WorldWideScience

Sample records for high performance electron

  1. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-11-23

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.

  2. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  3. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  4. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  5. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  6. High performance protection circuit for power electronics applications

    Science.gov (United States)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  7. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  8. High-Performance, Radiation-Hardened Electronics for Space Environments

    Science.gov (United States)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  9. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2014-06-01

    Brain\\'s stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components [1], they can perform 1016 operations per second while consuming less power than an electrical light bulb. In order to perform the same amount of computation with today\\'s most advanced computers, the output of an entire power station would be needed. In that sense, to obtain brain like computation, ultra-fast devices with ultra-low power consumption will have to be integrated in extremely reduced areas, achievable only if brain folded structure is mimicked. Therefore, to allow brain-inspired computation, flexible and transparent platform will be needed to achieve foldable structures and their integration on asymmetric surfaces. In this work, we show a new method to fabricate 3D and planar FET architectures in flexible and semitransparent silicon fabric without comprising performance and maintaining cost/yield advantage offered by silicon-based electronics.

  10. High performance computing in structural determination by electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J

    2008-10-01

    Computational advances have significantly contributed to the current role of electron cryomicroscopy (cryoEM) in structural biology. The needs for computational power are constantly growing with the increasing complexity of algorithms and the amount of data needed to push the resolution limits. High performance computing (HPC) is becoming paramount in cryoEM to cope with those computational needs. Since the nineties, different HPC strategies have been proposed for some specific problems in cryoEM and, in fact, some of them are already available in common software packages. Nevertheless, the literature is scattered in the areas of computer science and structural biology. In this communication, the HPC approaches devised for the computation-intensive tasks in cryoEM (single particles and tomography) are retrospectively reviewed and the future trends are discussed. Moreover, the HPC capabilities available in the most common cryoEM packages are surveyed, as an evidence of the importance of HPC in addressing the future challenges.

  11. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  12. High performance 3D printed electronics using electroless plated copper

    Directory of Open Access Journals (Sweden)

    Jin Rong Jian

    2017-03-01

    Full Text Available This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors’ phase-leading characteristics with corresponding phase angle changes.

  13. Analysis and performance of novel and highly efficient electronic ...

    Indian Academy of Sciences (India)

    This paper presents the electronic ballast, in which the coupling inductors are used to inject the current to the dc-bus capacitors, to boost the dc-bus voltage and to filter out the ripples from input line current. The current injection coupling inductor injects its stored energy to the dc-bus capacitors in every switching half cycle.

  14. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage

    Science.gov (United States)

    2016-03-31

    positioning has made high-performance, light-weight power sources of increasing importance to the US military. Polymer electrolyte membranes , which...AFRL-AFOSR-VA-TR-2016-0168 Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy...Sep 2015 4. TITLE AND SUBTITLE Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy

  15. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    Science.gov (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  16. A high performance angle-resolving electron spectrometer

    CERN Document Server

    Rossnagel, K; Skibowski, M; Harm, S

    2001-01-01

    We report on our new versatile photoelectron spectrometer Angular Spectrometer for Photoelectrons with High Energy REsolution (ASPHERE) which is part of beamline W3.2 (photon energies from 5 to 40 eV) but also compatible with beamline BW3 (40-1500 eV) at the Hamburger Synchrotronstrahlungslabor (HASYLAB). ASPHERE is a 180 deg. spherical analyzer (r sub 0 =100 mm) with a four-element input lens and is mounted on a two-axes goniometer with computer-controlled stepper motors which enables sequential angle-scanned measurements. The input lens is equipped with an iris aperture so that the angular resolution can be continuously adjusted from 0.2 deg. to 5 deg. sign . The fringe field of the condenser has been corrected for by tilting the angle of the input lens against the base plane of the hemispheres resulting in an overall energy resolution of 10 meV. To improve the speed of data acquisition three standard channeltron detectors are installed in the image plane of the analyzer which will be replaced by a multidet...

  17. High electron mobility ZnO film for high-performance inverted polymer solar cells

    Science.gov (United States)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  18. Photochemical Activation of Electrospun In2O3 Nanofibers for High-Performance Electronic Devices.

    Science.gov (United States)

    Meng, You; Liu, Guoxia; Liu, Ao; Guo, Zidong; Sun, Wenjia; Shan, Fukai

    2017-03-29

    Electrospun metal oxide nanofibers have been regarded as promising blocks for large-area, low-cost, and one-dimensional electronic devices. However, the electronic devices based on electrospun nanofibers usually suffer from poor performance and inferior viability. Here, we report an efficient photochemical process using UV light generated by a high-pressure mercury lamp to promote the electrical performance of the nanofiber-based electronic devices. Such UV treatment can lead to strong photochemical activation of electrospun nanofibers, and therefore, a stable adherent nanofiber network and electronic-clean interface were formed. By use of UV treatment, high-performance indium oxide (In2O3) nanofiber based field-effect transistors (FETs) with highly efficient modulation of electrical characteristics have been successfully fabricated. To reduce the operating voltage and further improve the device performance, the In2O3 nanofiber FETs based on solution-processed high-k AlOx dielectrics were integrated and investigated. The as-fabricated In2O3/AlOx FETs exhibit superior electrical performance, including a high mobility of 19.8 cm2 V-1 s-1, a large on/off current ratio of 106, and high stability over time and cycling. The improved performance of the UV-treated FETs was further confirmed by the integration of the electrospun In2O3/AlOx FETs into inverters. This work presents an important advance toward the practical applications of electrospun nanofibers for functional electronic devices.

  19. High-performance electronics for time-of-flight PET systems.

    Science.gov (United States)

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  20. RTI CircuitFilm Technology for Implementing High-Performance COTS ICs in Flexible Hybrid Electronics

    Science.gov (United States)

    2017-03-01

    embedding of thinned COTS devices into flexible substrates for advanced systems. Keywords: Flexible electronics; hybrid electronics; direct...launched into the marketplace, and the need for high performance systems and manufacturing process technologies spurred the creation of NextFlex, the...present the RTI CircuitFilmTM approach to embedding thinned COTS circuits into flexible substrates, and making direct interconnects to the embedded COTS

  1. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    Science.gov (United States)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  2. Ion implantation in compound semiconductors for high-performance electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-05-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb.

  3. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    Science.gov (United States)

    Parker, David; Singh, David J.

    2012-03-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 1021 cm-3, thermopowers as large in magnitude as 200 μV K-1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping.

  4. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    Science.gov (United States)

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  5. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.

    Science.gov (United States)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  6. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  7. High performance p-type molecular electron donors for OPV applications via alkylthiophene catenation chromophore extension

    Directory of Open Access Journals (Sweden)

    Paul B. Geraghty

    2016-11-01

    Full Text Available The synthesis of key 4-alkyl-substituted 5-(trimethylsilylthiophene-2-boronic acid pinacol esters 3 allowed a simplified alkylthiophene catenation process to access bis-, ter-, quater-, and quinquethiophene π-bridges for the synthesis of acceptor–π-bridge-donor– π-bridge-acceptor (A–π-D–π-A electron donor molecules. Based on the known benzodithiophene-terthiophene-rhodanine (BTR material, the BXR series of materials, BMR (X = M, monothiophene, BBR (X = B, bithiophene, known BTR (X = T, terthiophene, BQR (X = Q, quaterthiophene, and BPR (X = P(penta, quinquethiophene were synthesised to examine the influence of chromophore extension on the device performance and stability for OPV applications. The BTxR (x = 4, butyl, and x = 8, octyl series of materials were synthesised by varying the oligothiophene π-bridge alkyl substituent to examine structure–property relationships in OPV device performance. The devices assembled using electron donors with an extended chromophore (BQR and BPR are shown to be more thermally stable than the BTR containing devices, with un-optimized efficiencies up to 9.0% PCE. BQR has been incorporated as a secondary donor in ternary blend devices with PTB7-Th resulting in high-performance OPV devices with up to 10.7% PCE.

  8. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.

    Science.gov (United States)

    Cao, Qing; Han, Shu-jen; Tulevski, George S; Zhu, Yu; Lu, Darsen D; Haensch, Wilfried

    2013-03-01

    Single-walled carbon nanotubes have exceptional electronic properties and have been proposed as a replacement for silicon in applications such as low-cost thin-film transistors and high-performance logic devices. However, practical devices will require dense, aligned arrays of electronically pure nanotubes to optimize performance, maximize device packing density and provide sufficient drive current (or power output) for each transistor. Here, we show that aligned arrays of semiconducting carbon nanotubes can be assembled using the Langmuir-Schaefer method. The arrays have a semiconducting nanotube purity of 99% and can fully cover a surface with a nanotube density of more than 500 tubes/µm. The nanotube pitch is self-limited by the diameter of the nanotube plus the van der Waals separation, and the intrinsic mobility of the nanotubes is preserved after array assembly. Transistors fabricated using this approach exhibit significant device performance characteristics with a drive current density of more than 120 µA µm(-1), transconductance greater than 40 µS µm(-1) and on/off ratios of ∼1 × 10(3).

  9. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil.

    Science.gov (United States)

    Zhang, Heng; Xiang, Li; Yang, Yingjun; Xiao, Mengmeng; Han, Jie; Ding, Li; Zhang, Zhiyong; Hu, Youfan; Peng, Lian-Mao

    2018-02-01

    The longtime vacancy of high-performance complementary metal-oxide-semiconductor (CMOS) technology on plastics is a non-negligible obstacle to the applications of flexible electronics with advanced functions, such as continuous health monitoring with in situ signal processing and wireless communication capabilities, in which high speed, low power consumption, and complex functionality are desired for integrated circuits (ICs). Here, we report the implementation of carbon nanotube (CNT)-based high-performance CMOS technology and its application for signal processing in an integrated sensor system for human body monitoring on ultrathin plastic foil with a thickness of 2.5 μm. The performances of both the p- and n-type CNT field-effect transistors (FETs) are excellent and symmetric on plastic foil with a low operation voltage of 2 V: width-normalized transconductances (g m /W) as high as 4.69 μS/μm and 5.45 μS/μm, width-normalized on-state currents reaching 5.85 μA/μm and 6.05 μA/μm, and mobilities up to 80.26 cm 2 ·V -1 ·s -1 and 97.09 cm 2 ·V -1 ·s -1 , respectively, together with a current on/off ratio of approximately 10 5 . The devices were mechanically robust, withstanding a curvature radius down to 124 μm. Utilizing these transistors, various high-performance CMOS digital ICs with rail-to-rail output and a ring oscillator on plastics with an oscillation frequency of 5 MHz were demonstrated. Furthermore, an ultrathin skin-mounted humidity sensor system with in situ frequency modulation signal processing capability was realized to monitor human body sweating.

  10. Influence of high-energy electron irradiation on ultra-low-k characteristics and transistor performance

    Science.gov (United States)

    Steidel, Katja; Choi, Kang-Hoon; Freitag, Martin; Gutsch, Manuela; Hohle, Christoph; Seidel, Robert; Thrun, Xaver; Werner, Thomas

    2013-03-01

    While significant resources are invested in bringing EUV lithography to the market, multi electron beam direct patterning is still being considered as an alternative or complementary approach for patterning of advanced technology nodes. The possible introduction of direct write technology into an advanced process flow however may lead to new challenges. For example, the impact of high-energy electrons on dielectric materials and devices may lead to changes in the electrical parameters of the circuit compared to parts conventionally exposed by optical lithography. Furthermore, degradation of product reliability may occur. These questions have not yet been clarified in detail. For this study, pre-structured 300mm wafers with a 28nm BEOL stack were dry-exposed at various processing levels using a 50kV variable shaped e-beam direct writer. The electrical parameters of exposed structures were compared to non-exposed structures. The data of line resistance, capacitance, and line to line leakage were found to be within the typical distributions of the standard process. The dielectric breakdown voltages were also comparable between the splits, suggesting no dramatic TDDB performance degradation. With respect to high-k metal gate transistor parameters, a decrease in threshold voltage shift sensitivity was observed as well as a reduced sensitivity to hot carrier injection. More detailed investigations are needed to determine how these findings need to be considered and whether they represent a risk for the introduction of maskless lithography into the process flow of advanced technology nodes.

  11. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    Science.gov (United States)

    University of Illinois

    2009-04-21

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  12. Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2010-07-01

    Full Text Available Short period, high field undulators can enable short wavelength free electron lasers (FELs at low beam energy, with decreased gain length, thus allowing much more compact and less costly FEL systems. We describe an ongoing initiative to develop such an undulator based on an approach that utilizes novel cryogenic materials. While this effort was begun in the context of extending the photon energy regime of a laser-plasma accelerator based electron source, we consider here implications of its application to sub-fs scenarios in which more conventional injectors are employed. The use of such low-charge, ultrashort beams, which has recently been proposed as a method of obtaining single-spike performance in x-ray FELs, is seen in simulation to give unprecedented beam brightness. This brightness, when considered in tandem with short wavelength, high field undulators, enables extremely high performance FELs. Two examples discussed in this paper illustrate this point well. The first is the use of the SPARX injector at 2.1 GeV with 1 pC of charge to give 8 GW peak power in a single spike at 6.5 Å with a photon beam peak brightness greater than 10^{35}  photons/(s mm^{2} mrad^{2}  0.1%  BW, which will also reach LCLS wavelengths on the 5th harmonic. The second is the exploitation of the LCLS injector with 0.25 pC, 150 as pulses to lase at 1.5 Å using only 4.5 GeV energy; beyond this possibility, we present start-to-end simulations of lasing at unprecedented short wavelength, 0.15 Å, using 13.65 GeV LCLS design energy.

  13. Image Processor Electronics (IPE): The High-Performance Computing System for NASA SWIFT Mission

    Science.gov (United States)

    Nguyen, Quang H.; Settles, Beverly A.

    2003-01-01

    Gamma Ray Bursts (GRBs) are believed to be the most powerful explosions that have occurred in the Universe since the Big Bang and are a mystery to the scientific community. Swift, a NASA mission that includes international participation, was designed and built in preparation for a 2003 launch to help to determine the origin of Gamma Ray Bursts. Locating the position in the sky where a burst originates requires intensive computing, because the duration of a GRB can range between a few milliseconds up to approximately a minute. The instrument data system must constantly accept multiple images representing large regions of the sky that are generated by sixteen gamma ray detectors operating in parallel. It then must process the received images very quickly in order to determine the existence of possible gamma ray bursts and their locations. The high-performance instrument data computing system that accomplishes this is called the Image Processor Electronics (IPE). The IPE was designed, built and tested by NASA Goddard Space Flight Center (GSFC) in order to meet these challenging requirements. The IPE is a small size, low power and high performing computing system for space applications. This paper addresses the system implementation and the system hardware architecture of the IPE. The paper concludes with the IPE system performance that was measured during end-to-end system testing.

  14. Performance of electron, photon and muon triggers at the CMS High Level Trigger

    CERN Document Server

    AUTHOR|(CDS)2069734

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with the detector readout, offline storage and analysis capabilities. The CMS experiment has been designed with a two-level trigger system the Level 1 (L1) Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS reconstruction and analysis software running on a computer farm. Here we will present the design and performance of the main muon, electron and photon triggers, in view of the more challenging conditions for the LHC Run 2. For the muon case, we discuss the improvements in the isolation algorithm with the usage of Particle Flow techniques, which allow for better discrimination power between processes with prompt muons and the the effect of jets penetrating through the hadronic calorimeter into the muon chambers. For the ele...

  15. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman

    2017-03-29

    In today\\'s digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  16. High performance electronics based on aligned arrays of single walled carbon nanotubes

    Science.gov (United States)

    Kocabas, Coskun

    This dissertation describes a new approach for generating large area homogenous parallel array of single walled carbon nanotubes. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on single crystal quartz substrates. The anisotropic interaction associated with lattice structure of the quartz between SWNT and quartz surface guides SWNT during the deposition process. We have optimized CVD conditions that can produce arrays of individual single walled carbon nanotubes in horizontal configurations with perfect linear shapes, to within experimental uncertainties, and with levels of alignment >99.9%. We took the method one step further by printing these SWNT arrays on unusual substrate such as plastic. Using the developed printing technique, we can fabricate multilayer superstructures of single-walled carbon nanotubes (SWNTs) on a wide range of substrates. In order to understand charge transport through SWNT networks, we studied the scaling behaviours SWNT transistors by systematically varying degrees of alignment and coverage in transistors with a range of channel lengths and orientations perpendicular and parallel to the direction of alignment. We have modelled our experimental results using a first principles stick-percolation based transport model which provides a simple framework to interpret the sometimes counter-intuitive transport parameters measured in these devices. We have used dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin film semiconductor suitable for integration into transistors and other classes of electronic devices. These types of devices show excellent electric performance with mobilities and scaled transconductances approaching ˜2,000 cm2 V-1 s-1 and ˜3,000 S m-1, respectively. MOS and CMOS logic gates and mechanically flexible transistors on plastic were also demonstrated. Finally we have studied the high frequency performance of transistors that use aligned SWNT arrays. For the

  17. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiyuki, E-mail: yoshi-miyamoto@aist.go.jp; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takeuchi, Daisuke; Yamasaki, Satoshi [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, ALCA, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-09-28

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  18. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Yamasaki, Satoshi

    2014-09-01

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  19. High Power Electronics

    Science.gov (United States)

    Pendharker, Sameer

    High Power Electronics Future Trends: New process, circuit and packaging technologies over the last 5 years have led to significant innovation and technological developments in high power electronics. In this topic, the trends and performance improvements achieved in the industry will be discussed with focus on gallium-nitride (GaN) and silicon carbide (SiC). Both GaN and SiC technologies have been around for many years but have seen limited adoption and proliferation in high power systems. With the improved transistor performance, power conversion efficiencies and densities previously unrealizable are now available leading to new applications and new system. Trends in these technologies will also be reviewed and remaining challenges to overcome before true mass market adoption can be expected.

  20. Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    CERN Document Server

    Becker, R.; Dissertori, G.; Djambazov, L.; Donega, M.; Lustermann, W.; Marini, A.C.; Nessi-Tedaldi, F.; Pandolfi, F.; Peruzzi, M.; Schönenberger, M.; Cavallari, F.; Dafinei, I.; Diemoz, M.; Lope, C. Jorda; Meridiani, P.; Nuccetelli, M.; Paramatti, R.; Pellegrino, F.; Micheli, F.; Organtini, G.; Rahatlou, S.; Soffi, L.; Brianza, L.; Govoni, P.; Martelli, A.; Tabarelli de Fatis, T.; Monti, V.; Pastrone, N.; Trapani, P.P.; Candelise, V.; Della Ricca, G.

    2015-12-21

    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.

  1. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  2. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    Science.gov (United States)

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  3. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  4. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    Science.gov (United States)

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  5. High Performance Polarized Electron Photocathodes Based on InGaAlAs/AlGaAs Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mamaev, Yu.

    2004-12-10

    Highly efficient emitters of polarized electrons based on the InAlGaAs/AlGaAs superlattice give an optimistic prognosis to explorations of such structures as the sources for accelerators. A new set of these SL structures with minimized conduction band offset was designed and recently tested. A new technology of surface protection in MBE growth leads to a significantly reduced heat-cleaning temperature. At these lowered cleaning temperatures, the thermal degradation of the working structure parameters is avoided. As a result a polarization P of up to 91% at corresponding quantum efficiency (QE) of 0.3% was achieved at room temperature. A 50% increase in the photocathode lifetime has been achieved with Sb coverage.

  6. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    Science.gov (United States)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-performance electronic transport in the plane of 3D type-II Dirac semimetals

    Science.gov (United States)

    Ge, Yanfeng; Wan, Wenhui; Liu, Yong; Zhang, Ying

    2017-10-01

    Recently, the type-II Dirac fermion, a new topological state, has been proposed in the Al3V family. It breaks Lorentz symmetry and has unique physical properties. We use first-principles calculations to investigate electronic transport limited by phonon scattering. The electronic resistivity in the xy plane is estimated to be 24.1 μ Ω \\cdot cm for Al3V and is much lower than that along the z direction. The heavy electronic effective mass along the z direction and the main electron-phonon coupling, originating from the phonon modes vibrating along the z direction, lead to anisotropic electronic transport, which is also found in other members of the Al3V family.

  8. A high performance Front End Electronics for drift chamber readout in MEG experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Chiri, C.; Corvaglia, A.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Panareo, M. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Pepino, A., E-mail: aurora.pepino@le.infn.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Pinto, C.; Tassielli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy)

    2016-07-11

    Front End (FE) Electronics plays an essential role in Drift Chambers (DC) for time resolution and, therefore, spatial resolution. The use of cluster timing techniques, by measuring the timing of all the individual ionization clusters after the first one, may enable to reach resolutions even below 100 μm in the measurement of the impact parameter. To this purpose, a Front End Electronics with a wide bandwidth and low noise is mandatory in order to acquire and amplify the drift chamber signals.

  9. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing

    Science.gov (United States)

    Kim, Myung-Gil; Kanatzidis, Mercouri G.; Facchetti, Antonio; Marks, Tobin J.

    2011-05-01

    The development of large-area, low-cost electronics for flat-panel displays, sensor arrays, and flexible circuitry depends heavily on high-throughput fabrication processes and a choice of materials with appropriate performance characteristics. For different applications, high charge carrier mobility, high electrical conductivity, large dielectric constants, mechanical flexibility or optical transparency may be required. Although thin films of metal oxides could potentially meet all of these needs, at present they are deposited using slow and equipment-intensive techniques such as sputtering. Recently, solution processing schemes with high throughput have been developed, but these require high annealing temperatures (Tanneal>400 °C), which are incompatible with flexible polymeric substrates. Here we report combustion processing as a new general route to solution growth of diverse electronic metal oxide films (In2O3, a-Zn-Sn-O, a-In-Zn-O, ITO) at temperatures as low as 200 °C. We show that this method can be implemented to fabricate high-performance, optically transparent transistors on flexible plastic substrates.

  10. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  11. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Nersesyan, N. S.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2016-09-01

    A gamma-ray spectrometer based on LaBr3(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr3(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 107 s-1. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr3(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1-5 ms.

  12. Fabrication of organic semiconducting materials and high-performance organic thin-film transistors based on electron-irradiated polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeok Moo

    2011-02-15

    It was discovered that non-luminescent polystyrene (PS) can be converted to luminescent materials whose color can be changed in a wide visible range by electron irradiation. After the analyses of electron-irradiated PS, it was found that polycyclic aromatic hydrocarbons are produced by the irradiation and these PAHs are the origin of the luminescence from the electron-irradiated polymer. Based on the finding, a straightforward approach to produce desired light-emitting nanoarchitectures and nanopatterns only by irradiating an electron beam to the polymer was presented. In particular, the top-down irradiation approach provides a powerful tool to fabricate a variety of interesting nanoarchitectures when combined with bottom-up approaches; PS nanostructures prepared by self-assembling techniques can be directly transformed to luminescent nanostructures by electron irradiation while keeping their pristine morphologies. Light-emitting materials are widely used for optical, photonic, chemical and biomedical devices and a rapid progress in the devices requires well-defined luminescent nanoarchitectures. The approach presented here will be useful for a wide range of research fields including optics, photonics, chemistry, and biologics. On the other hand, a very simple but effective approach to produce high-performance rubrene organic thin-film transistors (OTFTs) with characteristics better than amorphous silicon TFTs was presented. Only by an abrupt heating process, high-quality crystalline rubrene semiconductor thin films that have almost ideal structures for OTFTs are created. The produced crystalline thin films consist of highly ordered, uniaxially oriented single-crystalline grains with large average sizes and the grains are interconnected with one another to form continuous films over the whole dielectric surfaces. Such high-quality crystalline rubrene thin films are remarkably rapidly produced in just 30 sec through this approach. Moreover, the increase of carrier

  13. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  14. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  15. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  16. High performance electronics for alignment regulation on the CLIC 30GHz modules

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, D. [University of Mar Del Plata (Argentina); Coosemans, W.; Pittin, R. [CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules, Geneve (Switzerland)

    1999-07-01

    CERN is studying a linear collider (CLIC) to obtain electron-positron collisions with centre-of-mass energies in the TeV range. To demonstrate the feasibility of CLIC, a test facility (CTF2) is being constructed. CTF2 consists of 4 identical modules, each 1.4 m long module consists of 2 linac with a girder and a doublet or a triplet quadrupole. Girders are elements that support mechanically the cavities of the accelerator while the main objective of the quadrupole is to focus particle beams. The alignment system has 2 principal utilities. The first is to pre-align the elements to make the beam pass through the aperture and produce signals in beam position monitors. In respect to these signals the girders and the quadrupoles are moved for making the definitive alignment. The second utility is to maintain the elements in this position. The alignment control system of CTF2 must regulate the position of the girders and quadrupoles with a precision < 10 {mu}m. In fact an accuracy of 1 {mu} has been obtained on CTF2. Thanks to its flexibility and its simplicity, the system is expected to adapt easily to CLIC even if it means to control modules that involve up to a maximum of 384 motors and 896 sensors.

  17. Boosting Electrical Performance of High-κ Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation.

    Science.gov (United States)

    Carlos, Emanuel; Branquinho, Rita; Kiazadeh, Asal; Martins, Jorge; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-11-22

    In the past decade, solution-based dielectric oxides have been widely studied in electronic applications enabling the use of low-cost processing technologies and device improvement. The most promising are the high-κ dielectrics, like aluminum (AlOx) and hafnium oxide (HfOx), that allow an easier trap filling in the semiconductor and the use of low operation voltage. However, in the case of HfOx, a high temperature usually is needed to induce a uniform and condensed film, which limits its applications in flexible electronics. This paper describes how to obtain HfOx dielectric thin films and the effect of their implementation in multilayer dielectrics (MLD) at low temperatures (150 °C) to apply in thin film transistors (TFTs) using the combination of solution combustion synthesis (SCS) and ultraviolet (UV) treatment. The single layers and multilayers did not show any trace of residual organics and exhibited a small surface roughness (2.7 MV·cm-1). The resulting TFTs presented a high performance at a low operation voltage (<3 V), with high saturation mobility (43.9 ± 1.1 cm2·V-1·s-1), a small subthreshold slope (0.066 ± 0.010 V·dec-1), current ratio of 1 × 106 and a good idle shelf life stability after 2 months. To our knowledge, the results achieved surpass the actual state-of-the-art. Finally, we demonstrated a low-voltage diode-connected inverter using MLD/IGZO TFTs working with a maximum gain of 1 at 2 V.

  18. Electronic cleansing for CT colonography: does it help CAD software performance in a high-risk population for colorectal cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Jae Yeon [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea); Kim, Se Hyung; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea); Seoul National University Hospital, Institute of Radiation Medicine, Seoul (Korea); Kim, Sang Gyun [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea)

    2010-08-15

    To compare the performance of computer-aided detection (CAD) for CT colonography (CTC) with and without electronic cleansing (EC) in a high-risk population tagged with a faecal tagging (FT) protocol. Thirty-two patients underwent CTC followed by same-day colonoscopy. All patients underwent bowel preparation and FT with barium and gastrografin. Each CTC dataset was processed with colon CAD with and without EC. Per-polyp sensitivity was calculated. The average number of false-positive (FP) results and their causes were also analysed and compared. Eighty-six polyps were detected in 29 patients. Per-polyp sensitivities of CAD with EC (93.8% and 100%) were higher than those without EC (84.4% and 87.5%) for polyps {>=}6 mm and {>=}10 mm, respectively. However, the differences were not significant. The average number (6.3) of FPs of CAD with EC was significantly larger than that (3.1) without EC. The distribution of FPs in both CAD settings was also significantly different. The most common cause of FPs was the ileocaecal valve in both datasets. However, untagged faeces was a significantly less common cause of FPs with EC, EC-related artefacts being more common. Electronic cleansing has the potential to improve per-polyp sensitivity of CTC CAD, although the significantly larger number of FPs with EC remains to be improved. (orig.)

  19. R&D of a high-performance DIRC detector for a future electron-ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Staceu L. [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly at focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.

  20. R&D of a High-Performance DIRC Detector for a Future Electron-Ion Collider

    Science.gov (United States)

    Allison, Stacey Lee

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.

  1. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

  2. High Availability Electronics standards

    CERN Document Server

    Larsen, Ray

    2007-01-01

    Availability modeling of the proposed International Linear Collider (ILC) predicts unacceptably low uptime with current electronics systems designs. High Availability (HA) analysis is being used as a guideline for all major machine systems including sources, utilities, cryogenics, magnets, power supplies, instrumentation and controls. R&D teams are seeking to achieve total machine high availability with nominal impact on system cost. The focus of this paper is the investigation of commercial standard HA architectures and packaging for Accelerator Controls and Instrumentation. Application of HA design principles to power systems and detector instrumentation are also discussed.

  3. High-performance double-filter soft x-ray diagnostic for measurement of electron temperature structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M. B.; Den Hartog, D. J.; Goetz, J. A.; Thomas, M. A.; Reyfman, M.; Kumar, S. T. A. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Franz, P. [Consorzio RFX, Associazione Euratom-ENEA per la Fusione, Padova (Italy)

    2012-10-15

    A new soft x-ray (SXR) T{sub e} and tomography diagnostic has been developed for MST that can be used for simultaneous SXR spectrum measurement, tomographically reconstructed emissivity, and reconstructed and line-of-sight electron temperature. The diagnostic utilizes high-performance differential transimpedance amplifiers (gain 10{sup 5}-10{sup 9}) to provide fast time response (up to 125 kHz), allowing for the study of plasma structure dynamics. SXR double-foil T{sub e} measurements are consistent with Thomson scattering. SXR brightness through a variety of filter thicknesses has been combined with charge exchange recombination spectroscopy (CHERS) impurity density measurements to determine the plasma energy spectrum. Magnetic pickup from the fluctuating magnetic fields in the plasma (B(tilde sign){approx}20 gauss at 10-20 kHz) has been dramatically reduced by improving the detector and housing design, so that nanoampere diode currents are now measured without interference from the substantial fluctuating magnetic field incident on the plasma facing surface of the probe.

  4. Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell.

    Science.gov (United States)

    Xu, Rongguo; Zhang, Kai; Liu, Xi; Jin, Yaocheng; Jiang, Xiao-Fang; Xu, Qing-Hua; Huang, Fei; Cao, Yong

    2018-01-17

    Solution-processable highly transparent and thickness-insensitive hybrid electron-transport layer (ETL) with enhanced electron-extraction and electron-transport properties for high-performance polymer solar cell was reported. With the incorporation of Cs 2 CO 3 into the poly[(9,9-bis(6'-((N,N-diethyl)-N-ethylammonium)-hexyl)-2,7-fluorene)-alt-1,4-diphenylsulfide]dibromide (PF6NPSBr) ETL, the power conversion efficiency (PCE) of resulted polymer solar cells (PSCs) was significantly enhanced due to the favorable interfacial contact, energy-level alignment, and thus facile electron transport in the PSC device. These organic-inorganic hybrid ETLs also exhibited high transparency and high electron mobility. All of these combined properties ensured us to design novel thickness-insensitive ETLs that avoid the parasitic absorption of ETL itself simultaneously. With the conventional device structure with poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th) as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM) as an acceptor, devices with hybrid ETLs exhibited PCE of 8.30-9.45% within a wide range of ETL thickness. A notable PCE of 10.78% was achieved with the thick active layer poly(2,5-thiophene-alt-5,5'-(5,10-bis(4-(2-octyldodecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)) (PTNT812):PC 71 BM. These findings indicated that doping alkali salt into the organic interfacial materials can be a promising strategy to design highly efficient and thickness-insensitive ETL, which may be suitable for large-area PSC modules device fabrication with roll-to-roll printing technique.

  5. Cross-Linkable and Dual Functional Hybrid Polymeric Electron Transporting Layer for High-Performance Inverted Polymer Solar Cells.

    Science.gov (United States)

    Dong, Sheng; Hu, Zhicheng; Zhang, Kai; Yin, Qingwu; Jiang, Xiaofang; Huang, Fei; Cao, Yong

    2017-09-01

    A cross-linkable dual functional polymer hybrid electron transport layer (ETL) is developed by simply adding an amino-functionalized polymer dopant (PN4N) and a light crosslinker into a commercialized n-type semiconductor (N2200) matrix. It is found that the resulting hybrid ETL not only has a good solvent resistance, facilitating multilayers device fabrication but also exhibits much improved electron transporting/extraction properties due to the doping between PN4N and N2200. As a result, by using PTB7-Th:PC 71 BM blend as an active layer, the inverted device based on the hybrid ETL can yield a prominent power conversion efficiency of around 10.07%. More interestingly, photovoltaic property studies of bilayer devices suggest that the absorption of the hybrid ETL contributes to photocurrent and hence the hybrid ETL simultaneously acts as both cathode interlayer material and an electron acceptor. The resulting inverted polymer solar cells function like a novel device architectures with a combination of a bulk heterojunction device and miniature bilayer devices. This work provides new insights on function of ETLs and may be open up a new direction for the design of new ETL materials and novel device architectures to further improve device performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The influence of hybrid alumina/titania materials as electron transmission layer in planar high-performance perovskite solar cells

    Science.gov (United States)

    Yuan, Songyang; Xia, Chao; Zhang, Chongzhen; Song, Weidong; Qi, Mingyue; Wang, Rupeng; Zhao, Liangliang; Li, Shuti

    2017-11-01

    As one of main layers in hybrid organic-inorganic perovskite solar cells (PSCs), electron transport materials (ETM) play an important role in getting high photoelectric conversion efficiency (PCE). Here, we investigate Al2O3/TiO2 hybrid materials as electron transmission layer in planar perovskite solar cells. The hybrid Al2O3/TiO2 material is proved to induce a better crystal quality of CH3NH3PbCl3- x I x perovskite layer as confirmed by X-ray diffractometer (XRD). The new-formed compact rough surface of ETM is responsible for the better excited electron transmission and light absorption, thus resulting in the improvement of short-circuit current ( J sc). Meanwhile, the embedded Al2O3 plays a key role in shifting the conduction band edge of ETM, thereby leading to the improvement of photo-voltage. The optimal value is obtained with the test of sequential changing Al2O3/TiO2 concentration ratio. Compared to the device with pure TiO2 as ETM, the devices assembled with Al2O3/TiO2 hybrid ETM showed improvement in J sc (from 13.65 to 18.71 mA/cm2) as well as in V oc (from 0.95 to 1.00 V), which brings about 27.6% enhancement in PCE based on the multifunctional hybrid TiO2/ Al2O3 ETM.

  7. High Performance Ambipolar Diketopyrrolopyrrole-Thieno[3,2-b]thiophene Copolymer Field-Effect Transistors with Balanced Hole and Electron Mobilities

    DEFF Research Database (Denmark)

    Chen, Zhuoying; Lee, Mi Jung; Ashraf, Raja Shahid

    2012-01-01

    Ambipolar OFETs with balanced hole and electron field-effect mobilities both exceeding 1 cm2 V−1 s−1 are achieved based on a single-solution-processed conjugated polymer, DPPT-TT, upon careful optimization of the device architecture, charge injection, and polymer processing. Such high-performance......-performance OFETs are promising for applications in ambipolar devices and integrated circuits, as well as model systems for fundamental studies....

  8. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    Science.gov (United States)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-03-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  9. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    Science.gov (United States)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  10. Facilitating NASA's Use of GEIA-STD-0005-1, Performance Standard for Aerospace and High Performance Electronic Systems Containing Lead-Free Solder

    Science.gov (United States)

    Plante, Jeannete

    2010-01-01

    GEIA-STD-0005-1 defines the objectives of, and requirements for, documenting processes that assure customers and regulatory agencies that AHP electronic systems containing lead-free solder, piece parts, and boards will satisfy the applicable requirements for performance, reliability, airworthiness, safety, and certify-ability throughout the specified life of performance. It communicates requirements for a Lead-Free Control Plan (LFCP) to assist suppliers in the development of their own Plans. The Plan documents the Plan Owner's (supplier's) processes, that assure their customer, and all other stakeholders that the Plan owner's products will continue to meet their requirements. The presentation reviews quality assurance requirements traceability and LFCP template instructions.

  11. New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations.

    Science.gov (United States)

    Epifanovsky, Evgeny; Wormit, Michael; Kuś, Tomasz; Landau, Arie; Zuev, Dmitry; Khistyaev, Kirill; Manohar, Prashant; Kaliman, Ilya; Dreuw, Andreas; Krylov, Anna I

    2013-10-05

    This article presents an open-source object-oriented C++ library of classes and routines to perform tensor algebra.The primary purpose of the library is to enable post-Hartree–Fock electronic structure methods; however, the code is general enough to be applicable in other areas of physical and computational sciences. The library supports tensors of arbitrary order (dimensionality), size, and symmetry. Implemented data structures and algorithms operate on large tensors by splitting them into smaller blocks, storing them both in core memory and in files on disk, and applying divide-and-conquer-type parallel algorithms to perform tensor algebra. The library offers a set of general tensor symmetry algorithms and a full implementation of tensor symmetries typically found in electronic structure theory: permutational, spin, and molecular point group symmetry. The Q-Chem electronic structure software uses this library to drive coupled-cluster, equation-of-motion, and algebraic-diagrammatic construction methods.

  12. Performance, Performance System, and High Performance System

    Science.gov (United States)

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  13. High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs.

    Science.gov (United States)

    Wan, Xiaohua; Zhang, Fa; Chu, Qi; Liu, Zhiyong

    2012-06-25

    Three-dimensional (3D) reconstruction in electron tomography (ET) has emerged as a leading technique to elucidate the molecular structures of complex biological specimens. Blob-based iterative methods are advantageous reconstruction methods for 3D reconstruction in ET, but demand huge computational costs. Multiple graphic processing units (multi-GPUs) offer an affordable platform to meet these demands. However, a synchronous communication scheme between multi-GPUs leads to idle GPU time, and a weighted matrix involved in iterative methods cannot be loaded into GPUs especially for large images due to the limited available memory of GPUs. In this paper we propose a multilevel parallel strategy combined with an asynchronous communication scheme and a blob-ELLR data structure to efficiently perform blob-based iterative reconstructions on multi-GPUs. The asynchronous communication scheme is used to minimize the idle GPU time so as to asynchronously overlap communications with computations. The blob-ELLR data structure only needs nearly 1/16 of the storage space in comparison with ELLPACK-R (ELLR) data structure and yields significant acceleration. Experimental results indicate that the multilevel parallel scheme combined with the asynchronous communication scheme and the blob-ELLR data structure allows efficient implementations of 3D reconstruction in ET on multi-GPUs.

  14. Fluorine containing C(60) derivatives for high-performance electron transporting field-effect transistors and integrated circuits

    NARCIS (Netherlands)

    Wobkenberg, Paul H.; Ball, James; Bradley, Donal D. C.; Anthopoulos, Thomas D.; Kooistra, Floris; Hummelen, Jan C.; de Leeuw, Dago M.; Wöbkenberg, Paul H.

    2008-01-01

    We report on electron transporting organic transistors and integrated ring oscillators based on four different solution processible fluorine containing C(60) derivatives. Electron mobilities up to 0.15 cm(2)/V s are obtained from as-prepared bottom-gate, bottom-contact transistors utilizing gold

  15. Long-Term Results of a Highly Performing Conformal Electron Therapy Technique for Chest Wall Irradiation After Mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Grellier Adedjouma, Noemie, E-mail: grellier.noemie@gmail.com [Department of Radiation Oncology, Institut Curie, Paris (France); Chevrier, Marion [Department of Biostatistics, Institut Curie, Paris (France); Fourquet, Alain; Costa, Emilie; Xu, Haoping [Department of Radiation Oncology, Institut Curie, Paris (France); Berger, Frederique [Department of Biostatistics, Institut Curie, Paris (France); Campana, Francois [Department of Radiation Oncology, Institut Curie, Paris (France); Laki, Fatima [Department of Surgical Oncology, Institut Curie, Paris (France); Beuzeboc, Philippe [Department of Medical Oncology, Institut Curie, Paris (France); Lefeuvre, Delphine [Department of Biostatistics, Institut Curie, Paris (France); Fournier-Bidoz, Nathalie; Kirova, Youlia M. [Department of Radiation Oncology, Institut Curie, Paris (France)

    2017-05-01

    Purpose: To evaluate locoregional control and survival after mastectomy, as well as toxicity, in patients irradiated by a previously described postmastectomy highly conformal electron beam radiation therapy technique (PMERT). Methods and Materials: We included all women irradiated by postmastectomy electron beam radiation therapy for nonmetastatic breast cancer between 2007 and 2011 in our department. Acute and late toxicities were retrospectively assessed using Common Terminology Criteria for Adverse Events version 3.0 criteria. Results: Among the 796 women included, 10.1% were triple-negative, 18.8% HER2-positive, and 24.6% received neoadjuvant chemotherapy (CT). Multifocal lesions were observed in 51.3% of women, and 64.6% had at least 1 involved lymph node (LN). Internal mammary chain, supraclavicular, infraclavicular, and axillary LNs were treated in 85.6%, 88.3%, 77.9%, and 14.9% of cases, respectively. With a median follow-up of 64 months (range, 6-102 months), 5-year locoregional recurrence–free survival and overall survival were 90% (95% confidence interval 88.1%-92.4%) and 90.9% (95% confidence interval 88.9%-93%), respectively. Early skin toxicity was scored as grade 1 in 58.5% of patients, grade 2 in 35.9%, and grade 3 in 4.5%. Concomitant CT was associated with increased grade 3 toxicity (P<.001). At long-term follow-up, 29.8% of patients presented temporary or permanent hyperpigmentation or telangiectasia or fibrosis (grade 1: 23.6%; grade 2: 5.2%; grade 3: 1%), with higher rates among smokers (P=.06); 274 patients (34.4%) underwent breast reconstruction. Only 24 patients (3%) had early esophagitis of grade 1. Only 3 patients developed ischemic heart disease: all had been treated by anthracycline-based CT with or without trastuzumab, all had been irradiated to the left chest wall and LN, and all presented numerous cardiovascular risk factors (2-4 factors). Conclusions: This study demonstrated the good efficacy of this technique in terms of

  16. Performance of high-pT electron identification in lead-lead collisions at 5.02 TeV with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2016-01-01

    Electrons may be copiously produced in heavy-ion collisions. They constitute important final states from leptonic decay channels of Z and W bosons. Their reconstruction and identification is very challenging in heavy-ion collisions due to large detector occupancy varying strongly with the collision centrality. The presented material will discuss performance of high-pT electrons, including trigger, reconstruction and identification in lead-lead data collected at 5.02 TeV by the ATLAS detector in 2015. Studies will be focused on optimization of the likelihood approach for identifying signal electrons coming mostly from W and Z boson decays. The likelihood method has been applied successfully in proton-proton collisions in the ATLAS experiment, but in order to perform well in lead-lead collisions, centrality dependence has had to be considered. Also during the 2015 heavy-ion run the ATLAS tracker operated with a different gas mixture from the nominal one used for electron identification in proton-proton collisio...

  17. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    Science.gov (United States)

    Hadjar, O.; Fowler, W. K.

    2012-06-01

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD™) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-μm object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  18. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices.

    Science.gov (United States)

    Santhiago, Murilo; Corrêa, Cátia C; Bernardes, Juliana S; Pereira, Mariane P; Oliveira, Letícia J M; Strauss, Mathias; Bufon, Carlos C B

    2017-07-19

    In this work, we demonstrate the first example of fully printed carbon nanomaterials on paper with unique features, aiming the fabrication of functional electronic and electrochemical devices. Bare and modified inks were prepared by combining carbon black and cellulose acetate to achieve high-performance conductive tracks with low sheet resistance. The carbon black tracks withstand extremely high folding cycles (>20 000 cycles), a new record-high with a response loss of less than 10%. The conductive tracks can also be used as 3D paper-based electrochemical cells with high heterogeneous rate constants, a feature that opens a myriad of electrochemical applications. As a relevant demonstrator, the conductive ink modified with Prussian-blue was electrochemically characterized proving to be very promising toward the detection of hydrogen peroxide at very low potentials. Moreover, carbon black circuits can be fully crumpled with negligible change in their electrical response. Fully printed motion and wearable sensors are additional examples where bioinspired microcracks are created on the conductive track. The wearable devices are capable of efficiently monitoring extremely low bending angles including human motions, fingers, and forearm. Here, to the best of our knowledge, the mechanical, electronic, and electrochemical performance of the proposed devices surpasses the most recent advances in paper-based devices.

  19. New gas electron-multiplier detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC design and prototype performance

    CERN Document Server

    Gruchala, Marek Michal

    2016-01-01

    The high luminosity LHC will require new detectors in the CMS endcap muon system to suppress the trigger rate of background events, to maintain high trigger efficiency for low transverse momentum muons, to enhance the robustness of muon detection in the high-flux environment of the endcap, and to extend the geometrical acceptance. We report on the design and recent progress towards implementing a new system of large-area, triple-foil gas electron-multiplier (GEM) detectors that will be installed in the first three of five muon detector stations in each endcap, the first station being closest to the interaction point. The first station will extend the geometric acceptance in pseudo-rapidity to eta lt 3.0 from the current limit of eta lt 2.4. The second and third stations will enhance the performance in the range 1.6 lt eta lt 2.4. We describe the design of the chambers and readout electronics and report on the performance of prototype systems in tests with cosmic ray muons, high-energy particlebeams, a...

  20. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    Science.gov (United States)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  1. Hybrid graphene-metal oxide solution processed electron transport layers for large area high-performance organic photovoltaics.

    Science.gov (United States)

    Beliatis, Michail J; Gandhi, Keyur K; Rozanski, Lynn J; Rhodes, Rhys; McCafferty, Liam; Alenezi, Mohammad R; Alshammari, Abdullah S; Mills, Christopher A; Jayawardena, K D G Imalka; Henley, Simon J; Silva, S Ravi P

    2014-04-02

    Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sawtooth control using electron cyclotron current drive in the presence of energetic particles in high performance ASDEX Upgrade plasmas

    CERN Document Server

    Chapman, I T; Maraschek, M; McCarthy, P J; Tardini, G

    2013-01-01

    Sawtooth control using steerable electron cyclotron current drive (ECCD) has been demonstrated in ASDEX Upgrade plasmas with a significant population of energetic ions in the plasma core and long uncontrolled sawtooth periods. The sawtooth period is found to be minimised when the ECCD resonance is swept to just inside the q = 1 surface. By utilising ECCD inside q = 1 for sawtooth control, it is possible to avoid the triggering of neoclassical tearing modes, even at significnatly higher pressure than anticipated in the ITER baseline scenario. Operation at 25% higher normalised pressure has been achieved when only modest ECCD power is used for sawtooth control compared to identical discharges without sawtooth control when neo-classical tearing modes are triggered by the sawteeth. Modelling suggests that the destabilisation arising from the change in the local magnetic shear caused by the ECCD is able to compete with the stabilising influence of the energetic particles inside the q = 1 surface.

  3. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS2 sandwich interfaces.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang

    2017-06-08

    Metal/insertion-MoS2 sandwich interfaces are designed to reduce the Schottky barriers at metal-MoS2 interfaces. The effects of geometric and electronic structures of two-dimensional (2D) insertion materials on the contact properties of metal/insertion-MoS2 interfaces are comparatively studied by first-principles calculations. Regardless of the geometric and electronic structures of 2D insertion materials, Fermi level pinning effects and charge scattering at the metal/insertion-MoS2 interface are weakened due to weak interactions between the insertion and MoS2 layers, no gap states and negligible structural deformations for MoS2 layers. The Schottky barriers at metal/insertion-MoS2 interfaces are induced by three interface dipoles and four potential steps that are determined by the charge transfers and structural deformations of 2D insertion materials. The lower the electron affinities of 2D insertion materials, the more are the electrons lost from the Sc surface, resulting in lower n-type Schottky barriers at Sc/insertion-MoS2 interfaces. The larger the ionization potentials and the thinner the thicknesses of 2D insertion materials, the fewer are the electrons that accumulate at the Pt surface, leading to lower p-type Schottky barriers at Pt/insertion-MoS2 interfaces. All Sc/insertion-MoS2 interfaces exhibited ohmic characters. The Pt/BN-MoS2 interface exhibits the lowest p-type Schottky barrier of 0.52 eV due to the largest ionization potential (∼6.88 eV) and the thinnest thickness (single atomic layer thickness) of BN. These results in this work are beneficial to understand and design high performance metal/insertion-MoS2 interfaces through 2D insertion materials.

  4. 3D-hybrid material design with electron/lithium-ion dual-conductivity for high-performance Li-sulfur batteries

    Science.gov (United States)

    Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng

    2017-02-01

    We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.

  5. Progress toward high energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev

    2001-07-20

    All electron cooling systems in operation to date can be classified as low energy systems. The electron beam kinetic energy in such a system is limited to about 0.6-1 MeV by the use of a conventional commercial Cockcroft-Walton high-voltage power supply. This, in turn, bounds the maximum ion kinetic energy, accessible for cooling with today's standard technology, to about 2 GeV/nucleon (about a factor of 2-3 times higher than the electron systems in operation today). Electron cooling systems with kinetic energies above 1 MeV could provide economically justifiable improvements in the performance of many existing and proposed accelerator complexes, such as RHIC, Tevatron and HERA. This paper reviews the status of the development of the technology needed for high energy electron cooling.

  6. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  7. Electronic Commerce: A National Performance Review Initiative.

    Science.gov (United States)

    1995-09-01

    Copy 33 of 38 copies i f i I 1 3 IDA DOCUMENT D-1729 ELECTRONIC COMMERCE : A NATIONAL PERFORMANCE REVIEW INITIATIVE ID^I ^ BIPs...as reflecting the official position of any Government Agency. IDA DOCUMENT D-1729 ELECTRONIC COMMERCE : A NATIONAL PERFORMANCE REVIEW INITIATIVE...implementation of electronic commerce , as part of the Nil, so that IDA will be well prepared to support the work of the Defense Information Systems Agency

  8. Performance of AlGaN/GaN Heterostructure Field-Effect Transistors for High-Frequency and High-Power Electronics

    Directory of Open Access Journals (Sweden)

    Peter Kordos

    2005-01-01

    Full Text Available Preparation and properties of GaN-based heterostructure field-effect transistors (HFETs for high-frequency and high-power applications are studied in this work. Performance of unpassivated and SiO2 passivated AlGaN/GaN HFETs, as well as passivated SiO2/AlGaN/GaN MOSHFETs (metal-oxide-semicondutor HFETs is compared. It is found that MOSHFETs exhibit better DC and RF properties than simple HFET counterparts. Deposited SiO2 yielded an increase of the sheet carrier density from 7.6x10^12 cm^-2 to 9.2x10^12 cm^-2 and subsequent increase of the static drain saturation current from 0.75 A/mm to 1.09 A/mm. Small-signal RF characterisation of MOSHFETs showed an extrinsic current gain cut-off frequency fT of 24 GHz and a maximum frequency of oscillation fmax of 40 GHz. These are fully comparable values with state-of-the-art AlGaN/GaN HFETs. Finnaůůy, microwave power measurements confirmed excellent performance of MOSHFETs:the output power measured at 7 GHz is about two-times larger than that of simple unpassived HFET. Thus, a great potential in application of GaN-based MOSHFETs is documented. 

  9. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm-2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  11. High Self-efficacy and High Use of Electronic Information may Predict Improved Academic Performance. A review of: Tella, Adeyinka, Adedeji Tella, C. O. Ayeni, and R. O. Omoba. “Self-efficacy and Use of Electronic Information as Predictors of Academic Performance.” Electronic Journal of Academic and Special Librarianship 8.2 (2007. 24 Apr. 2008

    Directory of Open Access Journals (Sweden)

    Stephanie J. Schulte

    2008-06-01

    Full Text Available Objective – To determine if self-efficacy and use of electronic information jointly predicted academic performance and to determine what information sources students used most often. Design – Descriptive surveys (scales for each of the three variables.Setting – University of Ibadan, Nigeria, a metropolitan, government-supported university with approximately 18,000 students.Subjects – Seven hundred undergraduate and graduate students randomly chosen from 7 departments of the faculty (i.e., college of education (100 students from each department.Methods – Students completed the Morgan-Jinks Self-Efficacy Scale and the Use of Electronic Information Scale. Academic performance was measured using a general aptitude test that covered general education, English language, and mathematics. The Morgan-Jinks scale consisted of 30 items, and the academic performance test consisted of 40 items. No instrument length was provided for the Use of Electronic Information Scale, and no details on the actual content of the general aptitude test or the Use of Electronic Information Scale were provided. These surveys were completed atthe university under conditions similar to that of a typical exam (i.e., no talking. All 700 subjects completed the surveys, and there was no evidence of participants providing informed consent or that they were given an opportunity to withdraw from the study. Data was analyzed using multiple regression analysis, a suitable analysis for this type of data.Main Results – Self-efficacy and use of electronic information together contributed to 9% (reported as 0.9% in the article of the variance in academic performance, and each variable statistically significantly contributed to predicting academic performance (pConclusion – The original authors conclude that self-efficacy and use of electronic information “predict and influence academic performance” (Discussion ¶ 6. Since use of electronic information is related to greater

  12. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  13. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  14. The Development of High-Performance Front-End Electronics Based Upon the QIE12 Custom ASIC for the ATLAS TileCal Upgrade

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2016-01-01

    We present the design of a new candidate front-end electronic readout system being developed for the ATLAS TileCal Phase 2 Upgrade. The system is based upon the QIE12 custom Application Specific Integrated Circuit. The chip features a least count sensitivity of 1.5 fC, more than 17 bits of dynamic range with logarithmic response, and an on-chip TDC with one nanosecond resolution. The design incorporates an on-board current integrator, and has several calibration systems. The new electronics will operate dead-timelessly at 40 MHz, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room using high-speed optical links. The system is one of three candidate systems for the Phase 2 Upgrade. We have built a “Demonstrator” – a fully functional prototype of the new system. Performance results from bench measurements and from a recent test beam campaign will be presented.

  15. CO2Plasma-Treated TiO2Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  16. Performance Training Carrel for Electronics Principles Course.

    Science.gov (United States)

    Kargo, Donald W.; Steffen, Dale A.

    This manual provides documentation for the design, construction, and operation of an interactive electronics training panel developed for a computer assisted performance training carrel. The panel is a plug-in module designed to simulate electronic circuitry and a PMS-6 multimeter as required for a troubleshooting fundamentals lesson in an Air…

  17. Electronics Technology. Performance Objectives. Basic Course.

    Science.gov (United States)

    Campbell, Guy

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 20 terminal objectives for a basic electronics technology course. The materials were developed for a two-semester course (2 hours daily) designed to include instruction in basic electricity and electronic fundamentals, and to develop skills and…

  18. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  19. High-current electron accelerator

    Science.gov (United States)

    Alekseyev, B. V.; Gorelikov, I. M.; Kazurov, V. I.; Mashkov, L. V.; Greshko, A. G.; Soklakov, G. I.; Fedorenko, A. I.; Yurekevich, K. B.

    1986-02-01

    A high current electron accelerator was developed and built on the basis of computer aided design calculations and electrolytic trough simulation. A 15 stage Arkadyev/Marx pulse voltage generator serves as the primary energy storing device. Each stage consists of two IK-100-0.4 capacitors connected in parallel and all immersed in transformer oil inside a metal container on electrically insulating posts. Each stage is shielded on both the positive and negative potential side. The shields, made of copper foil, not only smooth the electric field in the clearances but also constitute part of the commutating circuit and contribute to reduction of the overall generator size. The pulse voltage generator is triggered by a synchronizer through the conventional firing circuit of a TGI1-350/16 thyratron. To operate the accelerator in the nanosecond mode, the generator discharges into a diode through a twin shaping line. In this mode the accelerator can produce 0.8 MeV to 240 kA electron beams of 0.8 ns duration. To operate in the microsecond mode, the shaping line acts as storing capacitor, and the discharge gaps must be charged with polarity reversal in each stage. In this mode the accelerator can produce 0.5 MeV to 10 kA electron beams of 1 microsecond duration.

  20. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy......Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  1. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  2. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  3. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  4. A novel high-performance liquid chromatography-electron spray ionization-mass spectrometry method for simultaneous determination of guggulsterones, piperine and gallic acid in Triphala guggulu.

    Science.gov (United States)

    Muguli, Ganesh; Vadaparthi, P R Rao; Ramesh, B; Gowda, Vishakante; Paramesh, Rangesh; Jadhav, Atul N; Babu, K Suresh

    2015-05-01

    "Triphalaguggulu" is an important Ayurvedic formulation comprising of Guggulu, that is, Commiphora wightii (Arn.) Bhandari as a base wherein powdered fruits of triphala, that is, Phyllanthus emblica L., Terminalia bellirica (Gaertn.) Roxb and Terminalia chebula Retz, along with powdered fruit of Piper longum L. are compounded. This polyherbal preparation has been strongly recommended in chronic inflammation, piles, and fistula. However, due to the complexity of compound formulation standardization of commercial products is challenging. In the present communication marker-based standardization of "Triphalaguggulu" preparation using gallic acid (for triphala), piperine (for P. longum L.) and guggulsterones (for guggulu) is reported. These compounds of diverse chemistry were successfully separated on a Waters HR-C18 column by isocratic elution with methanol and water (80:20 v/v) as mobile phase at the flow rate of 1.0 mL/min coupled with photodiode array detector. These optimal chromatographic conditions were used for simultaneous quantification of gallic acid, guggulsterones (E and Z) and piperine in commercial samples by high-performance liquid chromatography-electron spray ionization-mass spectrometry and method was validated as per ICH guidelines.

  5. [Determination of carcinogenic aromatic amines derived from azo colorants in plastic components of electrical and electronic products by high performance liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Wang, Huihui; Li, Jingying

    2014-01-01

    A study for the simultaneous determination of 21 primary aromatic amines derived from the reduction of the azo colorants in plastic components of electrical and electronic products was conducted. Organic solvents were used to dissolve or swell the plastics to release the azo dyes existing in the plastic components. The azo colorants were reduced to aromatic amines under strong reducing condition of dithionite. Aromatic amines were extracted with methyl tert-butyl ether. Methanol-water (1: 1, v/v) was used to concentrate the extract to constant-volume for HPLC-MS analysis. The analytes were separated on a ZORBAX Eclipse XDB C18 column using the gradient elution with acetonitrile and 0.1% (v/v) formic acid aqueous solution at a flow rate of 0.6 mL/min. The analyte confirmation was performed using retention time and characteristic ions in selected ion monitoring (SIM) mode. The correlation coefficients (r) of all the standard curves were more than 0.998, and the limits of quantification of the analytes were 0.5 mg/kg. The recoveries were 60.1% - 129.5% for the 21 aromatic amines with the RSDs not more than 14.0% except for a few compounds. The results showed that the banned azo colorants in the plastic products can be analyzed qualitatively and quantitatively through reductive conversion into aromatic amines. In addition, this method has high accuracy and good precision.

  6. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh

    2013-01-01

    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  7. The performance of organic electronic ratchets

    Directory of Open Access Journals (Sweden)

    Erik M. Roeling

    2012-03-01

    Full Text Available Organic electronic ratchets rectify time-correlated external driving forces, giving output powers that can drive electronic circuitry. In this work their performance characteristics are investigated using numerical modeling and measurements. It is shown how the characteristic parameters of the time–varying asymmetric potential like length scales and amplitude, as well as the density and mobility of the charge carriers in the device influence the performance characteristics. Various ratchet efficiencies and their relations are discussed. With all settings close to optimum, a ratchet with charge displacement and power efficiencies close to 50% and 7% respectively is obtained.

  8. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  9. The asynchronous rapid single-flux quantum electronics ─ a promising alternative for the development of high-performance digital circuits

    Directory of Open Access Journals (Sweden)

    S. Terzieva

    2008-05-01

    Full Text Available In this paper, we investigate the application of the asynchronous logic approach for the realization of ultra high-speed digital electronics with high complexity. We evaluate the possible physical, technological, and schematical origins of restrictions limiting such an application, and propose solutions for their overcoming. Although our considerations are based on the rapid single-flux quantum technique, the conclusions derived can be generalized about any type of digital information coding.

  10. High-Performance Networking

    CERN Document Server

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  11. Electronic Banking And Bank Performance In Nigeria

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... retained their brand names and remain quoted in the Nigerian Stock Exchange since 1997. The profitability performance of these banks was measured in terms of returns on equity (ROE) and ... customers, bank management and shareholders with regard to electronic banking adoption for banking ...

  12. Quality assurance in electron beam welding of NaS high performance batteries in mass production; Qualitaetssicherung beim Elektronenstrahlschweissen von NaS-Hochleistungsbatterien in der Massenfertigung

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, D. [PTR Praezisionstechnik GmbH, Maintal (Germany); Lenz, F. [ABB Hochenergiebatterie GmbH, Heidelberg (Germany)

    1993-12-31

    Due to the new legal conditions and forced to minimise risks, the car industry is now requiring a quality standard which would have been unthinkable a few years ago. This requirement can only be taken into account in the production of mass-produced parts by new strategies in quality assurance. For a modern NaS high performance battery, which is intended to drive an electric car in the future, `quasi-zero fault` manufacture with a process capability of {+-}6 sigma is aimed at, ie: From a statistical point of view, fewer than 4 parts per million workpieces may be faulty. The article shows, using the example of electron beam welding of the NaS batteries, how, with an independent computer-aided quality assurance system, comprehensive process control was achieved and the precondition for 100 percent manufacturing documentation was created. (orig.) [Deutsch] Die Automobilindustrie fordert schon heute durch neue gesetzliche Rahmenbedingungen und unter dem Zwang der Risikominimierung einen Qualitaetsstandard, der vor wenigen Jahren undenkbar war. Nur durch neue Strategien in der Qualitaetssicherung kann dieser Forderung in der Produktion von Massenteilen Rechnung getragen werden. So wird fuer eine moderne NaS-Hochleistungsbatterie, die spaeter ein Elektroauto antreiben soll, eine `quasi null Fehler` Fertigung mit einer Prozessfaehigkeit von {+-}6 Sigma angestrebt, d.h. statistisch gesehen duerfen weniger als 4 Teile pro 1 Mio Werkstuecke fehlerhaft sein. Der Beitrag zeigt am Beispiel des Elektronenstrahlschweissens der NaS-Batterien, wie durch ein unabhaengiges computergestuetztes Qualitaetssicherungssystem eine umfassende Prozesskontrolle erreicht und die Voraussetzung fuer eine 100-prozentige Fertigungsdokumentation geschaffen wurde. (orig.)

  13. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  14. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  15. High Performance Liquid Chromatography

    Science.gov (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  16. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  17. High power beta electron device - Beyond betavoltaics.

    Science.gov (United States)

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 1013Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  18. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  19. Highly integrated electronics for the star TPC

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  20. Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

    OpenAIRE

    Gamm, B.; Popescu, R.; Blank, H.; Schneider, R; Beyer, A.; Gölzhäuser, A.; Gerthsen, D.

    2010-01-01

    Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weick...

  1. High Performance Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jesse E [Los Alamos National Laboratory

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  2. R high performance programming

    CERN Document Server

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  3. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  4. Oleylamine-functionalized graphene oxide as an electron block layer towards high-performance and photostable fullerene-free polymer solar cells.

    Science.gov (United States)

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2017-11-02

    Oleylamine-functionalized graphene oxide (GO) has a shallower energy level of conduction band (ECB) and a deeper energy level of the valence band (EVB) as compared to common hole extraction layer (HEL) materials, which make the electron block layer (EBL). Photoluminescence, X-ray photoelectron spectroscopy (XPS), and current density-voltage (J-V) curves with a large reverse bias voltage range obtained under dark conditions are used to determine whether GO layers play important roles in blocking the electron transport to the MoO3/Ag composite anode and prevent MoO3 diffusion into a photoactive layer under light illumination. Moreover, GO inserted between a photoactive layer and an HEL enhances charge carrier transport and collection and avoids the monomolecular recombination between the photoactive layer and HEL. Photovoltaic parameters and photostability measurements of inverted and forward PSCs have shown that upon introduction of GO, the performance and photostability of PSCs are improved. On adding GO to PSCs, the power conversion efficiency (PCE) increases approximately 5% and 4% and reduces the decay ratio to approximately 50% and 65% of the initial value for the inverted and forward PSCs, respectively.

  5. High Performance Low Mass Nanowire Enabled Heatpipe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  6. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  7. High Electron Mobility and Ambient Stability in Solution-Processed Perylene-Based Organic Field-Effect Transistors : origin of the enhanced electrical performances

    NARCIS (Netherlands)

    Piliego, Claudia; Jarzab, Dorota; Gigli, Giuseppe; Chen, Zhihua; Facchetti, Antonio; Loi, Maria Antonietto

    2009-01-01

    Bottom-contact n-channel OFETs basedon spin-coated films of N,N'-1H,1H-perfluorobutyl dicyanoperylenediimide (PDI-FCN(2)) exhibit a saturation-regime mobility of 0.15 cm(2) V(-1) s(-1) in vacuum and good air stability. These performances are attributed to the high crystallinity and to the edge-on

  8. ORELA performance. [Oak Ridge Electron Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T.A.

    1976-04-01

    The most recent information concerning the performance of ORELA that would be of interest to experimenters is presented. Included are characteristics of the beam in terms of both time and intensity and descriptions of systems routinely used to monitor these beam characteristics. For example, with klystron power and maximum electron gun output current at nominal values and for pulse repetition rates in the range above 800 pps, output beam energies per pulse vary from 5 J for 2.5 nsec-wide pulses to approximately 32 J for 10 nsec pulses and 65 J for 40 nsec pulses.

  9. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  10. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  11. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  12. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  13. Electron acceleration via high contrast laser interacting with submicron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Faenov, Anatoly; Pikuz, Tatiana [Joint Institute for High Temperature of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 (Russian Federation); Quantum Beams Science Directorate, JAEA, Kizugawa, Kyoto (Japan); Li Dazhang [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  14. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    Science.gov (United States)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  15. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  16. High-Yield Functional Molecular Electronic Devices.

    Science.gov (United States)

    Jeong, Hyunhak; Kim, Dongku; Xiang, Dong; Lee, Takhee

    2017-07-25

    An ultimate goal of molecular electronics, which seeks to incorporate molecular components into electronic circuit units, is to generate functional molecular electronic devices using individual or ensemble molecules to fulfill the increasing technical demands of the miniaturization of traditional silicon-based electronics. This review article presents a summary of recent efforts to pursue this ultimate aim, covering the development of reliable device platforms for high-yield ensemble molecular junctions and their utilization in functional molecular electronic devices, in which distinctive electronic functionalities are observed due to the functional molecules. In addition, other aspects pertaining to the practical application of molecular devices such as manufacturing compatibility with existing complementary metal-oxide-semiconductor technology, their integration, and flexible device applications are also discussed. These advances may contribute to a deeper understanding of charge transport characteristics through functional molecular junctions and provide a desirable roadmap for future practical molecular electronics applications.

  17. NGINX high performance

    CERN Document Server

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  18. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  19. C70/C70:pentacene/pentacene organic heterojunction as the connecting layer for high performance tandem organic light-emitting diodes: Mechanism investigation of electron injection and transport

    Science.gov (United States)

    Guo, Qingxun; Yang, Dezhi; Chen, Jiangshan; Qiao, Xianfeng; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge

    2017-03-01

    A high performance tandem organic light-emitting diode (OLED) is realized by employing a C70/C70:pentacene/pentacene organic heterojunction as the efficient charge generation layer (CGL). Not only more than two time enhancement of external quantum efficiency but also significant improvement in both power efficiency and lifetime are well achieved. The mechanism investigations find that the electron injection from the CGL to the adjacent electron transport layer (ETL) in tandem devices is injection rate-limited due to the high interface energy barrier between the CGL and the ETL. By the capacitance-frequency (C-F) and low temperature current density-voltage (J-V) characteristic analysis, we confirm that the electron transport is a space-charge-limited current process with exponential trap distribution. These traps are localized states below the lowest unoccupied molecular orbital edge inside the gap and would be filled with the upward shift of the Fermi level during the n-doping process. Furthermore, both the trap density (Ht) and the activation energy (Ea) could be carefully worked out through low temperature J-V measurements, which is very important for developing high performance tandem OLEDs.

  20. High Performance Computing at NASA

    Science.gov (United States)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  1. High Performance Nanostructured Silicon-Organic Quasi p-n Junction Solar Cells via Low-Temperature Deposited Hole and Electron Selective Layer.

    Science.gov (United States)

    Liu, Yuqiang; Zhang, Zhi-Guo; Xia, Zhouhui; Zhang, Jie; Liu, Yuan; Liang, Feng; Li, Yongfang; Song, Tao; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan

    2016-01-26

    Silicon-organic solar cells based on conjugated polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) on n-type silicon (n-Si) attract wide interest because of their potential for cost-effectiveness and high-efficiency. However, a lower barrier height (Φb) and a shallow built in potential (Vbi) of Schottky junction between n-Si and PSS hinders the power conversion efficiency (PCE) in comparison with those of traditional p-n junction. Here, a strong inversion layer was formed on n-Si surface by inserting a layer of 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), resulting in a quasi p-n junction. External quantum efficiency spectra, capacitance-voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p-n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi. The quasi p-n junction located on the front surface region of silicon substrates improved the short wavelength light conversion into photocurrent. In addition, a derivative perylene diimide (PDIN) layer between rear side of silicon and aluminum cathodes was used to block the holes from flowing to cathodes. As a result, the device with PDIN layer also improved photoresponse at longer wavelength. A champion PCE of 14.14% was achieved for the nanostructured silicon-organic device by combining HAT-CN and PDIN layers. The low temperature and simple device structure with quasi p-n junction promises cost-effective high performance photovoltaic techniques.

  2. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  3. Electron Excitation of High Dipole Moment Molecules

    Science.gov (United States)

    Goldsmith, Paul; Kauffmann, Jens

    2018-01-01

    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.

  4. High-performance sports medicine

    National Research Council Canada - National Science Library

    Speed, Cathy

    2013-01-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition...

  5. High average current electron guns for high-power free electron lasers

    Directory of Open Access Journals (Sweden)

    Phillip Sprangle

    2011-02-01

    Full Text Available High average power free-electron lasers (FELs require high average current electron injectors capable of generating high quality, short duration electron bunches with a repetition rate equal to the frequency of the rf linac. In this paper we propose, analyze, and simulate an rf-gated, gridded thermionic electron gun for use in high average power FELs. Thermionic cathodes can provide the necessary high current, have long lifetimes, and require modest vacuums. In the proposed configuration the rf-gated grid is modulated at the fundamental and 3rd harmonic of the linac frequency. The addition of the 3rd harmonic on the grid results in shorter electron bunches. In this configuration, every rf bucket of the linac accelerating field contains an electron bunch. Particle-in-cell simulations indicate that this approach can provide the necessary charge per bunch, bunch duration, longitudinal and transverse emittance, and repetition rate for high average power FELs operating in the IR regime.

  6. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  7. High Performance Space Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  8. Performance tuning for high performance computing systems

    OpenAIRE

    Pahuja, Himanshu

    2017-01-01

    A Distributed System is composed by integration between loosely coupled software components and the underlying hardware resources that can be distributed over the standard internet framework. High Performance Computing used to involve utilization of supercomputers which could churn a lot of computing power to process massively complex computational tasks, but is now evolving across distributed systems, thereby having the ability to utilize geographically distributed computing resources. We...

  9. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  10. Role of information systems in controlling costs: the electronic medical record (EMR) and the high-performance computing and communications (HPCC) efforts

    Science.gov (United States)

    Kun, Luis G.

    1994-12-01

    On October 18, 1991, the IEEE-USA produced an entity statement which endorsed the vital importance of the High Performance Computer and Communications Act of 1991 (HPCC) and called for the rapid implementation of all its elements. Efforts are now underway to develop a Computer Based Patient Record (CBPR), the National Information Infrastructure (NII) as part of the HPCC, and the so-called `Patient Card'. Multiple legislative initiatives which address these and related information technology issues are pending in Congress. Clearly, a national information system will greatly affect the way health care delivery is provided to the United States public. Timely and reliable information represents a critical element in any initiative to reform the health care system as well as to protect and improve the health of every person. Appropriately used, information technologies offer a vital means of improving the quality of patient care, increasing access to universal care and lowering overall costs within a national health care program. Health care reform legislation should reflect increased budgetary support and a legal mandate for the creation of a national health care information system by: (1) constructing a National Information Infrastructure; (2) building a Computer Based Patient Record System; (3) bringing the collective resources of our National Laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; and (4) utilizing Government (e.g. DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs and accelerate technology transfer to address health care issues.

  11. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  12. High Performance Flexible Thermal Link

    Science.gov (United States)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  13. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    Energy Technology Data Exchange (ETDEWEB)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar; Day, Tristan W.; Zeier, Wolfgang G.; Kolb, Ute; Snyder, G. Jeffrey; Tremel, Wolfgang (JLU); (NWU); (JG-UM)

    2017-05-26

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag8SiSe6, which exhibits promising thermoelectric performance close to room temperature.

  14. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  15. Organic High Electron Mobility Transistors Realized by 2D Electron Gas.

    Science.gov (United States)

    Zhang, Panlong; Wang, Haibo; Yan, Donghang

    2017-09-01

    A key breakthrough in inorganic modern electronics is the energy-band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field-effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high-mobility crystalline organic materials. Therefore, there emerges a chance for applying energy-band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy-band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm 2 V -1 s -1 , and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy-band engineering, offering a promising way for the step forward of organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)

    Science.gov (United States)

    2017-03-01

    STAR Performance with SPEAR ( Signal Processing Electronic Attack RFIC) Luciano Boglione, Clayton Davis, Joel Goodman, Matthew McKeon, David...Parrett, Sanghoon Shin and Naomi Walker Naval Research Laboratory Washington, DC, 20375 Figure 1: The Signal Processing Electronic Attack RFIC...SPEAR) system. Abstract: The Signal Processing Electronic Attack RFIC (SPEAR) is a simultaneous transmit and receive (STAR) system capable of

  17. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  18. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  19. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  20. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  1. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  2. The High Performance Computing Initiative

    Science.gov (United States)

    Holcomb, Lee B.; Smith, Paul H.; Macdonald, Michael J.

    1991-01-01

    The paper discusses NASA High Performance Computing Initiative (HPCI), an essential component of the Federal High Performance Computing Program. The HPCI program is designed to provide a thousandfold increase in computing performance, and apply the technologies to NASA 'Grand Challenges'. The Grand Challenges chosen include integrated multidisciplinary simulations and design optimizations of aerospace vehicles throughout the mission profiles; the multidisciplinary modeling and data analysis of the earth and space science physical phenomena; and the spaceborne control of automated systems, handling, and analysis of sensor data and real-time response to sensor stimuli.

  3. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  4. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  5. A high brightness electron beam for Free Electron Lasers

    NARCIS (Netherlands)

    van Oerle, Bartholomeus Mathias; van Oerle, B.M.

    1997-01-01

    In a free electron laser, coherent radiation is generated by letting an electron beam propagate through an alternating magnetic field. The magnetic field is created by a linear array of magnets, which is called an undulator or a wiggler. The wavelength of the laser radiation depends on the amplitude

  6. Fabrication technique for moth-eye structure using low-energy electron-beam projection lithography for high-performance blue-light-emitting diode on SiC substrate

    Science.gov (United States)

    Seko, T.; Mabuchi, S.; Teramae, F.; Suzuki, A.; Kaneko, Y.; Kawai, R.; Kamiyama, S.; Iwaya, M.; Amano, H.; Akasaki, I.

    2009-02-01

    To realize high-efficiency light-emitting diodes (LEDs), it is indispensable to increase light extraction efficiency. We propose the moth-eye structure on the surface of an LED chip, which consists of periodic cones with a pitch of optical wavelength scale, and enables the significantly enhancement of light extraction efficiency. We have developed a new technique for moth-eye structure fabrication, on the basis of low-energy electron-beam projection lithography (LEEPL), which can be applied to the mass production of LEDs. The moth-eye structure formed at the bottom of a SiC wafer has periodically arranged cones with a 300 nm pitch and a 750 nm height. We also present blue LEDs fabricated on SiC substrates with and without the moth-eye structure, and discuss the effect of the moth-eye structure on the performance of LEDs.

  7. High Performance Tools And Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  8. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  9. Quantitative high-resolution transmission electron microscopy of single atoms.

    Science.gov (United States)

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  10. Electronic Banking And Bank Performance In Nigeria | Abaenewe ...

    African Journals Online (AJOL)

    This study investigated the profitability performance of Nigerian banks following the full adoption of electronic banking system. The study became necessary as a result of increased penetration of electronic banking which has redefined the banking operations in Nigeria and around the world. Judgmental sampling method ...

  11. A Comparative Study of Electronic Performance Support Systems

    Science.gov (United States)

    Nguyen, Frank; Klein, James D.; Sullivan, Howard

    2005-01-01

    Electronic performance support systems (EPSS) deliver relevant support information to users while they are performing tasks. The present study examined the effect of different types of EPSS on user performance, attitudes, system use and time on task. Employees at a manufacturing company were asked to complete a procedural software task and…

  12. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  13. High-performance sports medicine.

    Science.gov (United States)

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  14. Selective crystallization of regioregularity controlled polythiophene for enhancing mechanical stability and electronic performance

    Science.gov (United States)

    Kim, Hyeong Jun; Yu, Hojeong; Kim, Jae Han; Kim, Jin-Sung; Kim, Taek Soo; Oh, Joon Hak; Kim, Bumjoon

    Considering the many potential applications of organic electronics in portable electronic devices, it is of great importance to develop an electro-active material that possesses mechanical stability and high electronic performance. Coexistence of both properties, however, is very difficult to achieve because good electronic performance is associated with long conjugation length, and high crystallinity often results in stiffness and brittleness. Herein, we utilize P3HT with two different regioregularities: high RR (98%) P3HT has high electronic properties but poor mechanical resilience, and low RR P3HT (68%) exhibits high elasticity and ductility but poor electronic performance. Selective crystallization of high RR P3HT induced by solution assembly allows construction of percolated networks of high RR P3HT nanowires (NWs) embedded in low RR P3HT matrix. Only 5 wt% high RR P3HT is required to reach a hole mobility comparable to that of high RR P3HT, and high RR NWs embedded in film exhibits 20 times higher elongation at break. Selective self-assembly allows us to overcome the fragile nature of highly crystalline conjugated polymers without losing their electronic properties.

  15. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...

  16. Assessing Human Task Performance When Performing Electronic Procedures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Limited astronaut time can result in high crew workload and fatigue during International Space Station (ISS) operations. Additionally crew skills can decline over...

  17. Fundamentals of high energy electron beam generation

    Science.gov (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  18. High-performing physician executives.

    Science.gov (United States)

    Brown, M; Larson, S R; McCool, B P

    1988-01-01

    Physician leadership extends beyond traditional clinical disciplines to hospital administration, group practice management, health policy making, management of managed care programs, and many business positions. What kind of person makes a good physician executive? What stands out as the most important motivations, attributes, and interests of high-performing physician executives? How does this compare with non-physician health care executives? Such questions have long been high on the agenda of executives in other industries. This article builds on existing formal assessments of leadership attributes of high-performing business, government, and educational executives and on closer examination of health care executives. Previous studies looked at the need for innovative, entrepreneurial, energetic, community-oriented leaders for positions throughout health care. Traits that distinguish excellence and leadership were described by Brown and McCool.* That study characterized successful leaders in terms of physical strengths (high energy, good health, and propensity for hard work), mental strengths (creativity, intuition, and innovation), and organizational strengths (mission orientation, vision, and entrepreneurial spirit). In this investigation, a subset of health care executives, including physician executives, was examined more closely. It was initially assumed that successful physician executives exhibit many of the same positive traits as do nonphysician executives. This assumption was tested with physician leaders in a range of administrative and managerial positions. We also set out to identify key differences between physician and nonphysician executives. Even with our limited exploration, it seems to us that physician executives probably do differ from nonphysician executives.

  19. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  20. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  1. High Performance Proactive Digital Forensics

    Science.gov (United States)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  2. Simulation of electron beam dynamics in a high-energy electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.V. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation)]. E-mail: a.v.ivanov@inp.nsk.su; Panasyuk, V.M. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Parkhomchuk, V.V. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Reva, V.B. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation); Tiunov, M.A. [BINP, Acad.Lavrentiev, 11, BudkerINP, Novosibirsk, 630090 (Russian Federation)

    2006-03-01

    Electron cooling is now a standard tool for improvement of ion beam parameters in storage rings. In BINP, after successful development of several low-energy electron cooling devices, a project involving a high-energy electron cooler for GSI has been proposed. This cooler has a classical electrostatic scheme with electron energy of up to 8 MeV. Here we present results of numerical simulations of electron beam formation, acceleration and collection for this project. Special attention is paid to a description of the new codes developed in BINP. The electron gun and collector are simulated by the 2D USAM code. This code is modified to calculate collector performance with consideration of secondary emission. The BEAM code is used for simulation of dynamics in the accelerating section. A new 3D electrostatic code, ELEC3D, developed for the simulation of beam dynamics in bends with electrostatic compensation of the centrifugal drift, is described. This code is combined with the existing MAG3D magnetostatic code to provide a universal tool for 3D static calculations.

  3. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential...... this problem. This way, the delta-sigma quantizer's feedback signal is obtained by a multiple-stage quantization, where the loop quantizer (low-resolution and minimum-delay) implements only the last-stage quantization. Hence, high-speed, high-resolutiondelta-sigma quantization is feasible without using complex...... circuitry. An improved version of the MASH topology is also proposed. A delta-sigma quantizer is used to quantize the input signal into an oversampled digital representation of low-to-moderate resolution. The delta-sigma quantizer'struncation error is estimated either directly, or as the first...

  4. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  5. High-power 95 GHz pulsed electron spin resonance spectrometer

    Science.gov (United States)

    Hofbauer, W.; Earle, K. A.; Dunnam, C. R.; Moscicki, J. K.; Freed, J. H.

    2004-05-01

    High-field/high-frequency electron spin resonance (ESR) offers improved sensitivity and resolution compared to ESR at conventional fields and frequencies. However, most high-field/high-frequency ESR spectrometers suffer from limited mm-wave power, thereby requiring long mm-wave pulses. This precludes their use when relaxation times are short, e.g., in fluid samples. Low mm-wave power is also a major factor limiting the achievable spectral coverage and thereby the multiplex advantage of Fourier transform ESR (FTESR) experiments. High-power pulses are needed to perform two-dimensional (2D) FTESR experiments, which can unravel the dynamics of a spin system in great detail, making it an excellent tool for studying spin and molecular dynamics. We report on the design and implementation of a high-power, high-bandwidth, pulsed ESR spectrometer operating at 95 GHz. One of the principal design goals was the ability to investigate dynamic processes in aqueous samples at physiological temperatures with the intent to study biological systems. In initial experiments on aqueous samples at room temperature, we achieved 200 MHz spectral coverage at a sensitivity of 1.1×1010√s spins and a dead time of less than 50 ns. 2D-electron-electron double resonance experiments on aqueous samples are discussed to demonstrate the practical application of such a spectrometer.

  6. Designing Electronic Performance Support Systems: Models and Instructional Strategies Employed

    Science.gov (United States)

    Nekvinda, Christopher D.

    2011-01-01

    The purpose of this qualitative study was to determine whether instructional designers and performance technologists utilize instructional design models when designing and developing electronic performance support systems (EPSS). The study also explored if these same designers were utilizing instructional strategies within their EPSS to support…

  7. Electron Identification Performance and First Measurement of $W \\to e + \

    CERN Document Server

    Ueno, Rynichi

    2010-01-01

    The identification of electrons is important for the ATLAS experiment because electrons are present in many interactions of interest produced at the Large Hadron Collider. A deep knowledge of the detector, the electron identification algorithms, and the calibration techniques are crucial in order to accomplish this task. This thesis work presents a Monte Carlo study using electrons from the W —> e + v process to evaluate the performance of the ATLAS electromagnetic calorimeter. A significant number of electrons was produced in the early ATLAS collision runs at centre-of-mass energies of 900 GeV and 7 TeV between November 2009 and April 2010, and their properties are presented. Finally, a first measurement of W —> e + v process with the ATLAS experiment was successfully accomplished with the first C = 1.0 nb_ 1 of data at the 7 TeV collision energy, and the properties of the W candidates are also detailed.

  8. Sourcebook on high-temperature electronics and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F. (ed.)

    1981-10-01

    This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

  9. High Performance Perovskite Solar Cells

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  10. Review of high-power pulsed systems at the Institute of High Current Electronics

    Directory of Open Access Journals (Sweden)

    A.A. Kim

    2016-07-01

    Full Text Available In this paper, we give a review of some most powerful pulsed systems developed at the Institute of High Current Electronics (HCEI, Siberian Branch, Russian Academy of Sciences, and describe latest achievements of the teams dealing with these installations. Besides the presented high-power systems, HCEI performs numerous investigations using much less powerful generators. For instance, last year much attention was paying to the research and development of the intense low-energy (<200 kV high-current electron and ion beam and plasma sources, and their application in the technology [1–3].

  11. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  12. Direct current performance and current collapse in AlGaN/GaN insulated gate high-electron mobility transistors on Si (1 1 1) substrate with very thin SiO2 gate dielectric

    Science.gov (United States)

    Lachab, M.; Sultana, M.; Fatima, H.; Adivarahan, V.; Fareed, Q.; Khan, M. A.

    2012-12-01

    This work reports on the dc performance of AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) grown on Si (1 1 1) substrate and the study of current dispersion in these devices using various widely adopted methods. The MOSHEMTs were fabricated using a very thin (4.2 nm) SiO2 film as the gate insulator and were subsequently passivated with about 30 nm thick Si3N4 layer. For devices with 2.5 µm long gates and a 4 µm drain-to-source spacing, the maximum saturation drain current density was 822 mA mm-1 at + 4 V gate bias and the peak external transconductance was ˜100 mS mm-1. Furthermore, the oxide layer successfully suppressed the drain and gate leakage currents with the subthreshold current and the gate diode current levels exceeding by more than three orders of magnitude the levels found in their Schottky gate counterparts. Capacitance-voltage and dynamic current-voltage measurements were carried out to assess the oxide quality as well as the devices’ surface properties after passivation. The efficacy of each of these characterization techniques to probe the presence of interface traps and oxide charge in the nitride-based transistors is also discussed.

  13. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  14. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.

    Science.gov (United States)

    Mortazavi, Bohayra; Lherbier, Aurélien; Fan, Zheyong; Harju, Ari; Rabczuk, Timon; Charlier, Jean-Christophe

    2017-10-20

    For centuries, cutting and folding papers with special patterns have been used to build beautiful, flexible and complex three-dimensional structures. Inspired by the old idea of kirigami (paper cutting), and the outstanding properties of graphene, recently graphene kirigami structures were fabricated to enhance the stretchability of graphene. However, the possibility of further tuning the electronic and thermal transport along the 2D kirigami structures has remained original to investigate. We therefore performed extensive atomistic simulations to explore the electronic, heat and load transfer along various graphene kirigami structures. The mechanical response and thermal transport were explored using classical molecular dynamics simulations. We then used a real-space Kubo-Greenwood formalism to investigate the charge transport characteristics in graphene kirigami. Our results reveal that graphene kirigami structures present highly anisotropic thermal and electrical transport. Interestingly, we show the possibility of tuning the thermal conductivity of graphene by four orders of magnitude. Moreover, we discuss the engineering of kirigami patterns to further enhance their stretchability by more than 10 times as compared with pristine graphene. Our study not only provides a general understanding concerning the engineering of electronic, thermal and mechanical response of graphene, but more importantly can also be useful to guide future studies with respect to the synthesis of other 2D material kirigami structures, to reach highly flexible and stretchable nanostructures with finely tunable electronic and thermal properties.

  15. High efficiency digital cooler electronics for aerospace applications

    Science.gov (United States)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  16. Effects of electronic outlining on students’ argumentative writing performance

    NARCIS (Netherlands)

    De Smet, Milou; Broekkamp, Hein; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2011-01-01

    De Smet, M. J. R., Broekkamp, H., Brand-Gruwel, S., & Kirschner, P. A. (2011). Effects of electronic outlining on students’ argumentative writing performance. Journal of Computer Assisted Learning, 27(6), 557-574. doi: 0.1111/j.1365-2729.2011.00418.x

  17. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  18. Single-stage electronic ballast with high-power factor

    Science.gov (United States)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  19. High Electron Confinement under High Electric Field in RF GaN-on-Silicon HEMTs

    Directory of Open Access Journals (Sweden)

    Farid Medjdoub

    2016-03-01

    Full Text Available We report on AlN/GaN high electron mobility transistors grown on silicon substrate with highly optimized electron confinement under a high electric field. The fabricated short devices (sub-10-nm barrier thickness with a gate length of 120 nm using gate-to-drain distances below 2 µm deliver a unique breakdown field close to 100 V/µm while offering high frequency performance. The low leakage current well below 1 µA/mm is achieved without using any gate dielectrics which typically degrade both the frequency performance and the device reliability. This achievement is mainly attributed to the optimization of material design and processing quality and paves the way for millimeter-wave devices operating at drain biases above 40 V, which would be only limited by the thermal dissipation.

  20. High performance platforms for integrated nonlinear optics

    Science.gov (United States)

    Moss, David J.; Morandotti, Roberto

    2014-09-01

    Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.

  1. Manufacturing Advantage: Why High-Performance Work Systems Pay Off.

    Science.gov (United States)

    Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.

    A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…

  2. Thermoelectric performance and electronic properties of transition metal monosilicides

    Science.gov (United States)

    Ou-Yang, T. Y.; Shu, G. J.; Fuh, H. R.

    2017-10-01

    We have performed a comprehensive series of lattice structure, band structure, electrical transport, and thermoelectric performances measurements for MnSi, FeSi, and CoSi single crystals. The band structure of this family of compounds demonstrates significant changes across the Fermi level as the number of 3d-electron is increased with transition metal substitution. In particular, a crossover from metal to semiconductor and back to semimetal has been observed in this series of compounds. Practical measurements (electrical transport and thermoelectric performances) are combined with theoretical calculations to qualify the reliability of band structures. By means of standard thermal activation simulations of electrical resistivity for FeSi, we identify a narrow band gap ∼57 meV, which is well consistent with our band calculation result. A double sign reversal of the Seebeck coefficient for FeSi suggests that both electrons and holes are contributed to electrical transport, indicating that the electronic structure of FeSi is substantially influenced by hole-doped (MnSi) and electron-doped (CoSi) effects.

  3. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  4. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  5. Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers

    Science.gov (United States)

    2015-01-01

    colin.joye@nrl.navy.mil Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers Figure 2. Results from the 220 GHz TWT . (a) Small signal...Completed tube under hot test. 220 GHz TWT Demonstration The 220 GHz TWT device was based on spare parts from a commercially available CPI VKY2444T G...existing parts, our TWT bested this COTS EIK performance by a factor of 12x in power and 50x in bandwidth for the same size, weight and prime power

  6. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  7. The ELENA Electron Cooler: Parameter choice and expected performance

    CERN Document Server

    Tranquille, G; Joergensen, L

    2013-01-01

    Electron cooling will be central to the success of the ELENA project which aims to increase by a factor of up to 100 the number of antiprotons available for the trap experiments. Because of the tight space constraints, the design of the device will be based on the compact electron cooler in operation on the S-LSR ring in Kyoto. The biggest challenge will be to generate a cold and stable electron beam at an energy of just 55 eV in order to cool the 100 KeV antiprotons. The use of photocathodes is excluded because their relatively short lifetime would require too many vacuum interventions during operation. We present the design parameters of our cooler as well as the results of the cooling performance simulations made with BetaCool and on-going work into "cold" cathodes.

  8. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  9. High Performance Torso Cooling Garment

    Science.gov (United States)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  10. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  11. Toward High-Performance Organizations.

    Science.gov (United States)

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  12. High-Performance Composite Chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  13. Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors

    Science.gov (United States)

    Falter, Claus

    2005-01-01

    We investigate the complete phonon dispersion, the phonon induced electronic charge response and the corresponding self-consistent change of the crystal potential an electron feels as a direct measure of the electron-phonon interaction in the high-temperature superconductors within a microscopic model in the framework of linear response theory. Moreover, dielectric and infrared properties are calculated. The experimentally observed strong renormalization of the in-plane oxygen bond-stretching modes which appears upon doping in the high-temperature superconductors is discussed. It is shown that the characteristic softening, indicating a strong nonlocal electron-phonon interaction, is most likely a generic effect of the CuO plane and is driven by a nonlocal coupling of the displaced ions to the localized charge-fluctuations at the Cu and the Oxy ions. At hand of the oxygen bond-stretching modes it is illustrated how lattice-, charge- and spin-degrees of freedom may act synergetically for anisotropic pairing in the high-temperature superconductors. The different behaviour of these modes during the insulator-metal transition via the underdoped phase is calculated and from a comparison of these generic modes in the different phases conclusions about the electronic state are drawn. For the non-cuprate potassium doped high-temperature superconductor Ba-Bi-O also a very strong and anisotropic renormalization of the oxygen bond-stretching modes is predicted. In another investigation c-axis polarized infrared- and Raman-active modes of the HTSC's are calculated in terms of charge fluctuations and anisotropic dipole-fluctuations. Mode assignments discussed controversially in the literature are proposed. Finally, interlayer phonons propagating along the c-axis and their accompanying charge response are investigated. Depending on the strength of the interlayer coupling calculations are performed ranging from the static, adiabatic response regime to the non-adiabatic regime

  14. High temperature electronics and instrumentation seminar proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Arnold, C.; Simpson, R.S. (eds.)

    1980-05-01

    This seminar was tailored to address the needs of the borehole logging industry and to stimulate the development and application of this technology, for logging geothermal, hot oil and gas, and steam injection wells. The technical sessions covered the following topics: hybrid circuits, electronic devices, transducers, cables and connectors, materials, mechanical tools and thermal protection. Thirty-eight papers are included. Separate entries were prepared for each one. (MHR)

  15. Flatland Electrons in High Magnetic Fields

    Science.gov (United States)

    Shayegan, M.

    This paper provides a review of recent developments in the physics of two-dimensional carrier systems in perpendicular magnetic fields. The emphasis is on many-body phenomena in very clean GaAs/AlGaAs heterostructures, probed via magnetotransport measurements. Topics that are discussed include the integer and fractional quantum Hall effects, Wigner crystallization, composite Fermions, Skyrmions, stripe and bubble phases in single layer systems, and electron-hole pairing and Bose-Einstein condensation in interacting bilayer systems.

  16. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  17. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  18. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...... at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT...

  19. EDITORIAL: High performance under pressure High performance under pressure

    Science.gov (United States)

    Demming, Anna

    2011-11-01

    The accumulation of charge in certain materials in response to an applied mechanical stress was first discovered in 1880 by Pierre Curie and his brother Paul-Jacques. The effect, piezoelectricity, forms the basis of today's microphones, quartz watches, and electronic components and constitutes an awesome scientific legacy. Research continues to develop further applications in a range of fields including imaging [1, 2], sensing [3] and, as reported in this issue of Nanotechnology, energy harvesting [4]. Piezoelectricity in biological tissue was first reported in 1941 [5]. More recently Majid Minary-Jolandan and Min-Feng Yu at the University of Illinois at Urbana-Champaign in the USA have studied the piezoelectric properties of collagen I [1]. Their observations support the nanoscale origin of piezoelectricity in bone and tendons and also imply the potential importance of the shear load transfer mechanism in mechanoelectric transduction in bone. Shear load transfer has been the principle basis of the nanoscale mechanics model of collagen. The piezoelectric effect in quartz causes a shift in the resonant frequency in response to a force gradient. This has been exploited for sensing forces in scanning probe microscopes that do not need optical readout. Recently researchers in Spain explored the dynamics of a double-pronged quartz tuning fork [2]. They observed thermal noise spectra in agreement with a coupled-oscillators model, providing important insights into the system's behaviour. Nano-electromechanical systems are increasingly exploiting piezoresistivity for motion detection. Observations of the change in a material's resistance in response to the applied stress pre-date the discovery of piezoelectric effect and were first reported in 1856 by Lord Kelvin. Researchers at Caltech recently demonstrated that a bridge configuration of piezoresistive nanowires can be used to detect in-plane CMOS-based and fully compatible with future very-large scale integration of

  20. High-Performance Heat Pipe

    Science.gov (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.

    1985-01-01

    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  1. Identifying the Electronic Properties Relevant to Improving the Performance of High Band-Gap Copper Based I-III-VI2 Chalcopyrite Thin Film Photovoltaic Devices: Final Subcontract Report, 27 April 2004-15 September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J. D.

    2008-08-01

    This report summarizes the development and evaluation of higher-bandgap absorbers in the CIS alloy system. The major effort focused on exploring suitable absorbers with significant sulfur alloying in collaboration with Shafarman's group at the Institute of Energy Conversion. Three series of samples were examined; first, a series of quaternary CuIn(SeS)2-based devices without Ga; second, a series of devices with pentenary Cu(InGa)(SeS)2 absorbers in which the Se-to-S and In-to-Ga ratios were chosen to keep the bandgap nearly constant, near 1.52 eV. Third, based on the most-promising samples in those two series, we examined a series of devices with pentenary Cu(InGa)(SeS)2 absorbers with roughly 25 at.% S/(Se+S) ratios and varying Ga fractions. We also characterized electronic properties of several wide-bandgap CuGaSe2 devices from both IEC and NREL. The electronic properties of these absorbers were examined using admittance spectroscopy, drive-level capacitance profiling, transient photocapacitance, and transient photocurrent optical spectroscopies. The sample devices whose absorbers had Ga fraction below 40 at.% and S fractions above 20 at.% but below 40% exhibited the best electronic properties and device performance.

  2. High-performance solar collector

    Science.gov (United States)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  3. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  4. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  5. High Performance JavaScript

    CERN Document Server

    Zakas, Nicholas

    2010-01-01

    If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstra

  6. A high performance switching audio amplifier using sliding mode control

    OpenAIRE

    Pillonnet, Gael; Cellier, Rémy; Abouchi, Nacer; Chiollaz, Monique

    2008-01-01

    International audience; The switching audio amplifiers are widely used in various portable and consumer electronics due to their high efficiency, but suffers from low audio performances due to inherent nonlinearity. This paper presents an integrated class D audio amplifier with low consumption and high audio performances. It includes a power stage and an efficient control based on sliding mode technique. This monolithic class D amplifier is capable of delivering up to 1W into 8Ω load at less ...

  7. Renewing functionalized graphene as electrodes for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yan [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); School of Materials Science and Engineering, University of Shanghai for Science and Technology, Jungong Road 516, 200093, Shanghai (China)

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Velocity bunching of high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    S. G. Anderson

    2005-01-01

    Full Text Available Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly

  9. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  10. Solving Human Performance Problems with Computers. A Case Study: Building an Electronic Performance Support System.

    Science.gov (United States)

    Raybould, Barry

    1990-01-01

    Describes the design of an electronic performance support system (PSS) that was developed to help sales and support personnel access relevant information needed for good job performance. Highlights include expert systems, databases, interactive video discs, formatting information online, information retrieval techniques, HyperCard, computer-based…

  11. High-performance hierarchical fracturing

    Science.gov (United States)

    Cobb, Nicolas B.; Zhang, Weidong

    2002-07-01

    We describe in more detail a mask data preparation (MDP) flow previously proposed. The focus on this paper is a performance comparison of hierarchical fracturing techniques compared to standard fracturing. Our flow uses GDSII data as input, including a GDSII-based job deck description. The output is maximally compacted, trapezoidal mask writer (MW) formatted data. Our flow takes advantage of hierarchy explicit in the GDSII file(s). This allows optimal determination of 'cover cells', which are repeatable groups of patterns within the data. The use of cover cells allows a reduction of fracturing runtime. In one case, a 21 GB MEBES file was fractured in 30 hours using the standard technique and 53 minutes using the hierarchical cover cell technique.

  12. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  13. Comparison of High Resolution Negative Electron Beam Resists

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Schøler, Mikkel; Shi, Peixiong

    2006-01-01

    Four high resolution negative electron beam resists are compared: TEBN-1 from Tokuyama Corp. Japan, ma-N 2401XP and mr-L 6000AXP from microresist technology GmbH Germany, and SU-8 2000 series from MicroChem Corp., USA. Narrow linewidth high density patterns are defined by 100 kV electron beam...

  14. Terahertz radiation source using a high-power industrial electron ...

    Indian Academy of Sciences (India)

    We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial ...

  15. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  16. Spectral shape variation of interstellar electrons at high energies

    Science.gov (United States)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  17. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  18. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  19. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  20. High Efficiency Transverse D. C. Electron Beams.

    Science.gov (United States)

    1984-10-01

    current for Ing a diffraction grating of 280 groves per millimeter. This each enra sl teruin :s indicated onl the left oif the figure prov ided at...moaio niII.i ineacflint MeTw:iI 6003 I(- I1IJL3limmm I i-i Ii t ciM~ pdl )oi’l ii)iioikiixc)1 pWIIpn;jOB. ,)r CyllteC’rIcI 0IIIW 1lllrieCl;ie ll)CIINlyILC...yield ly shown in Fig. 2 where the electron-beam-created plasma is cathode materials had weak spectra. The first five materials visible. The cathode face

  1. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  2. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  3. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro; Miyauchi, Naoya; Yamakita, Yoshihiro, E-mail: yamakita@uec.ac.jp [Department of Engineering Science, Graduate School of Informatics and Engineering The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2016-02-01

    This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.

  4. A single-electron approach for many-electron dynamics in high-order harmonic generation

    CERN Document Server

    Schild, Axel

    2016-01-01

    We present a novel ab-initio single-electron approach to correlated electron dynamics in strong laser fields. By writing the electronic wavefunction as a product of a marginal one-electron wavefunction and a conditional wavefunction, we show that the exact harmonic spectrum can be obtained from a single-electron Schr\\"odinger equation. To obtain the one-electron potential in practice, we propose an adiabatic approximation, i.e. a potential is generated that depends only on the position of one electron. This potential, together with the laser interaction, is then used to obtain the dynamics of the system. For a model Helium atom in a laser field, we show that by using our approach, the high-order harmonic generation spectrum can be obtained to a good approximation.

  5. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  6. An Associate Degree in High Performance Manufacturing.

    Science.gov (United States)

    Packer, Arnold

    In order for more individuals to enter higher paying jobs, employers must create a sufficient number of high-performance positions (the demand side), and workers must acquire the skills needed to perform in these restructured workplaces (the supply side). Creating an associate degree in High Performance Manufacturing (HPM) will help address four…

  7. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  8. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  9. High resolution electron scattering on {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph; Bassauer, Sergej; Krugmann, Andreas; Krumbholz, Anna Maria; Pietralla, Norbert; Singer, Maxim; Neumann-Cosel, Peter von [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2015-07-01

    The low-energy structure of the nucleus {sup 96}Zr is interesting for numerous reasons - especially the strong octupole correlation leading to an excitation of the prominent 3{sup -}{sub 1} state with the largest known ground-state transition strength (B(E3, 3{sup +}{sub 1} → 0{sup +}{sub 1}) = 57(4) W.u.) of all nuclei. Even though this nucleus is a good testing ground for nuclear structure theories some low-energy observables are known with insufficient precision. Especially the transition strength of low-lying 2{sup +} states, which are important for the identification of mixed-symmetry states, have large uncertainties. Electron scattering at low impulse transfer has been shown to be capable of obtaining these B(E2) values with high precision. A {sup 96}Zr(e,e{sup '}) experiment has recently been performed at the superconducting electron linear accelerator S-DALINAC at Darmstadt using the high-resolution LINTOTT spectrometer. The experiment and preliminary results are presented.

  10. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  11. Performance of BPM Electronics for the LEP Spectrometer

    CERN Document Server

    Barbero, E; Dehning, Bernd; Matheson, J; Prochnow, J; Torrence, E; Unser, K; Vismara, Giuseppe

    2000-01-01

    At the LEP e+/e- collider at CERN, Geneva, a Spectrometer is used to determine the beam energy with a relative accuracy of 10-4. The Spectrometer measures the change in bending angle in a well-characterised dipole magnet as LEP is ramped. The beam trajectory is obtained using three beam position monitors (BPMs) on each side of the magnet. The error on each BPM measurement should not exceed 1 micron if the desired accuracy on the bending angle is to be reached. The BPMs used consist of an aluminium block with an elliptical aperture and four capacitive button pickup electrodes. The button signals are fed to customised electronics supplied by Bergoz. The electronics use time multiplexing of individual button signals through a single processing chain to optimise for long-term stability. We report on our experience of the performance of these electronics, describing measurements made with test signals and with beam. We have implemented a beam-based calibration procedure and have monitored the reproducibility of ...

  12. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  13. Femtosecond electron spectroscopy in an electron microscope with high brightness beams

    Science.gov (United States)

    Zhou, Faran; Williams, Joseph; Ruan, Chong-Yu

    2017-09-01

    A concept of performing femtosecond electron spectroscopy in an electron microscope with adaptive optics to handle space-charge-dominated beams is presented. Improved temporal-spectral resolutions are obtained through a combination of time and energy compression optics to disentangle the spectral information buried in temporally compressed pulses. A combined ∼1 eV-sub-ps performance with 105 electrons in single pulses, and femtosecond core-level spectroscopy at single-shots with higher doses are demonstrated. This strategy provides several orders of magnitude improvement in sensitivity compared to the state-of-the-art ultrafast electron microscopes, representing a flexible solution for studying electronic and chemical dynamics in complex systems overcoming the collective space-charge limitations.

  14. High definition in-situ electro-optical characterization for Roll to Roll printed electronics

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    2017-01-01

    Resume: Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed organic electronic devices relies principally on the carrier mobility...... of the device and at any moment during its lifespan. This will help the production and development of high quality printed technologies where the semiconductor material can be accessed by infrared light, such as solar cells, displays and sensors....

  15. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  16. High performance hand-held gas chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.M.

    1998-04-28

    The Microtechnology Center of Lawrence Livermore National Laboratory has developed a high performance hand-held, real time detection gas chromatograph (HHGC) by Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this hand-held gas chromatograph is about five lbs., with a physical size of 8{close_quotes} x 5{close_quotes} x 3{close_quotes} including carrier gas and battery. It consumes about 12 watts of electrical power with a response time on the order of one to two minutes. This HHGC has an average effective theoretical plate of about 40k. Presently, its sensitivity is limited by its thermal sensitive detector at PPM. Like a conventional G.C., this HHGC consists mainly of three major components: (1) the sample injector, (2) the column, and (3) the detector with related electronics. The present HHGC injector is a modified version of the conventional injector. Its separation column is fabricated completely on silicon wafers by means of MEMS technology. This separation column has a circular cross section with a diameter of 100 pm. The detector developed for this hand-held GC is a thermal conductivity detector fabricated on a silicon nitride window by MEMS technology. A normal Wheatstone bridge is used. The signal is fed into a PC and displayed through LabView software.

  17. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  18. High performance computing and communications program

    Science.gov (United States)

    Holcomb, Lee

    1992-01-01

    A review of the High Performance Computing and Communications (HPCC) program is provided in vugraph format. The goals and objectives of this federal program are as follows: extend U.S. leadership in high performance computing and computer communications; disseminate the technologies to speed innovation and to serve national goals; and spur gains in industrial competitiveness by making high performance computing integral to design and production.

  19. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  20. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Melhus, Christopher S.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain) and IFIC, CSIC-University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Department of Radiation Physics, ERESA, Hospital General Universitario, Avenida Tres Cruces, 2, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2009-09-15

    Purpose: The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides ({sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source {beta}{sup -}, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the {sup 192}Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Results: Electronic equilibrium within 1% is reached for {sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for {sup 60}Co and {sup 192}Ir, respectively. Electron emissions become important (i.e., >0.5%) within 3.3 mm of {sup 60}Co and 1.7 mm of {sup 192}Ir sources, yet are negligible over all distances for {sup 137}Cs and {sup 169}Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Conclusions: Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  1. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  2. High-Resolution Conversion Electron Spectroscopy of Valence Electron Configurations (CESVEC) in Solids

    CERN Multimedia

    2002-01-01

    First measurements with the Zurich $\\beta$-spectrometer on sources from ISOLDE have demonstrated that high resolution spectroscopy of conversion electrons from valence shells is feasible.\\\\ \\\\ This makes possible a novel type of electron spectroscopy (CESVEC) on valence-electron configurations of tracer elements in solids. Thus the density of occupied electron states of impurities in solids has been measured for the first time. Such data constitute a stringent test of state-of-the-art calculations of impurity properties. Based on these results, we are conducting a systematic investigation of impurities in group IV and III-V semiconductors.

  3. High Performance Spaceflight Computing (HPSC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In 2012, the NASA Game Changing Development Program (GCDP), residing in the NASA Space Technology Mission Directorate (STMD), commissioned a High Performance...

  4. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  5. High Rate Performing Li-ion Battery

    Science.gov (United States)

    2015-02-09

    permeable to lithium ions and efficient in transferring the electrons into/from the LVP surface to the corresponding current collector. a) b) c) d) e...PO4)3/C for High Rate Lithium-ion Battery Applications”, Lee Hwang Sheng, Nail Suleimanov, Vishwanathan Ramar, Mangayarkarasi Murugan, Kuppan

  6. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co-...... thin film membrane devices using these materials....

  7. Effects of electronic map displays and individual differences in ability on navigation performance.

    Science.gov (United States)

    Rodes, William; Gugerty, Leo

    2012-08-01

    The aim of this study was to determine how strongly the performance of navigation tasks is affected by changing electronic map interfaces and by individual differences in spatial ability. Electronic map interfaces have two common configurations, north up and track up. Research suggests that north-up maps benefit some navigational tasks and track-up maps benefit others. However, little research has investigated how map configuration affects the important navigation task of judging cardinal direction or how individual differences in spatial ability interact with map configuration in affecting navigation performance. In an aerial reconnaissance task, 16 participants completed route-following, cardinal direction, and map reconstruction tasks. Participants also completed three spatial ability tests. The track-up map led to better performance on the cardinal direction and route-following tasks. The north-up map led to better performance on the map reconstruction task Effects of map configuration showed small to medium effect sizes. Spatial ability correlated positively with performance of each navigation task, showing medium to large effect sizes. For some tasks, a helpful map interface compensated for low ability. For other tasks, ability facilitated the performance of the helpful interface;optimal performance required a helpful interface and high ability. Achieving high performance at particular navigation subtasks requires two things: using the map configuration that optimizes subtask performance and having high spatial ability. Some aspects of navigation performance can be improved primarily by using the optimal map configuration; other aspects require using the optimal configuration and having better spatial ability.

  8. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  9. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  10. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  11. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  12. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  13. Laser interactions with high brightness electron beams

    Science.gov (United States)

    Malton, Stephen P.

    The International Linear Collider will be a high-precision machine to study the next energy frontier in particle physics. At the TeV energy scale, the ILC is expected to deliver luminosities in excess of 1034 cni" 2s_1. In order to achieve this, beam conditions must be monitored throughout the machine. Measurment of the beam emittance is essential to ensuring that the high luminosity can be provided at the interaction point. At the de sign beam sizes in the ILC beam delivery system, the Laserwire provides a non-invasive real-time method of measuring the emittance by the method of inverse Compton scattering. The prototype Laserwire at the PETRA stor age ring has produced consistent results with measured beam sizes of below 100 /nn. The Energy Recovery Linac Prototype (ERLP) is a technology testbed for the 4th Generation Light Source (4GLS). Inverse Compton scattering can be used in the ERLP as a proof of concept for a proposed 4GLS upgrade, and to produce soft X-rays for condensed matter experiments. The design constraints for the main running mode of the ERLP differ from those required for inverse Compton scattering. Suitable modifications to the optical lattice have been developed under the constraint that no new magnetic structures may be introduced, and the resulting photon distributions are described.

  14. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  15. Turning High-Poverty Schools into High-Performing Schools

    Science.gov (United States)

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  16. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach......-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials....

  17. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  18. Trajectories of high energy electrons in a plasma focus

    Science.gov (United States)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  19. Failure analysis of high performance ballistic fibers

    OpenAIRE

    Spatola, Jennifer S

    2015-01-01

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mo...

  20. Magnesium Film Photocathodes for High Brilliance Electron Injectors

    CERN Document Server

    Tazzioli, Franco; Cialdi, Simone; Cultrera, Luca; Gatti, Giancarlo; Orlanducci, Silvia; Perrone, Alessio; Rossi, Marco; Terranova, Maria Letizia; Vicario, Carlo

    2005-01-01

    Advanced high brilliance electron injectors require photocathodes having low thermal emittance, high quantum efficiency (QE) and prompt response. They should be easy to handle and capable of working in the very high electric fileds of a RF gun. Magnesium films deposited by laser ablation and sputtering techniques are discussed and QE measurements are presented.

  1. Probabilistic performance-based design for high performance control systems

    Science.gov (United States)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  2. High performance computing at Sandia National Labs

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  3. High energy gain electron beam acceleration by 100TW laser

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10{sup -5} was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6{pi} mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  4. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...... ionic-electronic conducting oxide that could solve these issues if it can be integrated into an appropriate electrode structure. Two new approaches to obtain high-performance nanostructured doped-ceria electrodes are highlighted. The first is an infiltration-based architecture with Ce0.8Pr0.2O2-δ...... forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides...

  5. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  6. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  7. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’as, Eman Husni

    2017-10-28

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  8. High-Harmonic Generation Enhanced by Dynamical Electron Correlation

    Science.gov (United States)

    Tikhomirov, Iliya; Sato, Takeshi; Ishikawa, Kenichi L.

    2017-05-01

    We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional model atom. In addition to the usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.

  9. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  10. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  11. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  12. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  13. Increase of the performances of electron cyclotron resonance ion sources by using cold electron emission

    CERN Document Server

    Schaechter, I; Badescu-Singureanu, A I; Stiebing, K E; Runkel, S; Hohn, O; Schmidt, L; Schmidt-Böcking, H; Drentje, A; Rodríguez, G

    2003-01-01

    The possibility of a significant increase of the high charge state ion beams delivered by electron cyclotron resonance (ECR) ion sources was approached in IFIN-HH, Bucharest, Romania by a new method. It consists in the introduction in the plasma chamber of the ECR ion source of a metal-dielectric (MD) structure characterized by very high secondary electron emission properties. The intensities of argon ion beams extracted from the 14 GHz ECR ion sources of IKF, Frankfurt/Main, Germany and KVI, Groningen, Netherlands were measured both in the standard mode of operation of the sources and in the presence of a MD structure. Similar results were obtained in both experiments when the MD structure was used showing a net shift of the beam intensity towards higher charge states as compared with the usual standard plasma chamber of the ECR ion sources. Ion current enhancement factors of up to two orders of magnitude were obtained for Ar sup 1 sup 6 sup + ions. (authors)

  14. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

    Directory of Open Access Journals (Sweden)

    Michael B. Sherman

    2015-05-01

    Full Text Available A unique biological safety level (BSL-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2 decontamination cycles.

  15. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  16. Electron-cloud effects in high-luminosity colliders

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.

    1998-01-01

    Electron-cloud instabilities are expected to be important in most high-luminosity double-ring colliders. In this report, the author describes a few parameter regimes and some critical parameter dependences of this type of instability, and illustrate these with simulation results for the PEP-II and KEK B factories, the LHC, the VLHC, and DAPHNE. In addition, the author studies the possibility and the potential impact of an electron cloud in the interaction region.

  17. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  18. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    Science.gov (United States)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  19. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  20. Radiation Hard High Performance Optoelectronic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-hard, widely-tunable integrated laser/modulator chip and large-area avalanche photodetectors (APDs) are key components of optical...

  1. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  2. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  3. High Performance Liquid Chromatography Method for the ...

    African Journals Online (AJOL)

    High Performance Liquid Chromatography Method for the Determination of Anethole in Rat Plasma. ... Journal Home > Vol 13, No 5 (2014) > ... Results: GC determination showed that anethole in the essential oil of star anise exhibited a ...

  4. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  5. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  6. High-Throughput Printing Process for Flexible Electronics

    Science.gov (United States)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  7. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  8. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  9. High performance S-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; Visco, S.J.; De Jonghe, L.C. [PolyPlus Battery Co., Berkeley, CA (United States)

    1997-12-01

    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on proprietary positive electrode chemistry. In one formulation, this electrode contains elemental sulfur, either free or in association with secondary materials that promote its utilization. Batteries based on this cathode chemistry offer high steady-state (>250 W/kg) and high peak power densities (3,000 W/kg), in a low cost and environmentally benign format. High energy density, in excess of 500 Wh/kg (600 Wh/l) can also be achieved. The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cells make this battery exceptionally attractive for both hybrid and electric vehicles, and for consumer electronic applications.

  10. Localized Electron Trap Modification as a Result of Space Weather Exposure in Highly Disordered Insulating Materials

    Science.gov (United States)

    2017-03-06

    Chemistry that Drives Them) Due to Exposure to High Energy GEO-like Electrons Conference Proceeding Advanced Maui Optical and Space Surveillance...distribution is unlimited. 28 References 1. Awaja, F., et al., Surface molecular degradation of selected high performance polymer composites under low...6 2.3. Material Chemistry

  11. High electron beam dosimetry using ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lueza M, F.; Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Garcia H, M. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO{sub 2} powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO{sub 2}+PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO{sub 2}+PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  12. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  13. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    Science.gov (United States)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  14. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  15. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  16. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  17. Virtual team performance in a highly competitive environment

    OpenAIRE

    Algesheimer, René; Dholakia, Utpal M; Gurău, Călin

    2011-01-01

    In this article, we empirically validate a version of the input-mediator-output-input (IMOI) model (Ilgen, Hollenbeck, Johnson, & Jundt, 2005), adapting it to investigate virtual team performance in a highly competitive environment. Our hypotheses are tested using structural equation modeling across time periods with data obtained from 606 professional online gaming teams belonging to the European Electronic Sports League. The findings validate the hypothesized IMOI model, and demonstrate the...

  18. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  19. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  20. Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

    Science.gov (United States)

    Nord, Gordon L., Jr.

    This book is a well-written English translation of the original 1981 Russian edition, Strukturnoye issledovaniye mineralov metodami mikrodifraktsii i elechtronnoi mikroskopii vysokogo razresheniya. The 1987 English version has been extensively updated and includes references up to 1986. The book is essentially a text on the theoretical and experimental aspects of transmission electron microscopy and has chapters on the reciprocal lattice, electron diffraction (both kinematic and dynamic), and high-resolution electron microscopy.Electron diffraction is emphasized, especially its use for structure analysis of poorly crystalline and fine-grained phases not readily determined by the more exact X ray diffraction method. Two methods of electron diffraction are discussed: selected area electron diffraction (SAED) and oblique-texture electron diffraction (OTED); the latter technique is rarely used in the west and is never discussed in western electron microscopy texts. A SAED pattern is formed by isolating a small micrometer-size area with an aperture and obtaining single-crystal patterns from the diffracted beams. By tilting the sample and obtaining many patterns, a complete picture of the reciprocal lattice can be taken. An OTED pattern is formed when the incident electron beam passes through an inclined preparation consisting of a great number of thin platy crystals lying normal to the texture axis (axis normal to the support grid). To form an OTED pattern, the plates must all lie on a common face, such as a basal plane in phyllosilicates. Upon tilting the plates, an elliptical powder diffraction pattern is formed. Intensities measured from these patterns are used for a structural analysis of the platy minerals.

  1. Sub-Angstrom Low Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

    Science.gov (United States)

    Bell, David C.; Russo, Christopher J.; Benner, Gerd

    2011-01-01

    Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements, and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: 1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; 2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; 3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science. PMID:20598206

  2. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  3. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  4. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  5. A Comparison of Performances of Electronic and Electromechanical ...

    African Journals Online (AJOL)

    The Ferraris (electromechanical) energy meter has had predominance in the metering of energy consumption using the alternating current supply system. Electronic energy meters are gaining popularity because of the possibility of remote reading and controllable non uniform rate of billing. In this work, an electronic energy ...

  6. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  7. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  8. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  9. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  10. Low-loss electron beam transport in a high-power, electrostatic free-electron maser

    NARCIS (Netherlands)

    Valentini, M.; van der Geer, C. A. J.; Verhoeven, A. G. A.; van der Wiel, M. J.; Urbanus, W. H.

    1997-01-01

    At the FOM Institute for Plasma Physics ''Rijnhuizen'', The Netherlands, the commissioning of a high-power, electrostatic free-electron maser is in progress. The design target is the generation of 1 MW microwave power in the frequency range 130-260 GHz. The foreseen application

  11. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  12. High throughput defect detection with multiple parallel electron beams

    NARCIS (Netherlands)

    Himbergen, H.M.P. van; Nijkerk, M.D.; Jager, P.W.H. de; Hosman, T.C.; Kruit, P.

    2007-01-01

    A new concept for high throughput defect detection with multiple parallel electron beams is described. As many as 30 000 beams can be placed on a footprint of a in.2, each beam having its own microcolumn and detection system without cross-talk. Based on the International Technology Roadmap for

  13. A high power, tunable free electron maser for fusion

    NARCIS (Netherlands)

    Urbanus, W. H.; Bratman, V. L.; Bongers, W. A.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Militsyn, B.; Oomens, A. A. M.; Poelman, A. J.; Plomp, J.; Pluygers, J.; Savilov, A. V.; Smeets, P. H. M.; Sterk, A. B.; Verhoeven, A. G. A.

    2001-01-01

    The Fusion-FEM experiment, a high-power, electrostatic free-electron maser being built at the FOM-Institute for Plasma Physics 'Rijnhuizen', is operated at various frequencies. So far, experiments were done without a depressed collector, and the pulse length was limited to 12 mus.

  14. Optimization of Compton Source Performance through Electron Beam Shaping

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a way so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.

  15. High mobility, printable, and solution-processed graphene electronics.

    Science.gov (United States)

    Wang, Shuai; Ang, Priscilla Kailian; Wang, Ziqian; Tang, Ai Ling Lena; Thong, John T L; Loh, Kian Ping

    2010-01-01

    The ability to print graphene sheets onto large scale, flexible substrates holds promise for large scale, transparent electronics on flexible substrates. Solution processable graphene sheets derived from graphite can form stable dispersions in solutions and are amenable to bulk scale processing and ink jet printing. However, the electrical conductivity and carrier mobilities of this material are usually reported to be orders of magnitude poorer than that of the mechanically cleaved counterpart due to its higher density of defects, which restricts its use in electronics. Here, we show that by optimizing several key factors in processing, we are able to fabricate high mobility graphene films derived from large sized graphene oxide sheets, which paves the way for all-carbon post-CMOS electronics. All-carbon source-drain channel electronics fabricated from such films exhibit significantly improved transport characteristics, with carrier mobilities of 365 cm(2)/(V.s) for hole and 281 cm(2)/(V.s) for electron, measured in air at room temperature. In particular, intrinsic mobility as high as 5000 cm(2)/(V.s) can be obtained from such solution-processed graphene films when ionic screening is applied to nullify the Coulombic scattering by charged impurities.

  16. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  17. Towards High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  18. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  19. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  20. Highly Integrated Mixed-Mode Electronics for the readout of Time Projection Chambers

    CERN Document Server

    França Santos, Hugo Miguel; Musa, Luciano

    Time Projection Chambers (TPCs) are one of the most prevalent particle trackers for high-energy physics experiments. Future planed TPCs for the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) entail very high spatial resolution in large gas volumes, but impose low material budget for the end caps of the TPC cylinder. This constraint is not accomplished with the state-of-the-art front-end electronics because of its unsuited relatively large mass and of its associated water cooling system. To reach the required material budget, highly compact and power efficient dedicated TPC front-end electronics should be developed. This project aims at re-designing the different electronic elements with significant improvements in terms of performance, power efficiency and versatility, and developing an integrated circuit that merges all components of the front-end electronics. This chip ambitions a large volume production at low unitary cost and its employment in multiple detectors. The design of ...

  1. Performance of a scintillator hodoscope for detecting entangled electron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Peck, Marius; Schlemme, Steffen; Enders, Joachim [TU Darmstadt (Germany); Bodek, Kazimierz; Rozpedzik, Dagmara; Zejma, Jacek [Jagiellonian University, Cracow (Poland); Caban, Pawel; Rembielinski, Jakub [University of Lodz, Lodz (Poland); Ciborowski, Jacek; Dragowski, Michal; Wlodarczyk, Marta [Warsaw University, Warsaw (Poland); Kozela, Adam [Institute of Nuclear Physics, PAS, Cracow (Poland)

    2015-07-01

    In the framework of a Polish-German collaboration aimed at investigating quantum entanglement of ultra-relativistic electrons following Moeller scattering a test experiment has been carried out at the superconducting Darmstadt electron linear accelerator S-DALINAC. The Moeller pairs undergo polarization analysis by means of Mott scattering. In the test experiment, the scattered electrons were tracked in drift chambers and detected by a scintillator hodoscope. The properties of this detector arrangement has been investigated off-line with radioactive sources. Results are presented, and an outlook for future improvement of the setup is given.

  2. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers

    Science.gov (United States)

    Zang, Jianfeng; Cao, Changyong; Feng, Yaying; Liu, Jie; Zhao, Xuanhe

    2014-10-01

    Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g-1), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.

  3. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers

    Science.gov (United States)

    Zang, Jianfeng; Cao, Changyong; Feng, Yaying; Liu, Jie; Zhao, Xuanhe

    2014-01-01

    Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g−1), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance. PMID:25270673

  4. Nanoparticles for high performance concrete (HPC)

    OpenAIRE

    Torgal, Fernando Pacheco; Miraldo, Sérgio; Ding, Yining; J.A. Labrincha

    2013-01-01

    According to the 2011 ERMCO statistics, only 11% of the production of ready-mixed concrete relates to the high performance concrete (HPC) target. This percentage has remained unchanged since at least 2001 and appears a strange choice on the part of the construction industry, as HPC offers several advantages over normal-strength concrete, specifically those of high strength and durability. It allows for concrete structures requiring less steel reinforcement and offers a longer serviceable life...

  5. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect......% rejection for urea and a water permeability around 10 L/(m2h) with 2M NaCl as draw solution. Our results demonstrate the feasibility of using aquaporin proteins in biomimetic membranes for technological applications....

  6. Electron identification in and performance of the ND280 Calorimeter

    CERN Document Server

    Carver, Antony

    T2K is an o axis neutrino beam experiment with a baseline of 295 km to the far detector, Super-Kamiokande. The near detector, ND280, measures the ux and energy spectra of electron and muon neutrinos in the direction of Super-Kamiokande. An electromagnetic calorimeter constructed from lead and scintillator surrounds the inner detector. Three time projection chambers and two ne grained scintillator detectors sit inside the calorimeter. This thesis describes the development of a particle identification algorithm for the calorimeter and studies how it can enhance a simple electron neutrino analysis. A particle identification algorithm was written for the electromagnetic calorimeter to separate minimally ionising particles, electromagnetic and hadronic showers. A Monte Carlo study suggested that the algorithm produced an electron sample with a relative muon contamination of 10+-2 whilst maintaining an electron efficiency of 80%. Data collected at CERN was then used to make comparisons between the Monte Carlo simul...

  7. High-Temperature Electronic Materials: Silicon Carbide and Diamond

    Science.gov (United States)

    Willander, Magnus; Friesel, Milan; Wahab, Qamar-Ul; Straumal, Boris

    The physical and chemical properties of wide-band-gap semiconductors make these materials an ideal choice for device fabrication for applications in many different areas, e.g. light emitters, high-temperature and high-power electronics, high-power microwave devices, micro-electromechanical system (MEM) technology, and substrates for semiconductor preparation. These semiconductors have been recognized for several decades as being suitable for these applications, but until recently the low material quality has not allowed the fabrication of high-quality devices. In this chapter, we review the wide-band-gap semiconductors, silicon carbide and diamond.

  8. High-pressure effects on intramolecular electron transfer compounds

    CERN Document Server

    He Li Ming; Li Hong; Zhang Bao Wen; Li Yi; Yang Guo Qiang

    2002-01-01

    We explore the effect of pressure on the fluorescence spectra of the intramolecular electron transfer compound N-(1-pyrenylmethyl), N-methyl-4-methoxyaniline (Py-Am) and its model version, with poly(methyl methacrylate) blended in, at high pressure up to 7 GPa. The emission properties of Py-Am and pyrene show distinct difference with the increase of pressure. This difference indicates the strength of the charge transfer interaction resulting from the adjusting of the conformation of Py-Am with increase of pressure. The relationship between the electronic state of the molecule and pressure is discussed.

  9. Overview of Energy Reconstruction, and Electron and Photon Performances with the CMS ECAL in Run II

    Science.gov (United States)

    Teixeira de Lima, Rafael; CMS Collaboration

    2017-11-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) Experiment is crucial for achieving high resolution measurements of electrons and photons. Maintaining and possibly improving the excellent performance achieved in Run I is vital for measurements of the Standard Model Higgs boson and searches for new higher mass resonances in final states with electrons and photons. Since spring 2015, the ECAL has operated with proton-proton collisions at 13 TeV center-of-mass energy and at a reduced bunch spacing of 25 ns. The instantaneous luminosity delivered by the LHC during Run II is expected to exceed the levels previously attained. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) is expected to reach up to 40 interactions. In this summary we present new crystal energy reconstruction algorithms and clustering techniques that have been developed to maintain the excellent performance of the CMS ECAL throughout Run II. We will show first performance results from 2015 data, achieved through energy calibrations using electrons from W and Z boson decays, photons from π 0/η decays, and the azimuthally symmetric energy distribution of minimum bias events. Lastly, we present an outlook on the expected Run II performance in the next years.

  10. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  11. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  12. High performance, durable polymers including poly(phenylene)

    Science.gov (United States)

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  13. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  14. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  15. Supervising the highly performing general practice registrar.

    Science.gov (United States)

    Morgan, Simon

    2014-02-01

    There is extensive literature on the poorly performing learner. In contrast, there is very little written on supervising the highly performing registrar. Outstanding trainees with high-level knowledge and skills can be a challenge for supervisors to supervise and teach. Narrative review and discussion. As with all learners, a learning-needs analysis is fundamental to successful supervision. The key to effective teaching of the highly performing registrar is to contextualise clinical knowledge and skills with the wisdom of accumulated experience. Moreover, supervisors must provide a stimulating learning environment, with regular opportunities for intellectual challenge. The provision of specific, constructive feedback is essential. There are potential opportunities to extend the highly performing registrar in all domains of general practice, namely communication skills and patient-centred care, applied knowledge and skills, population health, professionalism, and organisation and legal issues. Specific teaching strategies include role-play, video-consultation review, random case analysis, posing hypothetical clinical scenarios, role modelling and teaching other learners. © 2014 John Wiley & Sons Ltd.

  16. Optimization and validation of high performance liquid ...

    African Journals Online (AJOL)

    Optimization and validation of high performance liquid chromatography-ultra violet method for quantitation of metoprolol in rabbit plasma: application to ... Methods: Mobile phase of methanol and 50 mM ammonium dihydrogen phosphate solution (50:50) at pH 3.05 was used for separation of metoprolol on BDS hypersil ...

  17. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  18. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  19. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid dosage form. Methods: HPLC determination was carried out on an Agilent XDB C-18 column (4.6 x 150mm, 5 μ particle size) with a gradient ...

  20. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  1. High Performance Computing and Communications Panel Report.

    Science.gov (United States)

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  2. High Performance Liquid Chromatographic Determination of ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, precise and rapid high-performance liquid chromatographic technique coupled with photodiode array detection (DAD) method for the simultaneous determination of rutin, quercetin, luteolin, genistein, galangin and curcumin in propolis. Methods: Ultrasound-assisted extraction was applied to ...

  3. Rapid high performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    Rapid high performance liquid chromatographic determination of chlorpropamide in human plasma. MTB Odunola, IS Enemali, M Garba, OO Obodozie. Abstract. Samples were extracted with dichloromethane and the organic layer evaporated to dryness. The residue was dissolved in methanol, and 25 ìl aliquot injected ...

  4. High Performance Liquid Chromatography Method for the ...

    African Journals Online (AJOL)

    chromatography (HPLC) technique with UV-VIS detection method was developed for the determination of the compound in rat ... Keywords: Anethole, High performance liguid chromatography, Star anise, Essential oil, Rat plasma,. Illicium verum Hook. .... solution of anethole. Plasma proteins were precipitated by adding 0.3.

  5. Complex performance during exposure to high temperatures.

    Science.gov (United States)

    1969-06-01

    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  6. High-performance computing reveals missing genes

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    Scientists at the Virginia Bioinformatics Institute and the Department of Computer Science at Virginia Tech have used high-performance computing to locate small genes that have been missed by scientists in their quest to define the microbial DNA sequences of life.

  7. Performance analysis of memory hierachies in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Yogesh, Agrawel [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis studies memory bandwidth as a performance predictor of programs. The focus of this work is on computationally intensive programs. These programs are the most likely to access large amounts of data, stressing the memory system. Computationally intensive programs are also likely to use highly optimizing compilers to produce the fastest executables possible. Methods to reduce the amount of data traffic by increasing the average number of references to each item while it resides in the cache are explored. Increasing the average number of references to each cache item reduces the number of memory requests. Chapter 2 describes the DLX architecture. This is the architecture on which all the experiments were performed. Chapter 3 studies memory moves as a performance predictor for a group of application programs. Chapter 4 introduces a model to study the performance of programs in the presence of memory hierarchies. Chapter 5 explores some compiler optimizations that can help increase the references to each item while it resides in the cache.

  8. High-Performance, Low Environmental Impact Refrigerants

    Science.gov (United States)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  9. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  10. Multiple pulse electron beam converter design for high power radiography

    Science.gov (United States)

    Pincosy, P. A.; Back, N.; Bergstrom, P. M.; Chen, Yu-Jiuan; Poulsen, P.

    2001-06-01

    The typical response of the x-ray converter material to the passage of a high-powered relativistic electron beam is vaporization and rapid dispersal. The effect of this dispersal on subsequent pulses for multi-pulse radiography is the collective effects on the propagation of the electron beam through the expanding plasma and the reduced number of electron to photon interactions. Thus, for the dual-axis radiographic hydrodynamic test facility, the converter material must either be replaced or confined long enough to accommodate the entire pulse train. Typically the 1-mm-thick high Z and full density converter material is chosen to give peak dose and minimum radiographic spot. For repeated pulses we propose a modified converter, constructed of either low density, high Z material in the form of foam or of foils spaced over ten times the axial thickness of the standard 1 mm converter. The converter material is confined within a tube to impede outward motion in radius outside the beam interaction region. We report single-pulse experiments which measure the dose and spot size produced by the modified converter and compare them to similar measurements made by the standard converter. For multiple pulses over a microsecond time scale, we calculate the radial and axial hydrodynamic flow to study the material reflux into the converter volume and the resultant density decrease as the electron beam energy is deposited. Both the electron transport through the expanding low density plasma and beam in the higher density material are modeled. The x-ray source dose and spot size are calculated to evaluate the impact of the changing converter material density distribution on the radiographic spot size and dose. The results indicate that a multiple-pulse converter design for three or four high-power beam pulses is feasible.

  11. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  12. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  13. Thermal modeling for advanced high power packaging development and on-line performance monitoring

    NARCIS (Netherlands)

    Yuan, C.; Xiao, A.; Salta, J.; Langen, M. de; Driel, W. van

    2010-01-01

    As the market demands for high power and high efficiency power electronics, the industries has developed advanced IC technology and conceptual configuration. However, in order to guarantee the performance and reliability of the power electronics, the challenge of the packaging arises. This paper

  14. Patterning of high mobility electron gases at complex oxide interfaces

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, G. E. D. K.; von Soosten, Merlin

    2015-01-01

    Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects...... where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO3/SrTiO3 (a-LAO/STO) and modulation-doped amorphous-LaAlO3/La7/8Sr1/8MnO3/SrTiO3 (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching...... of amorphous-LSM (a-LSM) thin films, which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ∼8 700 cm2/V s at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually...

  15. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  16. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  17. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  18. NINJA: Java for High Performance Numerical Computing

    Directory of Open Access Journals (Sweden)

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  19. Challenges of front-end and triggering electronics for High Granularity Calorimetry

    CERN Document Server

    Puljak, Ivica

    2017-01-01

    A high granularity calorimeter is presently being designed by the CMS Collaboration to replace the existing endcap detectors. It must be able to cope with the very high collision rates, imposing the development of novel filtering and triggering strategies, as well as with the harsh radiation environment of the high-luminosity LHC. In this paper we present an overview of the full electronics architecture and the performance of prototype components and algorithms.

  20. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    Science.gov (United States)

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  1. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  2. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  3. High performance HRM: NHS employee perspectives.

    Science.gov (United States)

    Hyde, Paula; Sparrow, Paul; Boaden, Ruth; Harris, Claire

    2013-01-01

    The purpose of this paper is to examine National Health Service (NHS) employee perspectives of how high performance human resource (HR) practices contribute to their performance. The paper draws on an extensive qualitative study of the NHS. A novel two-part method was used; the first part used focus group data from managers to identify high-performance HR practices specific to the NHS. Employees then conducted a card-sort exercise where they were asked how or whether the practices related to each other and how each practice affected their work. In total, 11 high performance HR practices relevant to the NHS were identified. Also identified were four reactions to a range of HR practices, which the authors developed into a typology according to anticipated beneficiaries (personal gain, organisation gain, both gain and no-one gains). Employees were able to form their own patterns (mental models) of performance contribution for a range of HR practices (60 interviewees produced 91 groupings). These groupings indicated three bundles particular to the NHS (professional development, employee contribution and NHS deal). These mental models indicate employee perceptions about how health services are organised and delivered in the NHS and illustrate the extant mental models of health care workers. As health services are rearranged and financial pressures begin to bite, these mental models will affect employee reactions to changes both positively and negatively. The novel method allows for identification of mental models that explain how NHS workers understand service delivery. It also delineates the complex and varied relationships between HR practices and individual performance.

  4. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  5. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    CERN Document Server

    Lobanov, Artur

    2017-01-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0-10 pC), low noise (~2000e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~10mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing all the data from the HGCAL imposes equally large ch...

  6. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  7. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  8. Moisture absorption analysis of high performance polyimide adhesive

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Bhowmik, S.; Ernst, L.J.

    2011-01-01

    The high temperature resistant polymers and metal composites are used widely in aviation, space, automotive and electronics industry. The high temperature resistant polymers and metals are joined together using high temperature adhesives. Polyimide and epoxy adhesives that can withstand high

  9. a comparison of performances of electronic and electromechanical

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The Ferraris (electromechanical) energy meter has had predominance in the metering of energy consumption using the alternating current supply system. Electronic energy meters are gaining popularity because of the possibility of remote reading and controllable non uniform rate of billing. In this work, an.

  10. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  11. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  12. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  13. Parity nonconservation in polarized electron scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) ..-->.. e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references. (JFP)

  14. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  15. High performance FDTD algorithm for GPGPU supercomputers

    Science.gov (United States)

    Zakirov, Andrey; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2016-10-01

    An implementation of FDTD method for solution of optical and other electrodynamic problems of high computational cost is described. The implementation is based on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware. The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU devices are shown. The algorithm is implemented in the software for real physics calculation. The software performance is estimated through algorithms parameters and computer model. The real performance is tested on one GPU device, as well as on the many-GPU cluster. The performance of up to 0.65 • 1012 cell updates per second for 3D domain with 0.3 • 1012 Yee cells total is achieved.

  16. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  17. Performance enhancement of electronic sensor through mask-less lithography

    KAUST Repository

    Nag, Anindya

    2016-03-30

    The escalating applications of miniaturized sensors have led the microelectronics industry to stay abreast with the precise micro-fabrication technologies. The following article describes a new technique for the fabrication of miniaturized interdigitated capacitive sensors that own highly sensitive and real-time detections capabilities. In standard lithographic procedure, the sensors are fabricated applying different photoresist materials that give rise to the variable characteristic profile of the fabricated product. Single crystal p-doped Silicon wafer was used as a substrate material due to its advantageous properties over Germanium. Heidelberg system was used for the maskless lithographic patterning of the new interdigital sensors on a silicon substrate. The process was carried out in a clean room in the absence of ultraviolet light at a fixed temperature. The fabricated sensors were used for inflammable gas sensing application. Electrochemical Impedance Spectroscopy was applied to read the resistive and capacitive impedance measured by the sensor. The results proclaimed that the fabricated sensors own better performance in LPG detection as compared to its commercial counterparts.

  18. High Performance High-Tc Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sukill [ORNL; Goyal, Amit [ORNL; Li, Jing [ORNL; Gapud, Albert Agcaoili [ORNL; Martin, Patrick M [ORNL; Heatherly Jr, Lee [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Lee, Dominic F [ORNL

    2006-01-01

    We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.

  19. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    Parallel programming is the dominant approach to achieve high performance in computing today. Correctly writing efficient and fast parallel programs is a big challenge mostly carried out by experts. We investigate optimization and debugging of parallel programs. We argue that automatic paralleliz......Parallel programming is the dominant approach to achieve high performance in computing today. Correctly writing efficient and fast parallel programs is a big challenge mostly carried out by experts. We investigate optimization and debugging of parallel programs. We argue that automatic...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... the prescriptive debugging model, which is a user-guided model that allows the programmer to use his intuition to diagnose bugs in parallel programs. The model is scalable, yet capable enough, to be general-purpose. In our evaluation we demonstrate low run time overhead and logarithmic scalability. This enable...

  20. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  1. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  2. Correlated Cryo-fluorescence and Cryo-electron Microscopy with High Spatial Precision and Improved Sensitivity

    Science.gov (United States)

    Schorb, Martin; Briggs, John A. G.

    2017-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. PMID:24275379

  3. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity.

    Science.gov (United States)

    Schorb, Martin; Briggs, John A G

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. © 2013 Published by Elsevier B.V.

  4. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  5. Electron Flow to a Satellite at High Positive Potential

    Science.gov (United States)

    Sheldon, John W.

    1996-01-01

    The Tethered Satellite System (TSS) is designed to deploy a 1.6 m diameter spherical satellite a distance of 20 km above the space shuttle orbiter on an insulated conducting tether. Because of the passage of the conducting tether through the earth's magnetic field, an emf is generated producing a positive satellite potential of about 5000 V. Electron flow under the influence of this high positive potential is the focus of the present analysis. The ionospheric parameters at TSS orbit altitude are; thermal velocity of electrons, 1.9 x 10(exp 5) M/S, thermal velocity of the ions, 1.1 x 10(exp 3) m/s, velocity of the satellite 8 x 10(exp 3) m/s. The electrons, with a Debye length, lambda(D) = 0.49 cm, spiral about the earth's magnetic field lines (0.4 Gauss) with a radius of about 3 cm and the ions spiral with a radius of 5 m. Under these conditions, the electron thermal energy, kT is 0.17 eV. The TSS satellite radius, r(p) is 163 Debye lengths. There is an extensive literature on the interaction of satellites with the near-earth ionospheric plasma. The space charge limitation to the electron current collected by a sphere at positive electrical potential was calculated by Langmuir and Blodgett (1924). Parker and Murphy (1967) recognized the importance of the influence of the earth's magnetic field and used the guiding center approximation to calculate the electron current collected by a positive charged satellite. More recently Ma and Schunk (1989) have calculated the time dependent flow of electrons to a spherical satellite at positive potential utilizing numerical methods and Sheldon (1994) used similar methods to solve this problem for the steady state. In order to analyze some of the phenomena that occurred in the ionosphere during the TSS flights, it would be useful to have analytic expressions for these electron flows. The governing equations are very complex and an exact analytical solution is not likely. An approximate analytical solution is feasible however

  6. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  7. Electron Impact Ionization of Stored Highly Charged Ions

    CERN Document Server

    Hahn, Michael

    2014-01-01

    Accurate cross section data for electron impact ionization (EII) are needed in order to interpret the spectra of collisionally ionized plasmas both in astrophysics and in the laboratory. Models and spectroscopic diagnostics of such plasmas rely on accurate ionization balance calculations, which depend, in turn, on the underlying rates for EII and electron-ion recombination. EII measurements have been carried out using the TSR storage ring located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. Storage ring measurements are largely free of metastable contamination, resulting in unambiguous EII data, unlike what is encountered with other experimental geometries. As it is impractical to perform experiments for every ion, theory must provide the bulk of the necessary EII data. In order to guide theory, TSR experiments have focused on providing at least one measurement for every isoelectronic sequence. EII data have been measured for ions from 13 isoelectronic sequences: Li-like silicon and chlo...

  8. High current nonlinear transmission line based electron beam driver

    Science.gov (United States)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  9. High hopes: can molecular electronics realise its potential?

    Science.gov (United States)

    Coskun, Ali; Spruell, Jason M; Barin, Gokhan; Dichtel, William R; Flood, Amar H; Botros, Youssry Y; Stoddart, J Fraser

    2012-07-21

    Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated

  10. Delocalization of Electrons in Strong Insulators at High Dynamic Pressures

    Directory of Open Access Journals (Sweden)

    William J. Nellis

    2011-06-01

    Full Text Available Systematics of material responses to shock flows at high dynamic pressures are discussed. Dissipation in shock flows drives structural and electronic transitions or crossovers, such as used to synthesize metallic liquid hydrogen and most probably Al2O3 metallic glass. The term “metal” here means electrical conduction in a degenerate system, which occurs by band overlap in degenerate condensed matter, rather than by thermal ionization in a non-degenerate plasma. Since H2 and probably disordered Al2O3 become poor metals with minimum metallic conductivity (MMC virtually all insulators with intermediate strengths do so as well under dynamic compression. That is, the magnitude of strength determines the split between thermal energy and disorder, which determines material response. These crossovers occur via a transition from insulators with electrons localized in chemical bonds to poor metals with electron energy bands. For example, radial extents of outermost electrons of Al and O atoms are 7 a0 and 4 a0, respectively, much greater than 1.7 a0 needed for onset of hybridization at 300 GPa. All such insulators are Mott insulators, provided the term “correlated electrons” includes chemical bonds.

  11. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    Science.gov (United States)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  12. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  13. Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Qiang; Xu, Yingxue; Xiao, Bo; Zhang, Bing; Zhou, Erjun; Wang, Fuzhi; Bai, Yiming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-03-29

    For organic-inorganic perovskite solar cells (PerSCs), the electron transport layer (ETL) plays a crucial role in efficient electron extraction and transport for high performance PerSCs. Fullerene and its derivatives are commonly used as ETL for p-i-n structured PerSCs. However, these spherical small molecules are easy to aggregate with high annealing temperature and thus induce morphology stability problems. N-type conjugated polymers are promising candidates to overcome these problems due to the tunable energy levels, controllable aggregation behaviors, and good film formation abilities. Herein, a series of perylene diimide (PDI) based polymers (PX-PDIs), which contain different copolymeried units (X), including vinylene (V), thiophene (T), selenophene (Se), dibenzosilole (DBS), and cyclopentadithiophene (CPDT), are introduced as ETL for p-i-n structured PerSCs. The effect of energy alignment, electron mobility, and film morphology of these ETLs on the photovoltaic performance of the PerSCs are fully investigated. Among the PX-PDIs, PV-PDI demonstrates the deeper LUMO energy level, the highly delocalized LUMO electron density, and a better planar structure, making it the best electron transport material for PerSCs. The planar heterojunction PerSC with PV-PDI as ETL achieves a power conversion efficiency (PCE) of 10.14%, among the best values for non-fullerene based PerSCs.

  14. A high performance microfabricated surface ion trap

    Science.gov (United States)

    Lobser, Daniel; Blain, Matthew; Haltli, Raymond; Hollowell, Andrew; Revelle, Melissa; Stick, Daniel; Yale, Christopher; Maunz, Peter

    2017-04-01

    Microfabricated surface ion traps present a natural solution to the problem of scalability in trapped ion quantum computing architectures. We address some of the chief concerns about surface ion traps by demonstrating low heating rates, long trapping times as well as other high-performance features of Sandia's high optical access (HOA-2) trap. For example, due to the HOA's specific electrode layout, we are able to rotate principal axes of the trapping potential from 0 to 2 π without any change in the secular trap frequencies. We have also achieved the first single-qubit gates with a diamond norm below a rigorous fault tolerance threshold, and a two-qubit Mølmer-Sørensen gate with a process fidelity of 99.58(6). Here we present specific details of trap capabilities, such as shuttling and ion reordering, as well as details of our high fidelity single- and two-qubit gates.

  15. High Performance Database Management for Earth Sciences

    Science.gov (United States)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  16. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  17. High-speed evaluation of track-structure Monte Carlo electron transport simulations

    Science.gov (United States)

    Pasciak, A. S.; Ford, J. R.

    2008-10-01

    There are many instances where Monte Carlo simulation using the track-structure method for electron transport is necessary for the accurate analytical computation and estimation of dose and other tally data. Because of the large electron interaction cross-sections and highly anisotropic scattering behavior, the track-structure method requires an enormous amount of computation time. For microdosimetry, radiation biology and other applications involving small site and tally sizes, low electron energies or high-Z/low-Z material interfaces where the track-structure method is preferred, a computational device called a field-programmable gate array (FPGA) is capable of executing track-structure Monte Carlo electron-transport simulations as fast as or faster than a standard computer can complete an identical simulation using the condensed history (CH) technique. In this paper, data from FPGA-based track-structure electron-transport computations are presented for five test cases, from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. For the most complex test case presented, an FPGA is capable of evaluating track-structure electron-transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation and with comparable accuracy.

  18. High-speed evaluation of track-structure Monte Carlo electron transport simulations.

    Science.gov (United States)

    Pasciak, A S; Ford, J R

    2008-10-07

    There are many instances where Monte Carlo simulation using the track-structure method for electron transport is necessary for the accurate analytical computation and estimation of dose and other tally data. Because of the large electron interaction cross-sections and highly anisotropic scattering behavior, the track-structure method requires an enormous amount of computation time. For microdosimetry, radiation biology and other applications involving small site and tally sizes, low electron energies or high-Z/low-Z material interfaces where the track-structure method is preferred, a computational device called a field-programmable gate array (FPGA) is capable of executing track-structure Monte Carlo electron-transport simulations as fast as or faster than a standard computer can complete an identical simulation using the condensed history (CH) technique. In this paper, data from FPGA-based track-structure electron-transport computations are presented for five test cases, from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. For the most complex test case presented, an FPGA is capable of evaluating track-structure electron-transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation and with comparable accuracy.

  19. Emerging technologies for high performance infrared detectors

    Directory of Open Access Journals (Sweden)

    Tan Chee Leong

    2018-01-01

    Full Text Available Infrared photodetectors (IRPDs have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  20. Emerging technologies for high performance infrared detectors

    Science.gov (United States)

    Tan, Chee Leong; Mohseni, Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  1. Status and performance of the CALorimetric Electron Telescope (CALET) on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O. [University of Florence, IFAC (CNR) and INFN (Italy); Akaike, Y. [ICRR, University of Tokyo (Japan); Asaoka, Y. [Waseda University (Japan); Asano, K. [Tokyo Institute of Technology (Japan); Bagliesi, M.G.; Bigongiari, G. [University of Siena and INFN (Italy); Binns, W.R. [Washington University-St. Louis (United States); Bongi, M. [University of Florence, IFAC (CNR) and INFN (Italy); Buckley, J.H. [Washington University-St. Louis (United States); Cassese, A.; Castellini, G. [University of Florence, IFAC (CNR) and INFN (Italy); Cherry, M.L. [Louisiana State University (United States); Collazuol, G. [University of Padova and INFN (Italy); Ebisawa, K. [JAXA/ISAS (Japan); Di Felice, V. [University of Rome Tor Vergata and INFN (Italy); Fuke, H. [JAXA/ISAS (Japan); Guzik, T.G. [Louisiana State University (United States); Hams, T. [CRESST/NASA/GSFC and University of Maryland (United States); Hasebe, N. [Waseda University (Japan); Hareyama, M. [St. Marianna University School of Medicine (Japan); and others

    2014-11-15

    The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.

  2. Single Grain TFTs for High Speed Flexible Electronics

    NARCIS (Netherlands)

    Baiano, A.

    2009-01-01

    SG-TFTs fabricated by the ?-Czochralski process have already reached a performance as high as that of SOI MOSFET devices. However, one of the most important and challenging goals is extending SG-TFT technology to reach a higher level of performance than that achieved with SOI technology. This thesis

  3. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  4. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  5. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  6. Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline

    Directory of Open Access Journals (Sweden)

    K. Basavaiah

    2012-01-01

    Full Text Available We report simple synthesis of boron trifluoride (BF3 doped defect free high performance polyaniline (HPPANI in two step method. Firstly, HPPANI was prepared via self-stabilization dispersion polymerization method in a heterogeneous reaction medium. Second step involves doping of emeraldine base form of HPPANI with boron trifluoride under reduced vacuum. The resultants BF3 doped HPPANI have been well characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and thermogravimetry. The spectroscopic data indicated that the interaction between HPPANI and BF3.Thermogravimetry studies revealed that the BF3 doping improved the thermal stability of defects free PANI.

  7. Terahertz radiation source using a high-power industrial electron linear accelerator

    Science.gov (United States)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  8. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  9. A flexible high potential printed battery for powering printed electronics

    Science.gov (United States)

    Gaikwad, Abhinav M.; Steingart, Daniel A.; Nga Ng, Tse; Schwartz, David E.; Whiting, Gregory L.

    2013-06-01

    Mechanically flexible arrays of alkaline electrochemical cells fabricated using stencil printing onto fibrous substrates are shown to provide the necessary performance characteristics for driving ink-jet printed circuits. Due to the dimensions and material set currently required for reliable low-temperature print processing of electronic devices, a battery potential greater than that sourced by single cells is typically needed. The developed battery is a series interconnected array of 10 low resistance Zn-MnO2 alkaline cells, giving an open circuit potential of 14 V. This flexible battery is used to power an ink-jet printed 5-stage complementary ring oscillator based on organic semiconductors.

  10. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  11. Estimating the Reliability of Electronic Parts in High Radiation Fields

    Science.gov (United States)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  12. Surface-mount electronics meet the military's high reliability needs

    Science.gov (United States)

    Reynolds, R. A.

    1985-08-01

    Surface-mount electronics, as opposed to through-hole mounted electronics, will be dominant board assembly technique in the U.S. for at least the next ten years for weight and space saving and for high reliability. New pin-out and packaging standards have been developed, to the benefit of both military and industrial and commercial users. Reliability rather than standards is, however, the major issue, and design, material selection and manufacturing techniques at the board-component interface determine how well any producer's equipment stands up to demanding applications and environments. Problems of matching thermal coefficients of expansion are dwindling as new chip technologies reduce semiconductor power dissipation drastically. The special soldering methods needed, preparation of the circuit board, and the increasingly widespread use of metal-core circuit boards are treated.

  13. Highly reactive free radicals in electronic cigarette aerosols.

    Science.gov (United States)

    Goel, Reema; Durand, Erwann; Trushin, Neil; Prokopczyk, Bogdan; Foulds, Jonathan; Elias, Ryan J; Richie, John P

    2015-09-21

    Electronic cigarette (EC) usage has increased exponentially, but limited data are available on its potential harmful effects. We tested for the presence of reactive, short-lived free radicals in EC aerosols by electron paramagnetic resonance spectroscopy (EPR) using the spin-trap phenyl-N-tert-butylnitrone (PBN). Radicals were detected in aerosols from all ECs and eliquids tested (2.5 × 10(13) to 10.3 × 10(13) radicals per puff at 3.3 V) and from eliquid solvents propylene glycol and glycerol and from "dry puffing". These results demonstrate, for the first time, the production of highly oxidizing free radicals from ECs which may present a potential toxicological risk to EC users.

  14. Microfabricated high-bandpass foucault aperture for electron microscopy

    Science.gov (United States)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  15. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  16. The high performance solar array GSR3

    Science.gov (United States)

    Mamode, A.; Bartevian, J.; Bastard, J. L.; Auffray, P.; Plagne, A.

    A foldout solar array for communication satellites was developed. A wing composed of 4 panels of 1.6 x 1.5 m and a Y-shaped yoke, and a wing with 3 panels of 2.4 x 2.4 m were made. End of life performance goal is greater than 35 W/kg with BSR 180 micron solar cells, and 50 W/kg using 50 micron BSFR cells. Analysis shows that all identified requirements can be covered with current skin made of open weave very high modulus carbon fiber; reinforcements of unidirectional carbon fiber; honeycomb in current section; hold-down inserts made of wound carbon fibers; titanium hinge fitting; and Kapton foil (25 or 50 micron thickness). Tests confirm performance predictions.

  17. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  18. High performance CNT point emitter with graphene interfacial layer.

    Science.gov (United States)

    Lee, Jeong Seok; Kim, Taewoo; Kim, Seul-Gi; Cho, Myung Rae; Seo, Dong Kyun; Lee, Minwoo; Kim, Seontae; Kim, Dae Weon; Park, Gun-Sik; Jeong, Dae Hong; Park, Yun Daniel; Yoo, Ji-Beom; Kang, Tae June; Kim, Yong Hyup

    2014-11-14

    Carbon nanotubes (CNTs) have great potential in the development of high-power electron beam sources. However, for such a high-performance electronic device, the electric and thermal contact problem between the metal and CNTs must be improved. Here, we report graphene as an interfacial layer between the metal and CNTs to improve the interfacial contact. The interfacial graphene layer results in a dramatic decrease of the electrical contact resistance by an order of 2 and an increase of the interfacial thermal conductivity by 16%. Such a high improvement in the electrical and thermal interface leads to superior field emission performance with a very low turn-on field of 1.49 V μm(-1) at 10 μA cm(-2) and a threshold field of 2.00 V μm(-1) at 10 mA cm(-2), as well as the maximum current of 16 mA (current density of 2300 A cm(-2)).

  19. High-performance arrayed waveguide grating

    Science.gov (United States)

    Fondeur, Bart; Sala, Anca; Thekdi, Sanjay; Gopinathan, Niranjan; Nakamoto, David; Aghel, Masoud; Brainard, Bob; Vaidyanathan, Anant

    2004-06-01

    Planar technology and design have evolved significantly in the past decade, both in terms of performance and yield, reducing the cost/performance advantage of thin-film filters (TFF) over Array-Waveguide Grating (AWG) devices. This evolution is primarily due to two reasons. One of the reasons for this is the adoption of the latest in semi-conductor fabrication techniques with respect to wafer scale, process equipment automation, and yield engineering. The other reason is the many advancements made in the Planar Light Circuit (PLC) design front which have resulted in lower optical insertion loss, reduced crosstalk, increased channel bandwidth, decreased channel spacing, and minimal chromatic dispersion. We demonstrate here how such state-of-the-art fabrication technology in combination with advanced PLC designs can be effectively used to engineer the filter shape (ripple, bandwidth, and flatness) and chromatic dispersion of AWG's to match or exceed that of their thin-film counterparts. Low passband ripple is critical for cascading multiple nodes in ring network architecture whereas minimal chromatic dispersion (CD) is desired in high rate data systems to avoid signal distortion. The AWG device presented here has a 1dB bandwidth that exceeds 80% of the channel spacing awhile exhibiting a high flatness (25dB/1dB ratio < 1.7), both of which are at least a 50% improvement over generic flat-top AWG designs available in the market and are equivalent in performance to TFF devices. At 100 GHz spacing, AWG's have intrinsic low-dispersion, but narrowing the spacing to 50GHz leads to a four fold increase in the CD. Here, we have successfully overcome this limitation and have been able to design and fabricate a 50GHz wide-band AWG with less than 1ps/nm chromatic dispersion, which exceeds TFF performance.

  20. The Influence of Usability on Electronic Customer Relationship Management Performance in Jordan Mobile Phone Services

    OpenAIRE

    Samsudin Wahab; Jefry Elias; Khaled Abed Mufleh Al Momani; Nor Azila Mohd Noor

    2011-01-01

    Electronic Customer Relationship Management performance is a comprehensive business and marketing strategy that integrates people, process, technology and all business activities for attracting and retaining customers over the internet and mobile phone to reduce costs and increase profitability by consolidation the principles of customer loyalty. Therefore, the results of Electronic Customer Relationship Management performance are repeat purchase, word of mouth, retention, cross buying, brand...

  1. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    Science.gov (United States)

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  2. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns

    Science.gov (United States)

    Czaplewski, David A.; Holt, Martin V.; Ocola, Leonidas E.

    2013-08-01

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  3. The monogroove high performance heat pipe

    Science.gov (United States)

    Alario, J.; Haslett, R.; Kosson, R.

    1981-06-01

    The development of the monogroove heat pipe, a fundamentally new high-performance device suitable for multi-kilowatt space radiator heat-rejection systems, is reported. The design separates heat transport and transfer functions, so that each can be separately optimized to yield heat transport capacities on the order of 25 kW/m. Test versions of the device have proven the concept of heat transport capacity control by pore dimensions and the permeability of the circumferential wall wick structure, which together render it insensitive to tilt. All cases tested were for localized, top-side heat input and cooling and produced results close to theoretical predictions.

  4. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    Energy Technology Data Exchange (ETDEWEB)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  5. High performance channel injection sealant invention abstract

    Science.gov (United States)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  6. Portability Support for High Performance Computing

    Science.gov (United States)

    Cheng, Doreen Y.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    While a large number of tools have been developed to support application portability, high performance application developers often prefer to use vendor-provided, non-portable programming interfaces. This phenomena indicates the mismatch between user priorities and tool capabilities. This paper summarizes the results of a user survey and a developer survey. The user survey has revealed the user priorities and resulted in three criteria for evaluating tool support for portability. The developer survey has resulted in the evaluation of portability support and indicated the possibilities and difficulties of improvements.

  7. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    Energy Technology Data Exchange (ETDEWEB)

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  8. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  9. High-performance laboratories and cleanrooms

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  10. Plasma sources for high-current electron beam generation

    Science.gov (United States)

    Krasik, Ya. E.; Dunaevsky, A.; Felsteiner, J.

    2001-05-01

    A review of experimental studies of the operation of cathodes made of metal-ceramic, velvet, corduroy, carbon fibers, carbon fabric, and different types of ferroelectrics is presented. These cathodes operated at electric fields in the range of 5-60 kV/cm that allowed the generation of electron beams with duration of several hundreds of nanoseconds while keeping a quasi-constant diode impedance. All cathodes had the same diameter and were tested in a diode powered by a high-voltage generator (300 kV, 85 Ω, 250 ns, ⩽5 Hz). It was shown that the source of electrons for all the studied cathodes is a plasma which is formed as a result of surface discharges. Different types of electrical and optical diagnostics were used to study the formation and parameters of the plasma, the potential distribution inside the anode-cathode gap, and the uniformity and divergence of the extracted electron beam as a function of the amplitude and rise time of the accelerating pulse. Results of the lifetime of the tested cathodes and their compatibility with vacuum requirements are presented as well.

  11. High-performance computing for airborne applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Manuzzato, Andrea [Los Alamos National Laboratory; Fairbanks, Tom [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Desgeorges, Rose [Los Alamos National Laboratory

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  12. Low cost high performance uncertainty quantification

    KAUST Repository

    Bekas, C.

    2009-01-01

    Uncertainty quantification in risk analysis has become a key application. In this context, computing the diagonal of inverse covariance matrices is of paramount importance. Standard techniques, that employ matrix factorizations, incur a cubic cost which quickly becomes intractable with the current explosion of data sizes. In this work we reduce this complexity to quadratic with the synergy of two algorithms that gracefully complement each other and lead to a radically different approach. First, we turned to stochastic estimation of the diagonal. This allowed us to cast the problem as a linear system with a relatively small number of multiple right hand sides. Second, for this linear system we developed a novel, mixed precision, iterative refinement scheme, which uses iterative solvers instead of matrix factorizations. We demonstrate that the new framework not only achieves the much needed quadratic cost but in addition offers excellent opportunities for scaling at massively parallel environments. We based our implementation on BLAS 3 kernels that ensure very high processor performance. We achieved a peak performance of 730 TFlops on 72 BG/P racks, with a sustained performance 73% of theoretical peak. We stress that the techniques presented in this work are quite general and applicable to several other important applications. Copyright © 2009 ACM.

  13. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  14. Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors

    Science.gov (United States)

    2010-11-11

    and n- type transistors on the same chip for complementary electronics based on the optimal III–V semiconductors. 1Electrical Engineering and...layouts for high-performance electronics on fabric, vinyl, leather , and paper. Adv. Mater. 21, 3703–3707 (2009). 17. Melosh, N. et al. Ultrahigh density

  15. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  16. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.

    Science.gov (United States)

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2015-11-01

    In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Wearable Accelerometers in High Performance Jet Aircraft.

    Science.gov (United States)

    Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E

    2016-02-01

    Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.

  18. High-resolution AMLCD for the electronic library system

    Science.gov (United States)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  19. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  20. PREFACE: High Performance Computing Symposium 2011

    Science.gov (United States)

    Talon, Suzanne; Mousseau, Normand; Peslherbe, Gilles; Bertrand, François; Gauthier, Pierre; Kadem, Lyes; Moitessier, Nicolas; Rouleau, Guy; Wittig, Rod

    2012-02-01

    HPCS (High Performance Computing Symposium) is a multidisciplinary conference that focuses on research involving High Performance Computing and its application. Attended by Canadian and international experts and renowned researchers in the sciences, all areas of engineering, the applied sciences, medicine and life sciences, mathematics, the humanities and social sciences, it is Canada's pre-eminent forum for HPC. The 25th edition was held in Montréal, at the Université du Québec à Montréal, from 15-17 June and focused on HPC in Medical Science. The conference was preceded by tutorials held at Concordia University, where 56 participants learned about HPC best practices, GPU computing, parallel computing, debugging and a number of high-level languages. 274 participants from six countries attended the main conference, which involved 11 invited and 37 contributed oral presentations, 33 posters, and an exhibit hall with 16 booths from our sponsors. The work that follows is a collection of papers presented at the conference covering HPC topics ranging from computer science to bioinformatics. They are divided here into four sections: HPC in Engineering, Physics and Materials Science, HPC in Medical Science, HPC Enabling to Explore our World and New Algorithms for HPC. We would once more like to thank the participants and invited speakers, the members of the Scientific Committee, the referees who spent time reviewing the papers and our invaluable sponsors. To hear the invited talks and learn about 25 years of HPC development in Canada visit the Symposium website: http://2011.hpcs.ca/lang/en/conference/keynote-speakers/ Enjoy the excellent papers that follow, and we look forward to seeing you in Vancouver for HPCS 2012! Gilles Peslherbe Chair of the Scientific Committee Normand Mousseau Co-Chair of HPCS 2011 Suzanne Talon Chair of the Organizing Committee UQAM Sponsors The PDF also contains photographs from the conference banquet.

  1. Scalable resource management in high performance computers.

    Energy Technology Data Exchange (ETDEWEB)

    Frachtenberg, E. (Eitan); Petrini, F. (Fabrizio); Fernandez Peinador, J. (Juan); Coll, S. (Salvador)

    2002-01-01

    Clusters of workstations have emerged as an important platform for building cost-effective, scalable and highly-available computers. Although many hardware solutions are available today, the largest challenge in making large-scale clusters usable lies in the system software. In this paper we present STORM, a resource management tool designed to provide scalability, low overhead and the flexibility necessary to efficiently support and analyze a wide range of job scheduling algorithms. STORM achieves these feats by closely integrating the management daemons with the low-level features that are common in state-of-the-art high-performance system area networks. The architecture of STORM is based on three main technical innovations. First, a sizable part of the scheduler runs in the thread processor located on the network interface. Second, we use hardware collectives that are highly scalable both for implementing control heartbeats and to distribute the binary of a parallel job in near-constant time, irrespective of job and machine sizes. Third, we use an I/O bypass protocol that allows fast data movements from the file system to the communication buffers in the network interface and vice versa. The experimental results show that STORM can launch a job with a binary of 12MB on a 64 processor/32 node cluster in less than 0.25 sec on an empty network, in less than 0.45 sec when all the processors are busy computing other jobs, and in less than 0.65 sec when the network is flooded with a background traffic. This paper provides experimental and analytical evidence that these results scale to a much larger number of nodes. To the best of our knowledge, STORM is at least two orders of magnitude faster than existing production schedulers in launching jobs, performing resource management tasks and gang scheduling.

  2. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  3. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin; Gao, Fei; Garner, Frank

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  4. Design of high performance CMC brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Krenkel, W.; Henke, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany)

    1999-03-01

    Ceramic matrix composite (CMC) materials based on 2D-carbon fibre preforms show high heat-absorption capacities and good tribological as well as thermomechanical properties. To take advantage of the full lightweight potential of these new materials in high performance automotive brake discs, the thermal conductivity transverse to the friction surface has to be high in order to reduce the surface temperature. Experimental tests showed, that lower surface temperatures prevent overheating of the brake`s periphery and stabilizes the friction behaviour. In this study different design approaches with improved transverse heat conductivity have been investigated by finite element analysis. C/C-SiC bolts as well as SiC coatings and combinations of them have been investigated and compared with an orthotropic brake disc, showing a reduction of temperature of up to 50%. Original sized brake discs with C/C-SiC have been manufactured and tested under real conditions which verified the calculations. Using only low-cost CMC materials and avoiding any additional processing steps, the potential of C/C-SiC brake discs are very attractive under tribological as well as under economical aspects. (orig.) 4 refs.

  5. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap

    Science.gov (United States)

    Ali, Safdar; Nakamura, Nobuyuki

    2017-09-01

    We performed high resolution extreme ultraviolet (EUV) spectroscopy measurements of highly charged xenon ions with a compact electron beam ion trap. The spectra were recorded with a flat-field grazing incidence spectrometer while varying the electron beam energy between 200 and 890 eV. We measured the wavelengths for several lines of Rh-like Xe9+ - Cd-like Xe6+ and Cu-like Xe25+- Se-like Xe20+ in the range of 150-200 Å with an uncertainty of 0.05 Å. Previously, most of these lines have been reported from EBITs with a wavelength uncertainty of 0.2 Å. Additionally, based on the electron beam energy dependence of the observed spectra we tentatively identified three new lines, which were reported as unidentified lines in the previous studies.

  6. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  7. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  8. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D.; Zhou, Tao

    2017-01-01

    Implantable electrical probes have led to advances in neuroscience, brain−machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. PMID:29109247

  9. Experimental characterization of a space charge induced modulation in high-brightness electron beam

    Directory of Open Access Journals (Sweden)

    T. Shaftan

    2004-08-01

    Full Text Available We present the experimental investigation of a collective effect driving strong modulation in the longitudinal phase space of a high-brightness electron beam. The measured beam energy spectrum was analyzed in order to reveal the main parameters of modulation. The experimental results were compared with a model of space-charge oscillations in the beam longitudinal phase space. The measurements and analysis allowed us to determine the range of the parameters of the observed effect on the modulation dynamics and illustrate its potential impact on short-wavelength free-electron laser performance.

  10. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    Science.gov (United States)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  11. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, Andrew L. [Univ. of Nevada, Las Vegas, NV (United States)

    2016-08-26

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  12. Integrating advanced facades into high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  13. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  14. Electron impact ionization of highly charged lithiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  15. Introduction to electronics and applications in high energy physics

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Electronics in HEP experiments: specificities and evolution The Art of Electronics: is there something beyond Ohm's law? Basic building blocks of Analog electronics: quickly understanding a schematic Charge preamps, current preamps and future preamps, shaping and the rest Electronics noise: fundamental and practical Evolution of technology: ASICs, FPGAs...

  16. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  17. High Performance Fe-Co Based SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2010-01-01

    With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode...... is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also...

  18. How to create high-performing teams.

    Science.gov (United States)

    Lam, Samuel M

    2010-02-01

    This article is intended to discuss inspirational aspects on how to lead a high-performance team. Cogent topics discussed include how to hire staff through methods of "topgrading" with reference to Geoff Smart and "getting the right people on the bus" referencing Jim Collins' work. In addition, once the staff is hired, this article covers how to separate the "eagles from the ducks" and how to inspire one's staff by creating the right culture with suggestions for further reading by Don Miguel Ruiz (The four agreements) and John Maxwell (21 Irrefutable laws of leadership). In addition, Simon Sinek's concept of "Start with Why" is elaborated to help a leader know what the core element should be with any superior culture. Thieme Medical Publishers.

  19. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  20. High performance stepper motors for space mechanisms

    Science.gov (United States)

    Sega, Patrick; Estevenon, Christine

    1995-01-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  1. High performance computing applications in neurobiological research

    Science.gov (United States)

    Ross, Muriel D.; Cheng, Rei; Doshay, David G.; Linton, Samuel W.; Montgomery, Kevin; Parnas, Bruce R.

    1994-01-01

    The human nervous system is a massively parallel processor of information. The vast numbers of neurons, synapses and circuits is daunting to those seeking to understand the neural basis of consciousness and intellect. Pervading obstacles are lack of knowledge of the detailed, three-dimensional (3-D) organization of even a simple neural system and the paucity of large scale, biologically relevant computer simulations. We use high performance graphics workstations and supercomputers to study the 3-D organization of gravity sensors as a prototype architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scale-up, three-dimensional versions run on the Cray Y-MP and CM5 supercomputers.

  2. High-Resolution Transmission Electron Microscopy - and Associated Techniques

    Science.gov (United States)

    Buseck, Peter; Cowley, John; Eyring, Leroy

    1989-02-01

    This book provides an introduction to the fundamental concepts, techniques, and methods used for electron microscopy at high resolution in space, energy, and even in time. It delineates the theory of elastic scattering, which is most useful for spectroscopic and chemical analyses. There are also discussions of the theory and practice of image calculations, and applications of HRTEM to the study of solid surfaces, highly disordered materials, solid state chemistry, mineralogy, semiconductors and metals. Contributors include J. Cowley, J. Spence, P. Buseck, P. Self, and M.A. O'Keefe. Compiled by experts in the fields of geology, physics and chemistry, this comprehensive text will be the standard reference for years to come.

  3. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini

    2015-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...... recent results of high mobile samples realized by, interface confined redox reactions[2], strain induced polarization[3]and modulation doping at complex oxide interfaces. This collection of samples offers unique opportunities for a wide range of rich world of mesoscopic physics. [1] S. Sanne et al...

  4. Materials for high performance light water reactors

    Science.gov (United States)

    Ehrlich, K.; Konys, J.; Heikinheimo, L.

    2004-05-01

    A state-of-the-art study was performed to investigate the operational conditions for in-core and out-of-core materials in a high performance light water reactor (HPLWR) and to evaluate the potential of existing structural materials for application in fuel elements, core structures and out-of-core components. In the conventional parts of a HPLWR-plant the approved materials of supercritical fossil power plants (SCFPP) can be used for given temperatures (⩽600 °C) and pressures (≈250 bar). These are either commercial ferritic/martensitic or austenitic stainless steels. Taking the conditions of existing light water reactors (LWR) into account an assessment of potential cladding materials was made, based on existing creep-rupture data, an extensive analysis of the corrosion in conventional steam power plants and available information on material behaviour under irradiation. As a major result it is shown that for an assumed maximum temperature of 650 °C not only Ni-alloys, but also austenitic stainless steels can be used as cladding materials.

  5. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  6. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Yao Xu; Ashok Srivastava; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  7. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  8. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  9. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  10. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  11. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  12. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    Science.gov (United States)

    Qaiser, N.; Khan, S. M.; Nour, M.; Rehman, M. U.; Rojas, J. P.; Hussain, M. M.

    2017-11-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  13. High-quality stable electron beams from laser wakefield acceleration in high density plasma

    Directory of Open Access Journals (Sweden)

    B. S. Rao

    2014-01-01

    Full Text Available High-quality, stable electron beams are produced from self-injected laser wakefield acceleration using the interaction of moderate 3 TW, 45 fs duration Ti:sapphire laser pulses with high density (>5×10^{19}   cm^{−3} helium gas jet plasma. The electron beam has virtually background-free quasimonoenergetic distribution with energy 35.6_{−2.5}^{+3.9}  MeV, charge 3.8_{−1.2}^{+2.8}  pC, divergence and pointing variation ∼10  mrad. The stable and high quality of the electron beam opens an easy way for applications of the laser wakefield accelerator in the future, particularly due to the widespread availability of sub-10 TW class lasers with a number of laser plasma laboratories around the world.

  14. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  15. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi

    KAUST Repository

    Hou, Zhipeng

    2015-12-18

    Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magnetoelectric devices. Here, we report on an electron-hole-compensated half-Heusler semimetal LuPtBi that exhibits an extremely high electron mobility of up to 79000cm2/Vs with a nonsaturating positive MR as large as 3200% at 2 K. Remarkably, the mobility at 300 K is found to exceed 10500cm2/Vs, which is among the highest values reported in three-dimensional bulk materials thus far. The clean Shubnikov–de Haas quantum oscillation observed at low temperatures and the first-principles calculations together indicate that the high electron mobility is due to a rather small effective carrier mass caused by the distinctive band structure of the crystal. Our findings provide a different approach for finding large, high-mobility MR materials by designing an appropriate Fermi surface topology starting from simple electron-hole-compensated semimetals.

  16. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  17. The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons?

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan

    2015-01-01

    Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.

  18. The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons?

    Directory of Open Access Journals (Sweden)

    Ling-Feng Mao

    Full Text Available Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.

  19. Analysis and performance of novel and highly efficient electronic ...

    Indian Academy of Sciences (India)

    L1 and L2, therefore, the currents iL1 and iL2 clamp at their respective peak values as on t3, and the additional energy of Lm is returned to the ac source during this mode. This mode ends at t4, when energy of Lm is exhausted. Similar operation takes place in another four modes during the next half switching time period.

  20. Electron Scattering From a High-Momentum Neutron in Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Alexei [Old Dominion Univ., Norfolk, VA (United States)

    2004-05-01

    The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 105 events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F2n. S was extracted for different values of W*, backward proton momenta ps and momentum transfer Q2. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(thetapq) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F2n was studied in the region cos(thetapq) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is