WorldWideScience

Sample records for high performance gel

  1. High performance gel imaging with a commercial single lens reflex camera

    Science.gov (United States)

    Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.

    2011-03-01

    A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.

  2. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  3. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of high-performance ER gel produced by electric-field assisted molding

    International Nuclear Information System (INIS)

    Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30∼40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  5. Development of high-performance ER gel produced by electric-field assisted molding

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Y; Aoyama, T [Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi Kouhoku-ku Yokohama (Japan); Anzai, H [Fujikura kasei Co., Ltd. 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: kakinuma@sd.keio.ac.jp

    2009-02-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30{approx}40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  6. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  7. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analysis of aqueous humour in uveitis by high performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis

    NARCIS (Netherlands)

    Murray, P. I.; Hoekzema, R.; Luyendijk, L.; Kijlstra, A.

    1992-01-01

    Aqueous humour from patients with Fuchs' heterochromic cyclitis (FHC) and other types of uveitis was analysed by high performance liquid chromatography (HPLC) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Using HPLC, the number of peaks and their respective elution times

  9. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  10. High dose thermoluminescence dosimetry performance of Sol-gel synthesized TiO{sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Castillo U, D. M.; Flores M, K. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: castillouzeta@gmail.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: TiO{sub 2} is a ceramic material with many applications due to their different crystalline phases (rutile, anatase and brookite). It has attracted attention in several fields because their high mechanical strength, chemical stability and ion-conducting properties. Moreover, in recent years, some research groups gained interest in the thermoluminescence features of TiO{sub 2} concerning their potential use as thermoluminescence dosimeter. In this work, we present experimental results obtained in the first stage of a long-term research project focused in the synthesis of TiO{sub 2} phosphors for dosimetric applications. The thermoluminescent characterization of samples was carried out after being exposed to beta particle irradiation. TiO{sub 2} was prepared by alkoxide sol-gel route using titanium tetrabutoxide as precursor, ethanol, water and ammonia as catalyst. Pellet-shaped samples were annealed at 700 degrees C for 6 h in air atmosphere followed by slow cooling, and then were exposed to radiation doses from 25 to 400 Gy. The glow curves display maxima located at 103 and 238 degrees C when a 5 C/s heating rate is used. From the experimental results here presented, we conclude that TiO{sub 2} is a promising material to develop high dose Tl dosimeters. (Author)

  11. Skeletal keratan sulfate chain molecular weight calibration by high-performance gel-permeation chromatography

    International Nuclear Information System (INIS)

    Dickenson, J.M.; Morris, H.G.; Nieduszynski, I.A.; Huckerby, T.N.

    1990-01-01

    A method has been developed for the molecular sizing of skeletal keratan sulfate chains using an HPLC gel-permeation chromatography system. Keratan sulfate chains and keratanase-derived oligosaccharides were prepared from the nucleus pulposus of bovine intervertebral disc (6-year-old animals). A Bio-Gel TSK 30 XL column eluted in 0.2 M NaCl and at 30 degrees C was calibrated with keratan sulfate oligosaccharides of known size as well as 3H-end-labeled keratan sulfate chains to yield the relationship

  12. Inulin in Medicinal Plants II : Determination of Inulin in Medicinal Plants by High-Performance Gel Chromatography - Seasonal Variations in Inulin Content

    OpenAIRE

    太田, 長世; 三野, 芳紀; NAGAYO, OTA; YOSHIKI, MINO; 大阪薬科大学; 大阪薬科大学; Osaka College of Pharmacy; Osaka College of Pharmacy

    1980-01-01

    A high-performance gel chromatographic procedure for the analysis of inulin in medicinal plants (0.001% for 1% absorption) was established by combining gel chromatography(TSK-G3000PW with distilled water as a mobile phase) with colorimetry (HCl-resorcin reaction). Quantitative studies on inulin contents in medicinal plants of the Gampanulaceae and Compositae families in various growth stages was performed according to the present method. In general, inulin contents of the underground parts de...

  13. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  14. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    Science.gov (United States)

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  15. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2014-01-01

    Full Text Available Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offering the lithium ions shortening and unobstructed pathways. Field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD tests showed optimized morphology. Electrochemical characterizations including galvanostatic charge/discharge, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS tests, together with impedance parameters calculated, all indicated better electrochemical performance and excellent cycling performance at high rate (with less than 9.5% discharge capacity loss over 2000 cycles, the coulombic efficiency maintained about 100%.

  16. [Determination of phthalate plasticizers in foods by high performance liquid chromatography with gel permeation chromatographic clean-up].

    Science.gov (United States)

    Zhang, Chunyu; Wang, Hui; Zhang, Xiaohui; Ma, Zhongqiang; Deng, Wanmei; Hu, Ke; Ding, Mingyu

    2011-12-01

    A method of gel permeation chromatography-high performance liquid chromatography (GPC-HPLC) was established for the simultaneous determination of 5 main phthalate plasticizers in foods (edible oil, instant noodles, fried pastries, Saqima, etc.). The samples were extracted with petroleum ether in an ultrasonator, purified by a GPC column, and analyzed by HPLC. The chromatographic separation was achieved on a Labtech-C18 column (250 mm x 4.6 mm, 5 microm) using acetonitrile and water mixture as the mobile phases in a gradient elution mode. The developed method exhibited a linear correlation coefficient of more than 0.997 and the detection limits of 3.25 - 13.4 microg/L. The spike recoveries were between 70.4% and 113.6% with the relative standard deviations (RSDs, n = 3) of 0.3% - 5.8% at the spiked level of 50 mg/L. This method is simple, rapid and practical, and can be used for the simultaneous determination of PAEs in grease food samples.

  17. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    Science.gov (United States)

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  19. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  20. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  2. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  3. Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO{sub 2} hybrids for high performance antibacterial materials

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nadir; Shao, Godlisten N. [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Haider, M. Salman [Department of Civil and Environmental System Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Imran, Syed Muhammad; Park, Sung Soo; Jeon, Sun-Jeong [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, Hee Taik, E-mail: khtaik@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of)

    2016-11-01

    This study reports an inexpensive sol-gel method to synthesize TiO{sub 2}-CNT hybrid materials. Synthesized TiO{sub 2}-CNT materials show strong antibacterial activity in the absence of light. Cheap TiO{sub 2} source TiOCl{sub 2} is used during synthesis in the absence of high temperatures, high pressures and organic solvents. TiO{sub 2}-CNT materials with 0, 2, 5, 10, 15 and 20 wt% of CNT were synthesized and compared for antibacterial activity, surface area, porosity, crystalline structure, chemical state, and HaCaT cell proliferation. The antibacterial strength of hybrid materials increased significantly with the increase in CNT loading amount, and the TiO{sub 2}-CNT samples with a CNT loading of 10 wt% or more nearly removed all of the E.coli bacteria. HaCaT cell proliferation studies of synthesized hybrid materials illustrated that prepared TiO{sub 2}-CNT systems exhibit minimum cytotoxicity. The characteristics of prepared materials were analyzed by means of XRD, FTIR, Raman spectroscopy, XPS, TEM, and nitrogen gas physisorption studies, compared and discussed. - Highlights: • An inexpensive scheme of preparing TiO{sub 2}-CNT hybrids is presented. • Significant increase in the antibacterial properties of TiO{sub 2} in absence of light • Effects of CNT addition on the physicochemical properties of hybrids are studied. • Antibacterial activity increases with increase in CNT content. • Hybrids show no toxicity towards HaCaT skin cell line.

  4. Performance of Magnetic Filter for Separation of Magnetic Gel Particles

    OpenAIRE

    栗延, 俊太郎; 尾崎, 博明; 渡辺, 恒雄; クリノブ, シュンタロウ; オザキ, ヒロアキ; ワタナベ, ツネオ; Shuntaro, KURINOBU; Hiroaki, OZAKI; Tuneo, WATANABE

    2003-01-01

    We have developed a new wastewater treatment process using magnetic gel particles containing immobilized microorganisms and magnetic particles. The performance of magnetic gel particles using a magnetic filter is very important to control the process. In this study, the performance of a magnetic filter was studied for magnetic gel, particles. Agar particles containing magnetite particles were used as gel particles. The recovery and the relative retention area of magnetic gel particles on the ...

  5. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame.

    Science.gov (United States)

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz

    2015-03-01

    Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Choi, Han Nim; Cho, Sung-Hee; Park, Yu-Jin; Lee, Dai Woon; Lee, Won-Yong

    2005-01-01

    The sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy) 3 2+ ] electrogenerated chemiluminescence (ECL) sensor was applied to the reversed-phase high-performance liquid chromatography (HPLC) determination of phenothiazine derivatives (promazine, chlorpromazine, triflupromazine, thioridazine, and trifluoperazine) and erythromycin in human urine samples. In this method, Ru(bpy) 3 2+ was immobilized in sol-gel-derived titania (TiO 2 )-Nafion nanocomposite films coated on a dual platinum electrode. This method eliminates an extra pump needed for the delivery of Ru(bpy) 3 2+ reagent into a reaction/observation zone in front of photomultiplier tube because the immobilized-Ru(bpy) 3 2+ is recycled on the electrode surface by an applied potential at +1.3 V versus Ag/AgCl (3 M NaCl) reference electrode. The resulting analytical performances such as detection limit, working range, sensitivity, and measurement precision were slightly worse than those obtained with the conventional post-column Ru(bpy) 3 2+ addition approach. The lack of significant interferences and the low detection limits for phenothiazine derivatives and erythromycin indicate that the proposed HPLC-Ru(bpy) 3 2+ ECL detection method is suitable for the determination of those compounds in biological fluids

  7. High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources

    International Nuclear Information System (INIS)

    Zhang Lulu; Li Ying; Peng Gang; Wang Zhaohui; Ma Jun; Zhang Wuxing; Hu Xianluo; Huang Yunhui

    2012-01-01

    Graphical abstract: Double carbon sources were employed to prepare core–shell Li 3 V 2 (PO 4 ) 3 /C composites, giving rise to uniform carbon coating and high conducting network. The as-obtained composites showed remarkably enhanced capacity and rate capability. Highlights: ► Double carbon sources were used to prepare core–shell Li 3 V 2 (PO 4 ) 3 /C composites. ► An improved oxalic acid-based sol–gel method was developed. ► Uniform carbon coating and high conducting network were attained for Li 3 V 2 (PO 4 ) 3 . ► Remarkably enhanced capacity and rate capability were obtained. - Abstract: Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites have been successfully synthesized via an oxalic acid-based sol–gel process assisted by glucose, in which oxalic acid and glucose serve as double carbon sources. X-ray diffraction patterns show that all samples are well crystallized. Transmission electron microscopy images reveal that the LVP/C sample prepared with 15 wt% glucose is uniformly coated by carbon layer with an appropriate thickness of 8–10 nm, resulting in a high electrical conductivity and a fast kinetics. The Li + -ion diffusion coefficient in the LVP/C sample prepared with glucose is ∼10 −10 cm 2 s −1 , which is larger than that of the LVP/C sample prepared without glucose. The LVP/C sample prepared with 15 wt% glucose exhibits the best electrochemical performance with discharge capacity as high as 171 mAh g −1 at 0.1 C and 119 mAh g −1 at 10 C. The present work provides a valuable route for preparing lithium metal phosphates with double carbon sources to improve the conductivity and hence the electrochemical performance.

  8. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  9. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-01-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO x thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm 2 , exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  10. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    Science.gov (United States)

    Mei, Xiaoguang; Cho, Swee Jen; Fan, Benhu; Ouyang, Jianyong

    2010-10-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  11. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode

    International Nuclear Information System (INIS)

    Mei Xiaoguang; Cho, Swee Jen; Fan Benhu; Ouyang Jianyong

    2010-01-01

    High-performance dye-sensitized solar cells (DSCs) with binder-free films of carbon nanotubes (CNTs), including single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), as the counter electrode are reported. The CNT films were fabricated by coating gels, which were prepared by dispersing CNTs in low-molecular-weight poly(ethylene glycol) (PEG) through mechanical grinding and subsequent ultrasonication, on fluorine tin oxide (FTO) glass. PEG was removed from the CNT films through heating. These binder-free CNT films were rough and exhibited good adhesion to substrates. They were used as the counter electrode of DSCs. The DSCs with SWCNT or MWCNT counter electrodes exhibited a light-to-electricity conversion efficiency comparable with that with the conventional platinum (Pt) counter electrode, when the devices were tested immediately after device fabrication. The DSCs with an SWCNT counter electrode exhibited good stability in photovoltaic performance. The efficiency did not decrease after four weeks. On the other hand, DSCs with the MWCNT or Pt counter electrode exhibited a remarkable decrease in the photovoltaic efficiency after four weeks. The high photovoltaic performance of these DSCs is related to the excellent electrochemical catalysis of CNTs on the redox of the iodide/triiodide pair, as revealed by the cyclic voltammetry and ac impedance spectroscopy.

  12. Laser Direct Writing Process for Making Electrodes and High-k Sol-Gel ZrO2 for Boosting Performances of MoS2 Transistors.

    Science.gov (United States)

    Kwon, Hyuk-Jun; Jang, Jaewon; Grigoropoulos, Costas P

    2016-04-13

    A series of two-dimensional (2D) transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2), can be attractive materials for photonic and electronic applications due to their exceptional properties. Among these unique properties, high mobility of 2D TMDCs enables realization of high-performance nanoelectronics based on a thin film transistor (TFT) platform. In this contribution, we report highly enhanced field effect mobility (μ(eff) = 50.1 cm(2)/(V s), ∼2.5 times) of MoS2 TFTs through the sol-gel processed high-k ZrO2 (∼22.0) insulator, compared to those of typical MoS2/SiO2/Si structures (μ(eff) = 19.4 cm(2)/(V s)) because a high-k dielectric layer can suppress Coulomb electron scattering and reduce interface trap concentration. Additionally, in order to avoid costly conventional mask based photolithography and define the patterns, we employ a simple laser direct writing (LDW) process. This process allows precise and flexible control with reasonable resolution (up to ∼10 nm), depending on the system, and enables fabrication of arbitrarily patterned devices. Taking advantage of continuing developments in laser technology offers a substantial cost decrease, and LDW may emerge as a promising technology.

  13. High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process

    International Nuclear Information System (INIS)

    Chen, C.-L.; Chiu, K.-F.; Chen, Y.-R.; Chen, C.C.; Lin, H.C.; Chiang, H.Y.

    2013-01-01

    Nano-crystalline LiMn 2 O 4 thin films have been synthesized by the sol–gel process at low temperature (623 K). The low temperature prepared films are treated by a direct current pulsed oxygen plasma, and tested as cathodes for lithium batteries. The plasma treated films are able to sustain charge–discharge cycles under significant high current density of up to 5.4 A/g corresponding to 45 C for battery operation. The capacity ratio for discharging at 1.2 A/g and 0.024 A/g is over 65%, indicating low internal resistance, which meets the requirement of fast charge and discharge for electric vehicles. The stable high current density performances can be attributed to the formation of a dense surface morphology that is induced by the plasma irradiation. The formation of the surface morphology results in the more uniform current distribution on the film surface, which decreases the interface charge transfer resistances as measured by the electrochemical impedance spectra. - Highlights: • A low temperature process has been used to synthesize LiMn 2 O 4 thin films. • Plasma treatment can reduce the interface charge transfer resistances for LiMn 2 O 4 . • LiMn 2 O 4 cathodes treated by plasma treatment can deliver high rate capability

  14. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    Science.gov (United States)

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  15. High-rate supercapacitive performance of GO/r-GO electrodes interfaced with plastic-crystal-based flexible gel polymer electrolyte

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    We report the performance of symmetrical electric double layer capacitors (EDLCs) fabricated with graphene oxide (GO) and reduced graphene oxide (r-GO) electrodes, and plastic crystal based flexible gel polymer electrolyte (GPE) film. The GPE, comprising the solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in a plastic crystal succinonitrile (SN) entrapped in poly (vinylidinefluoride-co-hexafluoropropylene) (PVdF-HFP), shows suitability as separator/electrolyte in EDLCs due to its excellent electrochemical properties including high ionic conductivity (∼1.97 × 10 −3 S cm −1 a 20 °C). The GO and r-GO electrodes exhibit supercapacitive properties with the SN-based GPE as evidenced from electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge analyses. The residual oxygen functionalities associated with GO-electrodes provide additional pseudo-capacitance resulting in higher specific capacitance and specific energy (∼66 F g −1 and 18 Wh kg −1 , respectively) as compared to r-GO electrodes (specific capacitance ∼60 F g −1 and specific energy ∼15.6 Wh kg −1 ). High knee frequency f k (∼38 Hz), low response time ∼τ 0 (∼166.5 ms) and high pulse power P 0 (∼32.9 kW kg −1 ), observed from EIS studies, indicate the high rate capability of GO-electrodes-based EDLCs. About three fold increase in f k and three times decrease in τ 0 indicates a substantially higher rate performance of r-GO-based EDLCs with respect to GO-based cell. The high rate capability of GO/r-GO electrodes in combination with SN-based GPEs is further confirmed from the rectangular CV shapes up to scan rates of 5 V s −1 for GO and 10 V s −1 for r-GO electrodes. The r-GO based EDLC offers higher specific power (∼54.9 kW kg −1 ) as compared to that of GO-based EDLC (∼33.3 kW kg −1 ), as observed from charge-discaharge studies. Both EDLCs show stable capacitive performance up to ∼11000-13500 charge

  16. Highly-correlated charges in polyelectrolyte gels

    Science.gov (United States)

    Sing, Charles; Zwanikken, Johannes; Olvera de La Cruz, Monica

    2013-03-01

    Polyelectrolyte gels are ubiquitous in polymer physics due to their attractive combination of structural and chemical features that permit the realization of ``environmentally responsive'' systems. The conventional conceptual picture of the volume response of these systems is based on a competition between osmotic and elastic effects. We elaborate on this fundamental understanding by including ion correlations through the use of liquid-state integral equation theory. This allows for a statistical mechanical representation of the state of the system that not only surpasses traditional Poisson-Boltzmann theories but also renders structural features in a highly accurate fashion. In particular, the local ion structure is elucidated, allowing for detailed articulation of charge inversion and condensation effects in the context of gel swelling. The inclusion of correlations has a number of ramifications that become apparent, with enhanced gel collapse and excluded volume competitions that give rise to novel and ion-dependent reentrant swelling effects. We expect this rigorous theory to prove instructive in understanding any number of gelated structures, such as chromosomes or designed synthetic materials for drug delivery.

  17. Low-Temperature Sol-Gel Synthesis of Nitrogen-Doped Anatase/Brookite Biphasic Nanoparticles with High Surface Area and Visible-Light Performance

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    2017-12-01

    Full Text Available Nitrogen doping in combination with the brookite phase or a mixture of TiO2 polymorphs nanomaterials can enhance photocatalytic activity under visible light. Generally, nitrogen-dopedanatase/brookite mixed phases TiO2 nanoparticles obtained by hydrothermal or solvothermal method need to be at high temperature and with long time heating treatment. Furthermore, the surface areas of them are low (<125 m2/g. There is hardly a report on the simple and direct preparation of N-doped anatase/brookite mixed phase TiO2 nanostructures using sol-gel method at low heating temperature. In this paper, the nitrogen-doped anatase/brookite biphasic nanoparticles with large surface area (240 m2/g were successfully prepared using sol-gel method at low temperature (165 °C, and with short heating time (4 h under autogenous pressure. The obtained sample without subsequent annealing at elevated temperatures showed enhanced photocatalytic efficiency for the degradation of methyl orange (MO with 4.2-, 9.6-, and 7.5-fold visible light activities compared to P25 and the amorphous samples heated in muffle furnace with air or in tube furnace with a flow of nitrogen at 165 °C, respectively. This result was attributed to the synergistic effects of nitrogen doping, mixed crystalline phases, and high surface area.

  18. The performance of gel technetium-99m generator

    International Nuclear Information System (INIS)

    Liu Yishu

    2004-01-01

    Technetium-99m, as one of the important radionuclides in nuclear medical science, has been widely used for diseases diagnosis in both developed and developing countries for many years. Technetium-99m can be obtained from both fission-type and gel-type Tc-99m generator. Fission-type generator was prepared by Molybdenum-99 separated from fission products of uranium-235 and gel-type was prepared by irradiating nature MoO 3 in reactor, and a series of chemical and physical processes. This paper briefly describes the manufacturing technical process of gel-type Technetium-99 generator, including the preparation of target containing nature MoO 3 , the target irradiation in reactor, gel preparation, gel filtration and drying, dried gel cracking, generator loading and activity calibration of generator. The performances of gel-type Technetium-99m generator, such as elution efficiency, elution profile, the pH, Mo breakthrough, Zirconium content, radiochemical purity, radionuclidic purity, sterility and pyrogencity of eluate, are also expatiated in detail. Comparing with fission-type Technetium-99m generator, the defects of gel-type Technetium-99m generator are enumerated and their overcoming solutions are recommended in this paper. (author)

  19. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  20. THE EFFECTS OF A CARBOHYDRATE-PROTEIN GEL SUPPLEMENT ON ALPINE SLALOM SKI PERFORMANCE

    Directory of Open Access Journals (Sweden)

    John G. Seifert

    2012-09-01

    Full Text Available Alpine slalom ski racing is a high intensity, complex sport in which racers execute turns every second. Acute fatigue can make the difference in not finishing a run (DNF or finishing out of contention. The quantity and quality of training often dictates racing success. It is not known if nutritional supplementation can improve performance in this high intensity, short duration activity. The objective of this study was to determine if ingesting a carbohydrate-protein energy gel (GEL improves finishing success and number of gates completed during 2 hr slalom sessions on two consecutive days of training. Twenty-four racers were matched; one group ingested the GEL, the second group received a liquid placebo (PLA. Total carbohy-drate, protein, and water ingested by the GEL group were 60g, 15g, and 450 mL, while the PLA group ingested 450 mL of PLA. The GEL group had significantly fewer DNF's (7/48 vs. 18/48; p = 0.02 on both days, completed a greater number of training gates on Day 2 (260.3 ± 20.1 vs. 246.3 ± 17.5 gates; p = 0.03, and had a lower RPE (3.9 ± 1.2 vs. 5.3 ± 1.2 on Day 2 (p = 0.004 vs. PLA. The statistical analysis of combined finishing times was not possible due to the high number of DNF's in the PLA group. High intensity slalom performance can be im-proved by the ingestion of an energy gel. The GEL allowed the athletes to improve training quantity and quality and their per-ception of effort was less than skiers who ingested a placebo

  1. High lane density slab-gel electrophoresis using micromachined instrumentation.

    Science.gov (United States)

    Papautsky, I; Mohanty, S; Weiss, R; Frazier, A B

    2001-10-01

    In this paper, micromachined pipette arrays (MPAs) and microcombs were studied as a means of enabling high lane density gel electrophoresis. The MPA provide a miniaturized format to interface sub-microliter volumes of samples between macroscale sample preparation formats and microscale biochemical analysis systems. The microcombs provide a means of creating sample loading wells in the gel material on the same center-to-center spacing as the MPAs. Together, the two micromachined instruments provide an alternative to current combs and pipetting technologies used for creating sample loading wells and sample delivery in gel electrophoresis systems. Using three designs for the microcomb-MPA pair, center-to-center spacings of 1.0 mm, 500 microm, and 250 microm are studied. The results demonstrate an approximate 10-fold increase in lane density and a 10-fold reduction in sample size from 5 microL to 500 pL. As a result, the number of theoretical plates has increased 2.5-fold, while system resolution has increased 1.5-fold over the conventional agarose gel systems. An examination of changes in resolution across the width of individual separation lanes in both systems revealed dependence in the case of the conventional gels and no dependence for the gels loaded with the micromachined instrumentation.

  2. A Comparison Between Denaturing Gradient Gel Electrophoresis and Denaturing High Performance Liquid Chromatography in Detecting Mutations in Genes Associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC and the Identification of 9 New Mutations Previously Unidentified by DGGE

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff J

    2003-12-01

    Full Text Available Abstract Denaturing high performance liquid chromatography is a relatively new method by which heteroduplex structures formed during the PCR amplification of heterozygote samples can be rapidly identified. The use of this technology for mutation detection in hereditary non-polyposis colorectal cancer (HNPCC has the potential to appreciably shorten the time it takes to analyze genes associated with this disorder. Prior to acceptance of this method for screening genes associated with HNPCC, assessment of the reliability of this method should be performed. In this report we have compared mutation and polymorphism detection by denaturing gradient gel electrophoresis (DGGE with denaturing high performance liquid chromatography (DHPLC in a set of 130 families. All mutations/polymorphisms representing base substitutions, deletions, insertions and a 23 base pair inversion were detected by DHPLC whereas DGGE failed to identify four single base substitutions and a single base pair deletion. In addition, we show that DHPLC has been used for the identification of 5 different mutations in exon 7 of hMSH2 that could not be detected by DGGE. From this study we conclude that DHPLC is a more effective and rapid alternative to the detection of mutations in hMSH2 and hMLH1 with the same or better accuracy than DGGE. Furthermore, this technique offers opportunities for automation, which have not been realised for the majority of other methods of gene analysis.

  3. Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles.

    Science.gov (United States)

    Isabettini, Stéphane; Stucki, Sandro; Massabni, Sarah; Baumgartner, Mirjam E; Reckey, Pernille Q; Kohlbrecher, Joachim; Ishikawa, Takashi; Windhab, Erich J; Fischer, Peter; Kuster, Simon

    2018-03-14

    Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln 3+ )-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH 2 )-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm 3+ and Dy 3+ . These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide

  4. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  5. Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO2/N-Bi2WO6 Composite with High-Visible-Light- and Ultraviolet-Light-Induced Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jiang Zhang

    2012-01-01

    Full Text Available The heterostructured TiO2/N-Bi2WO6 composites were prepared by a facile sol-gel-hydrothermal method. The phase structures, morphologies, and optical properties of the samples were characterized by using X-ray powder diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, energy dispersive spectroscopy (EDS, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities for rhodamine B of the as-prepared products were measured under visible and ultraviolet light irradiation at room temperature. The TiO2/N-Bi2WO6 composites exhibited much higher photocatalytic performances than TiO2 as well as Bi2WO6. The enhancement in the visible light photocatalytic performance of the TiO2/N-Bi2WO6 composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers.

  6. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  7. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    International Nuclear Information System (INIS)

    Beatty, R.L.; Norman, R.E.; Notz, K.J.

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology

  8. Silica based gel as a potential waste form for high level waste from fuel reprocessing

    International Nuclear Information System (INIS)

    Ford, C.E.; Dempster, T.J.; Melling, P.J.

    1983-10-01

    To assess the feasibility of safe disposal of high-level radioactive waste as synthetic clay, or material that would react with ground water to form clay, experiments have been carried out to determine the hydrothermal crystallisation and leaching behaviour of silica based gels fired at 900 deg C. Crystallisation rates at a pressure of 500 bars and at temperatures below 400 deg C are negligible and this more or less precludes pre-disposal production of synthetic clay on the scale required. Leaching experiments suggest that the leach rates of Cs from gels by distilled water are higher than those of boro-silicate glasses and SYNROC at the lower temperatures that would be preferred for geological storage. However, amounts of bulk dissolution of gels may be lower than those of boro-silicate glasses. The initial leaching behaviour of gels might be considerably improved by hot compaction at 900 to 1000 deg C. Consideration of likely waste form dissolution behaviour in a repository environment suggests that gels of appropriate composition might perform as well as, or better than, boro-silicate glasses. A novel hypothetical plant is described that could produce the gel waste form on the scale required on a more or less continuous basis. (author)

  9. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    Science.gov (United States)

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.

  10. Photoelastic colloidal gel for a high-sensitivity strain sensor

    Science.gov (United States)

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-01

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.

  11. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  12. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  13. Highly efficient treatment of aerobic vaginitis with simple acidic buffered gels: The importance of pH and buffers on the microenvironment of vaginas.

    Science.gov (United States)

    Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang

    2017-06-15

    Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: Gelation performance and application recommendations

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2016-03-01

    Full Text Available Water shutoff in ultralow temperature reservoirs has received great attention in recent years. In previous study, we reported a phenol-formaldehyde-based gel formula with ammonium salt which can provide a gelation time between 2 hrs and 2 days at 25 °C. However, systematic evaluation and field recommendations of this gel formula when encountering complex reservoirs environment are not addressed. In this paper, how and why such practical considerations as water composition, temperature, pH, weight ratio of formaldehyde to resorcinol and contaminant Fe3+ to affect the gelation performance are examined. Brookfield DV-III and scanning electron microscopy (SEM are employed respectively for viscosity measurement and microstructure analysis. SEM results further illustrate the mechanism of the effect of salinity on gelation performance. It reveals that crosslinking done by covalent bond has great advantage for gel stability under high salinity environment. The target gel formula can provide desirable gelation time below 60 °C, perfect for 15–45 °C, while it is unfeasible to use high salinity to delay gelation at 60 °C. We summarized the effect of salinity on gelation performance of different gel formulas from the present study and published literature. The summarized data can provide important guideline for gel formula design before conducting any kinds of experiments. The variation of gelation performance at different salinity may be dominated by the interaction between crosslinker-salt-polymer, not only limited to “charge-screening effect” and “ion association” proposed by several authors. We hope the analysis encouraging further investigations. Some recommendations for field application of this gel are given in the end of this paper.

  15. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  16. High Impulse Nanoparticulate-Based Gel Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses the development of advanced gel propellants and determination of their suitability for...

  17. Sol-gel process for the manufacture of high power switches

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    2016-09-27

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  18. Incorporation of high-level nuclear waste in gel spheres

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Bond, W.D.; Angelini, P.; Stinton, D.P.

    1981-01-01

    Waste sludge is incorporated in gel spheres by the method of internal gelation. Gel spheres containing up to 90 wt % waste have been produced from defense and commercial wastes. A generic cesium-bearing waste form has been developed. Pyrolytic carbon and SiC coatings reduce the leachability of all tested articles to the detection limits

  19. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  20. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan; Chiu, Chih-Wei; Chen, Jian-Ging; Wang, Chun-Chieh; Lin, Jiang-Jen; Lin, King-Fu; Ho, Kuo-Chuan

    2009-01-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  1. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  2. Inter-crosslinking network gels having both shape memory and high ductility

    Science.gov (United States)

    Amano, Yoshitaka; Hidema, Ruri; Furukawa, Hidemitsu

    2012-04-01

    Medical treatment for injuries should be easy and quick in many accidents. Plasters or bandages are frequently used to wrap and fix injured parts. If plasters or bandages have additional smart functions, such as cooling, removability and repeatability, they will be much more useful and effective. Here we propose innovative biocompatible materials, that is, nontoxic high-strength shape-memory gels as novel smart medical materials. These smart gels were prepared from two monomers (DMAAm and SA), a polymer (HPC), and an inter-crosslinking agent (Karenz-MOI). In the synthesis of the gels, 1) a shape-memory copolymer network is made from the DMAAm and the SA, and 2) the copolymer and the HPC are crosslinked by the Karenz-MOI. Thus the crosslinking points are connected only between the different polymers. This is our original technique of developing a new network structure of gels, named Inter-Crosslinking Network (ICN). The ICN gels achieve high ductility, going up to 700% strain in tensile tests, while the ICN gels contain about 44% water. Moreover the SA has temperature dependence due to its crystallization properties; thus the ICN gels obtain shape memory properties and are named ICN-SMG. While the Young's modulus of the ICN-SMG is large below their crystallization temperature and the gels behave like plastic materials, the modulus becomes smaller above the temperature and the gels turn back to their original shape.

  3. A COMPARISON OF CLINICAL PERFORMANCE OF I-GEL WITH PROSEAL LMA IN PATIENTS UNDERGOING MASTECTOMY

    Directory of Open Access Journals (Sweden)

    Basheer Padinhare Madathil

    2016-04-01

    Full Text Available AIM To assess the ease of insertion of I-gel and ProSeal LMA and incidence of post op complications. Study design-A prospective randomised controlled trial comparing the clinical performance of I-gel and ProSeal LMA. METHODS After induction and good muscle relaxation LMA/I-gel was introduced as per randomised computer allocation. After insertion, nasogastric tube was inserted through the gastric channel. Parameters monitored were heart rate, nubp, SpO2, ETCO2 at 1, 5 minutes after insertion of the device and thereafter every 5 minutes till the end of surgery. In case of failure, airway was secured with an endotracheal tube. Ease of gastric tube insertion was noted at the end of surgery; postop complications were noted. Blood staining of the device, injury to the lips, teeth, and tongue were noted. Incidence of sore throat 24 hrs. after surgery was also noted. Statistical analysis was done with SPSS software. RESULTS Age, height, weight and BMI were comparable in both groups. The airway characteristics was also comparable in both the groups. Ease of introduction was also the same for both the groups, but the time taken was much lesser for I-gel group. The ease of insertion of gastric tube was much easier for the I-gel group. Blood staining of the device was more with the ProSeal LMA group. There was no injury to any of the structures mentioned above. Postop sore throat was more in the ProSeal LMA group. CONCLUSION From our study, we conclude that the airway can be secured much faster with I-gel than ProSeal LMA. Postop sore throat was much less for I-gel than ProSeal LMA. Both were comparable in number of attempts of insertion, gastric tube introduction. Trauma to the airway structures was also minimum with both I-gel and ProSeal LMA.

  4. An evaluation of the dosimetric performance characteristics of N-vinylpyrrolidone-based polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Maris, T G [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharopoulou, F [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Pappas, E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharakis, G [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), PO Box 1527, Iraklion, Crete (Greece); Damilakis, J [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece)

    2007-08-21

    The aim of this work was to investigate the dosimetric performance properties of the N-vinylpyrrolidone argon (VIPAR) based polymer gel as a dosimetric tool in clinical radiotherapy. VIPAR gels with a larger concentration of gelatin than the standard recipe were manufactured and irradiated up to 68 Gy using a 6 and 18 MV linear accelerator. Using MRI, the R2-dose response was recorded at different imaging sessions within a 34 day time period post-irradiation. The R2-dose response was found to be linear between 5 and 68 Gy. Although dose sensitivity did not show significant variation with time, the measured R2-dose values showed an increasing trend, which was less evident beyond 17 days. At one day post-irradiation, calculated dose standard uncertainties at 20 Gy and 56 Gy were 2.2% and 1.7%, providing a dose resolution of 0.45 Gy and 0.97 Gy, respectively. Although these values fulfilled the 2% limit of ICRU, when gels were imaged at one day post-irradiation, it was shown that the temporal evolution of the R2 values deteriorated the per cent standard uncertainty and the dose resolution by {approx}57%, when imaged 17 days post-irradiation. Variation in the coagulation temperature of the gels did not impact the R2-dose sensitivity. This study has shown that the VIPAR gel has the properties of a dosimetric tool required in clinical radiotherapy, especially in applications where a wide dose dynamic range is employed. For results with the lowest per cent uncertainty and the optimum dose resolution, the dosimetry gels used in this work should be MR scanned at one day post-irradiation. Furthermore, a preliminary study on the R2-dose response of a new normoxic N-vinylpyrrolidone-based polymer gel showed that it could potentially replace the traditional VIPAR gel formulation, while preserving the wide dynamic dose response inherent to that monomer.

  5. Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations

    KAUST Repository

    Liu, Xiaolong; Ravon, Ugo; Tuel, Alain

    2012-01-01

    A pure and highly crystalline all-silica EU-1 zeolite has been obtained from the crystallization of gels containing very low water contents in the presence of hexamethonium cations. Decreasing the water content in the gel down to H 2O/Si < 1

  6. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  7. Gelation Behavior Study of a Resorcinol–Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Yongpeng Sun

    2017-07-01

    Full Text Available Mature oilfields usually encounter the problem of high watercut. It is practical to use chemical methods for water-shutoff in production wells, however conventional water-shutoff agents have problems of long gelation time, low gel strength, and poor stability under low temperature and high salinity conditions. In this work a novel polymer gel for low temperature and high salinity reservoirs was developed. This water-shutoff agent had controllable gelation time, adjustable gel strength and good stability performance. The crosslinking process of this polymer gel was studied by rheological experiments. The process could be divided into an induction period, a fast crosslinking period, and a stable period. Its gelation behaviors were investigated in detail. According to the Gel Strength Code (GSC and vacuum breakthrough method, the gel strength was displayed in contour maps. The composition of the polymer gel was optimized to 0.25~0.3% YG100 + 0.6~0.9% resorcinol + 0.2~0.4% hexamethylenetetramine (HMTA + 0.08~0.27% conditioner (oxalic acid. With the concentration increase of the polymer gel and temperature, the decrease of pH, the induction period became shorter and the crosslinking was more efficient, resulting in better stability performance. Various factors of the gelation behavior which have an impact on the crosslinking reaction process were examined. The relationships between each impact factor and the initial crosslinking time were described with mathematical equations.

  8. Improving the temperature performance of low-density ceramic heatshields through sol-gel processing

    Science.gov (United States)

    Bull, Jeffrey; Leiser, Daniel; Sommers, Jeneen; Esfahani, Lili

    1991-01-01

    The performance of rigid insulations for use as thermal protection materials on reentry vehicles can be characterized by their resistance to dimensional and morphological change when exposed to an isothermal environment equivalent to that generated in entry. Improvements in these material characteristics for alumina-enhanced thermal barrier insulation by compositional modification through sol-gel processing are reported.

  9. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  10. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  11. Recovery of high purity proteins from polyacrylamide gels using ultraviolet scanning densitometry

    International Nuclear Information System (INIS)

    Bartolini, P.; Arkaten, R.; Ribela, M.T.C.P.

    1988-07-01

    We present here a technique for the purification of proteins carried out by a quantitative analytical method used in conjunction with a preparative gel electrophoresis. Both methods employ densitometric ultraviolet scanning of unstained protein bands, a procedure wich is particulary suitable for the purification and recovery of biologically active polypeptides. In short, the purified extracted protein, isolated in a segment cut out from a preparative gel, is recovered by a second (reversed) electrophoresis. We performed the extractions and recoveries of different amounts of two standard proteins (BSA and STI) and a polypeptide hormone (hGH). Our main interest, especially for the hormone is the complete protein recovery with retention of bio and immunoactivity and high purity. For the proteins tested, the mean recovery was of 93 + - 5% obtaining a mean purity of 95 + - 7%. We conclude that the proposed method should have interesting applications, particularly in the obtention of very pure hormones, as are needed for radioligand assays, for radiolabelling and specific antibody raising. We emphasize the simplicity and rapidity of the method (the entire preparative process: first electrophoresis, UV scanning and reversed electrophoresis can be performed in approximately six hours) and its efficiency in recovering pure proteins even on a milligram scale. We thank the support from the IAEA (4299/RB) and FINEP (43.86.0351.00) and CENE (Brazil). (author) [pt

  12. 99mTc gel generators based on zirconium molybdate-99Mo: III: Influence of preparatory conditions of zirconium molybdate-99Mo gel on generator performance

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sarkar, S.K.; Arjun, G.; Ramamoorthy, N.; Nandy, S.K.

    2004-01-01

    The effect of subtle variations on zirconium molybdate- 99 Mo gel preparatory conditions, such as stoichiometry of reactants, pH of gel formation, conditioning of gel granules etc., prior to elution were investigated primarily to arrive at the conditions resulting in high 99m Tc release and minimal 99 Mo breakthrough upon elution with normal saline. Zirconium molybdate- 99 Mo gels were prepared by reacting solutions of Zr and Mo in mole ratios of 0.75-1.5. Both water and normal saline were used for gel disintegration, and the release of 99m Tc and 99 Mo from gel columns into eluates was compared. Sharper elution profile of 99m Tc, but with significantly higher 99 Mo breakthrough (5-8 times), was obtained when water alone was used for disintegration and elution, in comparison to when saline was used. Gels exhibiting optimum characteristics were found to be formed at a pH of 4-5 by reacting [Zr]: [Mo] in the mole ratio of 1.25: 1 and after drying, the product was dispersed into granules by disintegration with normal saline. 99m Tc elution efficiency was found to be ∝ 75% and 99 Mo breakthrough ∝ 0.05%. The elution profile was sharp when a 6 g gel column coupled to a 2 g acidic alumina column (to trap 99 Mo) was eluted with 6-9 ml normal saline. Generators containing upto 23 GBq 99 Mo were prepared, eluted extensively without changing the alumina column and found to provide pertechnetate of good quality, commensurate with hospital radiopharmacy requirements. (orig.)

  13. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  14. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  15. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  16. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  17. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  18. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Juan [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S., E-mail: michael.arnold@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-08-03

    Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10{sup 4} and a field-effect mobility of 5 cm{sup 2} V{sup −1} s{sup −1} under elongation and demonstrate invariant performance over 1000 stretching cycles.

  19. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics

    International Nuclear Information System (INIS)

    Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang; Zhao, Juan; Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S.

    2015-01-01

    Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10 4 and a field-effect mobility of 5 cm 2 V −1 s −1 under elongation and demonstrate invariant performance over 1000 stretching cycles

  20. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors.

    Science.gov (United States)

    Jo, Jeong-Wan; Kim, Jaekyun; Kim, Kyung-Tae; Kang, Jin-Gu; Kim, Myung-Gil; Kim, Kwang-Ho; Ko, Hyungduk; Kim, Jiwan; Kim, Yong-Hoon; Park, Sung Kyu

    2015-02-18

    Incorporation of Zr into an AlOx matrix generates an intrinsically activated ZAO surface enabling the formation of a stable semiconducting IGZO film and good interfacial properties. Photochemically annealed metal-oxide devices and circuits with the optimized sol-gel ZAO dielectric and IGZO semiconductor layers demonstrate the high performance and electrically/mechanically stable operation of flexible electronics fabricated via a low-temperature solution process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  2. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    Jianxin ZHOU; Xiangqian SHEN; Maoxiang JING

    2006-01-01

    Nanosized Ni-Mn oxide powders have been successfully prepared by thermal decomposition of the Ni-Mn citrate gel precursors. The powder materials derived from calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET).The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m2/g and nanometer particle sizes of 15~30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.

  3. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  4. Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization

    International Nuclear Information System (INIS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2012-01-01

    Bucky gel actuators are one of the most promising type of electrochemical actuators based on carbon nanotubes (CNTs). They are lightweight, they are able to work in air without any liquid electrolyte and require just few volts to operate. In order to find real world applications where bucky gel actuators can outperform conventional motors, there are still some issues to be addressed. One key aspect in CNT-based electrochemical actuators is that their actuation speed is limited by the ability of charging and discharging the device without exceeding the electrochemical stability window of the electrolyte. This speed is macroscopically related with the product of the resistance and the capacitance of the equivalent circuit (circuit time constant), and with the ion diffusion speed inside the active electrodes. To enhance the actuator performance it is necessary to increase the ion drift current in the electrolyte avoiding to significantly raise the voltage at the electrodes and shorten the ion path necessary to charge the bucky gel electrodes. By proper material processing, we have successfully addressed this issue. A reduced thickness of the actuators to one third of the original size results in a one order of magnitude increase both of the strain at higher frequencies and of the maximum operating frequency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  6. Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization

    Energy Technology Data Exchange (ETDEWEB)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide [Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa (Italy)

    2012-12-15

    Bucky gel actuators are one of the most promising type of electrochemical actuators based on carbon nanotubes (CNTs). They are lightweight, they are able to work in air without any liquid electrolyte and require just few volts to operate. In order to find real world applications where bucky gel actuators can outperform conventional motors, there are still some issues to be addressed. One key aspect in CNT-based electrochemical actuators is that their actuation speed is limited by the ability of charging and discharging the device without exceeding the electrochemical stability window of the electrolyte. This speed is macroscopically related with the product of the resistance and the capacitance of the equivalent circuit (circuit time constant), and with the ion diffusion speed inside the active electrodes. To enhance the actuator performance it is necessary to increase the ion drift current in the electrolyte avoiding to significantly raise the voltage at the electrodes and shorten the ion path necessary to charge the bucky gel electrodes. By proper material processing, we have successfully addressed this issue. A reduced thickness of the actuators to one third of the original size results in a one order of magnitude increase both of the strain at higher frequencies and of the maximum operating frequency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  8. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  9. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  10. High performance conductometry

    International Nuclear Information System (INIS)

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  11. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  12. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  13. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  14. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  15. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    Science.gov (United States)

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  16. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  17. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  18. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  19. A Highly Flexible Supercapacitor Based on MnO2/RGO Nanosheets and Bacterial Cellulose-Filled Gel Electrolyte

    Directory of Open Access Journals (Sweden)

    Haojie Fei

    2017-10-01

    Full Text Available The flexible supercapacitors (SCs of the conventional sandwich-type structure have poor flexibility due to the large thickness of the final entire device. Herein, we have fabricated a highly flexible asymmetric SC using manganese dioxide (MnO2 and reduced graphene oxide (RGO nanosheet-piled hydrogel films and a novel bacterial cellulose (BC-filled polyacrylic acid sodium salt-Na2SO4 (BC/PAAS-Na2SO4 neutral gel electrolyte. Apart from being environmentally friendly, this BC/PAAS-Na2SO4 gel electrolyte has high viscosity and a sticky property, which enables it to combine two electrodes together. Meanwhile, the intertangling of the filled BC in the gel electrolyte hinders the decrease of the viscosity with temperature, and forms a separator to prevent the two electrodes from short-circuiting. Using these materials, the total thickness of the fabricated device does not exceed 120 μm. This SC device demonstrates high flexibility, where bending and even rolling have no obvious effect on the electrochemical performance. In addition, owing to the asymmetric configuration, the cell voltage of this flexible SC has been extended to 1.8 V, and the energy density can reach up to 11.7 Wh kg−1 at the power density of 441 W kg−1. This SC also exhibits a good cycling stability, with a capacitance retention of 85.5% over 5000 cycles.

  20. Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through interfacial microroughness.

    Science.gov (United States)

    Lee, Jiho; Kim, Wonbin; Kim, Woong

    2014-08-27

    A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.

  1. Performing Isoelectric Focusing and Simultaneous Fractionation of Proteins on A Rotary Valve Followed by Sodium Dodecyl – Polyacrylamide Gel Electrophoresis

    Science.gov (United States)

    Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-01-01

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755

  2. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  3. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue.

    Science.gov (United States)

    Pandey, Preeti; Cabot, Peter J; Wallwork, Benjamin; Panizza, Benedict J; Parekh, Harendra S

    2017-01-01

    Mucoadhesive in situ gelling systems (soluble gels) have received considerable attention recently as effective stimuli-transforming vectors for a range of drug delivery applications. Considering this fact, the present work involves systematic formulation development, optimization, functional evaluation and ex vivo performance of thermosensitive soluble gels containing dexamethasone 21-phosphate disodium salt (DXN) as the model therapeutic. A series of in situ gel-forming systems comprising the thermoreversible polymer poloxamer-407 (P407), along with hydroxypropyl methyl cellulose (HPMC) and chitosan were first formulated. The optimized soluble gels were evaluated for their potential to promote greater retention at the mucosal surface, for improved therapeutic efficacy, compared to existing solution/suspension-based steroid formulations used clinically. Optimized soluble gels demonstrated a desirable gelation temperature with Newtonian fluid behaviour observed under storage conditions (4-8°C), and pseudoplastic fluid behaviour recorded at nasal cavity/sinus temperature (≈34°C). The in vitro characterization of formulations including rheological evaluation, textural analysis and mucoadhesion studies of the gel form were investigated. Considerable improvement in mechanical properties and mucoadhesion was observed with incorporation of HPMC and chitosan into the gelling systems. The lead poloxamer-based soluble gels, PGHC4 and PGHC7, which were carried through to ex vivo permeation studies displayed extended drug release profiles in conditions mimicking the human nasal cavity, which indicates their suitability for treating a range of conditions affecting the nasal cavity/sinuses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  5. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  6. A comparative in vitro study of the digestibility of heat- and high pressure-induced gels prepared from industrial milk whey proteins

    Science.gov (United States)

    He, Jin-Song; Mu, Tai-Hua; Wang, Juan

    2013-06-01

    We undertook this study to compare the digestibility of heat- and high pressure-induced gels produced from whey protein isolate (WPI). To simulate in vivo gastrointestinal digestion of WPI gels, a pepsin-trypsin digestion system was used. The in vitro protein digestibility of WPI gels induced by high pressure (400 MPa and 30 min; P-gel) and those induced by heat (80°C and 30 min; H-gel) was compared using a protein concentration of 0.14 g mL-1. The in vitro protein digestibility of P-gels was significantly greater than that of H-gels (p<0.05). The size-exclusion chromatography profiles of the hydrolysates showed that the P-gel generated more and smaller peptides than natural WPI and H-gels. Furthermore, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed some soluble disulfide-mediated aggregation in the P-gel, while there was more insoluble aggregation in the H-gel than the P-gel. The P-gel was more sensitive to proteinase than the H-gel, which was related to the content of S-S bonds, and this in turn could be attributed to the differences in the gelation mechanism between the H-gel and P-gel.

  7. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  8. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  9. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  10. High ionic liquid content polymeric gel membranes: Preparation and performance

    Czech Academy of Sciences Publication Activity Database

    Jansen, J. C.; Friess, K.; Clarizia, G.; Schauer, Jan; Izák, Pavel

    2011-01-01

    Roč. 44, č. 1 (2011), s. 39-45 ISSN 0024-9297 R&D Projects: GA ČR GA203/08/0465; GA ČR GAP106/10/1194 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40720504 Keywords : ionic liquid membrane * gas separation membrane * 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.167, year: 2011

  11. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  12. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  13. Performance study of molybdenum gels with titanium for preparation of 99Mo-99mTc generators

    International Nuclear Information System (INIS)

    Moraes, Vanessa; Osso Junior, Joao Alberto

    2005-01-01

    99m Tc is the most used radioisotope in Nuclear Medicine, due to nuclear characteristics. It is obtained by the radioactive decay of 99 Mo, generator of radioisotope system. When 99 Mo is produced by the activation in reactor, the most used technique for the preparation of the generators is the gel type generator, which incorporates 99 Mo to the gel that is insoluble, chemically inert to the solutions and with properties of ion exchange. Several countries had already studied this methodology, as is the case of Vietnam, India, China, Australian. This work has the objective of studying the performance and characterization of molybdenum gels with titanium. Four variables in the preparation of the gel were studied: mass ratio between Mo and Ti (1.80 and 2.25), concentration of NaOH (2 and 4 mol/L), final temperature (25 and 50 deg C) and pH (3.5 and 4.5). The prepared gels were analyzed with relation to the size of its particles, identification of its structure, amount of molybdenum, amount of titanium, profile of elution, pH of the elution, determination of the radioisotopes in the eluate and final radiochemical purity. The final result is a formularization of the gel with the best characteristics for posterior preparation of the generator of 99m Tc- 99 Mo. (author)

  14. Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells

    DEFF Research Database (Denmark)

    Zuo, Li-Jian; Hu, Xiao-Lian; Ye, Tao

    2012-01-01

    with that of the organo-gels in solution. Through this knowledge, we eventually achieve controlled morphology and optimized organic solar cells (OSCs) performance. Our results present a significant step forward for understanding the self-assembly behavior of conjugated polymers, control of their morphology...... and optimization of OSC performance....

  15. R high performance programming

    CERN Document Server

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  16. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  17. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene.

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S

    2014-03-12

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  18. Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations

    KAUST Repository

    Liu, Xiaolong

    2012-07-01

    A pure and highly crystalline all-silica EU-1 zeolite has been obtained from the crystallization of gels containing very low water contents in the presence of hexamethonium cations. Decreasing the water content in the gel down to H 2O/Si < 1 inhibited the formation of ZSM-48, which is usually observed under more diluted standard crystallization conditions. Moreover, addition of NH 4F to the synthesis led to the formation of "half-fluorinated" ITQ-13 in which fluoride anions occupied only the center of D4R cages. In larger cages, the charge of the template was compensated by framework connectivity defects, clearly demonstrating once more the essential role of F - in the formation of D4R units. The formation of such hybrid (F,OH) is particularly interesting from a synthesis point of view, particularly for understanding the respective roles of fluoride and hydroxide anions in the crystallization process. © 2012 Elsevier Inc. All rights reserved.

  19. Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.

    Science.gov (United States)

    Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna

    2018-02-15

    The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

  20. Preparation of ZnO/SiO{sub 2} gel composites and their performance of H{sub 2}S removal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guoqiang [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Huang, Zheng-Hong, E-mail: zhhuang@tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Institute of Advanced Materials Research, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2012-05-15

    Graphical abstract: The ZnO/SiO{sub 2} gel composites exhibit mixed type isotherms, in which the initial part is type I, and intermediate and high relative pressures are type IV with a hysteresis loop of type H2. The breakthrough time of ZnO/SiO{sub 2} composites first increased sharply up to 400 Degree-Sign C with the H{sub 2}S breakthrough capacity is up to 96.4 mg/g, and then decrease dramatically with further rising of temperature beyond 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer High surface area ZnO/SiO{sub 2} gel composites were prepared by co-sol-gel method. Black-Right-Pointing-Pointer The active phase (ZnO) well disperses in the composites. Black-Right-Pointing-Pointer The highest H{sub 2}S adsorption capacity of the composites reaches up to 96.4 mg/g. Black-Right-Pointing-Pointer Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. - Abstract: ZnO/SiO{sub 2} gel composites with different active component loading were prepared by sol-gel method combined with ambient drying process, followed by thermal treatment. The gel composites were characterized by scanning electron microscopy (SEM), nitrogen adsorption, X-ray diffraction (XRD), FTIR and X-ray photoelectron spectroscopy (XPS), and their performances for H{sub 2}S removal were evaluated by dynamic testing at room temperature. The as prepared materials exhibited high surface area with multimodal pore size distributions in micropore and mesopore region. The porous properties were significantly influenced both by the ZnO loading ratio and the treated temperature. The gel composites showed a high performance for H{sub 2}S removal, with the highest H{sub 2}S adsorption capacity of 96.4 mg/g for the sample treated at 400 Degree-Sign C with 30 wt% ZnO. Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. It needs to optimize the composites' porous structure and active component loading amount.

  1. A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.

    Science.gov (United States)

    He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng

    2018-01-01

    A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.

  2. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  3. Basic investigations on the performance of a normoxic polymer gel with tetrakis-hydroxy-methyl-phosphonium chloride as an oxygen scavenger: Reproducibility, accuracy, stability, and dose rate dependence

    International Nuclear Information System (INIS)

    Bayreder, Christian; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2006-01-01

    Magnetic resonance (MR)-based polymer gel dosimetry using normoxic polymer gels, represents a new dosimetric method specially suited for high-resolution three-dimensional dosimetric problems. The aim of this study was to investigate the dose response with regard to stability, accuracy, reproducibility, and the dose rate dependence. Tetrakis-hydroxy-methyl-phosphonium chloride (THPC) is used as an oxygen scavenger, and methacrylic acid as a monomer. Accuracy, reproducibility, and dose resolution were determined for MR protocols at low spatial resolution (typical for clinical scanners), medium, and microimaging-resolution protocols at three different dose levels. The dose-response stability and preirradiation-induced variations in R2, related to the time interval between preparation and irradiation of the polymer gel, were investigated. Also postirradiation stability of the polymer gel was considered. These experiments were performed using a 60 Co beam (E=1.2 MV) in a water phantom. Moreover, we investigated the dose rate dependence in the low, medium, and saturation dose region of the normoxic polymer gel using a linear accelerator at photon energy of 25 MV. MR scanning was performed on a 3 T whole body scanner (MEDSPEC 30/80, BRUKER BIOSPIN, Ettlingen, Germany) using several coils and different gradient systems adapted to the acquired spatial resolution investigated. For T2-parameter selective imaging and determination of the relaxation rate R2=1/T2, a multiple spin echo sequence with 20 equidistant echoes was used. With regard to preirradiation induced variations R2 increases significantly with the increasing time interval between the polymer gel preparation and irradiation. Only a slight increase in R2 can be observed for varying the postirradiation-time solely. The dose reproducibility at voxel volumes of about 1.4x1.4x2 mm 3 is better than 2%. The accuracy strongly depends on the calibration curve. THPC represents a very effective oxygen scavenger in

  4. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  5. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  6. High performance germanium MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  7. High performance germanium MOSFETs

    International Nuclear Information System (INIS)

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  8. High Performance Computing Multicast

    Science.gov (United States)

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  9. NGINX high performance

    CERN Document Server

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  10. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  11. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  12. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use.

    Science.gov (United States)

    Yang, Yan; Ou, Rujing; Guan, Shixia; Ye, Xiaoling; Hu, Bo; Zhang, Yi; Lu, Shufan; Zhou, Yubin; Yuan, Zhongwen; Zhang, Jun; Li, Qing-Guo

    2015-12-01

    Terbinafine hydrochloride is an antifungal drug for onychomycosis. Poor permeability of its external preparation leads to poor curative effect. Transfersomes, also known as flexible liposome, could improve transmission of drug for local external use. Terbinafine hydrochloride-loaded liposome is expected to become a breakthrough on the treatment of onychomycosis. This study is aimed to prepare high skin penetration terbinafine hydrochloride transfersomes with high encapsulation efficiency, appropriate drug loading and good stability. Taking entrapment efficiency as the main indicator, the formulations and the processes of preparation were investigated. Transfersomes with different surfactants were prepared in the optimization processes, and the formulations were optimized through the transdermal test in vitro. As a result, a gel contained transfersomes was obtained with a brief evaluation. Its pharmacokinetic properties of going through the skin were studied by using the micro dialysis technology and liquid chromatography-mass spectrometry to assay the penetration behavior of terbinafine. Mean particle size of the terbinafine hydrochloride transfersomes was 69.6 ± 1.23 nm, and the entrapment efficiency was 95.4% ± 0.51. The content of the gel was 4.45 ± 0.15 mg/g. The accumulated permeation of the transfersomes gel in 12 h was 88.52 ± 4.06 µg cm -2 and the intracutaneous drug detention was 94.38 ± 5.26 µg cm -2 . The results of pharmacokinetic studies showed the C max and area under the curve (AUC) were apparently higher than the commercial cream. The terbinafine hydrochloride transfersomes was highly absorbed by the skin. The absorption rate was significantly higher than that of the commercial cream either in the transdermal test in vitro or in the pharmacokinetic studies in vivo.

  13. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  14. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  15. High performance proton accelerators

    International Nuclear Information System (INIS)

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  16. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pingan; Yu, Miao, E-mail: yumiao@cqu.edu.cn; Fu, Jie [Chongqing University, Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering (China)

    2016-03-15

    As a kind of new Magnetorheological (MR) material, MR Gel (MRG) can be regarded as the analog of MR fluid (MRF), which can overcome the iron particles sedimentation and unstable application of MRF. Normally, the storage modulus of conventional MRG is relatively small, although it has a very high relative MR effect. Therefore, practical engineering application of conventional MRG has been restricted more or less. In this work, an MRG with high magneto-induced shear storage modulus and excellent relative MR effect has been fabricated by incorporating Ni-coated multi-walled carbon nanotubes (Ni-coated MWCNTs). And several polyurethane-based MRG composites with the addition of Ni-coated MWCNTs were prepared. The dynamic mechanical property of those MRG composites with applying magnetic field is researched through an advanced commercial rheometer. The experimental results indicated that the initial storage modulus and magneto-induced modulus in sample 4 (containing 6 wt% of the Ni-coated MWCNTs) were approximately 4.45 and 2.27 times than that in the sample 1 (without Ni-coated MWCNTs). Moreover, the relative MR effect of sample 4 can reach 3427 %. The high modulus of sample 4 can be mainly attributed to the following points. One is the Ni-coated MWCNTs can be aligned along the direction of the magnetic field within the matrix which provided a better reinforcing efficiency. The other is Ni-coated MWCNTs can be made to form a better bonding between the iron particles and the matrix. It is concluded that this study provides a meaningful way to improve the mechanical properties of MRG and expected to promote the application of MRG in practice.

  17. Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio.

    Science.gov (United States)

    Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho

    2015-07-28

    High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.

  18. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    Science.gov (United States)

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  19. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels.

    Science.gov (United States)

    Grazioli, Guillermo; Valente, Lisia Lorea; Isolan, Cristina Pereira; Pinheiro, Helena Alves; Duarte, Camila Gonçalves; Münchow, Eliseu Aldrighi

    2018-03-01

    Tooth bleaching is considered a non-invasive treatment, although the use of highly-concentrated products may provoke increased surface roughness and enamel demineralization, as well as postoperative sensitivity. Thus, the aim of this study was to investigate whether hydrogen peroxide (H 2 O 2 ) concentration would affect tooth bleaching effectiveness and the enamel surface properties. Enamel/dentin bovine specimens (6 × 4 mm) were immersed in coffee solution for 7 days and evaluated with a spectrophotometer (Easyshade; baseline), using the CIEL * a * b * color parameters. Hardness was measured using a hardness tester. The specimens were randomly assigned into four groups: one negative control, in which the specimens were not bleached, but they were irradiated with a laser-light source (Whitening Lase II, DMC Equipments); and three groups using distinct H 2 O 2 concentration, namely LP15% (15% Lase Peroxide Lite), LP25% (25% Lase Peroxide Sensy), and LP35% (35% Lase Peroxide Sensy), all products from DMC. The bleached specimens were also irradiated with the laser-light source. After bleaching, all specimens were evaluated using scanning electron microscopy (SEM). pH kinetics and rate was monitored during bleaching. The data were analyzed using ANOVA and Tukey's test (p bleaching gels produced similar color change (p > 0.05). Concerning hardness, only the LP25% and LP35% significantly reduced hardness after bleaching; also, there was a progressive tendency for a greater percentage reduction in hardness with increased H 2 O 2 concentration of the gel (R 2  = 0.9973, p bleaching effectiveness, and may increase the possibility for alteration of enamel hardness, surface morphology, and acidity of the medium. When using H 2 O 2 -based bleaching agents, dental practitioners should choose for less concentrated gels, e.g., around the 15% level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Low- and high-index sol-gel films for planar and channel-doped waveguides

    Science.gov (United States)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  1. Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Lian Xiaojuan; Yang Xin; Liu Shangjun; Xu Ying; Jiang Chunping; Chen Jinwei [College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065 (China); Wang Ruilin, E-mail: rlwang26@yahoo.com.cn [College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065 (China)

    2012-01-15

    Ti-doped {alpha}-Fe{sub 2}O{sub 3} thin films were successfully prepared on FTO substrates by the sol-gel route. Hematite film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The XRD data showed {alpha}-Fe{sub 2}O{sub 3} had a preferred (1 1 0) orientation which belonged to the rhombohedral system. Interestingly, the grains turned into worm-like shape after annealed at high temperature. The IPCE could reach 32.6% at 400 nm without any additional potential vs. SCE. Titanium in the lattice can affect the photo electro chemical performance positively by increasing the conductivity of the thin film. So the excited electrons and holes could live longer, rather than recombining with each other rapidly as undoped hematite. And the efficient carrier density on the Ti-doped anode surface was higher than the undoped anode, which contribute to the well PEC performance.

  2. Preparation and characterization of iron(III) {sup 99}Mo-molybdate(VI) gels for the assessment of {sup 99m}Tc elution performance

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mahmoud; Fasih, Tharwat W.; El-Absy, Mohamed A. [Egyptian Atomic Energy Authority, Cairo (Egypt)

    2018-04-01

    New iron(III) {sup 99}Mo-molybdate(VI) gels (Fe{sup 99}Mo) of high Mo content were prepared by the precipitation/filtration method. {sup 99}Mo-MoO{sub 3} dissolved in NaOH was added to aqueous solutions of Fe(NO{sub 3}){sub 3} at Mo/Fe mole fractions ∝2.21 and 1.99 with continuous stirring at ambient room temperature. Two different Fe{sup 99}Mo were precipitated from the mixed solutions adjusted at pH 2 and 4.7. The amount of water of hydration increased with the increasing the gel settling time and pH of the mixed solution. The matrices were characterized by radiometric, XRD, SEM, XRF, FT-IR, TGA, and DTA measurements. Small chromatographic columns of 2.0 g Fe{sup 99}Mo containing ≥800 mg Mo tagged with 740 MBq {sup 99}Mo were eluted with 5 mL saline solution. Highly reproducible {sup 99m}Tc elution indices suitable for preparation of {sup 99}Mo/{sup 99m}Tc generators were achieved from generator supported with 0.5 g Al{sub 2}O{sub 3} filter. Elution performance of {sup 99m}Tc radionuclide was highly dependent on the gel structural properties.

  3. Preparation and characterization of iron(III) 99Mo-molybdate(VI) gels for the assessment of 99mTc elution performance

    International Nuclear Information System (INIS)

    Amin, Mahmoud; Fasih, Tharwat W.; El-Absy, Mohamed A.

    2018-01-01

    New iron(III) 99 Mo-molybdate(VI) gels (Fe 99 Mo) of high Mo content were prepared by the precipitation/filtration method. 99 Mo-MoO 3 dissolved in NaOH was added to aqueous solutions of Fe(NO 3 ) 3 at Mo/Fe mole fractions ∝2.21 and 1.99 with continuous stirring at ambient room temperature. Two different Fe 99 Mo were precipitated from the mixed solutions adjusted at pH 2 and 4.7. The amount of water of hydration increased with the increasing the gel settling time and pH of the mixed solution. The matrices were characterized by radiometric, XRD, SEM, XRF, FT-IR, TGA, and DTA measurements. Small chromatographic columns of 2.0 g Fe 99 Mo containing ≥800 mg Mo tagged with 740 MBq 99 Mo were eluted with 5 mL saline solution. Highly reproducible 99m Tc elution indices suitable for preparation of 99 Mo/ 99m Tc generators were achieved from generator supported with 0.5 g Al 2 O 3 filter. Elution performance of 99m Tc radionuclide was highly dependent on the gel structural properties.

  4. Development of photonic crystals using sol-gel process for high power laser applications

    International Nuclear Information System (INIS)

    Benoit, Florence

    2015-01-01

    Three-dimensional photonic crystals (PCs) are periodic materials with a modulated refractive index on a length scale close to the light wavelength. This optical property allows the preparation of specific optical components like highly reflective mirrors. Moreover, these structured materials might have a high laser-induced damage threshold (LIDT) in the sub-nanosecond range compared to multilayered dielectric mirrors. This property is obtained because only one high LIDT material (silica) is used. In this work, we present the development of 3D PCs with narrow-sized colloidal silica particles, prepared by sol-gel process and deposited with Langmuir-Blodgett technique. Different syntheses routes have been investigated and compared regarding the optical properties of the PCs. A numerical model based on an ideal opal network including defect influence is used to explain these experimental results. (author) [fr

  5. Highly concentrated EDTA gel improves cleaning efficiency of root canal preparation in vitro.

    Science.gov (United States)

    Putzer, P; Hoy, L; Günay, H

    2008-12-01

    Debris and smear layer, as a product of mechanical root canal instrumentation, reduce the effectiveness of pharmacological substances to prevent post-treatment diseases and impair direct contact of filling materials with a clean dentinal surface. The aim of this in vitro study was to investigate the presence and localization of debris and smear layer via scanning electron microscope analysis after standardized root canal preparation with different chelating agents. Dentin surfaces received treatment with: (1) 15% ethylenediaminetetraacetic acid (EDTA), (2) 18.6% EDTA (3) and 24% EDTA or without any demineralizing chemicals as control. Forty vertically split human premolars were sputtered and divided into coronal, middle, and apical sections, followed by a randomized, blinded score evaluation using five scores. Pairwise comparisons of all treatment groups against a control group have been performed by Mann-Whitney U test and the Kruskal-Wallis test. Debris grades showed no significant difference between the three regions of the root canals, except for 18.6% EDTA in the central third. Smear layer and smear plug removal was concentration-dependent. Removal of the smear layer in the three areas showed that there was a statistically significant difference between all parts when using 18.6% and 24% EDTA concentrations compared with the control. The best smear layer removal in the apical region was observed using a 24% EDTA gel as chelating agent and lubricant. The usage of EDTA gel >/=18.6% presented a better cleaning regime when compared to the control group.

  6. Low cost sol–gel derived SiC–SiO{sub 2} nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Azmira [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Solar Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Lee, Woojin [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Akhtar, M. Shaheer, E-mail: shaheerakhtar@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Li, Zhen Yu [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Yang, O.-Bong, E-mail: obyang@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of)

    2016-04-30

    Graphical abstract: - Highlights: • Sol–gel derived SiC–SiO{sub 2} nanocomposite was prepared. • It effectively coated as AR layer on p-type Si-wafer. • SiC–SiO{sub 2} layer on Si solar cells exhibited relatively low reflectance of 7.08%. • Fabricated Si solar cell attained highly comparable performance of 16.99% to commercial device. - Abstract: This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol–gel derived SiC–SiO{sub 2} nanocomposite. The prepared SiC–SiO{sub 2} nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol–gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO{sub 2} phases, which noticeably confirmed the formation of SiC–SiO{sub 2} nanocomposite. The SiC–SiO{sub 2} layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC–SiO{sub 2} nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional Si{sub x}N{sub x} AR coated Si solar cell. New and effective sol–gel derived SiC–SiO{sub 2} AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  7. Influence of crosslinker structure on performance of functionalised organic-inorganic hybrid sol-gel coating

    Science.gov (United States)

    Vasiljević, J.; Zorko, M.; Štular, D.; Tomšič, B.; Jerman, I.; Orel, B.; Medved, J.; Simončič, B.

    2017-10-01

    This research aimed to investigate the influence of the co-condensation of the three different organofunctional trialkoxysilane precursors with two different crosslinkers, i.e. tetraethoxysilane or organocyclotetrasiloxane on the performance and the washing fastness of this multicomponent multifunctional sol-gel coating on cellulose fibres. To this aim, a three-component equimolar sol mixture (MC), which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF), 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (SiQ) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) in combination with two different concentrations of TEOS (T and 3T) or organocyclotetrasiloxane 2,4,6,8-tetrakis(2-(diethoxy(methyl)silyl)ethyl)-2,4,6,8-tetramethyl-cyclotetrasiloxane (T4) as crosslinkers, was applied to the cotton fibres by a pad-dry-cure process. The functional properties of the coated samples before and after repeated washing were investigated by the water θ (W) and n-hexadecane θ (C16) static contact angle as well as water sliding (roll-off) (α) angle measurements. The inclusion of both TEOS and T4 into the MC sol increased the hydrophobic affect and simultaneously decreased the oleophobic effect of the MC coating. These phenomena were more pronounced for higher concentration of TEOS and T4 crosslinker. The inclusion of T4 into the MC sol improved the coating washing fastness to a significantly higher extent than the inclusion of TEOS, with respect to the applied concentrations.

  8. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance

    Science.gov (United States)

    Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong

    2018-05-01

    In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.

  9. How does the chemistry of polymer gel dosimeters affect their performance?

    International Nuclear Information System (INIS)

    Jirasek, A; McAuley, K B; Lepage, M

    2009-01-01

    This review article describes the primary chemical processes affecting polymerization in polymer-based radiosensitive gel dosimeters. Furthermore, recently studied environmental factors and gelation processes affecting polymerization and gel dose response are discussed. Finally, the predominant physical factors affecting dose-response sensitivity for each of the three imaging modalities (MRI, Optical CT, x-ray CT) are outlined. Emphasis is concentrated on recent literature in this area, as prior literature was summarized in review articles submitted to DOSGEL 2006 in Sherbrooke (J. Conf. Series, 56, 2006). Discussions from the recent DOSGEL conference (2008) are incorporated into this review.

  10. How does the chemistry of polymer gel dosimeters affect their performance?

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston ON K7L 3N6 (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Universite de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke QC J1H 5N4 (Canada)], E-mail: jirasek@uvic.ca, E-mail: kim.mcauley@chee.queensu.ca, E-mail: martin.lepage@usherbrooke.ca

    2009-05-01

    This review article describes the primary chemical processes affecting polymerization in polymer-based radiosensitive gel dosimeters. Furthermore, recently studied environmental factors and gelation processes affecting polymerization and gel dose response are discussed. Finally, the predominant physical factors affecting dose-response sensitivity for each of the three imaging modalities (MRI, Optical CT, x-ray CT) are outlined. Emphasis is concentrated on recent literature in this area, as prior literature was summarized in review articles submitted to DOSGEL 2006 in Sherbrooke (J. Conf. Series, 56, 2006). Discussions from the recent DOSGEL conference (2008) are incorporated into this review.

  11. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  12. High-Sensitivity, Highly Transparent, Gel-Gated MoS2 Phototransistor on Biodegradable Nanopaper

    KAUST Repository

    Zhang, Qing

    2016-06-21

    Transition metal dichalcogenides hold great promise for a variety of novel electrical, optical and mechanical devices and applications. Among them, molybdenum disulphide (MoS2) is gaining increasing attention as the gate dielectric and semiconductive channel for high-perfomance field effect transistors. Here we report on the first MoS2 phototransistor built on flexible, transparent and biodegradable substrate with electrolyte gate dielectric. We have carried out systematic studies on its electrical and optoelectronic properties. The MoS2 phototransistor exhibited excellent photo responsivity of ~1.5 kA/W, about two times higher compared to typical back-gated devices reported in previous studies. The device is highly transparent at the same time with an average optical transmittance of 82%. Successful fabrication of phototransistors on flexible cellulose nanopaper with excellent performance and transparency suggests that it is feasible to achieve an ecofriendly, biodegradable phototransistor with great photoresponsivity, broad spectral range and durable flexibility.

  13. High-Sensitivity, Highly Transparent, Gel-Gated MoS2 Phototransistor on Biodegradable Nanopaper

    KAUST Repository

    Zhang, Qing; Bao, Wenzhong; Gong, Amy; Gong, Tao; Ma, Dakang; Wan, Jiayu; Dai, Jiaqi; Munday, J; He, Jr-Hau; Hu, Liangbing; Zhang, Daihua

    2016-01-01

    Transition metal dichalcogenides hold great promise for a variety of novel electrical, optical and mechanical devices and applications. Among them, molybdenum disulphide (MoS2) is gaining increasing attention as the gate dielectric and semiconductive channel for high-perfomance field effect transistors. Here we report on the first MoS2 phototransistor built on flexible, transparent and biodegradable substrate with electrolyte gate dielectric. We have carried out systematic studies on its electrical and optoelectronic properties. The MoS2 phototransistor exhibited excellent photo responsivity of ~1.5 kA/W, about two times higher compared to typical back-gated devices reported in previous studies. The device is highly transparent at the same time with an average optical transmittance of 82%. Successful fabrication of phototransistors on flexible cellulose nanopaper with excellent performance and transparency suggests that it is feasible to achieve an ecofriendly, biodegradable phototransistor with great photoresponsivity, broad spectral range and durable flexibility.

  14. Development of highly-ordered, ferroelectric inverse opal films using sol gel infiltration

    Science.gov (United States)

    Matsuura, N.; Yang, S.; Sun, P.; Ruda, H. E.

    2005-07-01

    Highly-ordered, ferroelectric, Pb-doped Ba0.7Sr0.3TiO3, inverse opal films were fabricated by spin-coating a sol gel precursor into a polystyrene artificial opal template followed by heat treatment. Thin films of the ferroelectric were independently studied and were shown to exhibit good dielectric properties and high refractive indices. The excellent quality of the final inverse opal film using this spin-coating infiltration method was confirmed by scanning electron microscopy images and the good correspondence between optical reflection data and theoretical simulations. Using this method, the structural and material parameters of the final ferroelectric inverse opal film were easily adjusted by template heating and through repeated infiltrations, without changes in the initial template or precursor. Also, crack-free inverse opal thin films were fabricated over areas comparable to that of the initial crack-free polystyrene template (˜100 by 100 μm2).

  15. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  16. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    Science.gov (United States)

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  17. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    Science.gov (United States)

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  18. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology.

    Science.gov (United States)

    Duarte, José M; Barbier, Içvara; Schaerli, Yolanda

    2017-11-17

    Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.

  19. '99Mo/99mTc Generator Based on High Radionuclidic Pure Zirconium Molybdate Gel

    International Nuclear Information System (INIS)

    Amin, M.; Mostafa, M.; El-Amir, M.A.; El-Absy, M.A.; Mohamed, O.I.; Farag, A.B.

    2014-01-01

    99 Mo / 99 mTc radioisotope generator was prepared using in-situ precipitated zirconium molybdate chromatographic column. Zirconium molybdate gel matrix was synthesized by precipitation of neutron activation molybdenum-99 from its solution after variety purification processes to prevent contamination of the 99m Tc eluate with cross-contaminants. Greeter than 82.7 ± 0.4 % of the generated 99m Tc was immediately and reproducible eluted by passing 10 ml 0.9 % NaCl solution through the 1 g zirconium molybdate- 99 Mo column matrix at a flow rate of 0.5 ml / min and room temperature with high chemical, radionuclide ( ≥ 99.9 % 99m Tc) and radiochemical purity ( ≥ 97.7 % % as 99 mTcO 4 - ) with ph value suitable for medical uses.

  20. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  1. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  2. Study of the performance of gels of molybdenum containing several cations for the preparation of 99Mo and 99mTc

    International Nuclear Information System (INIS)

    Moraes, Vanessa

    2005-01-01

    99m Tc is the most employed radioisotope in Nuclear Medicine, due to its nuclear characteristics: short half-life (6.04 h); emission of low energy gamma ray (140 keV); no emission of β - ; generated by the radioactive decay of 99 Mo (radioisotope generator system). 99 Mo can be produced in cyclotron or nuclear reactor by the irradiation of 235 U (n, f) 99 Mo or by the 98 Mo (n, γ) 90 Mo reaction. Four different kinds of generators of 99m Tc can be employed, based on the separation techniques: column chromatographic using alumina, with fission 99 Mo; solvent extraction using methylethylketone; sublimation of technetium heptoxide; gel type chromatographic generator, that contains molybdenum. IPEN, aiming the nationalization of the 99m Tc generators production, developed a gel type generator that uses zirconium molybdate. Three types of gels are studied in the work: molybdenum gel with titanium, molybdenum gel with cerium and molybdenum gel with hafnium, that were compared with the molybdenum gel with zirconium. The variables studied in the gel preparation are: mass relation between Mo and the cation, NaOH concentration, temperature and final pH of the product. After the preparation, the gels are analysed in relation to the amount of Mo and the cation, structure and gel particle size. The gel is irradiated and later a generator system is prepared, and the elutions are analysed in order to measure the 99m Tc elution efficiency. The results showed that the molybdenum gel with titanium had the best performance in all analysis. (author)

  3. Performances of different protocols for exocellular polysaccharides extraction from milk acid gels: Application to yogurt.

    Science.gov (United States)

    Nguyen, An Thi-Binh; Nigen, Michaël; Jimenez, Luciana; Ait-Abderrahim, Hassina; Marchesseau, Sylvie; Picart-Palmade, Laetitia

    2018-01-15

    Dextran or xanthan were used as model exocellular polysaccharides (EPS) to compare the extraction efficiency of EPS from skim milk acid gels using three different protocols. Extraction yields, residual protein concentrations and the macromolecular properties of extracted EPS were determined. For both model EPS, the highest extraction yield (∼80%) was obtained when samples were heated in acidic conditions at the first step of extraction (Protocol 1). Protocols that contained steps of acid/ethanol precipitation without heating (Protocols 2 and 3) show lower extraction yields (∼55%) but allow a better preservation of the EPS macromolecular properties. Changing the pH of acid gels up to 7 before extraction (Protocol 3) improved the extraction yield of anionic EPS without effect on the macromolecular properties of EPS. Protocol 1 was then applied for the quantification of EPS produced during the yogurt fermentation, while Protocol 3 was dedicated to their macromolecular characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation and Performance of an Adsorption Type Gel Plugging Agent as Enhanced Oil Recovery Chemical

    Directory of Open Access Journals (Sweden)

    Xiaoping Qin

    2015-01-01

    Full Text Available A novel adsorption type gel plugging agent (ATGPA was prepared using acrylamide (AM, acrylic acid (AA, diallyl dimethyl ammonium chloride (DMDAAC, 2-acrylamido-2-methylpropanesulfonate (AMPS, formaldehyde (HCHO, resorcinol (C6H6O2, and thiocarbamide (CH4N2S as raw materials under mild conditions. ATGPA was characterized by infrared (IR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that ATGPA exhibited higher elastic modulus (G′ and viscous modulus (G′′ than AM/AA gel plugging agent (AAGPA under the same scanning frequency. It was also found that ATGPA had moderate temperature resistance and salt tolerance. Core plugging tests results indicated that ATGPA could achieve up to higher plugging rate (PR than AAGPA (97.2% versus 95.7% at 65°C. In addition, ATGPA possessed stronger antiscouring ability by core plugging experiments at 65°C.

  5. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  6. Evaluation of preparation and performance of gel column 99Tcm generators based on zirconium molybdate - 99Mo

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sarkar, S.K.; Patel, R.R.; Arora, S.S.; Arjun, G.; Narasimhan, D.V.S.; Ramamoorthy, N.

    1998-01-01

    In view of the importance and relevance of zirconium molybdate (ZrMo) based gel generators for 99 Tc m , developed first by Australian scientists, particularly for developing nations having production capability for neutron activated 99 Mo, work has been carried out in our centre towards optimisation of the preparatory conditions. Appropriate facilities have been set up for safe, reliable and regular manufacture of such 99 Tc m gel generators on a small scale based on our earlier successful attempts on the approach for process standardisation. The results of our extensive evaluation, including for clinical use, are reported here. Following the regular procedure standardised by us earlier, 9 lots of 99 Mo were converted in ZrMo gel adopting aseptic practices and two different techniques for drying the ZrMo cake - heated air at 60-80 deg. C and microwave drying at 385 watts. The ZrMo granules obtained after further processing were loaded onto generator assemblies. 10 g molybdenum was handled in each batch of gel conversion, while typically 2 g Mo was used per generator column, except in the case of demonstration of higher capacity generators. The generator performance was evaluated systematically over nearly 15 days, in terms of rapidity and smoothness of elution, 99 Tc m elution yield and quality of eluted pertechnetate. The consistent results of over 60% (Max. 90%) yield of 99 Tc m , -3 % 99 Mo breakthrough, >98% radiochemical purity of pertechnetate, 99 Tc m compounds etc. indicated satisfactory quality of pertechnetate, comparable to that obtained by conventional generator systems. 12 such generators, containing up to 18.5 GBq 99 Mo, supplied for clinical use and evaluated at two hospital radiopharmacies showed satisfactory generator performance. The applicability for preparing larger capacity generators for centralised radiopharmacies and feasibility to achieve reduced process time and ease of control by using microwave oven drying have been established. (author)

  7. Performance of the sol-gel method for the preparation of optical fibers

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Hayer, Miloš; Mrázek, Jan; Kašík, Ivan; Podrazký, Ondřej; Pospíšilová, Marie

    2007-01-01

    Roč. 52, č. 10 (2007), s. 991-998 ISSN 0035-3930. [Physical Chemistry Conference ROMPHYSCHEM /12./. Bucharest, 06.09.2006-08.09.2006] R&D Projects: GA ČR GA102/05/0956 Institutional research plan: CEZ:AV0Z20670512 Keywords : sol-gel processing * optical fibres * chemical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.262, year: 2007

  8. Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Renella, R.A.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Vecchio Ciprioti, S. [Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, Building RM017, I-00161 Rome (Italy)

    2016-04-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which contain 60 or 70 weight percentage of PEG, were synthesized by the sol–gel technique. The materials were characterized and subjected to various tests to assess their application in the biomedical field. The evaluation of their morphology by scanning electron microscopy (SEM) confirms the homogeneity of the samples on the nanometer scale. Fourier transform infrared spectroscopy (FT-IR) indicated that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds. This feature makes them class I hybrids. Simultaneous thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate their thermal behavior and to establish the best temperatures for their pre-treatment. The fundamental properties that a material must have to be used in the biomedical field are biocompatibility and bioactivity. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid. This indicates that the materials are able to bond to bone tissue. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed by performing WST-8 cytotoxicity tests on fibroblast cell NIH 3T3 after 24 h of exposure. The cytotoxicity tests highlight that the cell viability is affected by the polymer percentage. The results showed that the synthesized materials were bioactive and biocompatible. Therefore, the results obtained are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at high PEG percentage • Chemical, thermal and morphological characterization of hybrid materials • Biological characterizations with WST-8 cytotoxicity tests • Bioactivity characterizations of hybrid materials with high PEG percentage.

  9. Sol-gel technology applied to alternative high-level waste forms development

    International Nuclear Information System (INIS)

    Angelini, P.; Stinton, D.P.; Vavruska, J.S.; Caputo, A.J.; Lackey, W.J.

    1981-01-01

    Sol-gel technology appears applicable to waste solidification. It is attractive for remote operation, and a variety of waste compositions and forms can be produced. Spheres and pellets of gel-derived Synroc waste forms were produced. Spheres of the Synroc-B type were coated with pyrolytic carbon and silicon carbide. Partitioning of actinides in Synroc-B was experimentally determined

  10. Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes☆

    KAUST Repository

    Lai, Yi-Hsuan; Lin, Chia-Yu; Chen, Jian-Ging; Wang, Chun-Chieh; Huang, Kuan-Chieh; Liu, Ken-Yen; Lin, King-Fu; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2010-01-01

    Gel-type dye-sensitized solar cells (DSSCs) were fabricated with 5.0 wt% polyvinyidene fluoride-co-hexafluoro propylene (PVDF-HFP) in methoxy propionitrile (MPN) as gel polymer electrolyte (GPE), 1-butyl-3-methylimidazolium iodide (BMII)/iodine (I2) as redox couple, 4-tertiary butyl pyridine (TBP) and guanidine thiocyanate as additives. The incorporation of alkyl-modified nanomica (AMNM) in the PVDF-HFP gel electrolytes caused the reduction of crystallization of PVDF-HFP, which was confirmed by X-ray diffraction (XRD) analysis. The short-circuit current density (JSC) of the cell increased due to the decrease of diffusion resistance, as judged by the electrochemical impedance spectra (EIS) analysis, while the open-circuit voltage (VOC) remained almost the same. As the loading of AMNM in the PVDF-HFP gel electrolyte was increased to 3.0 wt%, the JSC and power conversion efficiency (η) of the cells increased from 8.3 to 13.6 mA/cm2 and 3.5% to 5.7%, respectively. However, the JSC decreased as the loading of AMNM exceeded 3.0 wt%. At higher AMNM loadings, nanomica acted as a barrier interface between the electrolyte and the dye molecules to hinder electron transfer, and thus reducing the cell's photocurrent density. Furthermore, the DSSCs fabricated by dispersing polymethyl methacrylate (PMMA) microspheres in the TiO2 electrode with the GPE containing 3.0 wt% AMNM improved the η to 6.70%. The TiO2 films would exhibit larger porosity by blending with PMMA, leading the penetration of GPEs into the porous TiO2 easier, thus improving the contact between the dye-adsorbed TiO2 surfaces and the GPEs, as characterized by EIS. Moreover, the η of gel-type DSSCs with a 25 μm thickness of surlyn reached 7.96% as compared with 6.70% for the DSSCs with a 60 μm surlyn. © 2009 Elsevier B.V. All rights reserved.

  11. Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes☆

    KAUST Repository

    Lai, Yi-Hsuan

    2010-04-01

    Gel-type dye-sensitized solar cells (DSSCs) were fabricated with 5.0 wt% polyvinyidene fluoride-co-hexafluoro propylene (PVDF-HFP) in methoxy propionitrile (MPN) as gel polymer electrolyte (GPE), 1-butyl-3-methylimidazolium iodide (BMII)/iodine (I2) as redox couple, 4-tertiary butyl pyridine (TBP) and guanidine thiocyanate as additives. The incorporation of alkyl-modified nanomica (AMNM) in the PVDF-HFP gel electrolytes caused the reduction of crystallization of PVDF-HFP, which was confirmed by X-ray diffraction (XRD) analysis. The short-circuit current density (JSC) of the cell increased due to the decrease of diffusion resistance, as judged by the electrochemical impedance spectra (EIS) analysis, while the open-circuit voltage (VOC) remained almost the same. As the loading of AMNM in the PVDF-HFP gel electrolyte was increased to 3.0 wt%, the JSC and power conversion efficiency (η) of the cells increased from 8.3 to 13.6 mA/cm2 and 3.5% to 5.7%, respectively. However, the JSC decreased as the loading of AMNM exceeded 3.0 wt%. At higher AMNM loadings, nanomica acted as a barrier interface between the electrolyte and the dye molecules to hinder electron transfer, and thus reducing the cell\\'s photocurrent density. Furthermore, the DSSCs fabricated by dispersing polymethyl methacrylate (PMMA) microspheres in the TiO2 electrode with the GPE containing 3.0 wt% AMNM improved the η to 6.70%. The TiO2 films would exhibit larger porosity by blending with PMMA, leading the penetration of GPEs into the porous TiO2 easier, thus improving the contact between the dye-adsorbed TiO2 surfaces and the GPEs, as characterized by EIS. Moreover, the η of gel-type DSSCs with a 25 μm thickness of surlyn reached 7.96% as compared with 6.70% for the DSSCs with a 60 μm surlyn. © 2009 Elsevier B.V. All rights reserved.

  12. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  13. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  14. In vitro⿿in vivo performance of bare and drug loaded silica gel synthesized via optimized process parameters

    Science.gov (United States)

    Chakraborty, Suparna; Biswas, Supratim

    2016-01-01

    Silica xerogel as a potential drug carrier system for the in vivo as well as in vitro delivery of andrographolide was tested. The present study aims to optimize the effective experimental parameters; volume of ethanol, volume of water and drying temperature by applying response surface methodology coupled with Box⿿Behnken experimental design. The in vitro drug release in simulated body fluid at 37 οC from the selected formulation was significantly highest (44.83 ± 0.9%) among rest of the formulations. Results indicate that sol⿿gel method is useful for entrapping andrographolide in the silica gel and for releasing the same via diffusion through the porous matrix under the in vitro/in vivo conditions. Silica gel exhibited slow matrix degradation as well as sustained release of andrographolide within the experimental time frame of 168 h. In vivo study was performed with three increasing doses [2 mg (S1), 8 mg (S2), and 16 mg (S3)] of silica. Histological fates of different organs were executed with those doses.

  15. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  16. Sol-gel preparation of high surface area potassium tetratitanate for the immobilization of nuclear waste metal ions

    International Nuclear Information System (INIS)

    Jung, K.T.; Shul, Y.G.; Moon, J.K.; Oh, W.J.

    1997-01-01

    Potassium tetratinates(K 2 Ti 4 O 9 ) were synthesized by using the sol-gel method to produce ion-exchangeable materials with high surface area. The effects of mole ratios of K/Ti and H 2 O/Ti were examined. K 2 Ti 4 O 9 was obtained at 740 deg. C by the sol-gel method, which uses a lower temperature than the melting method. After calcination at 800 deg. C, K 2 Ti 4 O exhibits a needle shape which is quite different from the shape of K 2 Ti 6 O 13 powder. The surface areas of K 2 Ti 4 O 9 was 15 m 2 /g by the sol-gel method after calcining at 800 C. The enhancement of BET area to 25 m 2 /g was obtained after supercritical drying using EtOH as solvent. By using the sodium alginate method, needle type potassium titanate 10μm in length, the longest aspect ratio of 1,3 x 10 3 could be obtained. There are variations in the Sr 2+ ion exchange rate and capacity according to the preparation method. Larger BET surface area provides fast ion exchange and larger capacity for Sr 2+ ion in the order; sol-gel process with supercritical drying > sol-gel process > melting process. (author). 17 refs, 21 figs, 1 tab

  17. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development

    Science.gov (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823

  18. High static gel strength cement slurries for gas flow-laboratory surveys and case history

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Ribeiro, Danilo [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pessoa, Laudemar [University of Adelaide (Australia). Math. Bachelor Master Petroleum Engineer

    2008-07-01

    Gas migration is a phenomenon involving fluid density control, well conditioning, good adherence of the cement slurry to the contacting surfaces, chemical-physical properties, cement hydration mechanisms, and the well's geometry. This problem is evident in several producing wells with a pressurized annulus. Recently, a trend of combining operational techniques with cement slurries capable of developing very high static gel strength (SGS) has developed. Slurry designs intended to confer high SGS almost always have greater rheologies. This can make it difficult to mix the slurry on surfaces or even move the slurry placement through the well, more so because gas-producing wells are typically deep and have complex geometry. This paper evaluates the industry's understanding of this problem. It compares the major solutions with current cement slurry designs and, in addition to the conventional specific gas well parameters, it emphasizes the high SGS and low rheologies on surface conditions. This study also documents the success and efficiency of cementing at a Brazilian sedimentary basin which was completed using designs recommended in this work. This paper does not consider the gas migration occurrence through the cementing matrix. (author)

  19. Influence of ultrasonic frequency on the regeneration of silica gel by applying high-intensity ultrasound

    International Nuclear Information System (INIS)

    Zhang Weijiang; Yao Ye; Wang Rongshun

    2010-01-01

    Ultrasonic frequency is the key parameter considered in ultrasonic applications. In order to provide a basic knowledge about the influence of ultrasonic frequency on the regeneration of silica gel assisted by power ultrasound, the experiments about silica gel regeneration under the radiation of constant-power (60 W) ultrasound with different frequencies (i.e., 23, 27, and 38 kHz) and that without ultrasound were carried out at different regeneration temperatures (i.e., 35, 45, 55, and 65 deg. C). The experimental results showed that the lower frequency was beneficial for the application of power ultrasound in the regeneration of silica gel. The fact was theoretically explained by the ultrasonic power attenuation model which indicates that the ultrasound of lower frequency will lead to more uniform energy distribution and hence achieve higher efficiency of utilization. Meanwhile, the effect of ultrasonic frequency on silica gel regeneration would be influenced by the regeneration temperature and the moisture ratio in silica gel. As investigated in this study, the effect of ultrasonic frequency on the regeneration would be more significant at the lower regeneration temperature or at the higher moisture ratio in silica gel. In addition, the mean regeneration speed model of silica gel dependent of the regeneration temperature and the ultrasonic frequency was established according to the experimental data.

  20. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    International Nuclear Information System (INIS)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-01-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi 3.25 La 0.75 Ti 3 O 12 , BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi 3+ , La 3+ and Ti 4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi 3.25 La 0.75 Ti 3 O 12 ) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization

  1. Identifying High Performance ERP Projects

    OpenAIRE

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  2. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  3. Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method

    International Nuclear Information System (INIS)

    Yi Tingfeng; Dai Changsong; Gao Kun; Hu Xinguo

    2006-01-01

    The spinel lithium manganese oxide cathode materials were prepared by citric acid-assisted sol-gel method at 623-1073 K in air. The effects of pH value, raw material, synthesis temperature and time on structure and electrochemical performance of spinel lithium manganese oxide are investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM) and cyclic voltammetry (CV). XRD data results strongly suggest that the synthesis temperature is the dominating factors of the formation of spinel phase, and spinel lithium manganese oxide powder with various crystallites size can be obtained by controlling the sintering time. CV shows that spinel lithium manganese oxide powder formed about 973 K presents the best electrochemical performance with well separated two peaks and the highest peak current. Charge-discharge test indicates that spinel lithium manganese oxide powders calcined at higher temperatures have high discharge capacity and capacity loss, and sintered at lower temperatures has low discharge capacity and high capacity retention

  4. Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yi Tingfeng [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: tfyihit@hit.edu.cn; Dai Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Gao Kun [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Hu Xinguo [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-11-30

    The spinel lithium manganese oxide cathode materials were prepared by citric acid-assisted sol-gel method at 623-1073 K in air. The effects of pH value, raw material, synthesis temperature and time on structure and electrochemical performance of spinel lithium manganese oxide are investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM) and cyclic voltammetry (CV). XRD data results strongly suggest that the synthesis temperature is the dominating factors of the formation of spinel phase, and spinel lithium manganese oxide powder with various crystallites size can be obtained by controlling the sintering time. CV shows that spinel lithium manganese oxide powder formed about 973 K presents the best electrochemical performance with well separated two peaks and the highest peak current. Charge-discharge test indicates that spinel lithium manganese oxide powders calcined at higher temperatures have high discharge capacity and capacity loss, and sintered at lower temperatures has low discharge capacity and high capacity retention.

  5. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  6. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  7. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  8. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  9. Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics.

    Science.gov (United States)

    Ruelcke, Jayde E; Loo, Dorothy; Hill, Michelle M

    2016-10-21

    Peptide generation by trypsin digestion is typically the first step in mass spectrometry-based proteomics experiments, including 'bottom-up' discovery and targeted proteomics using multiple reaction monitoring. Manual tryptic digest and the subsequent clean-up steps can add variability even before the sample reaches the analytical platform. While specialized filter plates and tips have been designed for automated sample processing, the specialty reagents required may not be accessible or feasible due to their high cost. Here, we report a lower-cost semi-automated protocol for in-gel digestion and GeLC using standard 96-well microplates. Further cost savings were realized by re-using reagent tips with optimized sample ordering. To evaluate the methodology, we compared a simple mixture of 7 proteins and a complex cell-lysate sample. The results across three replicates showed that our semi-automated protocol had performance equal to or better than a manual in-gel digestion with respect to replicate variability and level of contamination. In this paper, we also provide the Agilent Bravo method file, which can be adapted to other liquid handlers. The simplicity, reproducibility, and cost-effectiveness of our semi-automated protocol make it ideal for routine in-gel and GeLC sample preparations, as well as high throughput processing of large clinical sample cohorts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Performance of electrical double layer capacitors fabricated with gel polymer electrolytes containing Li+ and K+-salts: A comparison

    International Nuclear Information System (INIS)

    Singh, Manoj K.; Hashmi, S. A.

    2015-01-01

    The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10 −3 and 5.9×10 −3 S cm −1 for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE

  11. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals

    Directory of Open Access Journals (Sweden)

    Julia Vasconcellos

    2017-01-01

    Full Text Available Background. Beetroot consumption has been proposed to improve exercise performance, since the nitrate content of this food is able to stimulate the synthesis of nitric oxide. Objective. The acute effect of 100 g of a beetroot gel containing ~10 mmol of nitrate was tested on the nitric oxide synthesis, on metabolic and biochemical parameters, and on performance in physically active individuals. Methods. Through a double blind, crossover, placebo-controlled study, 25 healthy runners ingested a single dose of beetroot and placebo gels. Participants performed an aerobic exercise protocol on a treadmill (3 min warm-up of 40% peak oxygen consumption, 4 min at 90% of gas exchange threshold I and 70% (Δ maximal end speed until volitional fatigue. Results. Urinary levels of nitrite and nitrate increased after 90 min of beetroot gel ingestion. Plasma glucose concentrations lowered after the exercise and the decrease was maintained for 20 min. Systolic and diastolic blood pressures, serum cortisol, and blood lactate were not altered after the beetroot gel ingestion compared to a placebo gel. Conclusion. The single dose of beetroot gel provoked an increase of nitric oxide synthesis although no improvement on the physical performance of athletes during aerobic submaximal exercise was observed.

  12. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance

    Science.gov (United States)

    Lee, Suk-Woo; Kim, Myeong-Seong; Jeong, Jun Hui; Kim, Dong-Hyun; Chung, Kyung Yoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-08-01

    A surface coating of Li3PO4 was applied to a Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) material to improve its thermal stability and electrochemical properties via a citric acid assisted sol-gel method. The addition of citric acid effectively suppressed the instant formation of Li3PO4 in solution, resulting in successful coating of the NCM surface. The improved thermal stability of NCM after Li3PO4 surface coating was demonstrated by differential scanning calorimetry (DSC) analysis and in situ time-resolved X-ray diffraction (TR-XRD). In particular, the TR-XRD results showed that the improved thermal stability after Li3PO4 surface coating originates from suppression of the phase transition of charged NCM at high temperatures. Furthermore, the charge-discharge tests demonstrated that Li3PO4-coated LiNi0.6Co0.2Mn0.2O2 (LP-NCM) has excellent electrochemical properties. LP-NCM exhibited a specific capacity of 192.7 mAh g-1, a capacity retention of 44.1% at 10 C, and a capacity retention of 79.7% after 100 cycles at a high cut-off voltage of 4.7 V; these values represent remarkably improved electrochemical properties compared with those of bare NCM. These improved thermal and electrochemical properties were mainly attributed to the improvement of the structural stability of the material and the suppression of the interface reaction between the cathode and the electrolyte owing to the Li3PO4 coating.

  13. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  14. Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Abed, Chayma; Bouzidi, Chaker [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Elhouichet, Habib, E-mail: Habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Ferid, Mokhtar [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia)

    2015-09-15

    Highlights: • ZnO nancrystals doped with Mg were prepared from sol–gel method. • Structural and optical properties of ZnO:Mg nanocrystals were investigated. • Good crystalline quality of ZnO nanocrystals was reported after Mg doping. • Good photocatalytic activity of Mg doped ZnO nanocrystals was demonstrated under sun light illumination. - Abstract: Undoped and Mg doped ZnO nanocrystals (NCs) ZnO:x%Mg (x = 1, 2, 3, and 5) were synthesized using sol–gel method. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectivity, and photoluminescence (PL). XRD analysis demonstrates that all prepared samples present pure hexagonal wurtzite structure without any Mg related phases. The NCs size varies from 26.82 nm to 42.96 nm with Mg concentrations; it presents an optimal value for 2% of Mg. The Raman spectra are dominated by the E{sub 2high} mode. For highly Mg doping (5%), the occurrence of silent B{sub 1(low)} mode suggested that the Mg ions do substitute at Zn sites in the ZnO lattice The band gap energy was estimated from both Tauc and Urbach methods and found to be 3.39 eV for ZnO:2%Mg. The PL spectra exhibit two emission bands in the UV and visible range. Their evolution with Mg doping reveals the reduction of defect density in ZnO at low Mg doping by filling Zn vacancies. In addition, it was found that further Mg doping, above 2%, improves the photocatalytic activity of ZnO NCs for photodegradation of Rhodamine B (RhB) under sunlight irradiation. The efficient electron–hole separation is the main factor responsible for the enhancement of photocatalytic performance of Mg doped ZnO NCs. Through this work, we show that by varying the Mg contents in ZnO, this material can be a potential candidate for both optoelectronic and photocatalytic applications.

  15. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    Vojnovic, B.; Barber, P.R.; Johnston, P.J.; Gregory, H.C.; Locke, R.J.

    2003-01-01

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  16. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  17. Effect of ionizing radiation on nanocomposites of high density polyethylene with pseudoboehmite obtained by sol-gel process

    International Nuclear Information System (INIS)

    Miranda, Leila F.; Munhoz Junior, Antonio H.; Terence, Mauro C.; Alves, Alexandre P.

    2009-01-01

    Nanocomposites are polymeric hybrid materials where inorganic substances of nanometric dimensions are dispersed in a polymeric matrix. The fillers present area of raised surface, promoting better dispersion in the polymeric matrix and therefore an improvement of the physical properties of the composite that depends on the homogeneity of the material. The nanocomposites preparation with polymeric matrix allows in many cases to find a relation enters a low cost, due to the use of minor amount of filler, and a raised performance level. Nanocomposites were obtained with pseudoboehmite synthesized by sol-gel process and high density polyethylene with different concentrations of pseudoboehmite. The aim of this work was to study the effects of ionizing radiation on the properties of the nanocomposites obtained. The nanocomposites were prepared by melt intercalation technique and subsequently, the samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated nanocomposites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. The results showed an increase in the values of tensile strength; a decrease in the impact strength and an increase in the temperature of thermal distortion (HDT) evidencing the interaction of nanofiller with the polymeric matrix. (author)

  18. Performance comparison of a silica gel-water and activated carbon-methanol two beds adsorption chillers

    Directory of Open Access Journals (Sweden)

    Szelągowski Adam

    2017-01-01

    Full Text Available The aim of the study is to compare the efficiency of adsorption refrigerating equipment working with different working pairs. Adsorption cooling devices can operate with a relatively low temperature of heat sources while consuming only a small amount of electricity for the operation of auxiliary equipment. Refrigerants used in adsorption devices are substances that do not have a negative impact on the environment. All that makes that adsorption refrigeration seems to be a good solution for utilizing renewable and waste heat sources for cold production. To carry out the experiment the adsorption cooling device has been developed and researched in Institute of Heat Engineering at Warsaw University of Technology. The test bench consisted of two cylindrical adsorbers, condenser, evaporator, oil heater and two oil coolers. In order to perform the correct action it has been developed and implemented special control algorithm device, allowed to keep the temperature in the evaporator at a preset level. The unit tested for two sorption pairs: activated carbon – methanol, and silica gel – water. For activated carbon - methanol working pair it was obtained energy efficiency rating (EER equals to 0.14 and specific cooling power (SPC of 16 W/kg. For silica gel - water EER of refrigeration unit was 0.25 and SPC was equal to 208 W/kg.

  19. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction

    International Nuclear Information System (INIS)

    Regueira R, B. I.

    2011-01-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  20. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  1. Highly dispersed spherical Bi3.25La0.75Ti3O12 nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol-gel approach

    Science.gov (United States)

    Wang, Aijun; Zeng, Yanwei; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie

    2015-09-01

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi3.25La0.75Ti3O12, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol-gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi3+, La3+ and Ti4+ ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol-gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil-water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles.

  2. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  3. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  4. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  5. Synthesis and studies of Y-Ba-Cu-O high temperature superconductor prepared by sol-gel method

    International Nuclear Information System (INIS)

    Grigoryan, S.G.; Manukyan, A.L.; Hayrapetyan, A.G.; Arzumanyan, A.M.; Rashidyan, L.H.; Mkrtichyan, N.Y.; Mkrtchyan, A.A.; Kurginyan, K.A.; Trozyan, A.H.; Vardanyan, R.S.

    2004-01-01

    The method of preparation of Y-Ba-Cu-O high temperature superconducting materials by sol-gel processing technique both for powders and thin films are described. All these methods are based on using yttrium alkoxides as precursors, which are not ready available reagents, besides the majority of these methods use copper alkoxides, which show low solubility in organic solvents, moreover they are very sensitive to hydrolysis in air. The new method of preparation of Y-Ba-Cu-O ceramic materials by sol-gel processing technique based on new and convenient precursors stable in air, having high compatibility with each other is offered. Basic scientific and technological issues related to the synthesis of bulk materials, their structure and electrical conductivity are discussed

  6. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    Science.gov (United States)

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…

  7. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  8. Nine-Year Core Study Data for Sientra's FDA-Approved Round and Shaped Implants with High-Strength Cohesive Silicone Gel.

    Science.gov (United States)

    Stevens, W Grant; Calobrace, M Bradley; Harrington, Jennifer; Alizadeh, Kaveh; Zeidler, Kamakshi R; d'Incelli, Rosalyn C

    2016-04-01

    Since approval in March 2012, data on Sientra's (Santa Barbara, CA) silicone gel implants have been updated and published regularly to provide immediate visibility to the continued safety and performance of these devices. The 9 year follow-up data support the previously published data confirming the ongoing safety and efficacy of Sientra silicone gel breast implants. The authors provide updated 9 year study data for Sientra's round and shaped silicone gel breast implants. The Core Study is an ongoing 10 year study that enrolled 1788 patients with 3506 Sientra implants across four indications (primary augmentation, revision-augmentation, primary reconstruction, and revision-reconstruction). For the safety analysis, Kaplan-Meier risk rates were calculated to evaluate postoperative complications, including all breast implant-related adverse effects. For the effectiveness analyses, results were presented through 8 years as patient satisfaction scores were assessed at even years. Through 9 years, the overall risk of capsular contracture was 12.6%. Smooth devices (16.6%, 95% CI, 14.2%, 19.5%) had a statistically significantly higher rate of capsular contracture compared to textured devices (8.0%, 95% CI, 6.2%, 10.4%). Out of the 610 reoperations in 477 patients, over half of all reoperations were due to cosmetic reasons (n = 315; 51.6%). Patient satisfaction remains high through 8 years, with 90% of primary augmentation patients indicating their breast implants look natural and feel soft. The 9-year follow-up data from the ongoing Core Study of the Sientra portfolio of HSC and HSC+ silicone gel breast implants reaffirm the very strong safety profile as well as continued patient satisfaction. 2 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  9. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  10. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes

    International Nuclear Information System (INIS)

    Casino, S.; Di Lupo, F.; Francia, C.; Tuel, A.; Bodoardo, S.; Gerbaldi, C.

    2014-01-01

    Highlights: • Mesoporous TiO 2 nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO 2 anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO 2 Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C 18 TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO 2 materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m 2 g −1 . Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy

  11. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO{sub 2} nanocrystalline Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Casino, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Di Lupo, F., E-mail: francesca.dilupo@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Francia, C. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Tuel, A. [IRCELYON, Institut de Recherches sur la Catalyse et l’environnement de Lyon, UMR 5256, CNRS-Université de Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Bodoardo, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-05-01

    Highlights: • Mesoporous TiO{sub 2} nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO{sub 2} anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO{sub 2} Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C{sub 18}TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO{sub 2} materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m{sup 2} g{sup −1}. Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy.

  12. Carbohydrate Intake in Form of Gel Is Associated With Increased Gastrointestinal Distress but Not With Performance Differences Compared With Liquid Carbohydrate Ingestion During Simulated Long-Distance Triathlon.

    Science.gov (United States)

    Sareban, Mahdi; Zügel, David; Koehler, Karsten; Hartveg, Paul; Zügel, Martina; Schumann, Uwe; Steinacker, Jürgen Michael; Treff, Gunnar

    2016-04-01

    The ingestion of exogenous carbohydrates (CHO) during prolonged endurance exercise, such as long-distance triathlon, is considered beneficial with regard to performance. However, little is known about whether this performance benefit differs among different forms of CHO administration. To this end, the purpose of our study was to determine the impact of CHO ingestion from a semisolid source (GEL) on measures of performance and gastrointestinal (GI) comfort compared with CHO ingestion from a liquid source (LIQ). Nine well-trained triathletes participated in this randomized crossover study. Each participant completed a 60-min swim, 180-min bike exercise, and a 60-min all-out run in a laboratory environment under 2 conditions, once while receiving 67.2 ± 7.2 g · h-1 (M ± SD) of CHO from GEL and once while receiving 67.8 ± 4.2 g · h-1 of CHO from LIQ. The amount of fluid provided was matched among conditions. Respiratory exchange ratio (RER), blood glucose, and lactate as well as GI discomfort were assessed at regular intervals during the experiment. The distance covered during the final all-out run was not significantly different among participants ingesting GEL (11.81 ± 1.38 km) and LIQ (11.91 ± 1.53 km; p = .89). RER, blood glucose, and lactate did not differ significantly at any time during the experiment. Seven participants reported GI discomfort with GEL, and no athlete reported GI discomfort with LIQ (p = .016). This study suggests that administration of GEL does not alter long-distance triathlon performance when compared with LIQ, but GEL seems to be associated with reduced GI tolerance. Athletes should consider this a potential disadvantage of GEL administration during long-distance triathlon.

  13. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  14. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media.

    Science.gov (United States)

    Vriesmann, Lúcia Cristina; de Oliveira Petkowicz, Carmen Lúcia

    2017-08-01

    Cacao pod husks, the main by-product from cocoa production, have been investigated for pectin isolation. In the present study, the rheological properties of two low-methoxyl (LM) pectins isolated from cacao pod husks using different extraction conditions were evaluated. One pectin was obtained from optimized conditions employing aqueous nitric acid as an extractant, and the other one was extracted with boiling water. Pectin gels (0.99% galacturonic acid equivalent, w/w) were prepared at pH 2.5-3.0 in the presence of 60% sucrose (w/w) and subjected to rheological analysis. Dynamic oscillatory experiments at 25°C indicated that better gels were obtained at the lowest pH (2.5). Steady shear measurements revealed a shear-thinning behavior. The apparent viscosities of the samples increased as pH decreased. Gelation with calcium ions was not observed for either of the highly acetylated LM pectins analyzed. The rheological analysis results showed that despite their high acetyl content, LM pectins extracted by different methods from cacao pod husks were able to form gels at low pH under reduced water activity, suggesting a possible application in acidic products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  17. Highly increased detection of silver stained protein bands in polyacrylamide gels with thermo-optical methods

    Science.gov (United States)

    Mazza, Giulia; Posnicek, Thomas; Brandl, Martin

    2016-11-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a well-known technique to separate proteins by their molecular weight. After electrophoresis, the gels are commonly stained for protein band analysis with silver stain; this allows the detection of protein loads to about 1 ng. To increase the detection sensitivity of the protein bands down in the subnanogram level, a sensor has been developed based on the thermal lens effect to scan and quantify protein loads which would remain undetected using the standard imaging systems. The thermal lens sensor is equipped with a 450 nm diode pump laser modulated at 1 Hz and a HeNe probe laser mounted in collinear geometry. The sensor could detect protein bands of 0.05 ng when the gel was soaked in methanol/water and 0.1 ng in water. The limit of detection ranged from 8 to 20 pg, depending on the soaking medium and the staining efficiency. Thus, the detection of silver stain by thermal lens effect results 10 to 20 times more sensitive than the standard colorimetric method.

  18. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    Science.gov (United States)

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: 0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  19. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    Directory of Open Access Journals (Sweden)

    Rogala Zbigniew

    2017-01-01

    Full Text Available Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP and Specific Cooling Power (SCP. In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC. It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  20. Further developments and applications of layer gel dosimetry

    International Nuclear Information System (INIS)

    Gambarini, G; Carrara, M; Colli, V; Gay, S; Tomatis, S

    2004-01-01

    The method used to perform dosimetry with Fricke-xylenol orange-infused gels in form of layers remains the most reliable method for in-phantom dose profiling and imaging in high fluxes of thermal and epithermal neutrons. Gel-dosimeters in form of layers really give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. These advantages arise from the layer-geometry thanks to which neutron transport is not sensibly altered, even if the elemental gel composition is changed adding particular isotopes (for example 10 B), as necessary to perform the separation of dose contributions. The gel matrix composition and the experimental procedures, adopted for both dosimeter preparation and analysis, have been already described in previous works. In the present work, the improvements of the method employed for gel analysis, dose imaging and gel applications are illustrated

  1. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  2. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Zhou, Dali; Yao, Qianqian; Zhou, Jiabei

    2016-01-01

    Graphical abstract: - Highlights: • Nano-Li 2 TiO 3 was synthesized with CH 3 COOLi and Ti(OC 4 H 9 ) 4 by the sol–gel process. • H 2 TiO 3 -lithium adsorbent was obtained by treating Li 2 TiO 3 with HCl. • Langmuir and Freundlich models were used to analyze the adsorption process. • The adsorption performance of the obtained adsorbent was studied. - Abstract: CH 3 COOLi and Ti(OC 4 H 9 ) 4 were employed as lithium and titanium sources, respectively to synthesize Li 2 TiO 3 by the sol–gel process, followed by treating with hydrochloric acid to yield H 2 TiO 3 -lithium adsorbent. Various concentrations of LiOH and lithium sources were used as adsorption liquid to carry out adsorption experiment, the data from which were analyzed by Langmuir and Freundlich models. The results indicate that the optimal calcination temperature is 650 °C, and Li 2 TiO 3 with particle size 60–80 nm is observed. The Li + drawn out ratio from Li 2 TiO 3 reaches 78.9%, and the dissolution of titanium ions can be as low as 0.07%. The protonated sample obtained has a lower basal spacing, while the crystal morphology is retained. The main factors affecting the adsorptive capacity are the Li + concentration and pH in the liquid. The adsorption process of H 2 TiO 3 -lithium adsorbent can be seen as a process including surface adsorption and ion exchange. Compared with Langmuir model, Freundlich model is more suitable for describing the actual adsorption process.

  3. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel

    International Nuclear Information System (INIS)

    Ishii, Yoshitaka; Markus, Michelle A.; Tycko, Robert

    2001-01-01

    Water-soluble biological macromolecules can be weakly aligned by dissolution in a strained, hydrated gel such as cross-linked polyacrylamide, an effect termed 'strain-induced alignment in a gel' (SAG). SAG induces nonzero nuclear magnetic dipole-dipole couplings that can be measured in high-resolution NMR spectra and used as structural constraints. The dependence of experimental 15 N- 1 H dipolar couplings extracted from two-dimensional heteronuclear single quantum coherence (HSQC) spectra on several properties of compressed polyacrylamide, including the extent of compression, the polyacrylamide concentration, and the cross-link density, is reported for the B1 immunoglobulin binding domain of streptococcal protein G (protein G/B1, 57 residues). It is shown that the magnitude of macromolecular alignment can be widely varied by adjusting these properties, although the orientation and asymmetry of the alignment tensor are not affected significantly. The dependence of the 15 N relaxation times T 1 and T 2 of protein G/B1 on polyacrylamide concentration are also reported. In addition, the results of 15 N relaxation and HSQC experiments on the RNA binding domain of prokaryotic protein S4 from Bacillus stearothermophilus (S4 Δ41, residues 43-200) in a compressed polyacrylamide gel are presented. These results demonstrate the applicability of SAG to proteins of higher molecular weight and greater complexity. A modified in-phase/anti-phase (IPAP) HSQC technique is described that suppresses natural-abundance 15 N background signals from amide groups in polyacrylamide, resulting in cleaner HSQC spectra in SAG experiments. The mechanism of protein alignment in strained polyacrylamide gels is contrasted with that in liquid crystalline media

  4. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  5. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  6. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  7. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  8. Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients

    International Nuclear Information System (INIS)

    Sandilos, Panagiotis; Baras, Panagiotis; Georgiou, Evangelos; Dardoufas, Konstantinos; Karaiskos, Pantelis; Papagiannis, Panagiotis; Paschalis, Theodoros; Tatsis, Elias; Torrens, Michael; Vlahos, Lampros

    2006-01-01

    Polymer gels constitute water equivalent integrating detectors, which, combined with magnetic resonance imaging (MRI), can provide accurate three dimensional (3D) dose distributions in contemporary radiotherapy applications where the small field dimensions and steep dose gradients induce limitations to conventional dosimeters. One of the main obstacles for adapting the method for routine use in the clinical setting is the cost effectiveness of the MRI readout method. Currently, optimized Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo imaging pulse sequences are commonly used which however result in long imaging times. This work evaluates the efficiency of 3D, dual-echo, k-space segmented turbo spin echo (TSE) scanning sequences for accurate dosimetry with sub-millimetre spatial resolution in strenuous radiation therapy applications. PABIG polymer gel dosimeters were irradiated with an 192 Ir High Dose Rate brachytherapy source, the 4 mm and 8 mm collimator helmets of a gamma knife unit and a custom made x-knife collimator of 1 cm diameter. Profile and dose distribution measurements using TSE are benchmarked against corresponding findings obtained by the commonly used, but time consuming, CPMG sequence as well as treatment planning calculations, Monte Carlo (MC) simulations and film measurements. The implementation of a high Turbo factor was found to provide comparable accuracy, allowing a 64-fold MRI scan acceleration compared to conventional multi-echo sequences. The availability of TSE sequences in typical MRI installations greatly facilitates the introduction of polymer gel dosimetry in the clinical environment as a practicable tool for the determination of full 3D dose distributions in contemporary radiotherapy applications

  9. Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients

    Energy Technology Data Exchange (ETDEWEB)

    Sandilos, Panagiotis [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Baras, Panagiotis [Philips Hellas Medical Systems, 44 Kifissias Ave., Maroussi 151 25, Athens (Greece); Georgiou, Evangelos [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece); Dardoufas, Konstantinos [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece): Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Karaiskos, Pantelis [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece): Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece)]. E-mail: p.karaiskos@hygeia.gr; Papagiannis, Panagiotis [Physics Department, Nuclear and Particle Physics Section, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Paschalis, Theodoros [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Tatsis, Elias [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Torrens, Michael [Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Vlahos, Lampros [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece)

    2006-12-20

    Polymer gels constitute water equivalent integrating detectors, which, combined with magnetic resonance imaging (MRI), can provide accurate three dimensional (3D) dose distributions in contemporary radiotherapy applications where the small field dimensions and steep dose gradients induce limitations to conventional dosimeters. One of the main obstacles for adapting the method for routine use in the clinical setting is the cost effectiveness of the MRI readout method. Currently, optimized Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo imaging pulse sequences are commonly used which however result in long imaging times. This work evaluates the efficiency of 3D, dual-echo, k-space segmented turbo spin echo (TSE) scanning sequences for accurate dosimetry with sub-millimetre spatial resolution in strenuous radiation therapy applications. PABIG polymer gel dosimeters were irradiated with an {sup 192}Ir High Dose Rate brachytherapy source, the 4 mm and 8 mm collimator helmets of a gamma knife unit and a custom made x-knife collimator of 1 cm diameter. Profile and dose distribution measurements using TSE are benchmarked against corresponding findings obtained by the commonly used, but time consuming, CPMG sequence as well as treatment planning calculations, Monte Carlo (MC) simulations and film measurements. The implementation of a high Turbo factor was found to provide comparable accuracy, allowing a 64-fold MRI scan acceleration compared to conventional multi-echo sequences. The availability of TSE sequences in typical MRI installations greatly facilitates the introduction of polymer gel dosimetry in the clinical environment as a practicable tool for the determination of full 3D dose distributions in contemporary radiotherapy applications.

  10. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, P. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India)

    2010-03-24

    We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO{sub 2}{sup -}, NH{sub 4}{sup +}, oxalate, Mn{sup 2+}, Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+} and Cu{sup 2+}. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.

  11. Phase separation in biopolymer gels: a low- to high-solid exploration of structural morphology and functionality.

    Science.gov (United States)

    Kasapis, Stefan

    2008-04-01

    Phase separation in protein and polysaccharide gels remains one of the basic tools of achieving the required structural properties and textural profile in food product formulations. As ever, the industrialist is faced with the challenge of innovation in an increasingly competitive market in terms of ingredient cost, product added-value, and expectations of a healthy life-style to mention but a few. It appears, however, that a gap persists between the fundamental knowledge and a direct application to food related concepts with a growing need for scientific input. Furthermore, within the context of materials science, there is a tendency to examine research findings in either low- or high-solid systems without considering synergistic insights/benefits to contemporary needs, spanning the full range of relevant time-, length-, and concentration scales. This review highlights the latest attempts made to utilize and further develop fundamental protocols from the advanced synthetic polymer research as a source of inspiration for contemporary bio-related applications in low- and intermediate-solid composite gels. Then, it takes advantage of this school of thought to "force a passage" through the phase topology and molecular dynamics of binary biopolymer mixtures at high levels of co-solute. It is hoped that these phenomenological and fundamental tools should be able to bridge the divide in the analysis of the two "types" of composite materials (from low to high solids) thus dealing effectively with the specific and often intricate problems of their science and applications.

  12. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  13. Design and synthesis of new fluorescent probe for rapid and highly sensitive detection of proteins via electrophoretic gel stain.

    Science.gov (United States)

    Suzuki, Yoshio; Takagi, Nobuyuki; Chimuro, Tomoyuki; Shinohara, Atsushi; Sakaguchi, Nao; Hiratsuka, Atsunori; Yokoyama, Kenji

    2011-06-01

    A new fluorescent molecular probe, 2,2'-(1E,1'E)-2,2'-(4-(dicyanomethylene)-4H-pyrane-2,6-diyl)bis(ethene-2,1-diyl)bis(sodium benzenesulfonate) salt (1), possessing the cyanopyranyl moieties and two benzene sulfonic acid groups was designed and synthesized to detect proteins in solution and for high-throughput SDS-PAGE. Compound 1 exhibited no fluorescence in the absence of proteins; however, it exhibited strong fluorescence on the addition of bovine serum albumin as a result of intramolecular charge transfer. Compared with the conventional protocols for in-gel protein staining, such as SYPRO Ruby and silver staining, 1 achieves higher sensitivity, even though it offers a simplified, higher throughput protocol. In fact, the total time required for protein staining was 60-90 min under optimum conditions much shorter than that required by the less-sensitive silver staining or SYPRO Ruby staining protocols. Moreover, 1 was successfully applied to protein identification by mass spectrometry via in-gel tryptic digestion, Western blotting, and native PAGE together with protein staining by 1, which is a modified protocol of blue native PAGE (BN-PAGE). Thus, 1 may facilitate high-sensitivity protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  15. High-performance composite chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  16. High-Performance Composite Chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  17. Toward High-Performance Organizations.

    Science.gov (United States)

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  18. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals

    OpenAIRE

    Vasconcellos, Julia; Henrique Silvestre, Diego; dos Santos Bai?o, Diego; Werneck-de-Castro, Jo?o Pedro; Silveira Alvares, Thiago; Paschoalin, V?nia M. Flosi

    2017-01-01

    Background. Beetroot consumption has been proposed to improve exercise performance, since the nitrate content of this food is able to stimulate the synthesis of nitric oxide. Objective. The acute effect of 100 g of a beetroot gel containing ~10 mmol of nitrate was tested on the nitric oxide synthesis, on metabolic and biochemical parameters, and on performance in physically active individuals. Methods. Through a double blind, crossover, placebo-controlled study, 25 healthy runners ingested a ...

  19. Performance evaluation of non-ionic surfactant based tazarotene encapsulated proniosomal gel for the treatment of psoriasis.

    Science.gov (United States)

    Prasad, Vure; Chaurasia, Sundeep

    2017-10-01

    The study aims to explore the potential of non-ionic surfactant based proniosomal gel (PNG) in improving the topical delivery of tazarotene by in vitro and in vivo studies. The PNG was prepared using coacervation phase separation method composed of span, stearylamine, cholesterol, and lecithin. The PNG demonstrated favorable vesicle size (3.26±0.22μm) and percent encapsulation efficiency (49.50±2.3%). The PNG was evaluated for viscosity which indicated that the ratio of span:cholesterol:stearylamine (64.5:30.5:5mM) demonstrated no any fluctuations in viscosity. The scanning electron micrographs exhibited spherical vesicles with sharp boundaries. The in vitro drug release through cellulose membrane and rat's skin were found to be in the following order of the formulation code A2>A4>A3>A5 and A4>A2>A3>A5, respectively, which showed the prolonged release of entrapped tazarotene. Further, in vitro drug permeation and retention studies revealed that formulations A2 and A4 showed the higher percent of drug permeation whereas formulations A3 and A5 showed the higher percent of drug retention through rat's skin. Moreover, PNG A2 and A4 formulations demonstrated good stability characteristics at different temperature conditions. The stability in the presence of detergent revealed that no any abrupt change in turbidity. The skin irritation studies performed with formulations A2 and A4 showed no erythema compared with the plain PNG. The male Albino NMRI mice tail model was used to performed in vivo skin histological examination which revealed that an increase in the orthokeratosis strengthened. Thus, all the results concluded that surfactant, Span 60 based PNG formulations have shown a good ability to increase drug accumulation in the various skin layers and more potential carrier for topical delivery of tazarotene for an effective therapy of psoriasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT......The world of finance faces the computational performance challenge of massively expanding data volumes, extreme response time requirements, and compute-intensive complex (risk) analyses. Simultaneously, new international regulatory rules require considerably more transparency and external...... auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...

  1. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  2. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  3. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  4. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  5. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  6. Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air.

    Science.gov (United States)

    Mallik, Arun Kumar; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2018-01-26

    A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH 3 ) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication.

  7. High Performance JavaScript

    CERN Document Server

    Zakas, Nicholas

    2010-01-01

    If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstra

  8. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry II: dosimetric performance

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    New clinical radiotherapy dosimetry systems need comprehensive demonstration of measurement quality. Practicality and reliability are other important aspects for clinical dosimeters. In this work the performance of an optical CT scanner for true 3D dosimetry is assessed using a radiochromic gel dosimeter. The fluid-less scanner utilised dual lasers to avoid the necessity for pre-irradiation scans and give greater robustness of image quality, enhancing practicality. Calibration methods using both cuvettes and reconstructed volumes were developed. Dosimetric accuracy was similar for dual and single wavelength measurements, except that cuvette calibration reliability was reduced for dual wavelength without pre-irradiation scanning. Detailed performance parameters were specified for the dosimetry system indicating the suitability for clinical use. The most significant limitations of the system were due to the gel dosimeter rather than the optical CT scanner. Quality assurance guidelines were developed to maintain dosimetry system performance in routine use.

  9. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  10. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity

    International Nuclear Information System (INIS)

    Liu Weijie; Zou Bo; Zhao Jing; Cui Haining

    2010-01-01

    This article reports an optimized sol-gel opal infiltration technique for the fabrication of high-quality titania inverse opal. Different from previous reports, the presently proposed method is facile, efficient and suitable for other inorganic oxide. We have compared two different infiltration strategies and their influences on the structure, photonic properties and photocatalytic activity. The obtained titania inverse opal displays excellent photonic properties with photonic band gap at 320 nm and better photocatalytic effect, which is attributed to its high-quality inverse opal nanostructure. Reproducibility tests prove that the photocatalytic activity of the resultant titania inverse opal remains intact even after five repeated photocatalytic reactions under the same procedure and experimental conditions.

  11. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  12. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  13. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    -resolution internal D/A converters are required. Unit-element mismatch-shaping D/A converters are analyzed, and the concept of mismatch-shaping is generalized to include scaled-element D/A converters. Several types of scaled-element mismatch-shaping D/A converters are proposed. Simulations show that, when implemented...... in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential......-order difference of the output signal from the loop filter's first integrator stage. This technique avoids the need for accurate matching of analog and digital filters that characterizes the MASH topology, and it preserves the signal-band suppression of quantization errors. Simulations show that quantizers...

  14. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  15. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  16. Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Kim, Dong Won; Kang, Yong Ku

    2012-01-01

    We investigated the cycling behavior of Li 4 Ti 5 O 12 electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The Li 4 Ti 5 O 12 electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %

  17. Antibacterial Inhibitory Effects of Punica Granatum Gel on Cariogenic Bacteria: An in vitro Study.

    Science.gov (United States)

    Millo, Grazielle; Juntavee, Apa; Ratanathongkam, Ariya; Nualkaew, Natsajee; Peerapattana, Jomjai; Chatchiwiwattana, Supaporn

    2017-01-01

    This study evaluated the in vitro antibacterial effects of the formulated Punica granatum (PG) gel against Streptococcus mutans, Streptococcus sanguinis, and Lactobacillus casei. The PG extract was dissolved in water at 500 mg/mL. High performance liquid chromatography (HPLC) was used for identification and quantification of chemical marker punicalagin. Minimum bactericidal concentration (MBC) and time-kill assay (TKA) were investigated. Antibacterial activities of the formulated PG gel, 2% chlorhexidine (CHX) gel and blank gel were tested by measuring the zones of inhibition through agar well diffusion method. The HPLC results showed presence of punicalagin at 2023.58 ± 25.29 pg/mL in the aqueous PG extract and at 0.234% (w/w) in the formulated PG gel. The MBC for S. mutans, S. Sanguinis, and L. casei were 250, 125, and 500 mg/mL respectively. The TKA of 500 mg/mL aqueous PG extract showed total inhibition of S. mutans, S. Sanguinis, and L. casei at 6, 1, and 24 hours contact time respectively. Agar well diffusion revealed that for S. mutans, CHX gel > PG gel > blank gel; for S. sanguinis, CHX gel = PG gel > blank gel; for L. casei, CHX gel > PG gel = blank gel. Comparison of the PG gel potency showed that S. sanguinis = S. mutans > L. casei. The PG gel equivalent to 0.234% punicalagin (w/w) inhibited S. mutans and S. sanguinis but not L. casei within 24 hours incubation period and has the potential to be used for caries prevention. Millo G, Juntavee A, Ratanathongkam A, Nualkaew N, Peerapattana J, Chatchiwiwattana S. Antibacterial Inhibitory Effects of Punica Granatum Gel on Cariogenic Bacteria: An in vitro Study. Int J Clin Pediatr Dent 2017;10(2):152-157.

  18. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  19. High-resolution two-dimensional gel analysis of proteins in wing imaginal discs: A data base of Drosophila

    International Nuclear Information System (INIS)

    Santaren, J.F.; Garcia-Bellido, A.

    1990-01-01

    An improved method of high-resolution two-dimensional gel electrophoresis has been used to study the patterns of protein synthesis in wing imaginal discs of late instar larvae of Drosophila melanogaster. A small number of discs were radiolabeled with a mixture of 14 C-labeled amino acids or with [ 35 S]methionine and the pattern of labeled proteins was analyzed. One thousand and twenty-five polypeptides (787 acidic (IEF) and 238 basic (NEPHGE)) from wing discs of several wild-type strains have so far been separated and cataloged. All these polypeptides have been numbered and presented in a reference map for further studies. When comparing patterns of label we have found small quantitative differences in rate of synthesis between individuals of the same strain, not due to sexual differences, and very few quantitative and qualitative differences between groups of individuals of different strains

  20. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair

    OpenAIRE

    Hassan, Hassan

    2014-01-01

    In the present study, dynamic analysis and performance evaluation of a solar-powered continuous operation adsorption chiller are introduced. The adsorption chiller uses silica gel and water as the working pair. The developed mathematical model represents the heat and mass transfer within the reactor coupled with the energy balance of the collector plate and the glass cover. Moreover, a non-equilibrium adsorption kinetic model is taken into account by using the linear driving force equation. T...

  1. Meso-decorated self-healing gels: network structure and properties

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  2. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  3. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  4. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  5. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  6. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  7. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  8. Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol.

    Science.gov (United States)

    Phillips, Shaun M; Turner, Anthony P; Sanderson, Mark F; Sproule, John

    2012-03-01

    The aim of this study was to investigate the influence of ingesting a carbohydrate (CHO) gel on the intermittent endurance capacity and sprint performance of adolescent team games players. Eleven participants [mean age 13.5 ± 0.7 years, height 1.72 ± 0.08 m, body mass (BM) 62.1 ± 9.4 kg] performed two trials separated by 3-7 days. In each trial, they completed four 15 min periods of part A of the Loughborough Intermittent Shuttle Test (LIST), followed by an intermittent run to exhaustion (part B). In the 5 min pre-exercise, participants consumed 0.818 mL kg(-1) BM of a CHO or a non-CHO placebo gel, and a further 0.327 mL kg(-1) BM every 15 min during part A of the LIST (38.0 ± 5.5 g CHO h(-1) in the CHO trial). Intermittent endurance capacity was increased by 21.1% during part B when the CHO gel was ingested (4.6 ± 2.0 vs. 3.8 ± 2.4 min, P games players during a simulated team games protocol.

  9. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  10. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  11. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  12. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  13. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations

    International Nuclear Information System (INIS)

    Hilts, M; Jirasek, A; Duzenli, C

    2004-01-01

    Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (Δρ gel ) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (Δρ polymer ). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (Δρ gel dose response) are discovered. The first property is that Δρ polymer depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher Δρ polymer than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the Δρ gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T≤12%, monomer consumption and Δρ polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that Δρ polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, Δρ polymer and %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the

  14. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  15. MALDI MS peptide mapping performance by in-gel digestion on a probe with prestructured sample supports

    DEFF Research Database (Denmark)

    Klenø, Tina Guldberg; Andreasen, Christian Maaløv; Kjeldal, Helle Ørsted

    2004-01-01

    Matrix-assisted laser desorption/ionization (tandem) mass spectrometry (MALDI MS) is widely used in protein chemistry and proteomics research for the identification and characterization of proteins isolated by polyacrylamide gel electrophoresis. In an effort to minimize sample handling and increa......-probe digestion protocol combined with MALDI tandem mass spectrometry provides a robust platform for proteomics research, including protein identification and determination of posttranslational modifications....

  16. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  17. Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary); Beke, Szabolcs [Italian Institute of Technology, Department of Nanophysics, Genova (Italy); Pecz, Bela; Horvath, Robert; Petrik, Peter; Agocs, Emil [Research Institute for Technical Physics and Materials Science, Budapest (Hungary)

    2012-05-15

    Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol-gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550 {sup circle} C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of {proportional_to}170-330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0-13.7 k{omega}/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors. (orig.)

  18. Frozen-thawed rhesus sperm retain normal morphology and highly progressive motility but exhibit sharply reduced efficiency in penetrating cervical mucus and hyualuronic acid gel

    Science.gov (United States)

    Tollner, Theodore L.; Dong, Qiaoxiang; VandeVoort, Catherine A.

    2011-01-01

    The preservation of the genetic diversity of captive populations of rhesus monkeys is critical to the future of biomedical research. Cryopreservation of rhesus macaque sperm is relatively simple to perform, yields high post-thaw motility, and theoretically, provides via artificial insemination (AI) a way to easily transfer genetics among colonies of animals. In the interest of optimizing semen cryopreservation methods for use with vaginal AI, we evaluated the ability of frozen-thawed rhesus sperm to penetrate periovulatory cervical mucus (CM). Motile sperm concentration of pre–freeze (“fresh”) and post-thawed (“thawed”) samples from 5 different males were normalized for both computer assisted sperm motion analysis and CM penetration experiments. Sperm samples were deposited into slide chambers containing CM or gel composed of hyaluronic acid (HA) as a surrogate for CM and numbers of sperm were recorded as they entered a video field a preset distance from the sperm suspension-CM (or HA) interface. Fresh and thawed sperm were dried on glass slides, “Pap”-stained, and assessed for changes in head dimensions and head and flagellar shape. While retaining better than 80% of fresh sperm progressive motility, thawed sperm from the same ejaculate retained on average only 18.6% of the CM penetration ability. Experiments using HA gel yielded similar results only with reduced experimental error and thus improved detection of treatment differences. Neither the percentage of abnormal forms nor head dimensions differed between fresh and thawed sperm. While findings suggests that sperm-CM interaction is a prominent factor in previous failures of vaginal AI with cryopreserved macaque sperm, neither sperm motility nor morphology appears to account for changes in the ability of cryopreserved sperm to penetrate CM. Our data points to a previously unidentified manifestation of cryodamage which may have implications for assessment of sperm function beyond the cervix and

  19. Team Development for High Performance Management.

    Science.gov (United States)

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  20. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  1. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  2. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  3. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    International Nuclear Information System (INIS)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-01-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated

  4. Influence of drinking water containing Aloe vera (Aloe barbadensis Miller) gel on growth performance, intestinal microflora, and humoral immune responses of broilers.

    Science.gov (United States)

    Shokraneh, Meisam; Ghalamkari, Gholamreza; Toghyani, Majid; Landy, Nasir

    2016-11-01

    The risk of bacteria resistance to specific antibiotics possibly by continuous subtherapeutical administration of antibiotic growth promoters (AGPs) in poultry feed led to a ban on the use of AGP in poultry production. As a result of this ban, alternative substances for poultry growth promotion and disease prevention are being investigated, among which phytogenic and herbal products have received increased attention as natural additives because they have been accepted by consumers as natural additives. The effect of water supplementation of Aloe vera (AV) as an AGP substitute on performance, intestinal microflora, and immune responses of broilers. The five experimental treatments were allocated to four replicates. The following treatments were applied (1) a basal broiler diet (C) and normal drinking water, (2) 0.5% AV gel in drinking water, (3) 0.75% AV gel in drinking water, (4) 1% AV gel in drinking water, and (5) diet C supplemented with flavophospholipol at 4.5 mg/kg and drinking normal water. Vaccines against influenza disease and sheep red blood cell (SRBC) were administrated to immunological stimuli. The populations of Lactobacilli spp. and coliforms were enumerated in ileum. Body weight of broilers supplemented with different levels of AV increased compared with control group (pantibiotic had the best feed-to-gain ratio (F:G) in different periods. Supplementation of 0.5% and 0.75% AV improved F: G entire experimental period compared with control group (pantibiotic (pantibiotic significantly was higher than other groups (pwater with 1% AV gel as an alternative for AGP substitution.

  5. Effect of high hydrostatic pressure on functional properties and quality characteristics of Aloe vera gel (Aloe barbadensis Miller).

    Science.gov (United States)

    Vega-Gálvez, Antonio; Miranda, Margarita; Aranda, Mario; Henriquez, Karem; Vergara, Judith; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario

    2011-12-01

    The aim of this study was to evaluate the effects of high hydrostatic pressure treatment at three pressure levels (300, 400 and 500Mpa) on the functional and quality characteristics of Aloe vera gel including vitamin C and E, aloin, minerals, phenolic content and antioxidant activity. The results show that HHP exerted a clear influence on minerals content, vitamin C and E content, antioxidant activity, total phenolic and aloin content. After 35days of storage all treated samples presented a decrease in mineral content, except for phosphorus. Total phenolic content and vitamin C and E content decreased at high pressures (500MPa), while all pressurised samples showed a higher antioxidant activity and aloin content than untreated sample after 35days of storage. The maximum values of antioxidant activity and aloin were 6.55±1.26μg/ml at 300MPa and 24.23±2.27mg/100g d.m. at 400MPa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Measurements of the Influence of Thermoplastic Mask in High Energy Photon Beams: Gel Dosimeter or Ionizing Chamber?

    Science.gov (United States)

    Moreira, M. V.; Petchevist, C. D.; de Almeida, A.

    2009-12-01

    The influence of the immobilization mask material on the absorbed dose distribution in patients exposed to radiotherapy treatment with photon beams has been investigated for photons from a 60Co source and a 6 MV Linac. Absorbed dose values have been inferred at different depths and in the build-up region. Dose measurements were obtained using Fricke Xylenol Gel dosimeter and the cylindrical PTW Freiburg TM 31016-0.016 cc ionizing micro chamber; their discrepancies are discussed. The affinities of FXG and PTW ICMicro for measurements with high energy photons and the difference in the effective atomic numbers due to their compositions are most likely the most important factors that contribute to the measured dose in the build-up region. The measured values show that the use of the mask material contributes to increase the absorbed doses near the surface of the tissue. The result also shows that the build-up effect for 60Co is significantly smaller than that for 6 MV photons; however, the variations noted in the final doses of the radiotherapic treatments with photons of high energy do not represent alterations in the total doses received by the patients submitted to the radiotherapy.

  7. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte.

    Science.gov (United States)

    Zhao, Chen; Wang, Caiyun; Yue, Zhilian; Shu, Kewei; Wallace, Gordon G

    2013-09-25

    There has been an emerging interest in stretchable power sources compatible with flexible/wearable electronics. Such power sources must be able to withstand large mechanical strains and still maintain function. Here we report a highly stretchable H3PO4-poly(vinyl alcohol) (PVA) polymer electrolyte obtained by optimizing the polymer molecular weight and its weight ratio to H3PO4 in terms of conductivity and mechanical properties. The electrolyte demonstrates a high conductivity of 3.4 × 10(-3) S cm(-1), and a high fracture strain at 410% elongation. It is mechanically robust with a tensile strength of 2 MPa and a Young's modulus of 1 MPa, and displays a small plastic deformation (5%) after 1000 stretching cycles at 100% strain. A stretchable supercapacitor device has been developed based on buckled polypyrrole electrodes and the polymer electrolyte. The device shows only a small capacitance loss of 5.6% at 30% strain, and can retain 81% of the initial capacitance after 1000 cycles of such stretching.

  8. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  9. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  10. Modeling water partition in composite gels of BSA with gelatin following high pressure treatment.

    Science.gov (United States)

    Semasaka, Carine; Mhaske, Pranita; Buckow, Roman; Kasapis, Stefan

    2018-11-01

    Changes in the structural properties of hydrogels made with gelatin and bovine serum albumin mixtures were recorded following exposure to high pressure at 300 MPa for 15 min at 10 and 80 °C. Dynamic oscillation, SEM, FTIR and blending law modelling were utilised to rationalise results. Pressurization at the low temperature end yielded continuous gelatin networks supporting discontinuous BSA inclusions, whereas an inverted dispersion was formed at the high temperature end with the continuous BSA network suspending the discontinuous gelatin inclusions. Lewis and Nielsen equations followed the mechanical properties of the composites thus arguing that solvent partition between the two phases was always in favour of the polymer forming the continuous network. As far as we are aware, this is the first attempt to elucidate the solvent partition in pressurised hydrogel composites using blending law theory. Outcomes were contrasted with earlier work where binary mixtures were subjected only to thermal treatment. Copyright © 2018. Published by Elsevier Ltd.

  11. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  12. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  13. Development of strippable gel for surface decontamination applications

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.

    2015-07-01

    Strippable gels are an attractive option for decontamination of surfaces particularly when materials are to be reused after decontamination. The process in general results in good decontamination performance with minimal secondary waste generation. This paper reports on development of strippable gel formulation using polyvinyl alcohol as the gel former. Peeling behavior of the gel film improved when glycerol was used as plasticizer. Incorporation of decontaminating agents is essential for the gel to be effective, so a number of decontaminating agents were screened based on their miscibility with the gel, smooth peeling, and good decontamination performance. Based on this study, a strippable gel, ‘INDIGEL’ was formulated as a potential candidate for surface decontamination applications. Extensive trials on evaluation of decontamination performance of Indigel were done on simulated surfaces like stainless steel tray, stainless steel fume hood, PVC floor, granite and ceramic table tops. Results show that Indigel is highly effective for decontamination of surfaces contaminated with all types of radionuclides. Simplicity of its use coupled with good decontamination ability will find application in nuclear and other chemical industries. (author)

  14. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  17. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  18. Randomized Comparison of Isosorbide Mononitrate and PGE2 Gel for Cervical Ripening at Term including High Risk Pregnancy

    Directory of Open Access Journals (Sweden)

    Kavita Agarwal

    2014-01-01

    Full Text Available Aims. Prostaglandin E2 is the most commonly used drug for cervical ripening prior to labour induction. However, there are concerns regarding uterine tachysystole and nonreassuring fetal heart (N-RFH. Isosorbide mononitrate (IMN has been used successfully for cervical ripening. The present study was conducted to compare the two drugs for cervical ripening at term in hospital. Methods. Two hundred women with term pregnancies referred for induction of labour with Bishop score less than 6 were randomly allocated to receive either 40 mg IMN tablet vaginally (n=100 or 0.5 mg PGE2 gel intracervically (n=100. Adverse effects, progress, and outcomes of labour were assessed. Results. PGE2 group had significantly higher postripening mean Bishop score, shorter time from start of medication to vaginal delivery (13.37 ± 10.67 hours versus 30.78 ± 17.29 hours, and shorter labour-delivery interval compared to IMN group (4.53 ± 3.97 hours versus 7.34 ± 5.51 hours. However, PGE2 group also had significantly higher incidence of uterine tachysystole (15% and N-RFH (11% compared to none in IMN group, as well as higher caesarean section rate (27% versus 17%. Conclusions. Cervical ripening with IMN was less effective than PGE2 but resulted in fewer adverse effects and was safer especially in high risk pregnancies.

  19. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  20. Influence of calcination temperature on sol-gel synthesized single-phase bismuth titanate for high dielectric capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiruramanathan, Pandirengan; Marikani, Arumugam [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Physics; Madhavan, Durairaj [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Chemistry; Bharadwaj, Suresh; Awasthi, Anand Mohan [UGC-DAE Consortium for Scientific Research, Indore (India). Thermodynamics Lab.

    2016-05-15

    An inexpensive sol-gel combustion method using citric acid as fuel has been used to synthesize bismuth titanate, Bi{sub 4}Ti{sub 3}O{sub 12} nanopowders. Thermogravimetric analysis proved that a calcination temperature of 900 C is sufficient for the preparation of single-phase bismuth titanate. X-ray diffraction and Fourier transform infrared spectroscopy are used to examine the influence of calcination temperature on the structural growth of the Bi{sub 4}Ti{sub 3}O{sub 12} nanopowder. The average crystallite size estimated by using the Scherrer method and the Williamson-Hall method was found to increase with calcination temperature. Photoluminescence behavior as a function of calcination temperature was observed at two different excitation wavelengths of 300 nm and 420 nm. The morphology of the particles analyzed using images obtained from field emission scanning electron microscopy displayed irregular, random sized, and spherical-shaped structures. The stoichiometry and purity of the nanopowder are confirmed by energy-dispersive spectroscopy. The broadband dielectric results established the highest dielectric constant (ε{sub r} = 450) for a frequency of 100 Hz achieved with a potential capacitance of 138 pF m{sup -2}. This establishes Bi{sub 4}Ti{sub 3}O{sub 12} as a promising dielectric material for achieving high energy density capacitors for the next-generation passive devices.

  1. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S; Chrisey, Douglas B; Tomozawa, M

    2011-01-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr 0.2 Ti 0.80 )O 3 ] 1-x -[(Ba 0.70 Ca 0.30 )TiO 3 ] x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P s ∼ 3-6 μC cm -2 ) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/ε versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ∼1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ∼47-73 kV cm -1 with an energy density of 0.05-0.6 J cm -3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  2. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S [SPECLAB, Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Chrisey, Douglas B; Tomozawa, M, E-mail: rkatiyar@uprrp.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States)

    2011-10-05

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr{sub 0.2}Ti{sub 0.80})O{sub 3}]{sub 1-x}-[(Ba{sub 0.70}Ca{sub 0.30})TiO{sub 3}]{sub x} (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P{sub s} {approx} 3-6 {mu}C cm{sup -2}) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/{epsilon} versus (T) plots revealed ferroelectric DPT behaviour with estimated {gamma} values of {approx}1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of {approx}47-73 kV cm{sup -1} with an energy density of 0.05-0.6 J cm{sup -3} for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  3. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    ) high performance liquid chromatography (HPLC) grade .... applications. These are important requirements if the reagent is to be applicable to on-line pre or post column derivatisation in a possible automation of the analytical.

  4. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  5. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  6. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  7. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  8. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  9. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  10. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  11. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  12. Governance among Malaysian high performing companies

    Directory of Open Access Journals (Sweden)

    Asri Marsidi

    2016-07-01

    Full Text Available Well performed companies have always been linked with effective governance which is generally reflected through effective board of directors. However many issues concerning the attributes for effective board of directors remained unresolved. Nowadays diversity has been perceived as able to influence the corporate performance due to the likelihood of meeting variety of needs and demands from diverse customers and clients. The study therefore aims to provide a fundamental understanding on governance among high performing companies in Malaysia.

  13. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  14. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  15. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  16. Study of the Effect of Sol pH and Nanoclay Incorporation on the Corrosion Protection Performance of a Silane Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Najmeh Asadi

    2014-06-01

    Full Text Available This work is aimed to evaluate the role of nanoclay in the protective performance of an eco-friendly silane sol-gel layer applied on mild steel substrate in 0.1M sodium chloride solution. At the first step, the effect of pH of the silane solution, consisting of a mixture of γ-glycidoxypropiltrimethoxysilane and methyltriethoxysilane and tetraethoxysilane, on the coating performance was evaluated through electrochemical noise measurements. The values of characteristic charge as a parameter extracted from shot noise theory revealed that the sol pH determining the rate of hydrolysis can play an important role in the corrosion protection behavior of silane coatings. Then, the influence of clay nanoparticles on the corrosion protective performance of the hybrid silane film was studied through taking advantage of electrochemical techniques, including electrochemical impedance spectroscopy and polarization curves, as well as surface analysis methods. The obtained electrochemical data including the values of charge transfer resistance, coating resistance, low frequency impedance and corrosion current density showed that the silane sol gel film in the presence of clay nanoparticles can present an improved corrosion protection. The behavior was connected to an enhancement in the coating barrier properties. Moreover, FESEM and water contact angle confirmed the higher reticulation in case of the coating incorporating nanoclay.

  17. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair

    Directory of Open Access Journals (Sweden)

    Hassan Zohair Hassan

    2014-10-01

    Full Text Available In the present study, dynamic analysis and performance evaluation of a solar-powered continuous operation adsorption chiller are introduced. The adsorption chiller uses silica gel and water as the working pair. The developed mathematical model represents the heat and mass transfer within the reactor coupled with the energy balance of the collector plate and the glass cover. Moreover, a non-equilibrium adsorption kinetic model is taken into account by using the linear driving force equation. The variation of solar radiation, wind speed, and atmospheric temperature along a complete cycle are considered for a more realistic simulation. Based on the case studied  and the baseline parameters, the chiller is found to acquire a coefficient of performance of 0.402. The average thermal efficiency of the solar collector is estimated to be 62.96% and the average total efficiency  approaches a value of 50.91%. Other performance parameters obtained are 363.8 W and 1.82 W/kg for the cooling capacity and the specific cooling power of the chiller, respectively. Furthermore, every 1 kg of silica gel inside the adsorption reactor produces a daily chilled water mass of 3 kg at a temperature of 10 ◦C. In addition, the cooling system harnesses 25.35% of the total available solar radiation and converts it to a cooling effect.

  18. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  19. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  20. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  1. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  2. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  3. Experimental 3D dosimetry around a high-dose-rate clinical 192Ir source using a polyacrylamide gel (PAG) dosimeter

    International Nuclear Information System (INIS)

    McJury, M.; Tapper, P.D.; Griffin, S.; Cosgrove, V.P.; Webb, S.; Murphy, P.S.; Leach, M.O.; Oldham, M.

    1999-01-01

    It is well known that the experimental dosimetry of brachytherapy sources presents a challenge. Depending on the particular dosimeter used, measurements can suffer from poor spatial resolution (ion chambers), lack of 3D information (film) or errors due to the presence of the dosimeter itself distorting the radiation flux. To avoid these problems, we have investigated the dosimetry of a clinical 192 Ir source using a polyacrylamide gel (PAG) dosimeter. Experimental measurements of dose versus radial distance from the centre of the source (cross-line plots) were compared with calculations produced with a Nucletron NPS planning system. Good agreement was found between the planning system and gel measurements in planes selected for analysis. Gel dosimeter measurements in a coronal plane through the phantom showed a mean difference between measured absorbed dose and calculated dose of 0.17 Gy with SD=0.13Gy. Spatially, the errors at the reference point remain within one image pixel (1.0 mm). The use of polymer gel dosimetry shows promise for brachytherapy applications, offering complete, three-dimensional dose information, good spatial resolution and small measurement errors. Measurements close to the source, however, are difficult, due to some of the limiting properties of the polyacrylamide gel. (author)

  4. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojie [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100101 (China); Jin, Zhiliang; Li, Shuben; Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Yuexiang [Department of Chemistry, Nanchang University, Nanjing Road 245, Nanchang, 330047 (China)

    2007-03-30

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 x 10{sup -4} mol dm{sup -3} (E/S = 1/3) to 7.24 x 10{sup -4} mol dm{sup -3} (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation ({lambda} {>=} 420 nm) can reach about 43 {mu}mol h{sup -1} and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed. (author)

  5. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Science.gov (United States)

    Zhang, Xiaojie; Jin, Zhiliang; Li, Yuexiang; Li, Shuben; Lu, Gongxuan

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 × 10 -4 mol dm -3 (E/S = 1/3) to 7.24 × 10 -4 mol dm -3 (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation (λ ≥ 420 nm) can reach about 43 μmol h -1 and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed.

  6. A nonaqueous sol-gel route to synthesize CdIn2O4 nanoparticles for the improvement of formaldehyde-sensing performance

    International Nuclear Information System (INIS)

    Wang, Yude; Chen, Ting; Mu, Qiuying; Wang, Guofeng

    2009-01-01

    CdIn 2 O 4 nanoparticles with crystallite sizes of about 10 nm were prepared by a nonaqueous sol-gel route involving the reaction of cadmium acetate and indium isopropoxide in benzyl alcohol. The as-fabricated sensor based on CdIn 2 O 4 nanoparticles showed a strong and fast response to and rapid recovery time from formaldehyde gas. Compared with the sensor fabricated with CdIn 2 O 4 powders prepared via a high-temperature solid-state route, the results show that CdIn 2 O 4 nanoparticles sensor has about a 26-fold increase in response and a good dynamic response.

  7. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  8. Preparation of high density (Th, U)O2 pellets by sol-gel microsphere pelletization and 1300 C air sintering

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1994-01-01

    The fabrication of high density (Th, U)O 2 pellets by the sol-gel microsphere pelletization (SGMP) process was studied. To prepare source ThO 2 -UO 3 microspheres, isopropyl alcohol was substituted for the water in gel and thereafter removed by evacuating and subsequently by heating at 200 C in air. After humidifying the microspheres up to the moisture content ranging 10-21%, they were compacted into a pellet under 150-500 MPa and sintered in air at 1300 C. Even at the relatively low temperature, the maximum density reached 98% TD or higher for the U/(Th+U) ratios of 5-20 mol%. Such high density products survived as firm pellets with a similarly high density of 99% TD during the reduction into (Th, U)O 2 in Ar-4% H 2 at 1300 C. ((orig.))

  9. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    Science.gov (United States)

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  10. Improved gel electrophoresis matrix for hydrophobic protein separation and identification.

    Science.gov (United States)

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian

    2011-03-01

    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  11. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    Science.gov (United States)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  12. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh

    2010-04-01

    The effects of crown ethers (CEs) on the performance of quasi-solid-state dye-sensitized solar cells (DSSCs) have been investigated. Nanocomposite silica was used to form gel matrices in the electrolytes, which contained lithium iodide (LiI) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar-to-electricity conversion efficiencies (η), with reference to the one without them. The crown ether, 15-C-5, with a size of cavity matching with the size of Li+ in the electrolyte rendered for its DSSC the best performance with an η of 3.60%, under 100 mW/cm2 illumination, as compared to 2.44% for the cell without any CE. Enhancements in the photovoltaic parameters of the cells with the CEs were explained based on the binding abilities of the CEs with lithium ions (Li+) in the electrolyte. Linear sweep voltammetry (LSV) measurements and electrochemical impedance spectra were used to substantiate the explanations. © 2009 Elsevier B.V. All rights reserved.

  13. Sol-gel optical coatings for lasers: Part 1

    International Nuclear Information System (INIS)

    Floch, H.G.; Belleville, P.F.; Priotton, J.J.

    1995-01-01

    Many manufacturers and users claim that optical coatings are best prepared by physical vapor deposition technology. Others believe that sol-gel technology is an effective and competitive alternative. This article, the first of three, emphasizes sol-gel thin-film history and relates it to high-power laser technology, chemistry of the sol-gel process, production of optical coatings and deposition techniques. The second and third articles describe the preparation and performance of antireflective and highly reflective sol-gel optical coatings, respectively, that have been developed for the 1.8-MJ/500-TW (351-nm) pulsed neodymium-glass laser. This powerful laser is to be used in France's Inertial Confinement Fusion (ICF) program. It will demonstrate, at the laboratory scale, ignition of deuterium-tritium fusion fuel

  14. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  15. Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys during the press-hardening process

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M.; Benfer, S.; Fuerbeth, W. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Klesen, C.; Bleck, W. [Institut fuer Eisenhuettenkunde der RWTH Aachen, Intzestrasse 1, D-52072 Aachen (Germany)

    2012-10-15

    The need for lighter constructional materials in automotive industries has increased the use of high-strength steel alloys. To enhance passenger's safety press hardening may be applied to steel parts. However, as the steel parts are heated up to 950 C during this process they have to be protected by some kind of coating against the intense oxide formation usually taking place. As the coating systems used so far all have certain disadvantages in this work the ability of nano-particulate thin coatings obtained by the sol-gel process to improve the oxidation resistance of 22MnB5 steel is investigated. The coatings obtained from three sols containing lithium aluminum silicate and potassium aluminum silicate showed the best performance against oxidation. The structural properties of the coating materials were characterized using different methods like XRD and differential thermal analysis. Comparison of the oxidation rate constants proved the ability of the coatings to protect against oxidation at temperatures up to 800 C. Press-hardening experiments in combination with investigations on the thermal shock resistance of the coated samples also showed the ability of the coatings to stay intact during press hardening with only slight spalling of the coatings in the bending areas. The absence of any secondary intermetallic phases and layer residues during laser beam welding experiments on coated samples proves the suitability of the nano-particulate coatings for further industrial processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis.

    Science.gov (United States)

    Stein, Derek R; Hu, Xiaojie; McCorrister, Stuart J; Westmacott, Garrett R; Plummer, Francis A; Ball, Terry B; Carpenter, Michael S

    2013-10-01

    MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off-gel IEF (OG-IEF) and high pH RP (Hp-RP) column chromatography have both been successfully utilized as a first-dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12-fraction replicate analysis, Hp-RP resulted in more peptides and proteins identified than OG-IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp-RP. This leads to a more uniform distribution of total and unique peptides for Hp-RP across all fractions collected. These results suggest that fractionation by Hp-RP over OG-IEF is the better choice for typical complex proteome analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Designing a High Performance Parallel Personal Cluster

    OpenAIRE

    Kapanova, K. G.; Sellier, J. M.

    2016-01-01

    Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible only because of the availability of such large scale computing infrastructures. Yet many challenges are still open. The cost of energy consumption, cooling, competition for resources have been some of the reasons why the scientifi...

  18. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  19. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    Science.gov (United States)

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  20. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  1. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    Science.gov (United States)

    Li, Shiyou; Liang, Youwei; Lei, Dan; Xie, Yingchun; Ai, Ling; Xie, Jing

    2018-03-01

    A citric acid assisted sol-gel method is employed for synthesizing Li1.2Mn0.54Ni0.13Co0.13O2 used as a cathode material in lithium-ion batteries. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations prove that materials have a typical a-NaFeO2 structure with primary nano-sized particles. Electrochemical performances have been investigated by charge-discharge test and results show that the synthesized product exhibits excellent electrochemical performance with a high initial discharge capacity of 253.5 mAh g-1 at 0.1 C and a preferable capacity retention of 84.8% after 50 cycles.

  2. Highly Sensitive Ethanol Chemical Sensor Based on Novel Ag-Doped Mesoporous α-Fe2O3 Prepared by Modified Sol-Gel Process

    Science.gov (United States)

    Alqahtani, Moteb M.; Ali, Atif M.; Harraz, Farid A.; Faisal, M.; Ismail, Adel A.; Sayed, Mahmoud A.; Al-Assiri, M. S.

    2018-05-01

    Mesoporous α-Fe2O3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe2O3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe2O3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe2O3-modified glassy carbon electrode (GCE) by cyclic voltammetry ( CV) and current potential ( I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe2O3. Mesoporous Ag/α-Fe2O3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM- 1 cm- 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM- 1 cm- 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.

  3. High Ionic Liquid Content Polymeric Gel Membranes: Correlation of Membrane Structure with Gas and Vapour Transport Properties

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Jansen, J. C.; Bazzarelli, F.; Izák, Pavel; Jarmarová, Veronika; Kačírková, Marie; Schauer, Jan; Clarizia, G.; Bernardo, P.

    2012-01-01

    Roč. 415, OCT 1 (2012), s. 801-809 ISSN 0376-7388 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : Ionic liquidmembrane * polymer gel * diffusion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.093, year: 2012

  4. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova Rohlfing, D.

    2009-01-01

    Roč. 21, č. 21 (2009), s. 5229-5236 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanoparticles * nonaqueous Ssl -gel procedure * oxide materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  5. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  6. Influence of drinking water containing Aloe vera (Aloe barbadensis Miller gel on growth performance, intestinal microflora, and humoral immune responses of broilers

    Directory of Open Access Journals (Sweden)

    Meisam Shokraneh

    2016-11-01

    Full Text Available Aim: The risk of bacteria resistance to specific antibiotics possibly by continuous subtherapeutical administration of antibiotic growth promoters (AGPs in poultry feed led to a ban on the use of AGP in poultry production. As a result of this ban, alternative substances for poultry growth promotion and disease prevention are being investigated, among which phytogenic and herbal products have received increased attention as natural additives because they have been accepted by consumers as natural additives. The effect of water supplementation of Aloe vera (AV as an AGP substitute on performance, intestinal microflora, and immune responses of broilers. Materials and Methods: The five experimental treatments were allocated to four replicates. The following treatments were applied (1 a basal broiler diet (C and normal drinking water, (2 0.5% AV gel in drinking water, (3 0.75% AV gel in drinking water, (4 1% AV gel in drinking water, and (5 diet C supplemented with flavophospholipol at 4.5 mg/kg and drinking normal water. Vaccines against influenza disease and sheep red blood cell (SRBC were administrated to immunological stimuli. The populations of Lactobacilli spp. and coliforms were enumerated in ileum. Results: Body weight of broilers supplemented with different levels of AV increased compared with control group (p<0.05. Birds supplemented with antibiotic had the best feed-to-gain ratio (F:G in different periods. Supplementation of 0.5% and 0.75% AV improved F:G entire experimental period compared with control group (p<0.05. Coliform bacteria were reduced in broilers supplemented with different levels of AV or antibiotic (p<0.05. The Lactobacilli spp. population in birds supplemented with 0.75%, 1% AV or antibiotic significantly was higher than other groups (p<0.05. Supplementation with 1% AV led to greater antibody titers against SRBC compared with other groups (p<0.05. Conclusion: These findings demonstrated a possibility of supplementing

  7. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  8. Characteristics and Laser Performance of Yb3+-Doped Silica Large Mode Area Fibers Prepared by Sol–Gel Method

    Directory of Open Access Journals (Sweden)

    Shikai Wang

    2013-12-01

    Full Text Available Large-size 0.1 Yb2O3–1.0 Al2O3–98.9 SiO2 (mol% core glass was prepared by the sol–gel method. Its optical properties were evaluated. Both large mode area double cladding fiber (LMA DCF with core diameter of 48 µm and large mode area photonic crystal fiber (LMA PCF with core diameter of 90 µm were prepared from this core glass. Transmission loss at 1200 nm is 0.41 dB/m. Refractive index fluctuation is less than 2 × 10−4. Pumped by 976 nm laser diode LD pigtailed with silica fiber (NA 0.22, the slope efficiency of 54% and “light-to-light” conversion efficiency of 51% were realized in large mode area double cladding fiber, and 81 W laser power with a slope efficiency of 70.8% was achieved in the corresponding large mode area photonic crystal fiber.

  9. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  10. Long-term bridge performance high priority bridge performance issues.

    Science.gov (United States)

    2014-10-01

    Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...

  11. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid chromatography (HPLC) method for the determination of cefadroxil monohydrate in human plasma. Methods: Schimadzu HPLC with LC solution software was used with Waters Spherisorb, C18 (5 μm, 150mm × 4.5mm) column. The mobile phase ...

  12. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  13. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  14. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  15. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  16. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  17. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  18. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  19. Validated high performance liquid chromatographic (HPLC) method ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... specific and accurate high performance liquid chromatographic method for determination of ZER in micro-volumes ... tional medicine as a cure for swelling, sores, loss of appetite and ... Receptor Activator for Nuclear Factor κ B Ligand .... The effect of ... be suitable for preclinical pharmacokinetic studies. The.

  20. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid ... response, tailing factor and resolution of six replicate injections was < 3 %. ... Cefadroxil monohydrate, Human plasma, Pharmacokinetics Bioequivalence ... Drug-free plasma was obtained from the local .... Influence of probenicid on the renal.

  1. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  2. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  4. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  5. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  6. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  7. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2018-01-01

    Full Text Available A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs display a change three orders higher than that of pure ZnO with relative humidity (RH ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  8. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  9. Effects of Shear Fracture on In-depth Profile Modification of Weak Gels

    Institute of Scientific and Technical Information of China (English)

    Li Xianjie; Song Xinwang; Yue Xiang'an; Hou Jirui; Fang Lichun; Zhang Huazhen

    2007-01-01

    Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the in-depth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs,and the weak gels in these two cases became small gel particles after water flooding. The differences were:the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack,which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack,while in the quartz sand pack,the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water,the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.

  10. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  11. NINJA: Java for High Performance Numerical Computing

    Directory of Open Access Journals (Sweden)

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  12. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  13. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  14. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  15. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  16. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  17. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  18. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. 凝胶渗透色谱-固相萃取结合色谱-质谱法测定乳制品中18种溴系阻燃剂%Determination of 18 Brominated Flame Retardants in Dairy Product by Gel Permeation Chromatography-Solid Phase Extraction Coupled to Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography-Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    李健; 王翼飞; 周显青; 施致雄

    2016-01-01

    A novel method was developed for the simultaneous determination of 6 novel brominated flame retardants ( NBFRs) , 8 polybrominated diphenyl ethers ( PBDEs) , tetrabromobisphenolA ( TBBPA) and α,β,γ-hexabromocyclododecane (α, β, γ-HBCD ) in dairy product. Dairy product samples were extracted using soxhlet extraction with acetone/hexane (1:1, V/V). The removal of co-extracted materials was achieved by gel permeation chromatography followed by acidified silica treatment. The fractionation of the PBDEs/NBFRs and HBCD/TBBPA was performed using a Supelco LC-Si SPE cartridge. The detection of the PBDEs and NBFRs was then performed by GC-NCI/MS, and that of the HBCDs and the TBBPA was performed using HPLC-MS/MS. A recovery test was performed using a matrix spiking test and for most of the analytes the recoveries ranged from 80 . 1% to 114 . 7% with RSDs equal to or lower than 14 . 9%. The LODs were 0 . 2-119. 2 pg/g. This methodology was validated to be accurate and sensitive for the simultaneous pretreatment and analysis of brominated flame retardants in dairy product.%采用索氏提取、凝胶渗透色谱和固相萃取技术作为前处理方法,建立乳制品中6种新型溴系阻燃剂、8种多溴联苯醚、四溴双酚A和α、β、γ-六溴环十二烷异构体共18种溴系阻燃剂的同时提取与净化方法,并结合气相色谱-负化学源质谱法(GC-NCI/MS)和高效液相色谱-电喷雾电离-串联质谱法(HPLC-ESI-MS/MS)进行检测。奶样经冷冻干燥后以正己烷-丙酮(1:1, V/V)索氏提取,采用凝胶渗透色谱结合酸化硅胶柱净化,随后以LC-Si固相萃取柱分离气相和液相待测物。以GC-NCI/MS测定6种新型溴系阻燃剂和8种多溴联苯醚,以HPLC-MS/MS检测四溴双酚A和六溴环十二烷异构体,内标法定量。结果表明,以空白牛奶样品为加标基质,多数待测物平均回收率为80.1%~114.7%,方法具有良好的精密度(多数待测物相对标准偏差( RSD)在0.87%~14.9%)

  20. Specially Treated Aramid Fiber Stabilized Gel-Emulsions: Preparation of Porous Polymeric Monoliths and Highly Efficient Removing of Airborne HCHO.

    Science.gov (United States)

    Liu, Jianfei; Chen, Xiangli; Wang, Pei; Fu, Xuwei; Liu, Kaiqiang; Fang, Yu

    2017-08-01

    Porous polymeric monoliths with densities as low as ≈0.060 g cm -3 are prepared in a gel-emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy-consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity (M6) is ≈2700 mg g -1 , the best result that is reported until now. More importantly, the monoliths can be reused after drying. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dosimetric characterization of VIPARnd gel by optical analysis to high-energy photon beam used in external radiotherapy

    International Nuclear Information System (INIS)

    Dias, Juliana R.; Lima, Renata S.; Lopes, Roseany de V. Vieira; Ceschin, Artemis Marti

    2015-01-01

    Polymer gel dosimetry has been proposed as a possibility for measurements of dose distribution in radiotherapy. This work aims to evaluate the dosimetric characteristics of a VIPARnd for 6 MV photon beam used in radiotherapy using optical investigations. The absorbance spectrum of irradiated gel dosimeter was optical evaluated with spectrophotometer techniques and with CMOS camera readout for dose range of 0 to 50 Gy. Data shows that the VIPARnd has a maximum absorbance at 300 to 320 nm depending on the absorbed dose. The CMOS camera readouts were obtained in RGB color, the absorbance measurements suggest a major response of dose for blue matrix verified with data. The dose-response curve for blue component showed interval of linearity from 1 Gy to 20 Gy. (author)

  2. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  3. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co......-dopant have an ionic size ratio between 0.5 and 1. These materials can thereby improve the performance and extend the range of operating conditions of oxygen permeation membranes (OPM) for different high temperature membrane reactor applications. The invention also relates to the manufacturing of supported...

  4. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  5. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  6. Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Hassan, A F.; Abdelghny, A.M.; Elhadidy, Hassan; Youssef, A.M.

    2014-01-01

    Roč. 69, č. 3 (2014), 465-472 ISSN 0928-0707 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : Nanosilica * Rice husk * Sol-gel method * N-2 adsorption Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.532, year: 2014

  7. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  8. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  9. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  10. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  11. High performance parallel computers for science

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  12. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  13. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    Science.gov (United States)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  14. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe; Sarmiento, Adel; Cortes, Adriano Mauricio; Dalcin, L.; Collier, N.; Calo, Victor M.

    2015-01-01

    and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  15. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  16. Performance concerns for high duty fuel cycle

    International Nuclear Information System (INIS)

    Esposito, V.J.; Gutierrez, J.E.

    1999-01-01

    One of the goals of the nuclear industry is to achieve economic performance such that nuclear power plants are competitive in a de-regulated market. The manner in which nuclear fuel is designed and operated lies at the heart of economic viability. In this sense reliability, operating flexibility and low costs are the three major requirements of the NPP today. The translation of these three requirements to the design is part of our work. The challenge today is to produce a fuel design which will operate with long operating cycles, high discharge burnup, power up-rating and while still maintaining all design and safety margins. European Fuel Group (EFG) understands that to achieve the required performance high duty/energy fuel designs are needed. The concerns for high duty design includes, among other items, core design methods, advanced Safety Analysis methodologies, performance models, advanced material and operational strategies. The operational aspects require the trade-off and evaluation of various parameters including coolant chemistry control, material corrosion, boiling duty, boron level impacts, etc. In this environment MAEF is the design that EFG is now offering based on ZIRLO alloy and a robust skeleton. This new design is able to achieve 70 GWd/tU and Lead Test Programs are being executed to demonstrate this capability. A number of performance issues which have been a concern with current designs have been resolved such as cladding corrosion and incomplete RCCA insertion (IRI). As the core duty becomes more aggressive other new issues need to be addressed such as Axial Offset Anomaly. These new issues are being addressed by combination of the new design in concert with advanced methodologies to meet the demanding needs of NPP. The ability and strategy to meet high duty core requirements, flexibility of operation and maintain acceptable balance of all technical issues is the discussion in this paper. (authors)

  17. DURIP: High Performance Computing in Biomathematics Applications

    Science.gov (United States)

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  18. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  19. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  20. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  1. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  2. High performance passive matrix electrochromic display

    International Nuclear Information System (INIS)

    Aliev, A.E.

    2003-01-01

    A matrix addressable electrochromic display (ECD) based on solid polymer electrolyte screen-printed on the surface of nano structured WO 3 +0.1TiO 2 electrodes, in which all pixels were insulted by negative photoresist material has been developed. Five types of nano structured films produced by a sol-gel method were investigated to enhance the electrochemical, optical, and mechanical properties of electrochromic tungsten oxide films. The film based on WO 3-x +0.1TiO 2-y sol-gel solution mixed with 32 mol.% oxalic acid was found to be stable and has excellent characteristics in coloring/bleaching kinetics. The ECD used nano structured electrochromic tungsten trioxide layer protected by SiO 2 -CeO 2 -Li 2 O thin film solid electrolyte, screen-printed solid polymer electrolyte mixed with white TiO 2 pigment (P25), and metallic counter electrode covered with carbon layer, has exhibited fast switching, excellent memory effect and substantially free from image diffusion and cross talk effects. (author)

  3. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  4. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  5. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  6. Screening of mucoadhesive vaginal gel formulations

    Directory of Open Access Journals (Sweden)

    Ana Ochoa Andrade

    2014-12-01

    Full Text Available Rational design of vaginal drug delivery formulations requires special attention to vehicle properties that optimize vaginal coating and retention. The aim of the present work was to perform a screening of mucoadhesive vaginal gels formulated with carbomer or carrageenan in binary combination with a second polymer (carbomer, guar or xanthan gum. The gels were characterised using in vitroadhesion, spreadability and leakage potential studies, as well as rheological measurements (stress and frequency sweep tests and the effect of dilution with simulated vaginal fluid (SVF on spreadability. Results were analysed using analysis of variance and multiple factor analysis. The combination of polymers enhanced adhesion of both primary gelling agents, carbomer and carrageenan. From the rheological point of view all formulations presented a similar behaviour, prevalently elastic and characterised by loss tangent values well below 1. No correlation between rheological and adhesion behaviour was found. Carbomer and carrageenan gels containing the highest percentage of xanthan gum displayed good in vitro mucoadhesion and spreadability, minimal leakage potential and high resistance to dilution. The positive results obtained with carrageenan-xanthan gum-based gels can encourage the use of natural biocompatible adjuvants in the composition of vaginal products, a formulation field that is currently under the synthetic domain.

  7. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  8. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  9. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  10. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  11. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  12. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  13. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  14. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  15. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4

  16. Intel Xeon Phi coprocessor high performance programming

    CERN Document Server

    Jeffers, James

    2013-01-01

    Authors Jim Jeffers and James Reinders spent two years helping educate customers about the prototype and pre-production hardware before Intel introduced the first Intel Xeon Phi coprocessor. They have distilled their own experiences coupled with insights from many expert customers, Intel Field Engineers, Application Engineers and Technical Consulting Engineers, to create this authoritative first book on the essentials of programming for this new architecture and these new products. This book is useful even before you ever touch a system with an Intel Xeon Phi coprocessor. To ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi coprocessors, or other high performance microprocessors. Applying these techniques will generally increase your program performance on any system, and better prepare you for Intel Xeon Phi coprocessors and the Intel MIC architecture. It off...

  17. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  18. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  19. An integrated high performance fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1992-01-01

    A high performance Fastbus slave interface ASIC is presented. The Fastbus slave integrated circuit (FASIC) is a programmable device, enabling its direct use in many different applications. The FASIC acts as an interface between Fastbus and a 'standard' processor/memory bus. It can work stand-alone or together with a microprocessor. A set of address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/s to Fastbus can be obtained using an internal FIFO buffer in the FASIC. (orig.)

  20. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    Science.gov (United States)

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  1. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  2. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body

    International Nuclear Information System (INIS)

    Mori, T.; Yamamura, H.; Kobayashi, H.; Mitamura, T.

    1992-01-01

    This paper reports that effects of the concentration of ZrOCl 2 , calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO 4 fine powders from ZrOCl 2 :8H 2 O (0.2M to 1.7M) and equimolar colloidal SiO 2 using Sol--gel processing have been studied. Mechanical properties of the sintered ZrSiO 4 from the high-purity ZrSiO 4 powders have been also investigated. Single-phase ZrSiO 4 fine powders were synthesized at 1300 degrees C by forming ZrSiO 4 precursors having a Zr---O---Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO 4 precursor gels to ZrSiO 4 powders from concentrations other than 0.4M ZrOCl 2 ·8H 2 O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO 2 and SiO 2 was depressed and the propagation and increase of ZrSiO 4 nuclei in the gels were accelerated. The density of the ZrSiO 4 sintered bodies, manufactured by firing the ZrSiO 4 compacts at 1600 degrees to 1700 degrees C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400 degrees C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures

  4. High Performance Data Distribution for Scientific Community

    Science.gov (United States)

    Tirado, Juan M.; Higuero, Daniel; Carretero, Jesus

    2010-05-01

    Institutions such as NASA, ESA or JAXA find solutions to distribute data from their missions to the scientific community, and their long term archives. This is a complex problem, as it includes a vast amount of data, several geographically distributed archives, heterogeneous architectures with heterogeneous networks, and users spread around the world. We propose a novel architecture (HIDDRA) that solves this problem aiming to reduce user intervention in data acquisition and processing. HIDDRA is a modular system that provides a highly efficient parallel multiprotocol download engine, using a publish/subscribe policy which helps the final user to obtain data of interest transparently. Our system can deal simultaneously with multiple protocols (HTTP,HTTPS, FTP, GridFTP among others) to obtain the maximum bandwidth, reducing the workload in data server and increasing flexibility. It can also provide high reliability and fault tolerance, as several sources of data can be used to perform one file download. HIDDRA architecture can be arranged into a data distribution network deployed on several sites that can cooperate to provide former features. HIDDRA has been addressed by the 2009 e-IRG Report on Data Management as a promising initiative for data interoperability. Our first prototype has been evaluated in collaboration with the ESAC centre in Villafranca del Castillo (Spain) that shows a high scalability and performance, opening a wide spectrum of opportunities. Some preliminary results have been published in the Journal of Astrophysics and Space Science [1]. [1] D. Higuero, J.M. Tirado, J. Carretero, F. Félix, and A. de La Fuente. HIDDRA: a highly independent data distribution and retrieval architecture for space observation missions. Astrophysics and Space Science, 321(3):169-175, 2009

  5. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  6. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    International Nuclear Information System (INIS)

    Prem Das, O.; Henderson, E.J.

    1986-01-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum

  7. Separation of Native Allophycocyanin and R-Phycocyanin from Marine Red Macroalga Polysiphonia urceolata by the Polyacrylamide Gel Electrophoresis Performed in Novel Buffer Systems

    Science.gov (United States)

    Wang, Yu; Gong, Xueqin; Wang, Shumei; Chen, Lixue; Sun, Li

    2014-01-01

    Three buffer systems of Imidazole−Acetic acid, HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES were designed based on the principle of discontinuous polyacrylamide gel electrophoresis (PAGE) for the native PAGE which could be performed in pH 7.0 and 6.5 in order to analyze and prepare the minor components of allophycocyanin (AP) and R-phycocyanin (R-PC) from marine red macroalga Polysiphonia urceolata. These AP and R-PC phycobiliproteins are easily denatured in alkaline environments. The obtained results demonstrated that the PAGE modes performed in the buffer systems of HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES gave the satisfactory resolution and separation of AP and R-PC proteins. The absorption and fluorescence spectra of the AP and R-PC proteins which were prepared by the established PAGE modes proved that they maintained natural spectroscopic characteristics. The established PAGE modes may also provide useful references and selections for some other proteins that are sensitive to alkaline environments or are not effectively separated by the classical PAGE modes performed normally in alkaline buffer systems. PMID:25166028

  8. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  9. High-performance computing for airborne applications

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  10. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  11. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    Science.gov (United States)

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  13. Performance of the CMS High Level Trigger

    CERN Document Server

    Perrotta, Andrea

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved trac...

  14. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  15. Low cost high performance uncertainty quantification

    KAUST Repository

    Bekas, C.

    2009-01-01

    Uncertainty quantification in risk analysis has become a key application. In this context, computing the diagonal of inverse covariance matrices is of paramount importance. Standard techniques, that employ matrix factorizations, incur a cubic cost which quickly becomes intractable with the current explosion of data sizes. In this work we reduce this complexity to quadratic with the synergy of two algorithms that gracefully complement each other and lead to a radically different approach. First, we turned to stochastic estimation of the diagonal. This allowed us to cast the problem as a linear system with a relatively small number of multiple right hand sides. Second, for this linear system we developed a novel, mixed precision, iterative refinement scheme, which uses iterative solvers instead of matrix factorizations. We demonstrate that the new framework not only achieves the much needed quadratic cost but in addition offers excellent opportunities for scaling at massively parallel environments. We based our implementation on BLAS 3 kernels that ensure very high processor performance. We achieved a peak performance of 730 TFlops on 72 BG/P racks, with a sustained performance 73% of theoretical peak. We stress that the techniques presented in this work are quite general and applicable to several other important applications. Copyright © 2009 ACM.

  16. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  18. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  19. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  20. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  1. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel

    International Nuclear Information System (INIS)

    Sharma, R.K.; Pandey, Amit; Gulati, Shikha; Adholeya, Alok

    2012-01-01

    Highlights: ► Diphenyldiketone-monothiosemicarbazone modified silica gel. ► Highly selective, efficient and reusable chelating resin. ► Solid phase extraction system for on-line separation and preconcentration of Pd(II) ions. ► Application in catalytic converter and spiked tap water samples for on-line recovery of Pd(II) ions. - Abstract: A novel, highly selective, efficient and reusable chelating resin, diphenyldiketone-monothiosemicarbazone modified silica gel, was prepared and applied for the on-line separation and preconcentration of Pd(II) ions in catalytic converter and spiked tap water samples. Several parameters like effect of pH, sample volume, flow rate, type of eluent, and influence of various ionic interferences, etc. were evaluated for effective adsorption of palladium at trace levels. The resin was found to be highly selective for Pd(II) ions in the pH range 4–5 with a very high sorption capacity of 0.73 mmol/g and preconcentration factor of 335. The present environment friendly procedure has also been applied for large-scale extraction by employing the use of newly designed reactor in which on-line separation and preconcentration of Pd can be carried out easily and efficiently in short duration of time.

  2. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  3. High performance visual display for HENP detectors

    International Nuclear Information System (INIS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations

  4. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  5. Low-Cost High-Performance MRI

    Science.gov (United States)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (standards for affordable (<$50,000) and robust portable devices.

  6. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  7. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  8. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  9. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  10. High performance liquid chromatography in pharmaceutical analyses

    Directory of Open Access Journals (Sweden)

    Branko Nikolin

    2004-05-01

    Full Text Available In testing the pre-sale procedure the marketing of drugs and their control in the last ten years, high performance liquid chromatographyreplaced numerous spectroscopic methods and gas chromatography in the quantitative and qualitative analysis. In the first period of HPLC application it was thought that it would become a complementary method of gas chromatography, however, today it has nearly completely replaced gas chromatography in pharmaceutical analysis. The application of the liquid mobile phase with the possibility of transformation of mobilized polarity during chromatography and all other modifications of mobile phase depending upon the characteristics of substance which are being tested, is a great advantage in the process of separation in comparison to other methods. The greater choice of stationary phase is the next factor which enables realization of good separation. The separation line is connected to specific and sensitive detector systems, spectrafluorimeter, diode detector, electrochemical detector as other hyphernated systems HPLC-MS and HPLC-NMR, are the basic elements on which is based such wide and effective application of the HPLC method. The purpose high performance liquid chromatography(HPLC analysis of any drugs is to confirm the identity of a drug and provide quantitative results and also to monitor the progress of the therapy of a disease.1 Measuring presented on the Fig. 1. is chromatogram obtained for the plasma of depressed patients 12 h before oral administration of dexamethasone. It may also be used to further our understanding of the normal and disease process in the human body trough biomedical and therapeutically research during investigation before of the drugs registration. The analyses of drugs and metabolites in biological fluids, particularly plasma, serum or urine is one of the most demanding but one of the most common uses of high performance of liquid chromatography. Blood, plasma or

  11. Combining high productivity with high performance on commodity hardware

    DEFF Research Database (Denmark)

    Skovhede, Kenneth

    -like compiler for translating CIL bytecode on the CELL-BE. I then introduce a bytecode converter that transforms simple loops in Java bytecode to GPGPU capable code. I then introduce the numeric library for the Common Intermediate Language, NumCIL. I can then utilizing the vector programming model from Num......CIL and map this to the Bohrium framework. The result is a complete system that gives the user a choice of high-level languages with no explicit parallelism, yet seamlessly performs efficient execution on a number of hardware setups....

  12. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  13. The need for high performance breeder reactors

    International Nuclear Information System (INIS)

    Vaughan, R.D.; Chermanne, J.

    1977-01-01

    It can be easily demonstrated, on the basis of realistic estimates of continued high oil costs, that an increasing portion of the growth in energy demand must be supplied by nuclear power and that this one might account for 20% of all the energy production by the end of the century. Such assumptions lead very quickly to the conclusion that the discovery, extraction and processing of the uranium will not be able to follow the demand; the bottleneck will essentially be related to the rate at which the ore can be discovered and extracted, and not to the existing quantities nor their grade. Figures as high as 150.000 T/annum and more would be quickly reached, and it is necessary to wonder already now if enough capital can be attracted to meet these requirements. There is only one solution to this problem: improve the conversion ratio of the nuclear system and quickly reach the breeding; this would lead to the reduction of the natural uranium consumption by a factor of about 50. However, this condition is not sufficient; the commercial breeder must have a breeding gain as high as possible because the Pu out-of-pile time and the Pu losses in the cycle could lead to an unacceptable doubling time for the system, if the breeding gain is too low. That is the reason why it is vital to develop high performance breeder reactors. The present paper indicates how the Gas-cooled Breeder Reactor [GBR] can meet the problems mentioned above, on the basis of recent and realistic studies. It briefly describes the present status of GBR development, from the predecessors in the gas cooled reactor line, particularly the AGR. It shows how the GBR fuel takes mostly profit from the LMFBR fuel irradiation experience. It compares the GBR performance on a consistent basis with that of the LMFBR. The GBR capital and fuel cycle costs are compared with those of thermal and fast reactors respectively. The conclusion is, based on a cost-benefit study, that the GBR must be quickly developed in order

  14. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  15. How to create high-performing teams.

    Science.gov (United States)

    Lam, Samuel M

    2010-02-01

    This article is intended to discuss inspirational aspects on how to lead a high-performance team. Cogent topics discussed include how to hire staff through methods of "topgrading" with reference to Geoff Smart and "getting the right people on the bus" referencing Jim Collins' work. In addition, once the staff is hired, this article covers how to separate the "eagles from the ducks" and how to inspire one's staff by creating the right culture with suggestions for further reading by Don Miguel Ruiz (The four agreements) and John Maxwell (21 Irrefutable laws of leadership). In addition, Simon Sinek's concept of "Start with Why" is elaborated to help a leader know what the core element should be with any superior culture. Thieme Medical Publishers.

  16. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  17. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  18. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    parallelization and automatic vectorization is attractive as it transparently optimizes programs. The thesis contributes an improved dependence analysis for explicitly parallel programs. These improvements lead to more loops being vectorized, on average we achieve a speedup of 1.46 over the existing dependence...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... enlightens the programmer why a given optimization was not applied, and suggest how to change the source code to make it more amenable to optimizations. We show how this can yield significant speedups and achieve 2.4 faster execution on a real industrial use case. To aid in parallel debugging we propose...

  19. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method

    International Nuclear Information System (INIS)

    Rydberg, B.; Loebrich, M.; Cooper, P.K.

    1994-01-01

    The relative effectiveness of high-energy neon and iron ions for the production of DNA double-strand breaks was measured in one transformed and one nontransformed human fibroblast cell line using pulsed-field gel electrophoresis. The DNA released from the gel plug (fraction of activity released: FAR) as well as the size distribution of the DNA entering the gel were used to compare the effects of the heavy-ion exposure with X-ray exposure. Both methods gave similar results, indicating similar distributions of breaks over megabase-pair distances for the heavy ions and the X rays. The relative biological effectiveness (RBE) compared to 225 kVp X rays of initially induced DNA double-strand breaks was found to be 0.85 for 425 MeV/u neon ions (LET 32 keV/μm) and 0.42-0.55 for 250-600 MeV/u iron ions (LET 190-350 keV/μm). Postirradiation incubation showed less efficient repair of breaks induced by the neon ions and the 600 MeV/u iron ions compared to X rays. Survival experiments demonstrated RBE values larger than one for cell killing by the heavy ions in parallel experiments (neon: RBE = 1.2, iron: RBE = 2.3-3.0, based on D 10 values). It is concluded that either the initial yield of DNA double-strand breaks induced by the high-energy particles is lower than the yield for X rays, or the breaks induced by heavy ions are present in clusters that cannot be resolved with the technique used. These results are confirmed in the accompanying paper. 48 refs., 5 figs., 2 tabs

  20. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  1. High-performance mesoporous LiFePO₄ from Baker's yeast.

    Science.gov (United States)

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  3. Multicapillary SDS-gel electrophoresis for the analysis of fluorescently labeled mAb preparations: a high throughput quality control process for the production of QuantiPlasma and PlasmaScan mAb libraries.

    Science.gov (United States)

    Székely, Andrea; Szekrényes, Akos; Kerékgyártó, Márta; Balogh, Attila; Kádas, János; Lázár, József; Guttman, András; Kurucz, István; Takács, László

    2014-08-01

    Molecular heterogeneity of mAb preparations is the result of various co- and post-translational modifications and to contaminants related to the production process. Changes in molecular composition results in alterations of functional performance, therefore quality control and validation of therapeutic or diagnostic protein products is essential. A special case is the consistent production of mAb libraries (QuantiPlasma™ and PlasmaScan™) for proteome profiling, quality control of which represents a challenge because of high number of mAbs (>1000). Here, we devise a generally applicable multicapillary SDS-gel electrophoresis process for the analysis of fluorescently labeled mAb preparations for the high throughput quality control of mAbs of the QuantiPlasma™ and PlasmaScan™ libraries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extraction chromatography of indium (III) on silica gel impregnated with high molecular weight carboxylic acid and its analytical applications

    International Nuclear Information System (INIS)

    Majumdar, P.S.; Ray, U.S.

    1991-01-01

    Indium(III) was separated by extraction chromatography with Versatic 10 as a stationary phase on a column of silica gel from acetic acid and sodium acetate solution (pH 4.5-6.0). The optimum condition for extraction was studied based on the critical study of the relevant factors as effects of pH, flow rate on extraction and elution. Role of stripping agents on the elution was studied. The separation of indium from a number of elements was carried out. Indium(III) was separated from Alsup(III), Gasup(III), Tlsup(III), Zrsup(IV) and trivalent lanthanides which interfere under the recommended extraction condition by exploiting the differences in their stripping behaviour. (author). 7 refs., 1 tab., 1 fig

  5. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  6. High Power Flex-Propellant Arcjet Performance

    Science.gov (United States)

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  7. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  8. Optical-CT scanning of polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Oldham, M [Radiation Oncology Physics, Duke University Medical Center, Duke University, NC (United States)

    2004-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data.

  9. Optical-CT scanning of polymer gels

    International Nuclear Information System (INIS)

    Oldham, M

    2004-01-01

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data

  10. The Role of Performance Management in the High Performance Organisation

    NARCIS (Netherlands)

    de Waal, André A.; van der Heijden, Beatrice I.J.M.

    2014-01-01

    The allegiance of partnering organisations and their employees to an Extended Enterprise performance is its proverbial sword of Damocles. Literature on Extended Enterprises focuses on collaboration, inter-organizational integration and learning to avoid diminishing or missing allegiance becoming an

  11. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  12. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Luo, Junming; Tian, Xinlong; Wu, Shoukun; Chen, Chun; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice

  13. Evaluating performance of high efficiency mist eliminators

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K. [Mississippi State University, Institute for Clean Energy Technology, 205 Research Blvd, Starkville, MS (United States)

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  14. Enhancement of the electrochemical performance in LiFePO4 cathode materials synthesized by using the sol-gel method

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2010-11-01

    Full Text Available LiFePO4 powders were synthesized by using the sol-gel and the solid-state reaction methods. The chemical states of Fe ions were studied by using XPS, and their electrochemical properties according to the oxidation states of Fe ions were compared. The average oxidation state of Fe ions in LiFePO4 powders synthesized by using the solid-state reaction method was found to be Fe3+, on the other hand, that of Fe ions synthesized by using the sol-gel method was found to be Fe2+. The obtained discharge capacities were 50 mAh/g and 120 mAh/g at a rate 0.1 C in LiFePO4 synthesized by using the solid-state reaction and sol-gel methods, respectively. Relatively a good cycling stability was observed in sol-gel prepared powder.

  15. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  16. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  17. Highly dispersed spherical Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanocrystals via topotactic crystallization of aggregation-free gel particles from an effective inverse miniemulsion sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun; Zeng, Yanwei, E-mail: zengyw-njut@126.com, E-mail: stephen-zeng@njtech.edu.cn, E-mail: stephen-zeng@163.com; Han, Longxiang; Ding, Chuan; Cao, Liangliang; Li, Rongjie [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering (China)

    2015-09-15

    Aggregation-free spherical lanthanum-doped bismuth titanate (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}, BLT) gel particles with an average size of about 150 nm were successfully obtained from an inverse miniemulsion sol–gel process, with Span-80 acting as surfactant, n-butanol as co-surfactant, cyclohexane as continuous phase, and submicro-droplets of aqueous solution containing Bi{sup 3+}, La{sup 3+} and Ti{sup 4+} ions as dispersed phase, and then topotactically transformed into highly dispersed spherical BLT nanocrystals after an in situ crystallization at 600 °C for 8 h. It has been found that the BLT gel particles can be obtained via a moderate sol–gel reaction inside the miniemulsion droplets at 65 °C, but their morphology and aggregation degree are strongly affected by the relative amounts of Span-80 and n-butanol. The perfect spherical BLT gel particles with no aggregation can be achieved only under the condition of 3 wt% n-butanol relative to the mass of cyclohexane, with excessive amount of n-butanol leading to the formation of ill-gelled particles with irregular shapes, while insufficient addition of n-butanol resulting in terrible aggregation of gel particles. To understand the formation of aggregation-free spherical BLT gel particles, a tentative mechanism is proposed and discussed, which reveals that a well-coordinated oil–water interfacial film made up of Span-80 and n-butanol molecules and the appropriately enhanced evaporation of water from such interfaces should be responsible for the formation of aggregation-free spherical BLT gel particles. Graphical Abstract: Aggregation-free spherical BLT (Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}) gel particles can be prepared from an effective inverse miniemulsion sol–gel process, and subsequently topotactically transformed into spherical BLT nanocrystals through an in situ crystallization.

  18. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  19. An integrated high performance Fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1993-01-01

    A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip

  20. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  1. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  2. High thermoelectric performance of graphite nanofibers.

    Science.gov (United States)

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  3. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  4. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  5. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (CE) (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO{sub 2}/PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO{sub 2} and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  6. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-05-01

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO2/PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO2 and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  7. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    International Nuclear Information System (INIS)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-01-01

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO 2 /PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO 2 and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  8. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  9. Influence of sol-gel parameters on the properties of chemical optodes. Application to on-line analysis of high acidities

    International Nuclear Information System (INIS)

    Bouzon, C.

    2000-01-01

    An optical chemical sensor (optode) has been optimized to control high acidity levels (ranging from 1 to 10 N) of solutions from nuclear fuel reprocessing. The sol-gel process has been used successfully to prepare a porous silica layer doped with an indicator called Chromoxane Cyanine R (CCR). The sensor response represents changes in the absorption properties of the dye according to the acidity. In a first step, the leaching of the dye has been studied according to the sol-gel parameters. An experimental Hadamard matrix has been used to find the most influent parameters. The influent parameters resulting from the first step have been studied using a parametrical optimization based on a Doelhert experimental design. This optimization highlights a quantitative correlation between sensor response and the chemical parameters. Results indicate that the most suitable microporous xerogel films are those prepared using tetramethoxysilane at a pH set below the isoelectric point (lEP) of silica. The two other influent parameters are: water / alkoxide ratio (R) and aging temperature (T a ). The optimized values are R = 4 and T a = 55 C. The lifetime of the sensor tested in a permanent circulation has been increased from several days to over 6 months in a 8 N nitric acid solution. Furthermore, this sensor can be used with hydrochloric and perchloric acids. (author) [fr

  10. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    Science.gov (United States)

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  11. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  12. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  13. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  14. Improving the high performance concrete (HPC behaviour in high temperatures

    Directory of Open Access Journals (Sweden)

    Cattelan Antocheves De Lima, R.

    2003-12-01

    Full Text Available High performance concrete (HPC is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.

    El hormigón de alta resistencia (HAR es un material de gran interés para la comunidad científica y técnica, debido a las claras ventajas obtenidas en término de resistencia mecánica y durabilidad. A causa de estas características, el HAR, en sus diversas formas, en algunas aplicaciones está reemplazando gradualmente al hormigón de resistencia normal, especialmente en estructuras expuestas a ambientes severos. Sin embargo, la microestructura muy densa y la baja permeabilidad t

  15. Investigation of the dose rate dependency of the PAGAT gel dosimeter at low dose rates

    International Nuclear Information System (INIS)

    Zehtabian, M.; Faghihi, R.; Zahmatkesh, M.H.; Meigooni, A.S.; Mosleh-Shirazi, M.A.; Mehdizadeh, S.; Sina, S.; Bagheri, S.

    2012-01-01

    Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h −1 to 0.06 Gy h −1 . After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h −1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.

  16. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. © 2015 American Chemical Society.

  17. Spectrally high performing quantum cascade lasers

    Science.gov (United States)

    Toor, Fatima

    Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that

  18. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  19. Nova performance at ultra high fluence levels

    International Nuclear Information System (INIS)

    Hunt, J.T.

    1986-01-01

    Nova is a ten beam high power Nd:glass laser used for interial confinement fusion research. It was operated in the high power high energy regime following the completion of construction in December 1984. During this period several interesting nonlinear optical phenomena were observed. These phenomena are discussed in the text. 11 refs., 5 figs

  20. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...