of Chinese Academy of Sciences, Beijing 100049 (China); Feng Songlin [Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yu Quan Lu, Beijing 100049 (China)], E-mail: fengsl@ihep.ac.cn; Feng Xiangqian; Wang Yanqing; Zhu Jihao; Yan Lingtong [Institute of High Energy Physics, Chinese Academy of Sciences, 19 Yu Quan Lu, Beijing 100049 (China); Li Yongqiang; Han Hongye [Beijing Institute of Cultural Relics, Beijing 100009 (China)

    2007-11-15

    Imitated GE ware was one of the most famous products of Jingdezhen porcelain field in Ming dynasty (AD 1368-1644). The exterior features of its body and glaze are very marvelous. Black foot, purple mouth and crazing glaze are the main features of imitated GE ware. Until now, the key conditions of resulting these features are not clearly identified. In order to find the critical elements for firing these features, instrumental neutron activation analysis (INAA) and wavelength-dispersive X-ray fluorescence (WDXRF) were used to determine the element abundance patterns of imitated GE ware body and glaze. The experimental data was compared with that of imitated Longquan celadon and of Longquan celadon. The analytical results indicated that Fe, Ti and Na were the critical elements. The body of imitated GE ware which contains high Fe and Ti are the basic conditions of firing its black body, black foot and purple mouth. The glaze of imitated GE ware which contains high Na is the main condition of producing its crazing glaze. Na is the critical element which enlarges the difference in expansion coefficients between the glaze and body of imitated GE ware. Furthermore, Zijin soil was added into kaolin to make the body rich in Fe and Ti. And something which was rich in Na was used to produce crazing glaze in the manufacturing process of imitated GE ware.

  10. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  11. performance simulation of a natural circulation solar air

    African Journals Online (AJOL)

    User

    in a single glazed flat plate natural circulation solar a prepared in modules .... Nigerian Journal of Technology, used instead of ... boundary associated with the melting the phase ...... Mathematical Modeling of the Thin Layer Drying of Sweet ...

  12. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  13. Basic design criteria for an impact test frame for safety glazing; Criterios basicos de diseno de banco de ensayos para impactos de vidrios de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, S.; Pacios, A.; Huerta, C.

    2011-07-01

    The Spanish Building Code establishes the essential requirements of safety and habitability that buildings must satisfy. The Basic Document of Safety in Use and Accessibility identifies some critical areas where falling through brittle elements may cause a risk to the user. The document also establishes the minimum performance of glasses located in such areas, according to the impact procedure described in UNE-EN 12600:2003. However, this standard does not provide detailed information about the characteristics of the test equipment, but indicates a final calibration as validation test. The general criteria and conditions of this calibration are also incorporated in the UNE-EN 12600. To better achieve a successful manufacture of a pendulum complying with calibration limits, a proposal of the basic design criteria of a test frame for impacts of safety glazing is presented in this paper. Prototypes and results have been evaluated using dynamic design criteria of the impact phenomenon. Three criteria proposed and applied in the design and manufacture of a real test frame have helped to achieve the calibration required by the UNE-EN 12600:2003. The repeatability and reproducibility of the tests presented in this paper also guaranty the robustness of the set-up. (Author)

  14. Processing and characterisation of various mixed oxide and perovskite-based pigments for high temperature ceramic colouring application

    International Nuclear Information System (INIS)

    Kar, Jitendra Kumar; Stevens, Ron; Bowen, Christopher R.

    2008-01-01

    The potential of using new mixed oxides based on perovskite and cerium oxide-based pigments, for high temperature (above 1000 deg. C) ceramic colouring applications is presented in this paper. The solid-state synthesis method was used to manufacture the various pigment precursor powders used in this study. In the case of Er 6 MoO 12 , orange-yellow colours were observed at calcination temperatures of 1200 deg. C and 1300 deg. C with different soaking times. Examination of the X-ray diffraction pattern generated after heat treatment at 1200 deg. C for 2 h revealed the single-phase nature of the compound. However, when applied to unleaded commercial transparent glaze, the pigment powder changed to a light pink colour indicating instability of the pigment in the glaze. Similarly mixed oxides such as Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 4 O 10 and Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 2 O 6 produced vivid blue and violet-blue colour powders, respectively when calcined between 950 deg. C and 1050 deg. C for different soaking times. X-ray diffraction patterns for Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 4 O 10 showed the presence of the phases which included (a) BaCuSi 4 O 10 (b) La 2 Si 2 O 7 (c) SiO 2 and La 2 O 3 (trace) whereas Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 2 O 6 confirmed the presence of the phases such as (a) BaCuSi 4 O 10 and (b) BaCuSi 2 O 6 . These pigment powders were also not stable and light-green colours were observed when they were immersed in the unleaded commercial transparent glaze. Finally, A x B (2-x-y) Cr y O 3 (A = rare earth and B = Al) perovskite-type compounds produced a variety of shades of red and yellow colour depending on the rare earth, the value of x and y, and the calcination temperature. An intense brownish-red colour was obtained when the rare earth Erbium was used with x = 1, y = 0.06. From the X-ray diffraction trace, Er (Al Cr)O 3 was found to be the only phase present. SEM micrographs indicated the presence of agglomerates as well as two different types of

  15. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  16. Measure Guideline: Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  17. The TVT Glass Pavilion: Theoretical Study on a Highly Transparent Building Made with Long-Spanned TVT Portals Braced with Hybrid Glass-Steel Panels

    Directory of Open Access Journals (Sweden)

    Maurizio Froli

    2017-06-01

    Full Text Available In contemporary buildings, the architectural demand for a complete dematerialisation of load bearing structures can be satisfied only in limited cases with the exclusive structural use of glass. Otherwise, for challenging applications such as long spanned or high-rise structures, the use of hybrid glass-steel systems is mandatory. Glass, fragile but highly compressive resistant, is associated with steel, ductile and tensile resistant. The present research shows the feasibility study for a fully glazed pavilion made of six TVT (Travi Vitree Tensegrity portal frames longitudinally braced by pre-stressed hybrid glass panels. The frames are about 20 m in span and 8 m in height. Appropriate multiscalar FEM numerical analyses, calibrated on the collapse tests performed on previous TVT large-scale prototypes, stated that the structural performance would be able to withstand heavy static and dynamic loads and stated the observance of the Fail-Safe Design principles.

  18. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  19. Performance Evaluation of a Pebble Bed Solar Crop Dryer ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The solar crop dryer consists of an imbedded pebble bed solar heat storage unit/solar collector ... The crop-drying chamber is made of drying trays of wire gauze while the roof is made of transparent glazing.

  20. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Sindhu, S.; Narasimha Rao, K.; Ahuja, Sharath; Kumar, Anil; Gopal, E.S.R.

    2006-01-01

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  1. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  2. Effects of nanometric hydrophobic layer on performances of solar photovoltaic collectors

    Directory of Open Access Journals (Sweden)

    Andrei BUTUZA

    2014-11-01

    Full Text Available The study refers to the experimental investigation of solar photovoltaic collectors' behaviour when the glazed surface is treated with a nanometric layer of hydrophobic solution. The experiment was carried out on two photovoltaic collectors, of which one was considered as reference and the other one was coated with a commercial hydrophobic solution. It was studied the evolution of the following electrical parameters: current, voltage, power, efficiency and daily energy production. The voltage was almost unaffected, but for all the others parameters, important drop were recorded. The preliminary conclusion of the study is that the use of hydrophobic solutions, for the treatment of glazed surfaces of solar collectors is not recommended. This hypothesis needs supplementary investigations and measurements in the context of reduced available information concerning the optical properties of hydrophobic solutions.

  3. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    Science.gov (United States)

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  4. Performance of PV-Trombe wall in winter correlated with south facade design

    International Nuclear Information System (INIS)

    Sun, Wei; Ji, Jie; Luo, Chenglong; He, Wei

    2011-01-01

    PV-Trombe wall (PVTW) is a novel version of Trombe-wall. Photovoltaic cells on the cover glazing of the PVTW can convert solar radiation into electricity and heat simultaneously. A window on the south facade can also introduce solar heat into the room in the winter season. Experiment has been conducted to study the temperature field of a building with both southern facing window and the PVTW. A dynamic numerical model is developed for the simulation of the whole building system. The temperature of the indoor air is found to be vertically stratified from the measurement. The nodal model is adopted to calculate the temperature profile in the room. The simulation results are in good agreement with the experimental data. The different south facade designs affect the thermal efficiency of the PVTW significantly from the numerical simulation. With a southern facing window, the thermal efficiency of the PVTW is reduced by 27% relatively. The increase of PV coverage on the glazing can reduce the thermal efficiency of the TW by up to 17%. By taking account of electric conversion, the total efficiency of solar utilization is reduced by 5% at most while the glazing is fully covered with PV cells. The electric conversion efficiency of the PVTW achieves 11.6%, and is slightly affected by south facade designs.

  5. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  6. A two-stage ceramic tile grout sealing process using a high power diode laser—Grout development and materials characteristics

    Science.gov (United States)

    Lawrence, J.; Li, L.; Spencer, J. T.

    1998-04-01

    Work has been conducted using a 60 Wcw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O 2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm 2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze.

  7. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  8. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  9. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  10. Uranium-rich opal from the Nopal I uranium deposit, Peña Blanca, Mexico: Evidence for the uptake and retardation of radionuclides

    Science.gov (United States)

    Schindler, Michael; Fayek, Mostafa; Hawthorne, Frank C.

    2010-01-01

    The Nopal I uranium deposit of the Sierra Peña Blanca, Mexico, has been the focus of numerous studies because of its economic importance and its use as a natural analog for nuclear-waste disposal in volcanic tuff. Secondary uranyl minerals such as uranophane, Ca[(UO 2)(SiO 3OH)] 2(H 2O) 5, and weeksite, (K,Na) 2[(UO 2) 2(Si 5O 13)](H 2O) 3, occur in the vadose zone of the deposit and are overgrown by silica glaze. These glazes consist mainly of opal A, which contains small particles of uraninite, UO 2, and weeksite. Close to a fault between brecciated volcanic rocks and welded tuff, a greenish silica glaze coats the altered breccia. Yellow silica glazes from the center of the breccia pipe and from the high-grade pile coat uranyl-silicates, predominantly uranophane and weeksite. All silica glazes are strongly zoned with respect to U and Ca, and the distribution of these elements indicates curved features and spherical particles inside the coatings. The concentrations of U and Ca correlate in the different zones and both elements inversely correlate with the concentration of Si. Zones within the silica glazes contain U and Ca in a 1:1 ratio with maximum concentrations of 0.08 and 0.15 at.% for the greenish and yellow glazes, respectively, suggesting trapping of either Ca 1U 1-aqueous species or -particles in the colloidal silica. X-ray photoelectron spectroscopy (XPS), Fourier-transform infra-red spectroscopy (FTIR), and oxygen-isotope ratios measured by secondary-ion mass spectrometry (SIMS) indicate higher U 6+/U 4+ ratios, higher proportions of Si-OH groups and lower δ 18O values for the greenish silica glaze than for the yellow silica glaze. These differences in composition reflect increasing brecciation, porosity, and permeability from the center of the breccia pipe (yellow silica glaze) toward the fault (green silica glaze), where the seepage of meteoric water and Eh are higher.

  11. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  12. A portable high-power diode laser-based single-stage ceramic tile grout sealing system

    Science.gov (United States)

    Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.

    2002-02-01

    By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.

  13. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    Science.gov (United States)

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  14. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  15. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    Science.gov (United States)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  16. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  17. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  18. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  19. Towards green buildings: Glass as a building element-the use and misuse in the gulf region

    Energy Technology Data Exchange (ETDEWEB)

    Aboulnaga, Mohsen M. [College of Design and Applied Arts, Dubai University College, Dubai P.O. Box 14143 (United Arab Emirates)

    2006-04-15

    The recent economic growth in the Gulf region notably in Dubai, United Arab Emirates (UAE) has led to a colossal number of buildings that has been constructed in the past 5 years. In the last decade, a total glazed building's facades became the icon of Dubai. This large area of glazing in each facade needs protection against overheating and sun glare in summer. According to leader in energy and environmental design (LEED) glass selection becomes a main element in this equation to contribute towards achieving a green building. The aim of this paper is to investigate the problems associated with misuse of glass, as a building element in UAE particularly in Dubai. Inadequate design with ill-selected glass/glazing type may lead not only to poor daylighting in building interiors but also contribute significantly to fatigue, insomnia, seasonal affective disorder (SAD) and above all increase CO{sub 2} emission. The purpose of the study is to specify the required improvements to permit natural, 'free' daylight to filter through the building facade into interior space, especially with the right type of glass. This paper examines the status of buildings in Dubai in terms of glass type, visible light transmittance, reflection (out/in) and relative heat gain. A quantitative analysis is conducted to assess the impact of glass on the building users' performance in terms of daylight environment. A recent built high-rise office building was selected in the investigation to asses whether selected glass provide the recommended daylight factor (DF) and daylight level (DL) according to IES standards. The results revealed that most the glass/glazing was misused in 70% of buildings in intermediate and low performance groups. The DF and DD in the selected office building were unexpectedly tremendous and found far beyond the recommended level due to the use of spectrally selective glazing (clear on both sides). [Author].

  20. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  1. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  2. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  3. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  4. High performance conductometry

    International Nuclear Information System (INIS)

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  5. Overheating and Daylighting; Assessment Tool in Early Design of London’s High-Rise Residential Buildings

    Directory of Open Access Journals (Sweden)

    Bachir Nebia

    2017-08-01

    Full Text Available High-rise residential buildings in dense cities, such as London, are a common response to housing shortage. The apartments in these buildings may experience different levels of thermal and visual comfort, depending on their orientation and floor level. This paper aims to develop simplified tools to predict internal temperatures and daylighting levels, and propose a tool to quickly assess overheating risk and daylight performance in London’s high-rise residential buildings. Single- and double-sided apartments in a high-rise building were compared, and the impact of their floor level, glazing ratio, thermal mass, ventilation strategy and orientation was investigated. Using Integrated Environmental Solutions Virtual Environment (IES VE, temperature and daylight factor results of each design variable were used to develop early design tools to predict and assess overheating risks and daylighting levels. The results indicate that apartments that are more exposed to solar radiations, through either orientation or floor level, are more susceptible to overheat in the summer while exceeding the daylighting recommendations. Different design strategies at different levels and orientations are subsequently discussed.

  6. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  7. Majolica imaging with THz waves: preliminary results

    Science.gov (United States)

    Catapano, Ilaria; Affinito, Antonio; Guerriero, Luigi; Bisceglia, Bruno; Soldovieri, Francesco

    2016-05-01

    Recent advancements performed in the development of stable and flexible devices working at TeraHertz (THz) frequencies have opened the way at considering this technology as a very interesting noninvasive diagnostic tool in cultural heritage. In this frame, the paper aims at assessing the ability of THz imaging to gather information about preservation state and constructive modalities of majolica artworks. In particular, THz surveys have been carried out on two majolica tiles dated back to the nineteenth century and realized as building cladding at Naples (Italy). The analysis has been performed by means of the Zomega fiber-coupled THz time-domain system. This analysis corroborates the ability of THz to reconstruct irregularities of majolica tile topography, to characterize pigment and glaze losses, and to detect and localize glaze and pigment layer as well as the glaze-clay body interface.

  8. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  9. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  10. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  11. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  12. Influence of windows on the energy balance of apartment buildings in Amman

    International Nuclear Information System (INIS)

    Hassouneh, K.; Alshboul, A.; Al-Salaymeh, A.

    2010-01-01

    The influence of windows on the energy balance of apartment buildings in Amman is investigated by using self developed simulation software (SDS) based on the ASHRAE tables for solar heat gain calculation and coaling load factor for latitude 32 deg., where Amman city is located. The calculations of energy saving are made to find out the influence of windows on the energy balance of apartment buildings in Amman. Also, the present investigation aimed to study the energy performance of windows of an apartment building in Amman in order to select the most energy efficient windows that can save more energy and reduce heating load in winter, the percentage of saving energy and saving fuel and money through time. Variations of type of glazing using eight types of glazing (clear glass, types A, B, C, D, E, F, and G) are made to find out the most appropriate type of glazing in each direction. Also the orientation of window is changeable in the main four directions (N, S, E and W). The area of glazing varies also in different orientation to find the influence of window area on the thermal balance of the building. The results show that if energy efficient windows are used, the flexibility of choosing the glazed area and orientation increases. It has been found that choosing a larger area facing south, east and west can save more energy and decrease heating costs in winter using certain types of glazing such as glass type A and clear glass, while decreasing the glazing area facing north can save money and energy. However, it has been found that the energy can be saved in the north direction if glass type B has been used. In the apartment building, it is found that certain combination of glazing is energy efficient than others. This combination consists of using large area of glass type A in the east, west and south direction, and glass type B in the north direction or reducing glazing area as possible in the north direction.

  13. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  14. Singapore's Zero-Energy Building's daylight monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Lars; Wittkopf, Stephen; Pandey, Anupama Rana; Xiaoming, Yang; Seng, Ang Kian; Scartezzini, Jean-Louis; Selkowitz, Stephen

    2010-02-28

    A setup to monitor the daylighting performance of different glazing types in Singapore is presented. The glazing is installed in the facade of four dedicated testing chambers in BCAA's Zero Energy Building in Singapore. These test rooms are equipped with sensors that both record illuminances on the work plane, and luminances as seen by occupants. The physical and logical design of the monitoring system is presented. Criteria to assess the daylighting performance are introduced, and initial results of the work in progress are presented.

  15. Microanalytical characterization of surface decoration in Majolica pottery

    International Nuclear Information System (INIS)

    Padilla, R.; Schalm, O.; Janssens, K.; Arrazcaeta, R.; Espen, P. van

    2005-01-01

    This paper presents the results of the characterization of the surface finishing works in archaeological pottery fragments belonging to several Majolica types. The homogeneity, thickness and inclusions of both ground glaze and color decorations were, among other characteristics, inspected by scanning electron microscopy X-ray analysis (SEM-EDX). The identification of the main constituents in the decoration motifs was performed by means of scanning micro X-ray fluorescence analysis. Additionally, compositional classification based on non-destructive quantitative analysis of the ground glaze was performed

  16. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  17. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  18. 75 FR 20035 - Petition for Waiver of Compliance

    Science.gov (United States)

    2010-04-16

    ...'s arguments in favor of relief. City of Jasper, Indiana [Docket Number FRA-2009-0112] The City of.... The car is currently equipped with automotive-type laminated glazing, which is non-compliant with FRA... waiver request is the high cost of compliant FRA Types I & II glazing material, and that the automotive...

  19. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit

    2015-01-01

    Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.

  20. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  1. The Moessbauer experiment on the clays and the imitative ancient porcelains

    International Nuclear Information System (INIS)

    Gao Zhengyao; Chen Songhua

    1995-12-01

    It is analyzed that Moessbauer parameter variations of clays from the famous sites of ancient kilns change with temperature, time and atmosphere in firing process. The variation of the Moessbauer parameters of the imitative ancient Chinese Ru porcelain sky-green glaze with the firing conditions is studied in detail. The Moessbauer spectra show that the sky-green glaze contains three kinds of iron minerals, i.e. the structural iron (Fe 2+ and Fe 3+ ); Fe 2 O 3 and Fe 3 O 4 ; The relative intensity of the paramagnetic peak Fe 2+ increases and the magnetic ratio of the magnetic peak decreases with increasing temperature. Based on the variation of the quadrupole splitting (QS) of the paramagnetic peak Fe 2+ , the phase transformation characteristics of the sky-green glaze in the firing process is discussed. The coloring mechanism of the sky-green glaze and the variation of its magnetism in the firing process are also investigated. The variation of the hyperfine interaction parameters and the variable mechanism of the sky-green glaze at liquid helium temperature is studied. Moessbauer spectra of the imitative ancient blue Jun porcelain indicate that the glaze and boby materials contain Fe 2 O 3 , Fe 3 O 4 and structural iron. It is clear that during the firing process, the glaze undergoes dehydration, dehydroxylation, vitrification and recrystallization. The Fe 2+ quadrupole splitting value of the paramagnetic peak of the body material is rather high even at low firing temperature. The distinction between dehydration and dehyroxylation is not clear. The changes of magnetism of the glaze and body materials in the firing process and coloring mechanism of the sky-blue Jun porcelain are analyzed

  2. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  3. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  4. High-performance-vehicle technology. [fighter aircraft propulsion

    Science.gov (United States)

    Povinelli, L. A.

    1979-01-01

    Propulsion needs of high performance military aircraft are discussed. Inlet performance, nozzle performance and cooling, and afterburner performance are covered. It is concluded that nonaxisymmetric nozzles provide cleaner external lines and enhanced maneuverability, but the internal flows are more complex. Swirl afterburners show promise for enhanced performance in the high altitude, low Mach number region.

  5. Academic performance in high school as factor associated to academic performance in college

    Directory of Open Access Journals (Sweden)

    Mileidy Salcedo Barragán

    2008-12-01

    Full Text Available This study intends to find the relationship between academic performance in High School and College, focusing on Natural Sciences and Mathematics. It is a descriptive correlational study, and the variables were academic performance in High School, performance indicators and educational history. The correlations between variables were established with Spearman’s correlation coefficient. Results suggest that there is a positive relationship between academic performance in High School and Educational History, and a very weak relationship between performance in Science and Mathematics in High School and performance in College.

  6. Optimising window parameters for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Boland, J. [South Australia Univ., Adelaide, SA (Australia); Luther, M. [Deakin Univ., Geelong, VIC (Australia)

    1996-12-31

    Large north facing windows act a solar collectors, with the heat being stored in the building mass and being released later in the day. This study examines one of the elements of this paradigm, that increasing the size of equatorially facing windows necessarily improves the energy efficiency of a dwelling. This question and that of whether there is a case for using double glazing in Australia were examined for a number of locations ranging from cool temperate to warm temperate and for several types of construction from lightweight to heavyweight. Simulations were performed using the modelling tool Cheetah. It was found that the optimal window size on equatorially facing walls was smaller than expected for singly glazed windows. Double glazing was found to be effective in most situations and increased the optimum size of the window substantially. Changing the operational pattern of the house (specifically when cooling equipment may be employed) considerably affects conclusions about single and double glazing. (author). 3 tabs., 3 figs., 13 refs.

  7. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  8. Simplified correction of g-value measurements

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    been carried out using a detailed physical model based on ISO9050 and prEN410 but using polarized data for non-normal incidence. This model is only valid for plane, clear glazings and therefor not suited for corrections of measurements performed on complex glazings. To investigate a more general...... correction procedure the results from the measurements on the Interpane DGU have been corrected using the principle outlined in (Rosenfeld, 1996). This correction procedure is more general as corrections can be carried out without a correct physical model of the investigated glazing. On the other hand...... the way this “general” correction procedure is used is not always in accordance to the physical conditions....

  9. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  10. Discomfort glare with complex fenestration systems and the impact on energy use when using daylighting control

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Sabine; McNeil, Andrew; Lee, Eleanor S.; Kalyanam, Raghuram

    2015-11-03

    Glare is a frequent issue in highly glazed buildings. A modelling approach is presented that uses discomfort glare probability and discomfort glare index as metrics to determine occupants’ behaviour. A glare control algorithm that actuated an interior shade for glare protection based on the predicted perception was implemented in a building simulation program. A reference case with a state-of-the-art base glazing was compared to the same glazing but with five different complex fenestration systems, i.e., exterior shades. The windows with exterior shades showed significant variations in glare frequencies. Energy use intensity in a prototypical office building with daylighting controls was greatly influenced for the systems with frequent glare occurrence. While the base glazing could benefit from glare control, some of the exterior shades showed significantly greater energy use when discomfort glare-based operation of interior shades was considered.

  11. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  12. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  13. Striving for Excellence Sometimes Hinders High Achievers: Performance-Approach Goals Deplete Arithmetical Performance in Students with High Working Memory Capacity

    Science.gov (United States)

    Crouzevialle, Marie; Smeding, Annique; Butera, Fabrizio

    2015-01-01

    We tested whether the goal to attain normative superiority over other students, referred to as performance-approach goals, is particularly distractive for high-Working Memory Capacity (WMC) students—that is, those who are used to being high achievers. Indeed, WMC is positively related to high-order cognitive performance and academic success, a record of success that confers benefits on high-WMC as compared to low-WMC students. We tested whether such benefits may turn out to be a burden under performance-approach goal pursuit. Indeed, for high achievers, aiming to rise above others may represent an opportunity to reaffirm their positive status—a stake susceptible to trigger disruptive outcome concerns that interfere with task processing. Results revealed that with performance-approach goals—as compared to goals with no emphasis on social comparison—the higher the students’ WMC, the lower their performance at a complex arithmetic task (Experiment 1). Crucially, this pattern appeared to be driven by uncertainty regarding the chances to outclass others (Experiment 2). Moreover, an accessibility measure suggested the mediational role played by status-related concerns in the observed disruption of performance. We discuss why high-stake situations can paradoxically lead high-achievers to sub-optimally perform when high-order cognitive performance is at play. PMID:26407097

  14. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  15. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  16. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  18. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  19. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  20. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  1. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  2. Measured Whole-House Performance of TaC Studios Test Home

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T. [Partnership for Home Innovation (PHI), Upper Marlboro, MD (United States). Southface Energy Inst.; Curtis, O. [Partnership for Home Innovation (PHI), Upper Marlboro, MD (United States). Southface Energy Inst.; Stephenson, R. [Partnership for Home Innovation (PHI), Upper Marlboro, MD (United States). Southface Energy Inst.

    2013-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach topotential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaCStudios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this homewas evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored todetermine their impact on overall energy consumption.

  3. Measured Whole-House Performance of TaC Studios Test Home

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T. [Southface Energy Institute, Upper Marlboro, MD (United States); Curtis, O. [Southface Energy Institute, Upper Marlboro, MD (United States); Stephenson, R. [Southface Energy Institute, Upper Marlboro, MD (United States)

    2013-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  4. Moessbauer study of the firing process of the imitative ancient sky-blue Jun porcelain

    International Nuclear Information System (INIS)

    Gao Zhengyao; Chen Xiande

    1994-01-01

    Moessbauer spectra of the imitative ancient Jun porcelain indicate that the glaze and body materials contain Fe 2 O 3 , Fe 3 O 4 and structural iron. It is clear that during the firing process, the glaze undergoes dehydration, dehydroxylation, vitrification and recrystallization. The Fe 2+ quadrupole splitting value of the paramagnetic peak of the body material is high even at low firing temperatures. For the body material, the distinction between dehydration and dehydroxylation is not clear. The changes of magnetism of the glaze and body materials in the firing process and the coloring mechanism of the sky-blue Jun porcelain are analyzed in the present paper. (orig.)

  5. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  6. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  7. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  8. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  9. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  10. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  11. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  12. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  13. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  14. Team Development for High Performance Management.

    Science.gov (United States)

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  15. PEMANFAATAN LUMPUR SIDOARJO SEBAGAI BAHAN MENTAH GLASIR STONEWARE

    Directory of Open Access Journals (Sweden)

    Supriyadi Supriyadi

    2012-02-01

    Full Text Available Have been made 3 (three glaze formula with Sidoarjo mud, Pecatu lime and Lodoyo felspar as the component. The glazes are compatible applied to stoneware bodies because the mature temperature is so similar with the sintering temperature of stoneware bodies.These glazes have started to mature after fired at 1240oC and not yet destroyed at 1280oC. The glazes are melting enough, theirs color are yellow, greenish and yellow with red spot with smooth surface. The first glaze (coded by LS - 1 which made by mixture 40 % (w Sidoarjo mud, 15 % (w Pecatu lime and 45 % (w Lodoyo feldspar give yellow slight gloss glaze. The second glaze (coded by LS – 2 which have formula 40 % (w Sidoarjo mud, 25 % (w Pecatu lime and 35 % (w Lodoyo feldspar is greenish semi gloss glaze. The last one (coded by LS – 3 which made by mixture of 50 % (w Sidoarjo mud, 20 % (w Pecatu lime and 30 % (w Lodoyo feldspar give dop glaze with unique texture.

  16. Smart glass as the method of improving the energy efficiency of high-rise buildings

    Science.gov (United States)

    Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda

    2018-03-01

    The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.

  17. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  18. Flexure Strength and Optical Transparency of Magnesium-Aluminate Spinel (MgAlO4): Influence of Polishing and Glass Coating

    Science.gov (United States)

    2016-12-01

    Eugene Shanholtz, Jian Yu, Rebecca L Walker, and John J Pittari III. Approved for public release; distribution is unlimited. vi INTENTIONALLY...with high transparency necessitate the use of aggressive densification techniques that result in very coarse microstructures (i.e., average grain sizes...windows. Glass coating (or glazing) is a common technique used to strengthen ceramics. The use of glazing as a strengthening technique , however, is

  19. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  20. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    Science.gov (United States)

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  1. The Role of Performance Management in Creating and Maintaining a High-Performance Organization

    Directory of Open Access Journals (Sweden)

    André A. de Waal

    2015-04-01

    Full Text Available There is still a good deal of confusion in the literature about how the use of a performance management system affects overall organizational performance. Some researchers find that performance management enhances both the financial and non-financial results of an organization, while others do not find any positive effects or, at most, ambiguous effects. An important step toward getting more clarity in this relationship is to investigate the role performance management plays in creating and maintaining a high-performance organization (HPO. The purpose of this study is to integrate performance management analysis (PMA and high-performance organization (HPO. A questionnaire combining questions on PMA dimensions and HPO factors was administered to two European-based multinational firms. Based on 468 valid questionnaires, a correlation analysis was performed on the PMA dimensions and the HPO factors in order to test the impact of performance management on the factors of high organizational performance. The results show strong and significant correlations between all the PMA dimensions and all the HPO factors, indicating that a performance management system that fosters performance-driven behavior in the organization is of critical importance to strengthen overall financial and non-financial performance.

  2. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  3. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  4. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  5. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  6. Promising high monetary rewards for future task performance increases intermediate task performance.

    Directory of Open Access Journals (Sweden)

    Claire M Zedelius

    Full Text Available In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly. Results showed that high (vs. low rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  7. Promising high monetary rewards for future task performance increases intermediate task performance.

    Science.gov (United States)

    Zedelius, Claire M; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  8. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  10. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  11. Critical Factors Explaining the Leadership Performance of High-Performing Principals

    Science.gov (United States)

    Hutton, Disraeli M.

    2018-01-01

    The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…

  12. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dakin, Bill [National Renewable Energy Lab. (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  13. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  14. High-performance liquid chromatography of oligoguanylates at high pH

    Science.gov (United States)

    Stribling, R.; Deamer, D. (Principal Investigator)

    1991-01-01

    Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.

  15. Effect of going on the performance of a solar water pumping station

    International Nuclear Information System (INIS)

    Younes, M.A.; Amer, E.H.; Helal, M.A.

    2006-01-01

    An extensive experimental study has been carried out to investigate the manner in which photovoltaic pumping systems age. A system, installed over 15 years back, has been tested to study the effect of degradation of components on the system performance. The results are used to provide a basis for more realistic evaluation of the economics of solar energy conversion such as, lifetime of the device and the relationship between device age and its efficiency. The study indicates that the degradation of performance is due mainly to glazing seal failure: antireflection coating destruction, mechanical cracks in the body of the cell and inverter problems. The effect of dirt accumulation on the top surfaces does not appear to have adversely affected the thermal performance. As a result of aging, the system efficiency and power output are reduced by about 5 and 15% respectively. A major conclusion from this study is that many of the more serious problems found were either present at the time of installation or resulted from improper operation by untrained personnel and shutting down the system for long periods without regular maintenance

  16. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  17. Identifying High Performance ERP Projects

    OpenAIRE

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  18. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  19. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  20. Elemental analyses on porcelains of Tang and Song Dynasties excavated from Yongjinwan zone at Jinsha site

    Science.gov (United States)

    Xia, C. D.; Ge, L. J.; Liu, M. T.; Zhu, J. J.; An, Z.; Bai, B.

    2018-02-01

    The work presented here carried out elemental analyses on 60 porcelain shards of Tang and Song Dynasties, unearthed from Yongjinwan zone at Jinsha site, Sichuan, China, using a combination of PIXE and RBS methods. Six shards from Liulichang kiln site and 6 from Shifangtang kiln site were also analyzed as reference materials. The factor analyses for the elemental compositions in the bodies and glazes of the total 72 porcelain shards have been performed to explore their similarities and differences. Combining the results of factor analyses on elements in bodies and glazes and the classification by traditional archaeological criteria, the provenances for most of shards unearthed from Yongjinwan zone in Jinsha site could be determined. Majority of shards with a Qiong-kiln style were found as products of Liulichang kiln, this is consistent with Yongjinwan's geographical location and social environment, i.e., Yongjinwan was a suburban settlement nearest to Liulichang kiln in ancient times. Although both products of Liulichang kiln and Shifangtang kiln belonged to Qiong-kiln system and they shared a similar appearance such as red body and celadon glaze, there were distinct differences in chemical composition which could be unraveled by PIXE-RBS measurements and factor analysis. There were no apparent differences of chemical compositions for the same kinds of body and glaze between Tang and Song Dynasties, which may suggest that raw materials and production techniques for the same kinds of body and glaze continued between Tang and Song Dynasties. The chemical characteristics for each kind of body and glaze and the correlations between element composition and porcelain appearance were also obtained in this work.

  1. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Tagnit-Hamou Arezki

    2018-01-01

    Full Text Available Ground-glass pozzolan (G obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM, given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC, high-performance concrete (HPC, and ultra-high performance concrete (UHPC. The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental. It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.

  2. Mood states and motor performance: a study with high performance voleybol athletes

    Directory of Open Access Journals (Sweden)

    Lenamar Fiorese Vieira

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p62 The objective of this research was to investigate the relationship between the sporting performance and mood states of high performance volleyball athletes. Twenty-three adult athletes of both sexes were assessed. The measurement instrument adopted was the POMS questionnaire. Data collection was carried out individually during the state championships. Dada were analyzed using descriptive statistics; the Friedman test for analysis of variance and the Mann-Whitney test for differences between means. The results demonstrated that both teams exhibited the mood state profi le corresponding to the “iceberg” profile. In the male team, vigor remained constant throughout all phases of the competition, while in the female team this element was unstable. The male team’s fatigue began low, during the training phase, with rates that rose as the competition progressed, with statistically significant differences between the fi rst and last matches the team played. In the female team, the confusion factor, which was at a high level during training, reduced progressively throughout the competition, with a difference that was signifi cant to p ≤ 0.05. With relation to performance and mood profi le, the female team exhibited statistically significant differences between the mean vigor and fatigue factors of high and low performance athletes. It is therefore concluded that the mood state profi le is a factor that impacts on the motor performance of these high performance teams.

  3. High performance leadership in unusually challenging educational circumstances

    Directory of Open Access Journals (Sweden)

    Andy Hargreaves

    2015-04-01

    Full Text Available This paper draws on findings from the results of a study of leadership in high performing organizations in three sectors. Organizations were sampled and included on the basis of high performance in relation to no performance, past performance, performance among similar peers and performance in the face of limited resources or challenging circumstances. The paper concentrates on leadership in four schools that met the sample criteria.  It draws connections to explanations of the high performance ofEstoniaon the OECD PISA tests of educational achievement. The article argues that leadership in these four schools that performed above expectations comprised more than a set of competencies. Instead, leadership took the form of a narrative or quest that pursued an inspiring dream with relentless determination; took improvement pathways that were more innovative than comparable peers; built collaboration and community including with competing schools; and connected short-term success to long-term sustainability.

  4. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  5. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  6. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  7. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns?

    Science.gov (United States)

    Antunes, Monize Carelli Felipe; Miranda, Jean Soares; Carvalho, Ronaldo Luís Almeida de; Carvalho, Rodrigo Furtado de; Kimpara, Estevão Tomomitsu; Assunção E Souza, Rodrigo Othávio de; Leite, Fabíola Pessôa Pereira

    2018-01-01

    To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.

  8. Development of a high performance liquid chromatography method ...

    African Journals Online (AJOL)

    Development of a high performance liquid chromatography method for simultaneous ... Purpose: To develop and validate a new low-cost high performance liquid chromatography (HPLC) method for ..... Several papers have reported the use of ...

  9. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  10. Luminescence properties of lustre decorated majolica

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibilia, E.; Padeletti, G.; Fermo, P.

    Luminescence measurements have been performed on several Italian Renaissance ceramic shards produced in central Italy, as well as on some others from Hispano-Moresque and Fatimid periods. The aim of this study was the characterisation of the raw materials used to manufacture lustre decorated majolica. At first, the thermoluminescence (TL) dating of all ceramic bodies was performed, because the shards lacked sure chronological attribution, having been provided by private collectors, or found during emergency restoration works or archaeological surveys. To characterise the defects and the recombination centers of the different components of the ceramics (ceramic body, glaze, glaze, and lustre), radioluminescence (RL) measurements have been performed on samples representative of each historical period. The dating results are reported, as well as the preliminary RL results.

  11. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  12. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  13. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    Energy Technology Data Exchange (ETDEWEB)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while

  14. Study of meterial distribution of Tang tricolor from Huangye kiln

    International Nuclear Information System (INIS)

    Dong Junling; Zhao Weijuan; Liu Guodong; Cheng Huansheng; Liao Yongmin; Zhang Songlin

    2008-01-01

    By using the proton induced X-ray enission (PIXE) method, the measurements of the oxide compound content have veen carried out for the selected 18 samples of Tang tricolor in Huangye kiln. For ascertaining the classification and origin relation of the samples the principal component analysis method was adopted, and the results indicate that the chemical compositions of Tang tricolor body with diggerent glaze colors are close, which shows that their raw material habitat distribution is quite concentrative. But the prescriptions of diffierent color glaze are different. The content of CoO is more than others in blue glaze; CuO is more than others in green glaze; Fe 2 O 3 is more than others in brown and yellow glaze; A1 2 O3 is less than others but SiO 2 is more in white glaze, which shows that glazers material origin is diffierent, but brown and yellow glaze are close and even the same in chemistry component. (authors)

  15. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  16. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  17. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    Science.gov (United States)

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  18. Governance among Malaysian high performing companies

    Directory of Open Access Journals (Sweden)

    Asri Marsidi

    2016-07-01

    Full Text Available Well performed companies have always been linked with effective governance which is generally reflected through effective board of directors. However many issues concerning the attributes for effective board of directors remained unresolved. Nowadays diversity has been perceived as able to influence the corporate performance due to the likelihood of meeting variety of needs and demands from diverse customers and clients. The study therefore aims to provide a fundamental understanding on governance among high performing companies in Malaysia.

  19. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  20. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  1. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  2. High-Speed, High-Performance DQPSK Optical Links with Reduced Complexity VDFE Equalizers

    Directory of Open Access Journals (Sweden)

    Maki Nanou

    2017-02-01

    Full Text Available Optical transmission technologies optimized for optical network segments sensitive to power consumption and cost, comprise modulation formats with direct detection technologies. Specifically, non-return to zero differential quaternary phase shift keying (NRZ-DQPSK in deployed fiber plants, combined with high-performance, low-complexity electronic equalizers to compensate residual impairments at the receiver end, can be proved as a viable solution for high-performance, high-capacity optical links. Joint processing of the constructive and the destructive signals at the single-ended DQPSK receiver provides improved performance compared to the balanced configuration, however, at the expense of higher hardware requirements, a fact that may not be neglected especially in the case of high-speed optical links. To overcome this bottleneck, the use of partially joint constructive/destructive DQPSK equalization is investigated in this paper. Symbol-by-symbol equalization is performed by means of Volterra decision feedback-type equalizers, driven by a reduced subset of signals selected from the constructive and the destructive ports of the optical detectors. The proposed approach offers a low-complexity alternative for electronic equalization, without sacrificing much of the performance compared to the fully-deployed counterpart. The efficiency of the proposed equalizers is demonstrated by means of computer simulation in a typical optical transmission scenario.

  3. Design of JMTR high-performance fuel element

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Shimakawa, Satoshi; Komori, Yoshihiro; Tsuchihashi, Keiichiro; Kaminaga, Fumito

    1999-01-01

    For test and research reactors, the core conversion to low-enriched uranium fuel is required from the viewpoint of non-proliferation of nuclear weapon material. Improvements of core performance are also required in order to respond to recent advanced utilization needs. In order to meet both requirements, a high-performance fuel element of high uranium density with Cd wires as burnable absorbers was adopted for JMTR core conversion to low-enriched uranium fuel. From the result of examination of an adaptability of a few group constants generated by a conventional transport-theory calculation with an isotropic scattering approximation to a few group diffusion-theory core calculation for design of the JMTR high-performance fuel element, it was clear that the depletion of Cd wires was not able to be predicted accurately using group constants generated by the conventional method. Therefore, a new generation method of a few group constants in consideration of an incident neutron spectrum at Cd wire was developed. As the result, the most suitable high-performance fuel element for JMTR was designed successfully, and that allowed extension of operation duration without refueling to almost twice as long and offer of irradiation field with constant neutron flux. (author)

  4. Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction.

    Science.gov (United States)

    Freddo, Rafael Augusto; Kapczinski, Myriam Pereira; Kinast, Eder Julio; de Souza Junior, Oswaldo Baptista; Rivaldo, Elken Gomes; da Fontoura Frasca, Luis Carlos

    2016-10-01

    To evaluate, by means of pin-on-disk testing, the wear potential of different dental ceramic systems as it relates to friction parameters, surface finish, and microhardness. Three groups of different ceramic systems (Noritake EX3, Eris, Empress II) with 20 disks each (10 glazed, 10 polished) were used. Vickers microhardness (Hv) was determined with a 200-g load for 30 seconds. Friction coefficients (μ) were determined by pin-on-disk testing (5 N load, 600 seconds, and 120 rpm). Wear patterns were assessed by scanning electron microscopy (SEM). The results were analyzed using one-way ANOVA and Tukey's test, with the significance level set at α = 0.05. The coefficients of friction were as follows: Noritake EX3 0.28 ± 0.12 (polished), 0.33 ± 0.08 (glazed); Empress II 0.38 ± 0.08 (polished), 0.45 ± 0.05 (glazed); Eris 0.49 ± 0.05 (polished), 0.49 ± 0.06 (glazed). Microhardness measurements were as follows: Noritake EX3 530.7 ± 8.7 (polished), 525.9 ± 6.2 (glazed); Empress II 534.1 ± 8 (polished), 534.7 ± 4.5 (glazed); Eris, 511.7 ± 6.5 (polished), 519.5 ± 4.1 (glazed). The polished and glazed Noritake EX3 and polished and glazed Eris specimens showed statistically different friction coefficients. SEM image analysis revealed more surface changes, such as small cracks and grains peeling off, in glazed ceramics. Wear potential may be related to the coefficient of friction in Noritake ceramics, which had a lower coefficient than Eris ceramics. Within-group analysis showed no differences in polished or glazed specimens. The differences observed were not associated with microhardness. © 2015 by the American College of Prosthodontists.

  5. ELMs IN DIII-D HIGH PERFORMANCE DISCHARGES

    International Nuclear Information System (INIS)

    TURNBULL, A.D; LAO, L.L; OSBORNE, T.H; SAUTER, O; STRAIT, E.J; TAYLOR, T.S; CHU, M.S; FERRON, J.R; GREENFIELD, C.M; LEONARD, A.W; MILLER, R.L; SNYDER, P.B; WILSON, H.R; ZOHM, H

    2003-01-01

    A new understanding of edge localized modes (ELMs) in tokamak discharges is emerging [P.B. Snyder, et al., Phys. Plasmas, 9, 2037 (2002)], in which the ELM is an essentially ideal magnetohydrodynamic (MHD) instability and the ELM severity is determined by the radial width of the linearly unstable MHD kink modes. A detailed, comparative study of the penetration into the core of the respective linear instabilities in a standard DIII-D ELMing, high confinement mode (H-mode) discharge, with that for two relatively high performance discharges shows that these are also encompassed within the framework of the new model. These instabilities represent the key, limiting factor in extending the high performance of these discharges. In the standard ELMing H-mode, the MHD instabilities are highly localized in the outer few percent flux surfaces and the ELM is benign, causing only a small temporary drop in the energy confinement. In contrast, for both a very high confinement mode (VH-mode) and an H-mode with a broad internal transport barrier (ITB) extending over the entire core and coalesced with the edge transport barrier, the linearly unstable modes penetrate well into the mid radius and the corresponding consequences for global confinement are significantly more severe. The ELM accordingly results in an irreversible loss of the high performance

  6. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  7. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  8. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  9. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  10. Application of goniospectrophotometry to the characterisation of special decorative effects

    International Nuclear Information System (INIS)

    Mestre, S.; Moreno, A.; Agut, P.; Bordes, M. C.; Perez, J. J.; Reverter, S.; Navarro, E.

    2010-01-01

    The evaluation of the colour of so-called metallized glazes is an important problem, especially since there is no clear definition for this type of material. The study shows that a spectrophotometer is not sufficient for evaluating the colour of these glazes, whereas a goniospectrophotometer with four angles of viewing enables a set of data to be obtained that more closely describe glaze appearance. However, the description of the colour component of glaze appearance using twelve chromatic coordinates is difficult to handle. For that reason, an index is proposed, similar to the whiteness or yellowness indices, for the evaluation of metallized appearance. This index is calculated from the goniospectrophotometer data, and has allowed metallized glazes to be differentiated from non-metallized glazes, in the set of samples used in this study. (Author) 5 refs.

  11. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  12. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  13. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  14. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  15. High-Performance Management Practices and Employee Outcomes in Denmark

    DEFF Research Database (Denmark)

    Cristini, Annalisa; Eriksson, Tor; Pozzoli, Dario

    High-performance work practices are frequently considered to have positive effects on corporate performance, but what do they do for employees? After showing that organizational innovation is indeed positively associated with firm performance, we investigate whether high-involvement work practices...

  16. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  17. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Energy conservation measures in an institutional building in sub-tropical climate in Australia

    International Nuclear Information System (INIS)

    Rahman, M.M.; Rasul, M.G.; Khan, M.M.K.

    2010-01-01

    In this study, various energy conservation measures (ECMs) on heating, ventilating and air conditioning (HVAC) and lighting systems for a four-storied institutional building in sub-tropical (hot and humid climate) Queensland, Australia are evaluated using the simulation software called DesignBuilder (DB). Base case scenario of energy consumption profiles of existing systems are analysed and simulated first then, the simulated results are verified by on-site measured data. Three categories of ECMs, namely major investment ECMs (variable air volume (VAV) systems against constant air volume (CAV); and low coefficient of performance (COP) chillers against high COP chillers); minor investment ECMs (photo electric dimming control system against general lighting, and double glazed low emittance windows against single-glazed windows) and zero investment ECMs (reset heating and cooling set point temperatures) are evaluated. It is found that the building considered in this study can save up to 41.87% energy without compromising occupancies thermal comfort by implementing the above mentioned ECMs into the existing system.

  19. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  20. Department of Energy research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  1. Experimental investigations on the performance of a collector–storage wall system using phase change materials

    International Nuclear Information System (INIS)

    Zhou, Guobing; Pang, Mengmeng

    2015-01-01

    Highlights: • Performance of collector–storage wall using PCM was experimentally studied. • PCM surface temperature rises steep–slow–steep successively during charge. • After sharp drops, PCM surface temperature decreases slightly during discharge. • Temperatures of gap air, glazing and room vary with PCM surface temperature. • Air flow rate and heating rate fluctuate during charge but go steady after discharge. - Abstract: Experiments have been performed on the thermal behavior of a collector–storage wall system using PCM (phase change material). PCM slabs were attached on the gap-side wall surface to increase the heat storage. The test was carried out for a whole day with charging period of 6.5 h and discharging period of 17.5 h, respectively. Wall and air temperatures as well as air velocity in the gap were measured for analysis. The results showed that the PCM surface temperature increases first rapidly, then slowly and rapidly again during the charging process, which in turn corresponds with the three storage stages: sensible heat (solid), latent heat (melting) and sensible heat (liquid), respectively; while in the discharging process the PCM surface temperature decreases slightly shortly after the initial sharp drops, which suggests the long time period of solidification for PCM to release latent heat. Subject to the variations of PCM surface temperatures, similar trends were also found for the gap air temperatures, glazing temperature and indoor temperature. Both the air flow rate and heating rate by air circulation have up and down fluctuations during the charging period, and then, shortly after initial sharp drops, they keep at nearly steady values during the discharging period. The indoor temperature was found to be above 22 °C during the whole discharging period (17.5 h) under present conditions, which indicates that the indoor thermal comfort could be kept for a long time by using PCM in collector–storage wall system.

  2. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted...

  3. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  4. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  5. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  6. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  7. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  8. Sex Differences in Mathematics Performance among Senior High ...

    African Journals Online (AJOL)

    This study explored sex differences in mathematics performance of students in the final year of high school and changes in these differences over a 3-year period in Ghana. A convenience sample of 182 students, 109 boys and 72 girls in three high schools in Ghana was used. Mathematics performance was assessed using ...

  9. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  10. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Alshareef, Husam N.

    2012-01-01

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage

  12. Properties of aerogels in glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1998-01-01

    This report describes the final tests carried out on an advanced apparatus for measurement of thermal conductivity of materials at atmospheric pressure and different levels of evacuation. The apparatus was designed and constructed in the phase 1 of the project. Difficulties with the control system...... have been solved and measurements have been carried out on common polystyrene foam insulation at atmospheric pressure. The measurements have been compared with results from reference measurements and a difference of only 0.3% was found in measured thermal conductivity. Measurements on monolithic silica...... aerogel were performed at 5 different pressure levels in the range 0.2 - 1000 hPa. The measured equivalent thermal conductivity is in the range 8.9 - 16.4 mW/(m K) which corresponds very well with results obtained by institutes in Germany and France....

  13. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser

    2012-03-21

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-performance non-volatile organic ferroelectric memory on banknotes.

    Science.gov (United States)

    Khan, M A; Bhansali, Unnat S; Alshareef, H N

    2012-04-24

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. THE RELATION OF HIGH-PERFORMANCE WORK SYSTEMS WITH EMPLOYEE INVOLVEMENT

    Directory of Open Access Journals (Sweden)

    Bilal AFSAR

    2010-01-01

    Full Text Available The basic aim of high performance work systems is to enable employees to exercise decision making, leading to flexibility, innovation, improvement and skill sharing. By facilitating the development of high performance work systems we help organizations make continuous improvement a way of life.The notion of a high-performance work system (HPWS constitutes a claim that there exists a system of work practices for core workers in an organisation that leads in some way to superior performance. This article will discuss the relation that HPWS has with the improvement of firms’ performance and high involvement of the employees.

  16. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  17. Pengaruh High Performance Work Practice (Hpwp) Terhadap Job Performance Pada Frontliner Bank

    OpenAIRE

    Ihdaryanti, Monica Amani; Panggabean, Mutiara S

    2014-01-01

    Generally High Performance Work Practice (HPWP) is a part of management human resources. The objectives of this research are getting and analyzing the effect of HPWPs with Job Satisfaction; HPWPs with Organizational Commitment; Job Satisfaction with Organizational Commitment; Job Satisfaction with Job Performance; and Organizational Commitment with Job Performance. The total of sample in this research is 100 respondents which are as Front liner BNI and Mandiri. The result of th...

  18. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    ) high performance liquid chromatography (HPLC) grade .... applications. These are important requirements if the reagent is to be applicable to on-line pre or post column derivatisation in a possible automation of the analytical.

  19. Can Knowledge of the Characteristics of "High Performers" Be Generalised?

    Science.gov (United States)

    McKenna, Stephen

    2002-01-01

    Two managers described as high performing constructed complexity maps of their organization/world. The maps suggested that high performance is socially constructed and negotiated in specific contexts and management competencies associated with it are context specific. Development of high performers thus requires personalized coaching more than…

  20. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  1. Economic analysis of the daylight-linked lighting control system in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, In-Ho; Nam, Eun-Ji [Department of Architectural Engineering, College of Engineering, Dongguk University, 26-3, Pil-dong, Chung-gu, Seoul 100-715 (Korea)

    2010-08-15

    The objective of this study is to perform an economic analysis of the daylight-linked automatic on/off lighting control system installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the energy cost was calculated by using the daylight and building energy analysis simulation. When the lighting control was utilized, an economic analysis was performed using a payback period that was calculated by comparing the initial cost of installing the lighting control system with the annual energy cost which was reduced thanks to the application of the lighting control. The results showed that the lighting energy consumption, when the lighting control was applied, was reduced by an average of 30.5% compared with the case that there was not lighting control applied. Also, the result for total energy consumption showed that, when lighting control was applied, this was reduced by 8.5% when the glazing ratio was 100%, 8.2% for 80%, and 7.6% for 60% when compared to non-application. The payback period was analyzed in terms of the number of floors in a building; 10 floors, 20 floors, 30 floors, and 40 floors. Hence, the building with 40 floors and glazing ratio 100% resulted in the shortest payback period of 8.8 years, the building with 10 floors and glazing ratio 60% resulted in the longest period of 12.7 years. In other words, the larger the glazing ratio and the number of building floors are, the shorter the payback period is. (author)

  2. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  3. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  4. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  5. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4

  6. 78 FR 65760 - General Motors, LLC, Receipt of Petition for Decision of Inconsequential Noncompliance

    Science.gov (United States)

    2013-11-01

    ... purchased with either solar glazing (having light transmittance greater than 70%) or privacy glazing (having light transmittance of approximately 22%) installed rearward of the driver. On the affected vehicles... for solar glazing. The correct privacy-glass markings and the markings on the affected quarter windows...

  7. Provenance study of ancient Chinese Yaozhou porcelain by neutron activation analysis

    Science.gov (United States)

    Li, G. X.; Y Gao, Z.; Li, R. W.; Zhao, W. J.; Xie, J. Z.; Feng, S. L.; Zhuo, Z. X.; Y Fan, D.; Zhang, Y.; Cai, Z. F.; Liu, H.

    2003-09-01

    This paper reports our study of the provenance of ancient Chinese Yaozhou porcelain. The content of 29 elements in the Yaozhou porcelain samples was measured by neutron activation analysis (NAA). The NAA data were further analysed using fuzzy cluster analysis to obtain the trend fuzzy cluster diagrams. These samples with different glaze colour, ranging over more than 700 years, were fired in different kilns. Our analysis indicates the relatively concentrated distribution of the sources of the raw material for the Yaozhou porcelain body samples. They can be classified into two independent periods, i.e. the Tang (AD 618-907) and the Five Dynasties (AD 907-960) period, and the Song (AD 960-1279) and Jin (AD 1115-1234) period. Our analysis also indicates that the sources of the raw material for the ancient Yaozhou porcelain glaze samples are quite scattered and those for the black glaze in the Tang Dynasty are very concentrated. The sources of the raw material for the celadon glaze and the white glaze in the Tang Dynasty are widely distributed and those for the celadon glaze in the Song Dynasty are close to those of the bluish white glaze in the Jin Dynasty, and they are very concentrated. The sources of the raw material for the porcelain glazes cover those of the porcelain bodies.

  8. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  9. The Experimental Performance of an Unglazed PVT Collector with Two Different Absorber Types

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal collectors combine photovoltaic modules and solar thermal collectors, forming a single device that produces electricity and heat simultaneously. There are two types of liquid-type PVT collectors, depending on the existence or absence of a glass cover over the PV module. The glass-covered (glazed PVT collector produces relatively more thermal energy but has a lower electrical yield, whereas the uncovered (unglazed PVT collector has a relatively low thermal energy and somewhat higher electrical performance. The thermal and electrical performance of liquid-type PVT collectors is related not only to the collector design, such as whether a glass cover is used, but also to the absorber design, that is, whether the absorber is for the sheet-and-tube type or the fully wetted type. The design of the absorber, as it comes into contact with the PV modules and the liquid tubes, is regarded as important, as it is related to the heat transfer from the PV modules to the liquid in the tubes. In this paper, the experimental performance of two liquid-type PVT collectors, a sheet-and-tube type and a fully wetted type, was analyzed.

  10. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  11. The highly insulated glass house. State report; Det hoejisolerede glashus. Statusrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Aggerholm, S.

    1997-11-01

    A house with glass facades and translucent thermo insulating glazing is being tested with regard to its thermal comfort, ventilation, interior architecture and energy conservation. The core of the house is constructed of concrete, and in this part the kitchen, bathroom etc. are located. Heating and ventilation are automated. Advantages and drawbacks (leaks, steam condensates etc) are summarized. (EG)

  12. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2014-01-01

    in both fuel cell mode and electrolysis mode. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be born in mind that the pressurised gas contains higher molar free energy. Operating at high current density...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  13. Design practice and operational experience of highly irradiated, high-performance normal magnets

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1982-09-01

    The limitations of high performance magnets are discussed in terms of mechanical, temperature, and electrical limits. The limitations of magnets that are highly irradiated by neutrons, gamma radiation, or x radiation are discussed

  14. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  15. Study on provenance of Ru porcelain in yanhedian kiln and official jun porcelain by EDXRF

    International Nuclear Information System (INIS)

    Li Guoxia; Guo Min; Zhao Weijuan; Sun Hongwei; Gao Zhengyao; Xie Jianzhong; Wen Chang; Wang Chuan; Li Rongwu; Guo Peiyu; Yang Dawei

    2010-01-01

    To understand the provenance relationship of Ru porcelain in Yanhedian kiln and official Jun porcelain , with energy dispersive x-ray fluorescence spectrometer (EDXRF) measured 56 Ru porcelain in Yanhedian kiln and official Jun porcelain samples of chemical composition of the main volume, analysis results show: Yanhedian kiln Ru porcelain bodies Al 2 O 3 average content Outpaces official Jun porcelain bodies, SiO 2 , K 2 O average below official Jun porcelain bodies; Yanhedian kiln Ru porcelain glazes Al 2 O 3 average content Outpaces official Jun porcelain glaze, SiO 2 , CaO average significantly lower than Jun glaze, two primary body and glaze on porcelain to chemical composition of the averages vary. A display of the peacekeeping two-dimensional scatter analysis supplies of official Jun porcelain bodies focused, Yanhedia kiln Ru porcelain bodies birth supplies comparatively, Jun and Yanhedian kiln Ru porcelain bodies material habitats near but not identical. The official Jun porcelain glazes origin focused, glaze formula changes less, and Yanhedia kiln Ru porcelain glazes origin and formula are scattered. Therefore, Yanhedian kiln Ru porcelain samples and the Official Jun porcelain samples can be commendably differentiated by EDXRF testing and chemical composition scatter analysis. (authors)

  16. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...

  17. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  18. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  19. Development of new functional properties in traditional ceramics field

    International Nuclear Information System (INIS)

    Carda, J.B.; Pedra, J.M.; Nunez, I.; Peiro, N.C.; Gil, C.; Navarro, E.; Gomez, J.J.; Chiva, L.

    2004-01-01

    In the present communication, several ways to obtain functional properties in ceramic tiles will be exposed, developed by the research group in Solid State Chemistry of Jaume I University from Castellon, in close collaboration with the ceramic industry set in Castellon (Spain). Then, searching for a new properties, those that involve advanced fields in ceramics, such as mechanical, electrical or optical properties have been chosen, transferring their application to traditional products, selecting for it the development of this properties in surface (as the obtaining if glass-ceramic glazes) or in the ceramic body (increasing its mechanical resistance, more dense and with less thickness of layer). Related to the surface properties interesting in traditional ceramics field, glass-ceramic glazes have been designed, presenting high resistance to abrasion and chemical agents attack, formulating systems of devitrification of α-SiO 2 crystallization (cristobalite), anoritite and zircon. Systems that reduce resistivity of glazes have been developed too, causing the discharge to the ground of the static charge, designing a semiconductor system SnO 2 -Sb 2 O 3 . o finish with surface properties, bactericidal properties glazes have been originated, working with CeO 2 -ZrO 2 and TiO 2 (anatase) systems. According to ceramic bodies, highly gressificated systems have been developed, with an open porosity lower than 0.5% of water absorption and with high mechanical resistance, aspects that open ways to develop multilayer systems allowing the reduction of body thickness without a decrease of its technical features. (author)

  20. Radioactivity Measurements on Glazed Ceramic Surfaces

    OpenAIRE

    Hobbs, Thomas G.

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near backgr...

  1. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers

    Science.gov (United States)

    Zang, Jianfeng; Cao, Changyong; Feng, Yaying; Liu, Jie; Zhao, Xuanhe

    2014-01-01

    Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g−1), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance. PMID:25270673

  2. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers

    Science.gov (United States)

    Zang, Jianfeng; Cao, Changyong; Feng, Yaying; Liu, Jie; Zhao, Xuanhe

    2014-10-01

    Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g-1), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.

  3. Influencia del acristalamiento sobre los parámetros y la calificación energética de acuerdo con la orientación del edificio y los porcentajes de aberturas de fachada = The influence of glazing over the parameters and energy rating according to the building orientation and the façade openings percentages.

    Directory of Open Access Journals (Sweden)

    Jorge Ávila-Delgado

    2016-04-01

    Full Text Available Es bien conocida la importancia de los cristales en la demanda de energía del edificio, ya que la envolvente térmica es lo más importante. En este trabajo se ha realizado un estudio de la influencia de la transmitancia térmica (factor U y el factor solar (valor g de tres tipos diferentes de acristalamiento en la calificación energética. Se ha realizado el análisis en una vivienda unifamiliar situada en la ciudad de Sevilla, España, con diferentes hipótesis, en concreto seis porcentajes de apertura que van desde 10 a 60% considerado por el Código Técnico de la Edificación español, y cuatro orientaciones según las direcciones cardinales. Para los tipos de zona climático y acristalamiento considerados, el valor del parámetro g tiene mayor incidencia en el rendimiento energético que la transmitancia térmica. Se ha establecido qué orientación proporciona mayor ahorro de energía, independientemente de la demanda de calefacción y enfriamiento y de la calificación energética. Además, hay que considerar los valores ideales de ambos parámetros para cada orientación con el fin de mejorar la calificación energética. Por lo tanto, al seleccionar un tipo de acristalamiento, sería importante tener en cuenta los mejores valores de los parámetros "T" y "g" para cada orientación con el fin de obtener menor gasto de energía. Abstract It is well known the significant impact of glazing over the building energy demand making it the thermal envelope’s most important part. A study of the influence of thermal transmittance (U-factor and solar factor (g-value of three different glazing types over the parameters and energy rating are shown in this paper. A single-family dwelling located in Seville city, Spain, has been analyzed to which a set of hypotheses, six opening percentages ranging from 10 to 60% considered by the Spanish Building Code on its simplified option, and different combinations, four orientations matching the cardinal

  4. High Performance Design of 100Gb/s DPSK Optical Transmitter

    DEFF Research Database (Denmark)

    Das, Bhagwan; Abdullah, M.F.L; Shah, Nor Shahihda Mohd

    2016-01-01

    and optical transmitter have taken plenty of time for transmitting signal. When proposed design is operated at 1 GHz, 5 GHz, 10 GHz and 20 GHz using time constraint technique, it is observed that among all these frequencies, at 10 GHz high performance output is achieved for designed optical transmitter....... This high performance design of optical transmitter has zero timing error, low timing score and high slack time due to synchronization between input data and clock frequency. It is also determined that 99% timing score is reduced in comparison with 1 GHz frequency that has high jitters, high timing error......, high time score and low slack time. The high performance design is realized without disturbing actual bandwidth, power consumption and other parameters of the design. The proposed high performance design of 100Gb/s optical transmitter can be used with existing optical communication system to develop...

  5. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    Science.gov (United States)

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.; Ghoneim, Mohamed T.; Fahad, Hossain M.; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show

  7. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  8. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  9. Performance of high-rate gravel-packed oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Unneland, Trond

    2001-05-01

    Improved methods for the prediction, evaluation, and monitoring of performance in high-rate cased-hole gravel-packed oil wells are presented in this thesis. The ability to predict well performance prior to the gravel-pack operations, evaluate the results after the operation, and monitor well performance over time has been improved. This lifetime approach to performance analysis of gravel-packed oil wells contributes to increase oil production and field profitability. First, analytical models available for prediction of performance in gravel-packed oil wells are reviewed, with particular emphasis on high-velocity flow effects. From the analysis of field data from three North Sea oil fields, improved and calibrated cased-hole gravel-pack performance prediction models are presented. The recommended model is based on serial flow through formation sand and gravel in the perforation tunnels. In addition, new correlations for high-velocity flow in high-rate gravel-packed oil wells are introduced. Combined, this improves the performance prediction for gravel-packed oil wells, and specific areas can be targeted for optimized well design. Next, limitations in the current methods and alternative methods for evaluation and comparison of well performance are presented. The most widely used parameter, the skin factor, remains a convenient and important parameter. However, using the skin concept in direct comparisons between wells with different reservoir properties may result in misleading or even invalid conclusions. A discussion of the parameters affecting the skin value, with a clarification of limitations, is included. A methodology for evaluation and comparison of gravel-packed well performance is presented, and this includes the use of results from production logs and the use of effective perforation tunnel permeability as a parameter. This contributes to optimized operational procedures from well to well and from field to field. Finally, the data sources available for

  10. High-Performance, Space-Storable, Bi-Propellant Program Status

    Science.gov (United States)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  11. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  12. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    International Nuclear Information System (INIS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.

    2017-01-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  13. PM Levels, Composition and Evolution in a Highly Industrialised Area. Objectives of Improvement

    Science.gov (United States)

    Minguillon, M. C.; Querol, X.; Alastuey, A.; Monfort, E.; Mantilla, E.; Miro, J. V.

    2007-05-01

    Evolution of levels and speciation of PM10 in the ceramic producing area of Castello (East Spain) was studied from April 2002 until December 2005. To this end, daily PM10 sampling was carried out at three urban sites and one suburban site of the area and chemical analyses were made in about 35 % of the samples. Average PM10 levels varied between 27-36 µg/m3 for the study period. The major constituent was mineral matter, exceeding by 5-12 µg/m3 the usual ranges of annual mineral loads in PM10 at similar Spanish urban or regional background sites with no industrial influence. Based on this comparison and on the efficiency of emission abatement techniques, a reduction target of 3-5 µgPM10/m3 of the annual mean seems to be achievable at the urban sites. Moreover, levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain. Of these elements, Zr, Zn, Pb and As may be considered as tracers of the ceramic emissions from the study area. Their levels showed a simultaneous decrease with the progressive implementation of emission abatement techniques in frit (glaze component for the manufacture of glazed tiles) fusion kilns of the area. Given the high proportion of facilities with implemented abatement techniques at the end of the study period, the reduction margin for these elements is very low.

  14. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  15. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  16. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    Science.gov (United States)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  17. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  18. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  19. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  20. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.