WorldWideScience

Sample records for high performance discharges

  1. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  2. ELMs IN DIII-D HIGH PERFORMANCE DISCHARGES

    International Nuclear Information System (INIS)

    TURNBULL, A.D; LAO, L.L; OSBORNE, T.H; SAUTER, O; STRAIT, E.J; TAYLOR, T.S; CHU, M.S; FERRON, J.R; GREENFIELD, C.M; LEONARD, A.W; MILLER, R.L; SNYDER, P.B; WILSON, H.R; ZOHM, H

    2003-01-01

    A new understanding of edge localized modes (ELMs) in tokamak discharges is emerging [P.B. Snyder, et al., Phys. Plasmas, 9, 2037 (2002)], in which the ELM is an essentially ideal magnetohydrodynamic (MHD) instability and the ELM severity is determined by the radial width of the linearly unstable MHD kink modes. A detailed, comparative study of the penetration into the core of the respective linear instabilities in a standard DIII-D ELMing, high confinement mode (H-mode) discharge, with that for two relatively high performance discharges shows that these are also encompassed within the framework of the new model. These instabilities represent the key, limiting factor in extending the high performance of these discharges. In the standard ELMing H-mode, the MHD instabilities are highly localized in the outer few percent flux surfaces and the ELM is benign, causing only a small temporary drop in the energy confinement. In contrast, for both a very high confinement mode (VH-mode) and an H-mode with a broad internal transport barrier (ITB) extending over the entire core and coalesced with the edge transport barrier, the linearly unstable modes penetrate well into the mid radius and the corresponding consequences for global confinement are significantly more severe. The ELM accordingly results in an irreversible loss of the high performance

  3. High performance discharges near the operational limit in HT-7

    International Nuclear Information System (INIS)

    Li Jiangang; Wan Baonian; Luo Jiarong; Gao Xiang; Zhao Yanping; Kuang Guangli; Zhang Xiaodong; Yang Yu; Yi Bao; Bojiang Ding; Jikang Xie; Yuanxi Wan

    2001-01-01

    Efforts have been made on the HT-7 tokamak to extend the stable operation boundaries. Extensive RF boronization and siliconization have been used and a wider operational Hugill diagram has been obtained. The transit density reached 1.3 times the Greenwald density limit in ohmic discharges. A stationary high performance discharge with q a =2.1 has been obtained after siliconization. Confinement improvement was obtained as a result of the significant reduction of electron thermal diffusivity χ e in the outer region of the plasma. An improved confinement phase was also observed with LHCD in the density range of 70-120% of the Greenwald density limit. Off-axis LH wave power deposition was attributed to the weak hollow current density profile. Code simulations and measurements showed good agreement with the off-axis LH wave deposition. Supersonic molecular beam injection has been successfully used to achieve stable high density operation in the region of the Greenwald density limit. (author)

  4. HIGH PERFORMANCE STATIONARY DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Ferron, J.R.; Politzer, P.A.; Hyatt, A.W.; Sips, A.C.C.; Murakami, M.

    2003-01-01

    Recent experiments in the DIII-D tokamak [J.L. Luxon, Nucl. Fusion 42,614 (2002)] have demonstrated high β with good confinement quality under stationary conditions. Two classes of stationary discharges are observed--low q 95 discharges with sawteeth and higher q 95 without sawteeth. The discharges are deemed stationary when the plasma conditions are maintained for times greater than the current profile relaxation time. In both cases the normalized fusion performance (β N H 89P /q 95 2 ) reaches or exceeds the value of this parameter projected for Q fus = 10 in the International Thermonuclear Experimental Reactor (ITER) design [R. Aymar, et al., Plasma Phys. Control. Fusion 44, 519 (2002)]. The presence of sawteeth reduces the maximum achievable normalized β, while confinement quality (confinement time relative to scalings) is largely independent of q 95 . Even with the reduced β limit, the normalized fusion performance maximizes at the lowest q 95 . Projections to burning plasma conditions are discussed, including the methodology of the projection and the key physics issues which still require investigation

  5. Impurity transport of high performance discharges in JET

    Energy Technology Data Exchange (ETDEWEB)

    Lauro-Taroni, L; Alper, B; Giannella, R; Marcus, F; Smeulders, P; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K [UKAEA Culham Lab., Abingdon (United Kingdom); Mattioli, M [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1994-07-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n{sub D}/n{sub e} falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs.

  6. Impurity transport of high performance discharges in JET

    International Nuclear Information System (INIS)

    Lauro-Taroni, L.; Alper, B.; Giannella, R.; Marcus, F.; Smeulders, P.; Von Hellermann, M.; Mattioli, M.

    1994-01-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n D /n e falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs

  7. Transport modelling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.E.; Imbeaux, F.; Staebler, G.M.; Budny, R.; Bourdelle, C.; Fukuyama, A.; Garbet, X.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modelling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and advanced tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. E x B shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET and AUG tokamaks. GLF23 transport modelling and gyrokinetic stability analysis indicate that E x B shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of E x B shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveal some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and E x B shear stabilization can dominate parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent E x B shear quenching of the turbulent

  8. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.; Imbeaux, F.; Bourdelle, C.; Garbet, X.; Staebler, G.; Budny, R.; Fukuyama, A.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  9. High performance discharges and capabilities in Alcator C-Mod

    International Nuclear Information System (INIS)

    Porkolab, M.

    1996-01-01

    Alcator C-Mod is a compact, diverted, shaped, high magnetic field (B = 9 T) tokamak operating at the Massachusetts Institute of Technology Plasma Fusion Center. The machine interior is all metallic, and the walls and divertor region are covered with molybdenum tiles. The vacuum vessel is a continuous, thick wall stainless steel construction, prototypical of future fusion devices (e.g., ITER). Typical discharge cleaning utilizes ECDC, or electron-cyclotron discharge cleaning, in the steady state at low magnetic field (0.0875 T). While its dimensions are compact (R = 0.67 m, a = 0.22 m, K = 1.8), C-Mod is designed to operate up to 2.5 MA at 9.0 T magnetic field. To present date the machine has operated at currents up to 1.5 MA at B = 5.3 T, and magnetic fields up to 8.0 T at I p = 1.2 MA. Due to the high current density, line average densities of 4.0 x 10 20 m -3 are obtained with gas fueling, and peak densities in excess of 1.0 x 10 21 m -3 have been obtained with pellet fueling. Typical pulse lengths are up to 2.0 seconds, with a flat-top of typically 1.0 sec. Presently the device is equipped with 4.0 MW of ICRF heating power operating at 80 MHz, but this capability is being upgraded to 8.0 MW with the addition of 4.0 MW of tunable ICRF power operating at 40.80 MHz. A 20 pellet/pulse deuterium injector is operational, and a 4 pellet Li injector is also operational. To reduce the influx of metallic impurities during high power operation, recently boronization of the machine interior was begun prior to plasma discharges, this allowed plasma operation with full auxiliary power capability without excessive radiative power losses from the plasma core. 7 refs

  10. Long pulse high performance discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Politzer, P.A.

    2001-01-01

    Significant progress in obtaining high performance discharges lasting many energy confinement times in the DIII-D tokamak has been realized in recent experimental campaigns. Normalized performance ∼10 has been sustained for more than 5τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 , indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H mode discharges have an ELMing edge and β min >1. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility. Measurement of the current density and loop voltage profiles indicate that ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half-radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H mode discharges with β N H 89 ∼ 7 for up to 6.3 s or ∼34τ E . These discharges appear to have stationary current profiles with q min ∼1.05, in agreement with the current profile relaxation time ∼1.8 s. (author)

  11. Long-pulse high-performance discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Politzer, P.A.

    2001-01-01

    Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance ∼10 has been sustained for >5τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and β≤5%. The limit to increasing β is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with β N H 89 ∼7 for up to 6.3 s or ∼34 τ E . These discharges appear to be in resistive equilibrium with q min ∼1.05, in agreement with the current profile relaxation time of 1.8 s. (author)

  12. LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    T.C. LUCE; M.R. WADE; P.A. POLITZER; S.L. ALLEN; M E. AUSTIN; D.R. BAKER; B.D. BRAY; D.P. BRENNAN; K.H. BURRELL; T.A. CASPER; M.S. CHU; J.D. De BOO; E.J. DOYLE; J.R. FERRON; A.M. GAROFALO; P.GOHIL; I.A. GORELOV; C.M. GREENFIELD; R.J. GROEBNER; W.W. HEIBRINK; C.-L. HSIEH; A.W. HYATT; R.JAYAKUMAR; J.E.KINSEY; R.J. LA HAYE; L.L. LAO; C.J. LASNIER; E.A. LAZARUS; A.W. LEONARD; Y.R. LIN-LIU; J. LOHR; M.A. MAKOWSKI; M. MURAKAMI; C.C. PETTY; R.I. PINSKER; R. PRATER; C.L. RETTIG; T.L. RHODES; B.W. RICE; E.J. STRAIT; T.S. TAYLOR; D.M. THOMAS; A.D. TURNBULL; J.G. WATKINS; W.P.WEST; K.-L. WONG

    2000-01-01

    Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance ∼10 has been sustained for >5 τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and β ∼(le) 5%. The limit to increasing β is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with β N H 89 ∼ 7 for up to 6.3 s or ∼ 34 τ E . These discharges appear to be in resistive equilibrium with q min ∼ 1.05, in agreement with the current profile relaxation time of 1.8 s

  13. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  14. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  15. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  16. STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    LUCE, TC; WADE, MR; FERRON, JR; HYATT, AW; KELLMAN, AG; KINSEY, JE; LAHAYE, RJ; LASNIER, CJ; MURAKAMI, M; POLITZER, PA; SCOVILLE, JT

    2002-01-01

    A271 STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DII-D TOKAMAK. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak under stationary conditions at relatively low plasma current (q 95 > 4). A figure of merit for fusion gain (β N H 89 /q 95 2 ) has been maintained at values corresponding to | = 10 operation in a burning plasma for > 6 s or 36τ E and 2τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1. In the absence of sawteeth and fishbones, stable operation has been achieved up to the estimated no-wall β limit. Feedback control of the energy content and particle inventory allow reproducible, stationary operation. The particle inventory is controlled by gas fueling and active pumping; the wall plays only a small role in the particle balance. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. In addition, the pulse length capability is greatly increased, which is essential for a technology testing phase of a burning plasma experiment where fluence (duty cycle) is important

  17. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  18. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  19. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  20. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    Science.gov (United States)

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  1. Development and performance of high speed processing system of magnetohydrodynamic equilibria for discharge analyses on the J T-60 tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Nakamura, Yukiharu; Shirai, Hiroshi; Hamamatsu, Kiyotaka; Harada, Yoshio; Kikuchi, Mitsuru; Nakata, Yoshihiro

    1999-01-01

    In order to provide a set of magnetohydrodynamic (MHD) equilibrium database which is indispensable for both the studies on improvement of energy confinement and stabilization of MHD activities in tokamaks, a high speed data-processing system synchronizing with J T-60 discharge sequence was newly developed by utilizing the latest model of hugh speed workstation and by optimizing the parallel processing technique to perform fast calculation of MHD equilibria. This high speed system was found to have a sufficient ability to complete the whole equilibrium calculations during each inter-shot period. Cooperating with the mass data storage subsystem preserving the latest equilibrium database automatically, the animated discharge monitoring subsystem provides valuable information for the J T-60 operator to determine control parameters of the succeeding discharge. This report describes the system performance realized in the J T-60 experiment. (author)

  2. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  3. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  4. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  5. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Osborne, T.H. [General Atomics, 3550 General Atomics Ct., San Diego, CA 92121 (United States); Bell, M.G.; Bell, R.E.; Boyle, D.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Applied Physics and Applied Math Dept., Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 7000 East Ave, PO Box 808, Livermore, CA 94551 (United States)

    2015-08-15

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D{sub α} emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ{sub E} and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  6. Improved high-rate charge/discharge performances of LiFePO{sub 4}/C via V-doping

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Zhou, Z.; Xu, Z.G.; Wang, D.G.; Wei, J.P.; Bian, X.K.; Yan, J. [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2009-09-05

    V-doped LiFePO{sub 4}/C cathode materials were prepared through a carbothermal reduction route. The microstructure was characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The electrochemical Li{sup +} intercalation performances of V-doped LiFePO{sub 4}/C were compared with those of undoped one through galvanostatic intermittent titration technique, cyclic voltamperometry, and electrochemical impedance spectrum. V-doped LiFePO{sub 4}/C showed a high discharge capacity of {proportional_to}70 mAh g{sup -1} at the rate of 20 C (3400 mA g{sup -1}) at room temperature. The significantly improved high-rate charge/discharge capacity is attributed to the increase of Li{sup +} ion ''effective'' diffusion capability. (author)

  7. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  8. Characteristics of the scrape-off layer in DIII-D high-performance negative central magnetic shear discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C.J. [General Atomics, San Diego, CA (United States); Maingi, R. [General Atomics, San Diego, CA (United States); Leonard, A.W. [General Atomics, San Diego, CA (United States); Allen, S.L. [General Atomics, San Diego, CA (United States); Buchenauer, D.A. [General Atomics, San Diego, CA (United States); Burrell, K.H. [General Atomics, San Diego, CA (United States); Casper, T.A. [General Atomics, San Diego, CA (United States); Cuthbertson, J.W. [General Atomics, San Diego, CA (United States); Fenstermacher, M.E. [General Atomics, San Diego, CA (United States); Hill, D.N. [General Atomics, San Diego, CA (United States); Jong, R.A. [General Atomics, San Diego, CA (United States); Lao, L.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [General Atomics, San Diego, CA (United States); Moyer, R.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Porter, G.D. [General Atomics, San Diego, CA (United States); Rice, B.W. [General Atomics, San Diego, CA (United States); Stallard, B.W. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); Watkins, J.G. [General Atomics, San Diego, CA (United States)

    1997-02-01

    In this paper we present measurements of the global power and particle balance in the high-performance phase of negative central magnetic shear (NCS) discharges and compare with reference VH-mode discharges. The principal differences observed are that NCS has a much lower fraction of the total input power flowing into the boundary, less core radiation, and larger rate of stored energy increase as a fraction of total power. Scrape-off layer (SOL) temperature and divertor heat flux profiles, and radiation profiles at the midplane, are similar to VH-mode. Due to the good core particle confinement and efficient fueling by neutral beam injection (NBI), with little gas puffing, the gas load on the walls and the recycling are very low during the NCS discharges. This results in a rate of density rise relative to beam fueling at the L to H transition time which is 1/3 of the value for VH transitions, which is in turn 1/2 that for L-to-ELMing-H-mode transitions. (orig.).

  9. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  10. Plasma transport properties at the L-H transition and high performance phase of JET discharges

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Erba, M; Jones, T T.C.; Lomas, P J; Smeulders, P; Springmann, E M; Stubberfield, P M; Taroni, A; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Parail, V V [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    Numerical analysis are performed which show that both electron and ion thermal diffusivities are reduced by one order of magnitude everywhere, not only in a narrow region near separatrix during the L-H transition. There is no separate H-VH transition on JET, this transition coincides with the cessation of ELMs. In the ELM free phase ion transport in the core is close to its neoclassical value, but probably rises towards plasma edge (however still remaining much less than it was in L-mode). The best agreement with experiment is obtained with the model which simultaneously takes into account both the global reduction of Bohm type anomalous transport in plasma core and formation of temperature pedestal near plasma edge. (authors). 6 refs., 5 figs.

  11. Towards long pulse high performance discharges in Tore Supra: experimental knowledge and technological developments for heat exhaust

    International Nuclear Information System (INIS)

    1995-08-01

    This document deals with fusion heat exhaust experiments in Tore Supra tokamak. The purpose of the Tore Supra tokamak is to achieve and control long pulse powerful discharges. High input power is required to generate the non inductive current, approximately 25 MW . The conception and realisation of a Plasma Facing Component (PFC) scheme able to deal with this large amount of power is the main issue. A description of the water loop used for power removal and of the calorimetric system to determine the overall heat exhaust balance is provided. The infra-red measurements used during plasma operation are also described, together with several heat exhaust devices. The behaviour of ion cyclotron and lower hybrid wave launchers is addressed. Eventually, some information is provided on technological developments of PFC in Tore Supra. (TEC). 61 refs., 34 figs

  12. A Novel High-Performance Beam-Supported Membrane Structure with Enhanced Design Flexibility for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Chenzhao Fu

    2017-03-01

    Full Text Available A novel beam-supported membrane (BSM structure for the fiber optic extrinsic Fabry-Perot interferometer (EFPI sensors showing an enhanced performance and an improved resistance to the temperature change was proposed for detecting partial discharges (PDs. The fundamental frequency, sensitivity, linear range, and flatness of the BSM structure were investigated by employing the finite element simulations. Compared with the intact membrane (IM structure commonly used by EFPI sensors, BSM structure provides extra geometrical parameters to define the fundamental frequency when the diameter of the whole membrane and its thickness is determined, resulting in an enhanced design flexibility of the sensor structure. According to the simulation results, it is noted that BSM structure not only shows a much higher sensitivity (increased by almost four times for some cases, and a wider working range of fundamental frequency to choose, but also an improved linear range, making the system development much easier. In addition, BSM structure presents a better flatness than its IM counterpart, providing an increased signal-to-noise ratio (SNR. A further improvement of performance is thought to be possible with a step-forward structural optimization. The BSM structure shows a great potential to design the EFPI sensors, as well as others for detecting the acoustic signals.

  13. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  14. High tension generator for corona barrier discharge

    International Nuclear Information System (INIS)

    Baltag, O.; Costandache, D.; Gheorghiu, M.; Paraschivescu, A.; Popa, G.

    2001-01-01

    Different types of high-voltage generators are in use for the study of low pressure (or atmospheric) discharges. Mostly used are the Tesla coils generators or the power generators working in linear or switching regime. The Tesla coils generators have the advantage of a simple bloc diagram. In exchange, they have a number of short-comings, such as: the difficulty in modifying the frequency of the high voltage pulses, generation of a high voltage and frequency pulse train, the amplitude is not constant.This paper presents a high-voltage generator meant to be used in the study of the dielectric barrier discharges (DBD). The bloc diagram is presented. Performances obtained are as follows: - Generated frequency: 10 Hz - 100 Hz, 100 Hz - 1 KHz, 1 KHz - 10 KHz; - High voltage pulses control: a single pulse from an internal or external generator; - Synchronization with the oscilloscope, variable delay: 5 μs - 0.1 s; - Output voltage: variable both smoothly and in steps: 1 kV -15 kV; - High voltage polarity: mono and bipolar; - Output power during the continuous duty: 300 VA (maximum 600 VA for a short time); - Pulse energy: 0.23 J; - Pulse duration: 4 μs - 50 μs

  15. Lithium thionyl chloride high rate discharge

    Science.gov (United States)

    Klinedinst, K. A.

    1980-04-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  16. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    Science.gov (United States)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  17. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  18. CARS diagnostics of high pressure discharges

    International Nuclear Information System (INIS)

    Uhlenbusch, J.

    2001-01-01

    After a short description of the principles of the CARS, RECARS and POLCARS techniques and a discussion of setups for CARS experiments some experimental results are summarized. The results concern mainly plasma under atmospheric pressure, in particular the determination of temperature in a CO 2 laser-induced pyrolysis flame burning in a silane-acetylene gas mixture, the measurements of N 2 vibrational and rotational temperatures as well as the electron density by CARS and of an NO minority by POLCARS in an atmospheric microwave discharge, and finally RECARS experiments on indium iodide, Which is present in metal halide discharge lamps. Guided by these examples some problems and difficulties arising when performing CARS measurements are discussed

  19. Modification of TiO{sub 2} powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Shang-I; Yang, Hao; Chen, Hsien-Wei; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2015-12-01

    The main objective of this study is to improve the electrochemical performances of TiO{sub 2} Li-ion anode material by introducing plasma treatment on TiO{sub 2} powder. A specially designed atmospheric dielectric barrier discharge plasma generator feasible to modify powders is proposed. The rate capacity of 20 min plasma-treated TiO{sub 2} anode revealed nearly 20% increment as compared to that of pristine TiO{sub 2} at the rates of 0.5, 1, 2, 5, 10 C. As-treated TiO{sub 2} was first analyzed by the X-ray diffractometer and high resolution transmission electron microscope confirmed that there was no noticeable surface morphology and microstructure change from plasma treatment. In addition, plasma-treated TiO{sub 2} was reduced with increasing treatment duration. Significant amount of excited argon (Ar{sup ∗}) and excitation of a nitrogen second positive system (N{sub 2}{sup ∗}) were discovered using optical emission spectroscopy (OES). It was believed that Ar{sup ∗} and N{sub 2}{sup ∗} contributed to TiO{sub 2} surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increases the chance of allowing excited nitrogen to dope onto surface of TiO{sub 2} particle. Electrochemical properties of TiO{sub 2} were raised due to the production of oxygen vacancy and nitrogen doping. These findings enhance the understanding of the atmospheric plasma treatment on the potential application of TiO{sub 2} anode material in Li-ion battery. - Highlights: • A plasma generator was developed and proposed for modifying TiO{sub 2} powder in enhancing its electrochemical property. • The plasma treated TiO{sub 2} revealed 20% increment in capacity under different C-rates. • Plasma diagnosis was performed providing an insight of how plasma treatment is effective in TiO{sub 2} surface modification.

  20. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  1. Performance optimization of 20 cm xenon ion thruster discharge chamber

    International Nuclear Information System (INIS)

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  2. Enhanced performance discharges in the DIII-D tokamak with lithium wall conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [General Atomics, San Diego, CA (United States)]|[Oak Ridge National Laboratory, Oak Ridge, TN (United States); Navratil, G.A. [General Atomics, San Diego, CA (United States)]|[Columbia University, New York, NY (United States); Bastasz, R. [General Atomics, San Diego, CA (United States)]|[Sandia National Laboratories, Livermore, CA (United States); Brooks, N.H. [General Atomics, San Diego, CA (United States); Garnier, D.T. [General Atomics, San Diego, CA (United States)]|[Massachusetts Institute of Technology, Cambridge, MA (United States); Holtrop, K.L. [General Atomics, San Diego, CA (United States); Phillips, J.C. [General Atomics, San Diego, CA (United States); Marmar, E.S. [General Atomics, San Diego, CA (United States)]|[Massachusetts Institute of Technology, Cambridge, MA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); Thomas, D.M. [General Atomics, San Diego, CA (United States); Wampler, W.R. [General Atomics, San Diego, CA (United States)]|[Sandia National Laboratories, Albuquerque, NM (United States); Whyte, D.G. [General Atomics, San Diego, CA (United States)]|[INRS - Energie et Materiaux, Varennes, Que. (Canada); West, W.P. [General Atomics, San Diego, CA (United States)

    1997-02-01

    Lithium wall conditioning has been used in a recent campaign evaluating high performance negative central shear (NCS) discharges. During this campaign, the highest values of stored energy (4.4 MJ), neutron rate (2.4 x 10{sup 16}/s), and nT{sub i}{tau} (7 x 10{sup 20} m{sup -3} keV s) achieved to date in DIII-D were obtained. High performance NCS discharges were achieved prior to beginning lithium conditioning, but it is clear that shot reproducibility and performance were improved by lithium conditioning. Central and edge oxygen concentrations were reduced after lithium conditioning. Lithium conditioning, consisting of up to four pellets injected at the end of the preceding discharge, allowed the duration of the usual inter-shot helium glow discharge to be reduced and reproducible high auxiliary power discharges, P{sub NBI}{<=}22 MW, were obtained with plasma currents up to 2.4 MA. (orig.).

  3. A high-voltage triggered pseudospark discharge experiment

    International Nuclear Information System (INIS)

    Ramaswamy, K.; Destler, W.W.; Rodgers, J.

    1996-01-01

    The design and execution of a pulsed high-voltage (350 endash 400 keV) triggered pseudospark discharge experiment is reported. Experimental studies were carried out to obtain an optimal design for stable and reliable pseudospark operation in a high-voltage regime (approx-gt 350 kV). Experiments were performed to determine the most suitable fill gas for electron-beam formation. The pseudospark discharge is initiated by a trigger mechanism involving a flashover between the trigger electrode and hollow cathode housing. Experimental results characterizing the electron-beam energy using the range-energy method are reported. Source size imaging was carried out using an x-ray pinhole camera and a novel technique using Mylar as a witness plate. It was experimentally determined that strong pinching occurred later in time and was associated with the lower-energy electrons. copyright 1996 American Institute of Physics

  4. High-repetition-rate short-pulse gas discharge.

    Science.gov (United States)

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  5. Spectrographic observations of high intensity discharges

    International Nuclear Information System (INIS)

    Breton, C.; Charon, J.; Hubert, P.; Yvon, P.

    1957-01-01

    During straight discharges in deuterium at low pressure, the production of X-rays and neutrons has been observed. Spectroscopic observation of the light emitted reveals a broadening of the Balmer lines. From this a mean ionic density of the order of several 10 16 ions/cm 3 is deduced. (author) [fr

  6. High output stomas: ensuring safe discharge from hospital to home.

    Science.gov (United States)

    Smith, Lisa

    High-output stomas are a challenge for the patient and all health professionals involved. This article discusses safe discharge home for this patient group, encouraging collaborative working practices between acute care trust and the community services. The authors also discuss the management of a high-output stoma and preparation and education of the patient before discharge home.

  7. Lean methodology for performance improvement in the trauma discharge process.

    Science.gov (United States)

    O'Mara, Michael Shaymus; Ramaniuk, Aliaksandr; Graymire, Vickie; Rozzell, Monica; Martin, Stacey

    2014-07-01

    High-volume, complex services such as trauma and acute care surgery are at risk for inefficiency. Lean process improvement can reduce health care waste. Lean allows a structured look at processes not easily amenable to analysis. We applied lean methodology to the current state of communication and discharge planning on an urban trauma service, citing areas for improvement. A lean process mapping event was held. The process map was used to identify areas for immediate analysis and intervention-defining metrics for the stakeholders. After intervention, new performance was assessed by direct data evaluation. The process was completed with an analysis of effect and plans made for addressing future focus areas. The primary area of concern identified was interservice communication. Changes centering on a standardized morning report structure reduced the number of consult questions unanswered from 67% to 34% (p = 0.0021). Physical therapy rework was reduced from 35% to 19% (p = 0.016). Patients admitted to units not designated to the trauma service had 1.6 times longer stays (p miscommunication exists around patient education at discharge. Lean process improvement is a viable means of health care analysis. When applied to a trauma service with 4,000 admissions annually, lean identifies areas ripe for improvement. Our inefficiencies surrounded communication and patient localization. Strategies arising from the input of all stakeholders led to real solutions for communication through a face-to-face morning report and identified areas for ongoing improvement. This focuses resource use and identifies areas for improvement of throughput in care delivery.

  8. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  9. Characterization and switching performance of electron-beam controlled discharges

    International Nuclear Information System (INIS)

    Lowry, J.F.; Kline, L.E.; Heberlein, J.V.R.

    1986-01-01

    The electron-beam sustained discharge switch is an attractive concept for repetitive pulsed power switching because it has a demonstrated capability to interrupt direct current and because it is inherently scalable. The authors report on experiments with this type of switch in a 4-kV dc circuit. A wire-ion-plasma (WIP) electron-beam (e-beam) gun is used to irradiate and sustain a switch discharge with a 100-cm/sup 2/ cross-sectional area in l atm of N/sub 2/ or CH/sub 4/. Interruption of 8-10-μs pulses of up to 1.9 kA, and of 100-μs pulses of 150 A has been demonstrated in methane, and interruption against higher recovery voltages (11 kV) has been performed at 1.2 kA by adding series inductance to the circuit. These values represent power supply limitations rather than limitations of the switch itself. A comparison of the measured discharge characteristics with theoretical predictions shows that the measured switch conductivities are higher than the predicted values for given e-beam current values. A qualitative explanation for this observation is offered by considering the effects of electron reflection from the discharge anode and of nonlinear paths for the beam electrons across the discharge gap. The authors conclude that the switching performance of the e-beam controlled discharge switch corresponds to its design parameters, and that for a given switch size a lower voltage drop during the on time can be expected compared with the voltage drop predicted by previously published theory

  10. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  11. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  12. Electrodeless discharge lamp is easily started, has high stability

    Science.gov (United States)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  13. High pressure microwave discharge for electrodeless Xe-lamp

    International Nuclear Information System (INIS)

    Kudela, J.; Kando, M.

    1998-01-01

    Preliminary results are presented of the investigation into the high pressure Xe microwave discharge in bent tubes, sustained by electromagnetic surface wave. The research was aimed to help with the design of a new generation of high intensity light sources with generally more complex shapes than those commonly used. The results show that the electromagnetic surface wave can effectively sustain discharge in tubes with various bending radii within the large pressure range. The curved shapes of discharge tubes improve the cooling of the lamp which is one of the major technological difficulties. It was shown that under relatively lower powers and higher gas pressures (100 Torr) the discharge exhibits a streamer-like filamentation and the branching of filaments. The phenomena of the effective sustaining of the discharge by surface wave propagation along curved plasma columns will be investigated in more detail by measurements of the profiles of surface wave electric and magnetic field intensities. (author)

  14. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1978-01-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described

  15. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  16. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  17. High Input Voltage Hall Thruster Discharge Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  18. Design and research on discharge performance for aluminum-air battery

    Science.gov (United States)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  19. Pulsed high voltage discharge induce hematologic changes

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Sterilization appears to be the best way to ensure a very high level of safety in transfusion of blood and its ... those of individual proteins. ... MATERIALS AND METHODS ... Schematic diagram of the apparatus for generation of the Pulsed ... different number of pulses (function of exposure time) of high E-.

  20. Determination of line broadening constants in high pressure discharge lamps

    International Nuclear Information System (INIS)

    Weiss, M; Schubert, H; Meier, S; Born, M; Reiter, D; Stroesser, M

    2005-01-01

    A numerical model of the radiative transfer in high pressure metal halide discharge lamps is used to determine line broadening parameters for atomic scandium lines. The determined broadening constants are in qualitative agreement with theoretical estimates in many cases, but significant deviations exist. The data obtained from this paper can, therefore, be used to further improve modelling of radiative contributions to the energy balance in such types of discharge lamps

  1. Investigation of Combined High-Frequency and Arc Discharges

    International Nuclear Information System (INIS)

    Taran, V.S.; Nezovibatko, Yu.N.; Marinin, V.G.; Shvets, O.M.; Ridozub, V.N.; Gasilin, V.V.

    2001-01-01

    In this paper we analyze experiment with arc and high-frequency (HF) plasma sources carried out in modified devise of the ''Bulat'' type. The HF-sources and combined discharges have attracted considerable attention for surface cleaning and coating. The utilization of such discharges allows decreasing droplet fraction formation and providing better adhesion and microhardness values. The existence of HF-field in plasma allows obtaining either conductive or dielectric coatings and they can be deposited on any substrates. (author)

  2. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  3. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  4. Acoustic waves in transversely excited atmospheric CO2 laser discharges: effect on performance and reduction techniques

    CSIR Research Space (South Africa)

    von Bergmann, HM

    2008-08-01

    Full Text Available Results are presented on the influence of acoustic waves on the performance of high-repetition-rate TEA CO2 lasers. It is shown that acoustic waves generated inside the laser cavity lead to nonuniform discharges, resulting in a deterioration...

  5. The free recovery of a short duration, high current discharge

    International Nuclear Information System (INIS)

    Piejak, R.

    1984-01-01

    The hold-off voltage between stainless steel electrodes has been measured as a function of time after an initial discharge. The hold-off voltage is the highest voltage that the gap will withstand without appreciable current flow. A high current (600-1200 amp), short duration (170 nsec) discharge was initiated between Rogowski profile electrodes. After a pre-determined time delay, a second pulse was applied to the discharge gap. The hold-off voltage as a function to time was determined up to the Paschen breakdown voltage. Background gas pressure between 30 and 100 torr and electrode separation of 2mm and 4mm were employed. UV preionization was introduced in some tests to create various discharge modes (glow/arc). The findings indicate significantly higher recovery rates in air than in N 2 , presumably due to attachment processes. In addition, the presence of pre-breakdown UV was found to influence the discharge mode, thus affecting the recovery rate of the gap. Hold-off voltage curves for the previously mentioned gases, background pressures and electrode spacing will be presented along with open shutter photographs of the various discharge modes

  6. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  7. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  8. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  9. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  10. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 259-266 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  11. High-order harmonic generation in a capillary discharge

    Science.gov (United States)

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  12. Nonlinear behavior in high-intensity discharge lamps

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  13. Nonlinear behavior in high-intensity discharge lamps

    NARCIS (Netherlands)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-01-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the

  14. Fishbone mode in highdischarges of spherical tokamaks

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2000-01-01

    Using Hamiltonian formalism, it has been shown that well-trapped energetic ions moving outwards consume the energy of MHD perturbations through the precessional resonance provided that the plasma pressure is sufficiently high. This supports the conclusion of recent publication that the fishbone mode is stabilized in highdischarges of spherical tokamaks. It has also been found that the presence of the velocity anisotropy of energetic ions does not change this conclusion. (author)

  15. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Science.gov (United States)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  16. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  17. Performance Modeling of a Vanadium Redox Flow Battery during Discharging

    International Nuclear Information System (INIS)

    Yang, W.W.; He, Y.L.; Li, Y.S.

    2015-01-01

    A two-dimensional quasi-steady-state model is presented to simulate coupled mass-species-charge transfer and electrochemical reactions in all vanadium redox flow battery. Emphasis is located on examining the influences of applied current density, initial vanadium concentration, initial acid concentration and electrolyte flow rate on overpotentials in both electrodes, ohmic loss in electrolyte phase as well as battery discharging voltage. It is indicated that overpotential in negative electrode is the dominant factor causing the loss of battery discharging voltage at relatively lower or higher state of charge, while ohmic loss in electrolyte phase is dominant when discharging at moderate state of charge. Increasing initial vanadium concentration, the battery discharging voltage is significantly increased due to the reduced overpotentials in both electrodes. With the increase in initial acid concentration, the battery discharging voltage is also obviously increased because of increased open circuit voltage and decreased ohmic loss in electrolyte phase. As the electrolyte flow rate increases, the total discharging time is extended due to the retarded concentration polarization and the battery discharging voltage is obviously increased at lower state of charge

  18. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  19. High energy XeBr electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  20. High energy KrCl electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  1. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  2. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  3. How is the high vaginal swab used to investigate vaginal discharge in primary care and how do GPs' expectations of the test match the tests performed by their microbiology services?

    Science.gov (United States)

    Noble, H; Estcourt, C; Ison, C; Goold, P; Tite, L; Carter, Y H

    2004-06-01

    To describe the management of vaginal discharge in general practice, with particular regard to the use of the high vaginal swab (HVS), and to compare GPs' expectations of this test with the processing and reporting undertaken by different laboratories. A postal questionnaire survey of 2146 GPs in the North Thames area and postal questionnaire study of the 22 laboratories serving the same GPs were carried out. GPs were asked how they would manage a young woman with vaginal discharge and what information they would like on an HVS report. Laboratories were asked how they would process and report on the HVS sample from the same patient. Response rate was 26%. 72% of GPs would take an HVS and 62% would refer on to a genitourinary medicine (GUM) clinic. 45% would offer empirical therapy and 47% of these would treat for candida initially. 75% of GPs routinely request "M,C&S" on HVS samples but 55% only want to be informed about specific pathogens. Routine processing of HVS samples varies widely between laboratories and 86% only report specific pathogens. 78% of GPs would like to be offered a suggested diagnosis on HVS reports, and 74% would like a suggested treatment. 43% of laboratories ever provide a diagnosis, and 14% provide a suggested treatment. GPs frequently manage vaginal discharge and most of them utilise the HVS. GPs' expectations of the test are not well matched to laboratory processing or reporting of the samples.

  4. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  5. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  6. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  7. Transport and performance in DIII-D discharges with weak or negative central magnetic shear

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Schissel, D.P.; Stallard, B.W.

    1996-12-01

    Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak have been produced by combining the benefits of a hollow or weakly sheared central current profile with a high confinement (H-mode) edge. In these discharges, low power neutral beam injection heats the electrons during the initial current ramp, and open-quotes freezes inclose quotes a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L-mode) to high (H-mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high performance phase is terminated nondisruptively at much higher β T (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang-Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E x B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium-tritium fuel mixture indicates that such plasmas could produce a DT fusion gain Q DT = 0.32

  8. Development of a method of partial discharge detection in extra-high voltage cross-linked polyethylene insulated cable lines

    International Nuclear Information System (INIS)

    Katsuta, G.; Toya, A.; Muraoka, K.; Endoh, T.; Sekii, Y.; Ikeda, C.

    1992-01-01

    This paper reports that deterioration in the insulation performance of extra-high voltage XLPE cables is believed to be attributable to the deterioration caused by partial discharges. In the authors study, after using an XLPE cable to investigate the behavior of partial discharges under various adverse conditions, we succeeded in developing a highly sensitive new method of measuring partial discharge in XLPE cable lines. Partial discharges in a 275 kV XLPE cable live line has been measured using this newly developed method. As a result, a detection sensitivity of 1 pC has been achieved

  9. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1994-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  10. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  11. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI 3 , axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al 2 O 3 ) as a wall material. Electric field strengths of 6.0 and 8.6 V mm -1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W -1 are found in metal halide

  12. Experimental investigation on charging and discharging performance of absorption thermal energy storage system

    International Nuclear Information System (INIS)

    Zhang, Xiaoling; Li, Minzhi; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2014-01-01

    Highlights: • A prototype of ATES using LiBr/H 2 O was designed and built. • Charging and discharging performances of ATES system were investigated. • ESE and ESD for cooling, domestic hot water and heating were obtained. - Abstract: Because of high thermal storage density and little heat loss, absorption thermal energy storage (ATES) is known as a potential thermal energy storage (TES) technology. To investigate the performance of the ATES system with LiBr–H 2 O, a prototype with 10 kW h cooling storage capacity was designed and built. The experiments demonstrated that charging and discharging processes are successful in producing 7 °C chilled water, 65 °C domestic hot water, or 43 °C heating water to meet the user’s requirements. Characteristics such as temperature, concentration and power variation of the ATES system during charging and discharging processes were investigated. The performance of the ATES system for supplying cooling, heating or domestic hot water was analyzed and compared. The results indicate that the energy storage efficiencies (ESE) for cooling, domestic hot water and heating are 0.51, 0.97, 1.03, respectively, and the energy storage densities (ESD) for cooling, domestic hot water and heating reach 42, 88, 110 kW h/m 3 , respectively. The performance is better than those of previous TES systems, which proves that the ATES system using LiBr–H 2 O may be a good option for thermal energy storage

  13. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2014-02-01

    Full Text Available Partial discharge (PD detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  14. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  15. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  16. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  17. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 11 (1999) pp 281-296 by IOP Publishing Ltd

    DEFF Research Database (Denmark)

    Henk, Peter O; Kortsen, T.W.; Kvarts, T.

    1999-01-01

    combinations were used: (a) fumed nanoparticle silicon dioxide referred to as Aerosil, (b) equal volumes of Aerosil and nanoparticle anatase, and (c) Aerosil plus anatase in combination with coarse-particle filler grade calcium-magnesium carbonate dolomite. A test for endurance using the CIGRE method II...... electrode arrangement was applied, the test comprising the establishment of partial discharges running perpendicularly onto one face of a plate specimen for a period measured until breakdown.Our results show that the endurance of the pure polymer is low. Increased loading with Aerosil increases...... the endurance by a factor of up to 20 as the Aerosil content goes from zero to 5.4 vol%. Aerosil mixed with anatase has a similar effect. The high level of endurance is maintained with an additional high-volume (35 vol.%) filling of coarse-particle dolomite to an epoxy system already containing Aerosil...

  18. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  19. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  20. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  1. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  2. Physical aspects of mercury-free high pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M.

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no. 13N8072. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transistions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same as for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electrical field strenghts of 6.0 V/mm and 8.6 V/mm are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 lm/W and 100 lm/W are found in metal halide lamps with zinc and mercury, respectively. Consequently, zinc turns out to be an attractive replacer for mercury in this type of lamp not only from an environmental point of view

  3. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  4. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  5. Disintegration of rocks based on magnetically isolated high voltage discharge

    Science.gov (United States)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  6. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  7. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.

    Science.gov (United States)

    Ike, Innocent S; Sigalas, Iakovos; Iyuke, Sunny

    2016-01-14

    Self-discharge is known to have considerable adverse effects on the performance and application of electrochemical capacitors (ECs). Thus, obtaining an understanding of EC self-discharge mechanism(s) and subsequent derivation and solution of EC models, subject to a particular mechanism or combination of mechanisms during charging, discharging and storage of the device, is the only way to solve problems associated with EC self-discharge. In this review, we summarize recent progress with respect to EC self-discharge by considering the two basic types, electric double-layer capacitors (EDLC) and pseudocapacitors, and their hybrids with their respective charge storage mechanisms, distinguishable self-discharge mechanisms, charge redistribution and charge/energy loss during self-discharge. It was clearly observed that most of the voltage reduction is not purely due to the self-discharge effect but is basically due to redistribution of charge carriers deep inside pores and can therefore be retrieved from a capacitor during long-time discharging. Tuning the self-discharge rate is therefore feasible for single-walled carbon nanotube (SWNT) ECs and can be achieved by simply adjusting the surface chemistry of the nanotubes. The effects of surface chemistry modification on EC self-discharge are very important in studying and suppressing the self-discharge process and will benefit potential applications of ECs with respect to energy retention. Self-discharge can be averted by the use of redox couples that are transformed to insoluble species via electrolysis and adsorbed onto the activated carbon electrode in redox-couple EDLCs, thus transforming the EDLC electrolyte into a material that can store charge. Self-discharge in ECs can also be successfully suppressed by utilizing an ion-interchange layer (ion-exchange membrane), separator or CuSO4 mobile electrolyte that can be converted into an insoluble species by electrolysis during the charge/discharge process. This will help

  8. Experimental Investigation on the Performance of Grinding Assisted Electrochemical Discharge Drilling of Glass

    Directory of Open Access Journals (Sweden)

    Ladeesh V G

    2016-01-01

    Full Text Available Grinding assisted electrochemical discharge drilling (G-ECDD is a novel technique for producing micro and macro holes in brittle materials including advanced ceramics and glass, both efficiently and economically. G-ECDD involves the use of a rotating diamond core drill as the tool in a normal electrochemical discharge machine setup. The material removal happens by a combination of thermal melting due to electric discharges, followed by grinding action of diamond grits and chemical etching action. In this study, the effect of process parameters like voltage, duty cycle, cycle time and electrolyte concentration on material removed (MR was investigated systematically using response surface methodology. Analysis of variance was performed to identify the significant factors and their percentage contribution. The most significant factor was found to be duty cycle followed by voltage, cycle time and concentration. A quadratic mathematical model was developed to predict MR. Tool wear was found for different frequencies and voltages. Higher tool wear was observed for high frequency above 5kHz pulsed DC supply at high voltage of 110V. Tool wear at the end face of the tool was found to be a significant problem affecting the tool life.

  9. Characterization of electron beams generated in a high-voltage pulse-line-driven pseudospark discharge

    International Nuclear Information System (INIS)

    Ramaswamy, K.; Destler, W.W.; Segalov, Z.; Rodgers, J.

    1994-01-01

    Emittance and energy measurements have been performed on a high-brightness electron beam (>10 10 A/m 2 rad 2 ) with diameter in the range 1--3 mm and energy in the range 150--170 keV. This electron beam is generated by the mating of a hollow-cathode discharge device operating in the pseudospark regime to the output of a high-power pulse line accelerator. The measured effective emittance lies in the range between 30 and 90 mm mrad and increases with axial distance. Electron energy measurements indicate that the high-energy electrons are generated during the first 20--30 ns of the discharge. Both the emittance and energy experiments were performed at two different ambient argon gas pressures (92 and 152 mtorr). Beam expansion as a function of axial position has also been studied and a lower bound on the beam brightness has been obtained

  10. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  11. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  12. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  13. Performance of a CW double electric discharge for supersonic CO lasers

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  14. High charge-discharge performance of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} antiferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chenhong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, Zhen; Chen, Xuefeng; Yan, Shiguang; Cao, Fei; Dong, Xianlin; Wang, Genshui, E-mail: genshuiwang@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-08-21

    The energy storage performance and charge-discharge properties of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density p{sub max} was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm{sup 3}. Moreover, the pulse power properties did not show degradation until 1500 times of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.

  15. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  16. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  17. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  18. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  19. High performance conductometry

    International Nuclear Information System (INIS)

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  20. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  1. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  2. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  3. Calculation of radiation losses in cylinder symmetric high pressure discharges by means of a digital computer

    International Nuclear Information System (INIS)

    Andriessen, F.J.; Boerman, W.; Holtz, I.F.E.M.

    1973-08-01

    Computer calculations have been made of radiative energy losses in a cylindrically symmetric high pressure discharge. The calculations show that the radiation losses which occur in discharges at pressures of a few atmospheres and central temperatures of about 20000degK when compared with the electrical energy supplied, are only of importance in the neighbourhood of the centre of discharge

  4. Long pulse KrCl laser with a high discharge quality

    NARCIS (Netherlands)

    Casper, L.C.; Bastiaens, Hubertus M.J.; Peters, P.J.M.; Boller, Klaus J.; Hofstra, R.M.

    2007-01-01

    The discharge quality and optimum pump parameters of a long-pulse high-pressure gas discharge excited KrCl laser are investigated. A three-electrode prepulse–mainpulse excitation circuit is employed as pump source. The discharge volume contains a gas mixture of HCl/Kr/Ne operated at a total pressure

  5. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    Science.gov (United States)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  6. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  7. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    International Nuclear Information System (INIS)

    Zalach, J.; Franke, St.; Schoepp, H.; Araoud, Z.; Charrada, K.; Zissis, G.

    2011-01-01

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-up of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.

  8. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  9. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  10. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  11. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    International Nuclear Information System (INIS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-01-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ −1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ −1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ −1 higher, respectively, than in the PBD reactor at 53 J l −1 . The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment. (paper)

  12. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  13. Achieving high fusion reactivity in high poloidal beta discharges in TFTR

    International Nuclear Information System (INIS)

    Manuel, M.E.; Navratil, G.A.; Sabbagh, S.A.; Batha, S.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Cavallo, A.; Chance, M.S.; Cheng, C.Z.; Efthimion, P.C.; Fredrickson, E.D.; Fu, G.Y.; Hawryluk, R.J.; Janos, A.C.; Jassby, D.L.; Levinton, F.; Mikkelsen, D.R.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Yamada, M.; Zarnstorff, M.C.: Zweben, S.; Kesner, J.; Marmar, E.; Snipes, J.; Terry, J.

    1993-04-01

    High poloidal beta discharges have been produced in TFTR that achieved high fusion reactivities at low plasma currents. By rapidly decreasing the plasma current just prior to high-power neutral beam injection, relatively peaked current profiles were created having high l i > 2, high Troyon-normalized beta, βN > 3, and high poloidal beta. β p ≥ 0.7 R/a. The global energy confinement time after the current ramp was comparable to supershots, and the combination of improved MHD stability and good confinement produced a new high εβ p high Q DD operating mode for TFTR. Without steady-state current profile control, as the pulse lengths of high βp discharges were extended, l i decreased, and the improved stability produced immediately after by the current ramp deteriorated. In four second, high εβ p discharges, the current profile broadened under the influence of bootstrap and beam-drive currents. When the calculated voltage throughout the plasma nearly vanished, MHD instabilities were observed with β N as low as 1.4. Ideal MHD stability calculations showed this lower beta limit to be consistent with theoretical expectations

  14. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  15. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  16. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  17. Discharge efficiency in high-Xe-content plasma display panels

    NARCIS (Netherlands)

    Hayashi, D.; Kroesen, G.M.W.; Hagelaar, G.J.M.; Heusler, G.

    2004-01-01

    We study theoretically the overall output performance and the dominating reaction processes of the vacuum ultraviolet (UV) radiation production in high-Xe partial pressures in plasma display panels (PDPs) with Ne-Xe gas mixtures. A two-dimensional self-consistent fluid model is applied for the

  18. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  19. High-speed micro-electro-discharge machining.

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  20. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  1. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  2. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  3. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  4. Electrical probe measurements in low and high pressure discharges

    International Nuclear Information System (INIS)

    Andersson, D.

    1976-11-01

    The construction of an apparatus for automatic determination of electron distributions is described, whereafter measurements of electron energy distributions before and after a stationary plasma sheath in a low pressure mercury discharge are presented. The sheath appears at a constriction of the discharge tube. The measurements have been made with a spheric probe, using the second-derivative method, and the results show that the energy distribution on the anode side of the sheath is a sum of a thermal population and an accelerated distribution. Near the sheath the accelerated electrons suffice to carry the discharge current, but far from it the current must be carried by an anisotropy in the thermal part of the distribution function. A comparison is made with calculated distributions. The cross-sections for electron-neutral and Coulomb collisions are not sufficient to account for the damping of the accelerated population, suggesting the presence of a plasma instability. In order to study the distribution function of the axial velocity component, preliminary measurements of the first derivative of the current to a plane probe have been made. Such measurements yield information about the anisotropy and the current transport, and may perhaps shed some light on the phenomenon of current limitation. Some measurements on a TIG welding arc are also described. (Auth.)

  5. Variation of the Plasma Density in a Glow Discharge Upon the Application of A High Voltage

    International Nuclear Information System (INIS)

    Akman, S.

    2004-01-01

    It is emphasized and demonstrated that, during the formation of an ion-matrix sheath in a glow discharge upon the application of a high voltage pulse, the existing neutral plasma density should change as well. An explicit and practical expression for the neutral plasma density in terms of the gas pressure, secondary electron emission coefficient and the applied voltage is derived, so that the consequent sheath behavior can be formulated correctly. The theoretical result is compared with the data of an experiment, particularly designed and performed to test its validity, and found to be in good agreement with the latter

  6. The Role of Electronegative Impurities in Ozone Generation by High Pressure Discharges

    International Nuclear Information System (INIS)

    Skalny, J.

    2000-01-01

    The high pressure discharges (pulsed or D C corona, barrier, gliding and the others), have been studied both experimentally and theoretically as sources of low temperature plasma for pollution control technologies. The potential of electrical discharge methods has been demonstrated for the decomposition of many types of VOC. The air or oxygen are used as a feed gas in which pollutant is diluted. The ozone production in air or oxygen in such discharges is also discussed

  7. A high-current rail-type gas switch with preionization by an additional corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  8. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  9. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  10. A high-current rail-type gas switch with preionization by an additional corona discharge

    International Nuclear Information System (INIS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-01-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  11. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  12. R high performance programming

    CERN Document Server

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  13. Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    International Nuclear Information System (INIS)

    Erfani, Rasool; Zare-Behtash, Hossein; Kontis, Konstantinos

    2012-01-01

    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma. (paper)

  14. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  15. Synthesis of structure of device for the technical diagnosticating of high-voltage discharge

    OpenAIRE

    Грабко, В. В.; Ковальчук, Венедикт Петрович

    2010-01-01

    The paper presents a device for control of the technical state of high-voltage discharge, which allows, not disconnecting him from power grid, to take into account a size and duration of interconnect current of discharge, and also size of remaining voltage.

  16. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  17. Study of nickel hydrogen battery discharge performance after charge and stand at warm temperature

    International Nuclear Information System (INIS)

    Donley, S.W.; Verrier, D.C.

    1992-01-01

    Spacecraft batteries are normally installed in the discharged condition. It may be necessary that they be charged and trickle-charged prior to launch in an environment different from that in which they are intended to operate. The purpose of the testing described in this paper was to determine the battery capacity achieved after treatment at prelaunch conditions as a function of charge rate, charge temperature, trickle charge temperature, and time. In this testing the discharge in every case was performed under simulated space thermal conditions

  18. Fueling Requirements for Steady State high butane current fraction discharges

    International Nuclear Information System (INIS)

    R.Raman

    2003-01-01

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs

  19. Integrated discharge scenario for high-temperature helical plasma on LHD

    International Nuclear Information System (INIS)

    Nagaoka, K.; Takahashi, H.; Murakami, S.

    2014-10-01

    Discharge scenario of high temperature plasma with helical configuration has been significantly progressed. The increase of central ion temperature due to reduction of wall recycling was clearly observed. The neutral particle profile was measured with a high-dynamic range of Balmer-α spectroscopy, and the reduction of neutral density was identified after helium conditioning main discharges. The peaking of ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for improvement of ion heat transport in the core. The ion ITB and electron ITB have been successfully integrated due to superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of T i ∼T e has been significantly extended. The normalized temperature gradient of ion and electron (R/L T ) were observed to exceed 10, indicating the significant improvement of both ion and electron heat transports at the barrier position. The positive radial electric field was observed by heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient was observed to decrease with the increase of temperature ratio (T e /T i ). This experiment demonstrated that the profile control is a key to combine ion ITB and electron ITB and have a potential to improve the performance of helical plasmas. (author)

  20. Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs

    Science.gov (United States)

    Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq

    2015-11-01

    The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.

  1. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  2. High performance germanium MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  3. High performance germanium MOSFETs

    International Nuclear Information System (INIS)

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  4. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  5. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  6. High Performance Computing Multicast

    Science.gov (United States)

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  7. NGINX high performance

    CERN Document Server

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  8. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  9. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    Science.gov (United States)

    Hao, L.; Lewin, P. L.; Swingler, S. G.

    2008-05-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC.

  10. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    International Nuclear Information System (INIS)

    Hao, L; Lewin, P L; Swingler, S G

    2008-01-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC

  11. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  12. PROGRESS TOWARD FULLY NONINDUCTIVE, HIGH BETA DISCHARGES IN DIII-D

    International Nuclear Information System (INIS)

    GREENFIELD, CM; FERRON, JR; MURAKAMI, M; WADE, MR; BUDNY, RV; BURRELL, KH; CASPER, TA; DeBOO, JC; DOYLE, EJ; GAROFALO, AM; JAYAKUMAR, RJ; KESSEL, C; LAO, LL; LOHR, J; LUCE, TC; MAKOWSKI, MA; MENARD, JE; PETRIE, TW; PETTY, CC; PINSKER, RI; PRATER, R; POLITZER, PA; St JOHN, HE; TAYLOR, TS; WEST, WP; DIII-D NATIONAL TEAM

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D focuses on developing a scientific basis for steady-state, high performance operation. For optimal performance, these experiments routinely operate with β above the n = 1 no-wall limit, enabled by active feed-back control. The ideal wall β limit is optimized by modifying the plasma shape, current and pressure profile. Present DIII-D AT experiments operate with f BS ∼ 50%-60%, with a long-term goal of ∼ 90%. Additional current is provided by neutral beam and electron cyclotron current drive, the latter being localized well away from the magnetic axis (ρ ∼ 0.4-0.5). Guided by integrated modeling, recent experiments have produced discharges with β ∼ 3%, β N ∼ 3, f BS ∼ 55% and noninductive fraction f NI ∼ 90%. Additional control is anticipated using fast wave current drive to control the central current density

  13. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  14. Effect of discharge duct geometry on centrifugal fan performance and noise emission

    Science.gov (United States)

    Nelson, David A.; Butrymowicz, William; Thomas, Christopher

    2005-09-01

    Non-ideal inlet and discharge duct geometries can cause significant changes to both the aerodynamic performance (``fan curve'') and specific sound power emission of a fan. A proper understanding of actual installed performance, as well as a good estimate of the system backpressure curve, is critical to achieving flow and acoustic goals as well as other criteria such as power consumption, mass and volume. To this end a battery of ISO 10302 tests was performed on a blower assembly which supports the Advanced Animal Habitat, being developed by ORBITEC for deployment on the International Space Station. The blower assembly consists of (4) identical centrifugal fans that, amongst themselves and across two prototypes, incorporated several discharge geometries. The inlet geometries were identical in all cases. Thus by comparing the dimensionless pressure-flow and noise emission characteristics across the cases, significant insight into the nature and potential magnitude of these effects is gained.

  15. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  16. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  17. Comparative studies of high-frequency and direct current molecular gas discharges

    International Nuclear Information System (INIS)

    Goichman, V.H.; Goldfarb, V.M.; Tendler, M.B.

    1975-01-01

    Electron gas parameters, gas temperatures, ionization and thermal instability are found to be markedly different in direct current glow discharges from capactive electrodless high frequency discharge even when equal net power input is provided. It is reasonable to expect that the combined discharge containing both types of discharges mentioned above may be expected to improve significantly both the steady-state and transient characteristics of the plasma. The characteristics of different discharges in air, nitrogen air-CO 2 -He mixture have been compared. Because of the lack of the direct electrical methods for measurements of the hf plasma, exphasis in this investigation has been laid on both theoretical) based on the analytical expression for electron energy distribution function received previously and experimental spectroscopic evaluations of the plasma parameters. (Auth.)

  18. Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis

    International Nuclear Information System (INIS)

    Li Yan; Yao Mengqi; Liao Ruirui; Yang Wu; Gao Jinzhang; Ren Jie

    2014-01-01

    A highly absorptive resin poly (butyl methacrylate (BMA)-co-butyl acrylate (BA)) was prepared by emulsion polymerization, which was initiated by glow discharge electrolysis plasma (GDEP). The effects of discharge voltage, discharge time, monomer ratio and the amounts of cross-linking agent were examined and discussed in detail. The chemical structure of the obtained resin was characterized by means of attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The optimal conditions were obtained as: discharge voltage was 600 V, discharge time was 8 min, the ratios of BMA:BA being 2:1 for chloroform and 3:1 for xylene, with 2% N, N'-methylenebis. Under optimal conditions, the oil absorbency was 70 g/g for chloroform and 46 g/g for xylene. Moreover, the absorptive dynamical behavior of the resulting resin was also investigated

  19. High density low-q discharges with D-shaped plasmas in Doublet III

    International Nuclear Information System (INIS)

    Nagami, Masayuki; Yoshida, Hidetoshi; Shinya, Kichiro; Yokomizo, Hideaki; Shimada, Michiya; Ioki, Kimihiro; Izumi, Shigeru; Kitsunezaki, Masao; Jahns, G.

    1981-07-01

    The maximum plasma current in Doublet III is found to be limited by disruptions when the limiter safety factor is approximately 2. However, due to the strong toroidal and shaping field effect on rotational transform at the outer plasma edge associated with a D-shape formation having a vertical elongation of 1.5, the safety factor q sub(a) * estimated from simple geometric considerations for D-shaped plasmas corresponds to values as low as 1.5. These discharges operate stably with considerably higher plasma current than most reactor design studies assume. These low-q discharges show excellent plasma performance: very flat spatial electron temperature progiles, high density operation with anti n sub(e)R/B sub(T) up to 7.8, and good energy confinement producing a volume average β of up to 1% with ohmic heating only. This operational regime appears to be applicable to future high β tokamaks with D-shaped cross section. (author)

  20. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  1. High performance proton accelerators

    International Nuclear Information System (INIS)

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  2. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  3. High power, high brightness electron beam generation in a pulse-line driven pseudospark discharge

    International Nuclear Information System (INIS)

    Destler, W.W.; Segalov, Z.; Rodgers, J.; Ramaswamy, K.; Reiser, M.

    1993-01-01

    High brightness (∼10 10 A/m 2 rad 2 ), high power density (∼10 10 W/cm 2 ) electron beams have been generated by the mating of a hollow-cathode discharge device operating in the pseudospark regime to the output of a high power pulse line accelerator. Very small diameter (∼1 mm) electron beams with currents in the range 500--1000 A and energies in the range 150--300 keV have been generated with effective emittances estimated to be at or below 170 mm mrad. Such emittances are comparable to those achieved in conventional electron beam sources at current densities several orders of magnitude lower than those observed in these experiments

  4. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  5. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  6. Specific Localization of High-Voltage Discharge in Vicinity of Two Gases

    Science.gov (United States)

    Leonov, Sergey; Shurupov, Michail; Shneider, Michail; Napartovich, Anatoly; Kochetov, Igor

    2011-10-01

    A subject of paper is the appearance and dynamics of sub-microsecond long filamentary high-voltage discharge generated in atmosphere, and in non-homogeneous gaseous media. Typical discharge parameters are: maximal current 1-3kA, breakdown voltage >100 kV, duration 30-100 ns, gap distance 50-100mm. The effect of discharge specific localization within mixing layer of two gases is particularly discussed. The second discussed idea is the filamentary discharge movement within a region with concentration gradient of different components. For the short-pulse discharge the physical mechanism appears as the following. The first stage of the spark breakdown is the multiple streamers propagation from the high-voltage electrode toward the grounded one. In case of high-power electrical source those streamers occupy a huge volume of the gas, covering all possible paths for the further development. The next phase consists of the real selection of the discharge path among the multiple channels with non-zero conductivity. Experiments and calculations are presented for Air-CO2 and Air-C2H4 pairs. The effects found are supposed to be applied for lightning prediction/protection, and for high-speed mixing acceleration. The work was funded through EOARD-ISTC project #3793p. Some part of this work was supported by RFBR grant #10-08-00952.

  7. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    OpenAIRE

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-01-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substa...

  8. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  9. High-Resolution Discharge Forecasting for Snowmelt and Rainfall Mixed Events

    Directory of Open Access Journals (Sweden)

    Tomasz Berezowski

    2018-01-01

    Full Text Available Discharge events induced by mixture of snowmelt and rainfall are strongly nonlinear due to consequences of rain-on-snow phenomena and snowmelt dependence on energy balance. However, they received relatively little attention, especially in high-resolution discharge forecasting. In this study, we use Random Forests models for 24 h discharge forecasting in 1 h resolution in a 105.9 km 2 urbanized catchment in NE Poland: Biala River. The forcing data are delivered by Weather Research and Forecasting (WRF model in 1 h temporal and 4 × 4 km spatial resolutions. The discharge forecasting models are set in two scenarios with snowmelt and rainfall and rainfall only predictors in order to highlight the effect of snowmelt on the results (both scenarios use also pre-forecast discharge based predictors. We show that inclusion of snowmelt decrease the forecast errors for longer forecasts’ lead times. Moreover, importance of discharge based predictors is higher in the rainfall only models then in the snowmelt and rainfall models. We conclude that the role of snowmelt for discharge forecasting in mixed snowmelt and rainfall environments is in accounting for nonlinear physical processes, such as initial wetting and rain on snow, which cannot be properly modelled by rainfall only.

  10. Observations of propagating double layers in a high current discharge

    International Nuclear Information System (INIS)

    Lindberg, L.

    1988-01-01

    Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2 x 10 19 m - 3 , highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3-5kV). An initial plasma column is formed in an axial magnetic field (0.1T) by means of a conical theta-pinch plasma gun. When an axial current (max 5kA, 3-5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds. Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1-2 kV above the anode potential during a few μs) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions

  11. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  12. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  13. Process Characterization of Electrical Discharge Machining of Highly Doped Silicon

    Science.gov (United States)

    2012-06-01

    of mechanism is shown in Figure 2 showing the wire feed panel where the spool of 5 (DiBitonto, et...Uno High efficiency boring of monocrystalline silicon ingot by EDM RAM Si (P-type) conductivity 0.01 ohm-cm 1mm Cu pipe electrode, rotating at

  14. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  15. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  16. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  17. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  18. On the mechanism of high-voltage discharge initiation in high-voltage accelerator accelerating tubes

    International Nuclear Information System (INIS)

    Zheleznikov, F.G.

    1983-01-01

    Experimental investigation into physical natupe of discharge processes in high-voltage accelerator accelerating tubes in the absence of the accelerated particle beam are conducted. The installation for the study of the mechanism of initiating vacuum isolation conductivity is used in the experiments. The vacuum chamber of the installation is made of steel and sealed with rubber packings. Electrodes 300-360 mm in diameter are made of stainless steel. Two variants of cleaning technology were used before electrode assembling: 1) degreasing by organic solvents; 2) cleaning by fine grinding cloth with successive washing by rectificated alcohol. Analysis of the obtained data shows that forma. tion of background flux of charged particles in interelectrode gap is caused by external photoelectric effect, excited by X radiation, which initiates the formation of intensive internal field in microfilms of non-conducting impurities on the electrode surfaces. The secondary electron emission plays the minor role at that

  19. Plasma characteristics of a high power helicon discharge

    International Nuclear Information System (INIS)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S

    2006-01-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m 2 ) of uniform high-density, of at least 5 x 10 17 m -3 , plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show ΔB perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 μs

  20. Plasma characteristics of a high power helicon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S [Box 351310, University of Washington, Seattle WA, 98195 (United States)

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m{sup 2}) of uniform high-density, of at least 5 x 10{sup 17} m{sup -3}, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show {delta}B perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 {mu}s.

  1. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  2. High Discharge Rate Electrodeposited Zinc Electrode for Use in Alkaline Microbattery

    Directory of Open Access Journals (Sweden)

    A. L. Nor Hairin

    2012-01-01

    Full Text Available High discharge rate zinc electrode is prepared from electrodeposition process. The electrolytic bath consists of zinc chloride as the metal source and ammonium chloride as the supporting electrolyte. The concentration of the supporting electrolyte is varied from zero until 4 M, while the concentration of zinc chloride is fixed at 2 M. The aim is to produce a porous zinc coating with an enhanced and intimate interfacial area per unit volume. These characteristics shall contribute towards reduced ohmic losses, improved active material utilization, and subsequently producing high rate capacity electrochemical cell. Nitrogen physisorption at 77 K is used to measure the BET surface area and pore volume density of the zinc electrodeposits. The electrodeposited zinc electrodes are then fabricated into alkaline zinc-air microbattery measuring 1 cm2 area x ca. 305 µm thick. The use of inorganic MCM-41 membrane separator enables the fabrication of a compact cell design. The quality of the electrodeposited zinc electrodes is gauged directly from the electrochemical performance of zinc-air cell. Zinc electrodeposits prepared from electrolytic bath of 2 M NH4Cl produces the highest discharge capacity.ABSTRAK: Elektrod zink dengan kadar discas tinggi telah dihasilkan dengan proses saduran elektrokimia. Takungan elektrolit terdiri daripada zink klorida sebagai sumber logam dan ammonium klorida sebagai elektrolit sokongan. Kepekatan elektrolit sokongan diubah daripada sifar hingga 4 M, sementara kepekatan zink klorida ditetapkan pada 2 M. Ini bertujuan untuk mendapatkan saduran zink yang poros dengan luas permukaan per unit isipadu dan sentuhan antaramuka yang dipertingkatkan. Ciri-ciri ini akan menyumbang terhadap pengurangan kehilangan disebabkan kerintangan, pertambahan dalam gunapakai bahan aktif dan akhirnya menghasilkan sel elektrokimia berprestasi tinggi. Physisorpsi nitrogen pada 77 K telah digunakan untuk mengukur luas permukaan BET dan isipadu liang

  3. [Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].

    Science.gov (United States)

    Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun

    2005-11-01

    The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.

  4. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  5. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from

  6. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J.J.; Meiden, van der H.J.; Morgan, T.W.; Schram, D.C.; De Temmerman, G.C.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 µF) is parallel-coupled to the current regulated power supply. The current is transiently increased from its

  7. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  8. Investigation of Peculiarities of a High-Voltage Pulsing Corona Discharge in Carbonic Gas and an Feature Using of Such Discharge for CO2 Dissociation

    International Nuclear Information System (INIS)

    Berezina, G.P.; Mirny, V.I.; Omelaenko, O.L.; Us, V.S.

    2006-01-01

    On laboratory stand of plasmochemical reactor the feature of CO 2 dissociation with the purpose of CO production in high-voltage pulsing corona discharge is investigated at a voltage up to 120 kV, a pulse length of a current 0,5 μs a repetition rate up to 100 Hz. Peculiarities of volt-ampere characteristics of such discharge are studied at different pressures of air and carbonic gas in the discharge chamber and construction of an interior electrode. It is established that in conditions of the carried out experiments a maximum efficiency of CO accretion does not exceed 3,5%

  9. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  10. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  11. Diagnostics of Argon Injected Hydrogen Peroxide Added High Frequency Underwater Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Ahmed

    2016-05-01

    Full Text Available The effects of hydrogen peroxide addition and Argon injection on electrical and spectral characteristics of underwater capillary discharge were investigated. The flowing water discharge was created in a quartz tube (Φ = 4mm outer; Φ = 2mm inner; thickness 1mm by applying high frequency (25 kHz alternating current voltage (0-15kV across the tungsten electrodes (Φ=0.5mm, in pin-pin electrode configuration, separated by a gap distance of 10 mm. The results of no hydrogen peroxide addition and no Argon gas injection were compared with addition of hydrogen peroxide and Argon injection for different values. The emission spectrum was taken to present the increase in concentration of •OH radicals with and without hydrogen peroxide addition under different argon injection rates. The results demonstrated that addition of hydrogen peroxide do not remarkably affected the conductivity of water, but its addition increased the yield rate of •OH radicals generated by plasma discharge. The addition of Argon generated bubbles and gas channels reduced the high power consumption required for inducing flowing water long gap discharge. The results showed large concentration of •OH radicals due to hydrogen peroxide addition, less required input power for generating flowing water discharge by using high frequency input voltage and due to Argon injection.

  12. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  13. Features of high quality discharge planning for patients following acute myocardial infarction.

    Science.gov (United States)

    Cherlin, Emily J; Curry, Leslie A; Thompson, Jennifer W; Greysen, S Ryan; Spatz, Erica; Krumholz, Harlan M; Bradley, Elizabeth H

    2013-03-01

    Hospital discharge planning is required as a Medicare Condition of Participation (CoP), and is essential to the health and safety for all patients. However, there have been no studies examining specific hospital discharge processes, such as patient education and communication with primary care providers, in relation to hospital 30-day risk standardized mortality rates (RSMRs) for patients with acute myocardial infarction (AMI). To identify hospital discharge processes that may be associated with better performance in hospital AMI care as measured by RSMR. We conducted a qualitative study of U.S. Hospitals, which were selected based on their RSMR reported by the Centers for Medicare & Medicaid Services (CMS) Hospital Compare website for the most recent data available (January 1, 2005 - December 31, 2007). We selected hospitals that ranked in the top 5 % and the bottom 5 % of RSMR for the two consecutive years. We focused on hospitals at the extreme ends of the range in RSMR, known as deviant case sampling. We excluded hospitals that did not have the ability to perform percutaneous coronary intervention in order to decrease the heterogeneity in our sample. Participants included key hospital clinical and administrative staff most involved in discharge planning for patients admitted with AMI. We conducted 14 site visits and 57 in-depth interviews using a standard discussion guide. We employed a grounded theory approach and used the constant comparative method to generate recurrent and unifying themes. We identified five broad discharge processes that distinguished higher and lower performing hospitals: 1) initiating discharge planning upon patient admission; 2) using multidisciplinary case management services; 3) ensuring that a follow-up plan is in place prior to discharge; 4) providing focused education sessions for both the patient and family; and 5) contacting the primary care physician regarding the patient's hospitalization and follow-up care plan

  14. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  15. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    Science.gov (United States)

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  16. Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process

    International Nuclear Information System (INIS)

    Han, Min-Seop; Chae, Ki Woon; Min, Byung-Kwon

    2017-01-01

    In this study, we created high-aspect-ratio microgrooves in hard, brittle materials using an electrochemical discharge machining (ECDM) process by introducing microtextured machining tool. To enhance the electrical discharge activity, the morphology of the tool side surface was treated via micro-electrical discharge machining to produce fine microprotrusive patterns. The resulting microtextured surface morphology enhanced the electric field and played a key role in improving the step milling depth in the ECDM process. Using the FEM analysis, the evaluation of the field enhancement factor is also addressed. Our experimental investigation revealed microgrooves having an aspect ratio of 1:4, with high geometric accuracy and crack-free surfaces, using one-step ECDM. (paper)

  17. Evaluation of deterioration of insulators in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, Masao

    2003-01-01

    For the purpose of early detection of deterioration of insulators in high-voltage motors which are widely utilized in nuclear power stations, a new type on-line partial discharge monitor developed at INSS was applied to test the deterioration of about 150 sets of high-voltage motors running in nuclear power stations practically. From the results, it is shown that (1) tendency of the deterioration can be obtained by this method in general, (2) the magnitude of the on-line partial discharge hardly correlates with that of off-line measurement, but depends on temperature and other environmental conditions, and (3) by observing phase characteristics of partial discharge, it is possible to make a diagnosis of phase-to-phase tracking in end-winding coils of a stator. (author)

  18. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    Science.gov (United States)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  19. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Science.gov (United States)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  20. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Science.gov (United States)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  1. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James M [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Trump, Darryl D [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Bletzinger, Peter [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Ganguly, Biswa N [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919 (United States)

    2006-10-21

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s{sup -1}. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of {approx}3 x 10{sup 15} cm{sup -3} at 25 W. The maximum ozone production achieved by short-pulse excitation was {approx}8.5 x 10{sup 15} cm{sup -3} at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  2. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Williamson, James M; Trump, Darryl D; Bletzinger, Peter; Ganguly, Biswa N

    2006-01-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s -1 . The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ∼3 x 10 15 cm -3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ∼8.5 x 10 15 cm -3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level

  3. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2016-09-01

    Full Text Available The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  4. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  5. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  6. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  7. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  8. Computerized precision control of a synchronous high voltage discharge switch for the beam separation system of the LEP e+/e- collider

    International Nuclear Information System (INIS)

    Dieperink, J.H.; Finnigan, A.; Kalbreier, W.; Keizer, R.L.; Laffin, M.; Mertens, V.

    1989-01-01

    Electrostatic separators are used to separate the beams in LEP. The counter-rotating beams are eventually brought into collision in the four low beta insertions, using switches to discharge simultaneously four high voltage (HV) circuits. Each switch consists of four spark gaps mounted in a pressure vessel. A reduction of the gap widths below the self ignition instance by electric motors results in the initiation of the discharges. Synchronization is ensured by the electrical coupling of the electrodes connected to the ground. The design and performance of the computerized precision control of the discharge switch are described. The dynamic characteristics of the prototype switch are also presented. 5 refs., 5 figs

  9. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  10. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    is limited by the parasitics of the high voltage active components, which also prevent full utilization of valley switching during discharge process. A second implementation is therefore proposed, where the secondary of flyback transformer winding is split into multiple windings which are connected in series...

  11. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  12. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  13. High rates of relapse in adolescents crack users after inpatient clinic discharge

    Directory of Open Access Journals (Sweden)

    Rosemeri Siqueira Pedroso

    Full Text Available ABSTRACT Objective The objective of the present study was to evaluate 88 adolescent crack users referred to hospitalization and to follow them up after discharge to investigate relapse and factors associated with treatment. Methods Cohort (30 and 90 days after discharge from a psychiatric hospital and a rehab clinic for treatment for chemical dependency in Porto Alegre between 2011 and 2012. Instruments: Semi-structured interview, conducted to evaluate the sociodemographic profile of the sample and describe the pattern of psychoactive substance use; Crack Use Relapse Scale/CURS; Questionnaire Tracking Users to Crack/QTUC; K-SADS-PL. Results In the first follow-up period (30 days after discharge, 65.9% of participants had relapsed. In the second follow-up period (90 days after discharge, 86.4% of participants had relapsed. Conclusion This is one of the first studies that show the extremely high prevalence of early relapse in adolescent crack users after discharge, questioning the cost/benefit of inpatient treatment for this population. Moreover, these results corroborate studies which suggested, young psychostimulants users might need tailored intensive outpatient treatment with contingency management and other behavioral strategies, in order to increase compliance and reduce drug or crime relapse, but this specific therapeutic modality is still scarce and must be developed in Brazil.

  14. Hollow-cathode electrode for high-power, high-pressure discharge devices

    Science.gov (United States)

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  15. The influence of electric discharge on the properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Parashchuk, V.V.

    1990-01-01

    The influence is studied of pulse voltage with amplitude 100 kV and duration 100 to 200 ns on the temperature dependence of diamagnetic susceptibility of yttrium ceramics. As a result of the action of spark discharge on the ceramics, the superconducting transition parameters change. As the number of voltage pulses is increased, the diamagnetic susceptibility and the critical temperature determined by it first increase rapidly, then drop slowly. At the same time the transition in the optimum becomes more sharp. In the case of treatment in the air, Tc increases by 15 K and at discharge in liquid nitrogen by 25 K. It is found that the atmospheric air under certain conditions affects the temperature dependence of the diamagnetic susceptibility of HTSC ceramics. Treatment by a high-voltage spark decreases the susceptibility of the ceramics due to atmospheric effects. The highest efficiency of spark treatment is achieved at discharge in liquid nitrogen. (orig.)

  16. The effect of solvent component on the discharge performance of Lithium-sulfur cell containing various organic electrolytes

    International Nuclear Information System (INIS)

    Kim, Seok; Jung, Yongju; Lim, Hong S.

    2004-01-01

    The effect of solvent component on the discharge performance of lithium-sulfur (Li/S) cell and the optimal composition of ternary electrolyte for the improved discharge performance of the cell have been investigated. The capacity value and capacity stability with cycle are dependent on the nature of solvent as well as the composition of mixed solvent. The change trend of discharge performance as a function of content of each solvent component is studied. Capacity value increases as the 1,3-dioxolane (DOX) content decreases. Average discharge voltage shows larger value when the 1,2-dimethoxy ethane (DME) content is small. Finally, we have obtained the optimal solvent composition by using a statistical method

  17. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-05-01

    Full Text Available Ultra-high-frequency (UHF partial discharge (PD online monitoring is an effective way to inspect potential faults and insulation defects in power transformers. The construction of UHF PD online monitoring system is a challenge because of the high-frequency and wide-frequency band of the UHF PD signal. This paper presents a novel, intelligent sensor for UHF PD online monitoring based on a new method, namely a level scanning method. The intelligent sensor can directly acquire the statistical characteristic quantities and is characterized by low cost, few data to output and transmit, Ethernet functionality, and small size for easy installation. The prototype of an intelligent sensor was made. Actual UHF PD experiments with three typical artificial defect models of power transformers were carried out in a laboratory, and the waveform recording method and intelligent sensor proposed were simultaneously used for UHF PD measurement for comparison. The results show that the proposed intelligent sensor is qualified for the UHF PD online monitoring of power transformers. Additionally, three methods to improve the performance of intelligent sensors were proposed according to the principle of the level scanning method.

  18. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  19. High Power Flex-Propellant Arcjet Performance

    Science.gov (United States)

    Litchford, Ron J.

    2011-01-01

    A MW-class electrothermal arcjet based on a water-cooled, wall-stabilized, constricted arc discharge configuration was subjected to extensive performance testing using hydrogen and simulated ammonia propellants with the deliberate aim of advancing technology readiness level for potential space propulsion applications. The breadboard design incorporates alternating conductor/insulator wafers to form a discharge barrel enclosure with a 2.5-cm internal bore diameter and an overall length of approximately 1 meter. Swirling propellant flow is introduced into the barrel, and a DC arc discharge mode is established between a backplate tungsten cathode button and a downstream ringanode/ spin-coil assembly. The arc-heated propellant then enters a short mixing plenum and is accelerated through a converging-diverging graphite nozzle. This innovative design configuration differs substantially from conventional arcjet thrusters, in which the throat functions as constrictor and the expansion nozzle serves as the anode, and permits the attainment of an equilibrium sonic throat (EST) condition. During the test program, applied electrical input power was varied between 0.5-1 MW with hydrogen and simulated ammonia flow rates in the range of 4-12 g/s and 15-35 g/s, respectively. The ranges of investigated specific input energy therefore fell between 50-250 MJ/kg for hydrogen and 10-60 MJ/kg for ammonia. In both cases, observed arc efficiencies were between 40-60 percent as determined via a simple heat balance method based on electrical input power and coolant water calorimeter measurements. These experimental results were found to be in excellent agreement with theoretical chemical equilibrium predictions, thereby validating the EST assumption and enabling the utilization of standard TDK nozzle expansion analyses to reliably infer baseline thruster performance characteristics. Inferred specific impulse performance accounting for recombination kinetics during the expansion process

  20. Osmosis process for leachate treatment in industrial platform: Economic and performances evaluations to zero liquid discharge.

    Science.gov (United States)

    Cingolani, Diego; Eusebi, Anna Laura; Battistoni, Paolo

    2017-12-01

    The industrial processes require large quantities of water. The presence of discharges results not only in significant environmental impact but implies wastage of water resources. This problem could be solved treating and reusing the produced wastewaters and applying the new zero liquid discharge approach. This paper discusses the design and the performances of reverse osmosis membranes for the upgrading of full scale platform for industrial liquid wastes. The final effluent from the ultrafiltration unit of the full scale plant was monitored to design the reverse osmosis unit. Previous modelling phase was used to evaluate the specific ordinary and maintenance costs and the final effluent quality (2.7 €/m 3 ). The system was designed in triple stages at different operative pressures. The economic feasibility and the payback period of the technology at different percentages of produced permeate were determined. The recovery of 90% was identified as profitable for the reverse osmosis application. One experimental pilot plant applying the reverse osmosis was used to test the final effluent. Moreover, the same flow was treated with second pilot system based on the forward osmosis process. The final efficiencies were compared. Removals higher than 95% using the reverse system were obtained for the main macropollutants and ions. No sustainable applicability of the forward osmosis was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory

    Science.gov (United States)

    Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj

    2015-12-01

    Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.

  2. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  3. Development of high power pumping system for capillary discharge EUV laser

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  4. Identifying High Performance ERP Projects

    OpenAIRE

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  5. High-k shallow traps observed by charge pumping with varying discharging times

    International Nuclear Information System (INIS)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-01-01

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO 2 /metal gate stacks. N T -V high level characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N T for extra contribution of I cp traps. N T is the number of traps, and I cp is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I cp traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti x N 1−x metal gate concentrations. Next, N T -V high level characteristic curves with different falling times (t falling time ) and base level times (t base level ) show that extra contribution of I cp traps decrease with an increase in t falling time . By fitting discharge formula for different t falling time , the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t falling time . This current cannot be measured by the charge pumping technique. Subsequent measurements of N T by charge pumping technique at t base level reveal a remainder of electrons trapped in high-k bulk shallow traps

  6. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  7. Performance of soft x-ray laser pumped by capillary discharge

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Kakuya, Yuji; Xiao, Yifan

    2005-01-01

    We report the output characteristics of capillary discharge single-pass 46.9 nm Ne-like Ar soft-X-ray laser generated by a capillary z-pinch discharge. The coherence properties of the laser have shown to be improved with the increase of the length of laser amplifier from 20 up to 35 cm. The high degree of the spatial coherence of the laser beam produced by 35 cm long capillary is demonstrated by the results obtained in a classical Young's double-slit experiments. We found that the coherence length of the laser is 50 μm. For the 20 cm-long capillary, the diameter of a laser beam is in a range from 3.2 to 4.0 mm, which is corresponding to a range of divergence from 2.2 to 2.8 mrad. Finally, we introduce two spikes on X-ray diode (XRD) signal observed in a single shot. (author)

  8. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  9. A note on high Schmidt number laminar buoyant jets discharged horizontally

    International Nuclear Information System (INIS)

    Dewan, A.; Arakeri, J.H.; Srinivasan, J.

    1992-01-01

    This paper reports on a new model, developed for the integral analysis of high Schmidt number (or equivalently high Prandtl number) laminar buoyant jets discharged horizontally. This model assumes top-hat density profile across the inner core of jet and Gaussian velocity profile. Entrainment coefficient corresponding to pure laminar jet has been taken in the analysis. The prediction of the jet trajectory agree well with experimental data in the regions where the jet remains laminar

  10. Effect of secondary electron emission on subnanosecond breakdown in high-voltage pulse discharge

    Science.gov (United States)

    Schweigert, I. V.; Alexandrov, A. L.; Gugin, P.; Lavrukhin, M.; Bokhan, P. A.; Zakrevsky, Dm E.

    2017-11-01

    The subnanosecond breakdown in open discharge may be applied for producing superfast high power switches. Such fast breakdown in high-voltage pulse discharge in helium was explored both in experiment and in kinetic simulations. The kinetic model of electron avalanche development was developed using PIC-MCC technique. The model simulates motion of electrons, ions and fast helium atoms, appearing due to ions scattering. It was shown that the mechanism responsible for ultra-fast breakdown development is the electron emission from cathode. The photoemission and emission by ions or fast atoms impact is the main reason of current growth at the early stage of breakdown, but at the final stage, when the voltage on discharge gap drops, the secondary electron emission (SEE) is responsible for subnanosecond time scale of current growth. It was also found that the characteristic time of the current growth τS depends on the SEE yield of the cathode material. Three types of cathode material (titanium, SiC, and CuAlMg-alloy) were tested. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time as small as τS = 0.4 ns, for the pulse voltage amplitude of 5- 12 kV..

  11. Performance optimization in electro- discharge machining using a suitable multiresponse optimization technique

    Directory of Open Access Journals (Sweden)

    I. Nayak

    2017-06-01

    Full Text Available In the present research work, four different multi response optimization techniques, viz. multiple response signal-to-noise (MRSN ratio, weighted signal-to-noise (WSN ratio, Grey relational analysis (GRA and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian methods have been used to optimize the electro-discharge machining (EDM performance characteristics such as material removal rate (MRR, tool wear rate (TWR and surface roughness (SR simultaneously. Experiments have been planned on a D2 steel specimen based on L9 orthogonal array. Experimental results are analyzed using the standard procedure. The optimum level combinations of input process parameters such as voltage, current, pulse-on-time and pulse-off-time, and percentage contributions of each process parameter using ANOVA technique have been determined. Different correlations have been developed between the various input process parameters and output performance characteristics. Finally, the optimum performances of these four methods are compared and the results show that WSN ratio method is the best multiresponse optimization technique for this process. From the analysis, it is also found that the current has the maximum effect on the overall performance of EDM operation as compared to other process parameters.

  12. The Influence of Relative Humidity on Dielectric Barrier Discharge Plasma Flow Control Actuator Performance

    Science.gov (United States)

    Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.

    2012-11-01

    Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  13. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    Science.gov (United States)

    Wang, Wen-Chuan; Chau, Kwok-Wing; Cheng, Chun-Tian; Qiu, Lin

    2009-08-01

    SummaryDeveloping a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation ( R), Nash-Sutcliffe efficiency coefficient ( E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.

  14. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  15. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  16. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  17. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    International Nuclear Information System (INIS)

    Sato, Masayuki

    2008-01-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  18. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  20. Performance concerns for high duty fuel cycle

    International Nuclear Information System (INIS)

    Esposito, V.J.; Gutierrez, J.E.

    1999-01-01

    One of the goals of the nuclear industry is to achieve economic performance such that nuclear power plants are competitive in a de-regulated market. The manner in which nuclear fuel is designed and operated lies at the heart of economic viability. In this sense reliability, operating flexibility and low costs are the three major requirements of the NPP today. The translation of these three requirements to the design is part of our work. The challenge today is to produce a fuel design which will operate with long operating cycles, high discharge burnup, power up-rating and while still maintaining all design and safety margins. European Fuel Group (EFG) understands that to achieve the required performance high duty/energy fuel designs are needed. The concerns for high duty design includes, among other items, core design methods, advanced Safety Analysis methodologies, performance models, advanced material and operational strategies. The operational aspects require the trade-off and evaluation of various parameters including coolant chemistry control, material corrosion, boiling duty, boron level impacts, etc. In this environment MAEF is the design that EFG is now offering based on ZIRLO alloy and a robust skeleton. This new design is able to achieve 70 GWd/tU and Lead Test Programs are being executed to demonstrate this capability. A number of performance issues which have been a concern with current designs have been resolved such as cladding corrosion and incomplete RCCA insertion (IRI). As the core duty becomes more aggressive other new issues need to be addressed such as Axial Offset Anomaly. These new issues are being addressed by combination of the new design in concert with advanced methodologies to meet the demanding needs of NPP. The ability and strategy to meet high duty core requirements, flexibility of operation and maintain acceptable balance of all technical issues is the discussion in this paper. (authors)

  1. The role of high Rydberg states in the generation of negative ions in negative-ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1995-01-01

    The generation of substantial yields of H - ions in a laser excited H 2 gas has been reported by Pinnaduwage and Christoforu. These H - yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10 -6 cm 3 sec -1 , values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper

  2. Evaluation of vaginal discharge with the Metricheck device and the relationship to reproductive performance in postpartum dairy cows.

    Science.gov (United States)

    Lambertz, Christian; Völker, Denise; Janowitz, Ulrich; Gauly, Matthias

    2014-09-01

    Vaginal mucus during estrus was examined with the Metricheck device and the relationship to the reproduction of high-yielding dairy cows was studied. The study was conducted in 99 dairy herds located in Western Germany and 1348 Holstein-Friesian heifers and cows showing spontaneous estrus were examined. Independent of the Metricheck result, the animals were inspected by professional insemination technicians and those suitable for insemination (n = 989) were bred by artificial insemination (AI). Reproductive performance was characterized by non-return rate at 90 days (NRR90). The discharge of the animals predominantly had a clear appearance (70%) and a stringy consistency (80%). Animals with clear vaginal discharge had higher NRR90 (56%; n = 697) than animals with abnormal (turbid, mucopurulent, purulent, sanguineous) vaginal secretion (48%, n = 292; P  130 days; 62%) intervals (P  45 kg) milk yield class. In conclusion, the use of the Metricheck device integrated into the insemination procedure is recommended to identify dairy cows suffering severely from uterine disease. © 2014 Japanese Society of Animal Science.

  3. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  4. Performance improvement by discharge from different levels in solar storage tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Thür, Alexander

    2005-01-01

    The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem. The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw......-off levels from the solar tanks instead of one draw-off level at a fixed position. The best position of the second draw-off level is in the middle or just above the middle of the tank. For the investigated small SDHW system with a realistic draw off hot water temperature of 40°C and 45°C and an auxiliary...... volume temperature of 50.5°C the increase of the thermal performance by the second draw-off level is about 6%. For the investigated solar combisystem the extra thermal performance by using one extra draw-off level, either for the domestic hot water heat exchanger or for the heating system, is about 3...

  5. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NARCIS (Netherlands)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-01-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the

  6. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  7. Thromboprophylaxis for Patients with High-risk Atrial Fibrillation and Flutter Discharged from the Emergency Department

    Directory of Open Access Journals (Sweden)

    E. Margaret Warton

    2018-02-01

    Full Text Available Introduction: Many patients with atrial fibrillation or atrial flutter (AF/FL who are high risk for ischemic stroke are not receiving evidence-based thromboprophylaxis. We examined anticoagulant prescribing within 30 days of receiving dysrhythmia care for non-valvular AF/FL in the emergency department (ED. Methods: This prospective study included non-anticoagulated adults at high risk for ischemic stroke (ATRIA score ≥7 who received emergency AF/FL care and were discharged home from seven community EDs between May 2011 and August 2012. We characterized oral anticoagulant prescribing patterns and identified predictors of receiving anticoagulants within 30 days of the index ED visit. We also describe documented reasons for withholding anticoagulation. Results: Of 312 eligible patients, 128 (41.0% were prescribed anticoagulation at ED discharge or within 30 days. Independent predictors of anticoagulation included age (adjusted odds ratio [aOR] 0.89 per year, 95% confidence interval [CI] 0.82–0.96; ED cardiology consultation (aOR 1.89, 95% CI [1.10–3.23]; and failure of sinus restoration by time of ED discharge (aOR 2.65, 95% CI [1.35–5.21]. Reasons for withholding anticoagulation at ED discharge were documented in 139 of 227 cases (61.2%, the most common of which were deferring the shared decision-making process to the patient’s outpatient provider, perceived bleeding risk, patient refusal, and restoration of sinus rhythm. Conclusion: Approximately 40% of non-anticoagulated AF/FL patients at high risk for stroke who presented for emergency dysrhythmia care were prescribed anticoagulation within 30 days. Physicians were less likely to anticoagulate older patients and those with ED sinus restoration. Opportunities exist to improve rates of thromboprophylaxis in this high-risk population.

  8. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  9. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    International Nuclear Information System (INIS)

    Stauss, Sven; Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-01-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors

  10. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    International Nuclear Information System (INIS)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S

    2009-01-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  11. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  12. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  13. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    International Nuclear Information System (INIS)

    Yin Meiqiang; Ma Tengcai; Zhang Jialiang; Huang Mingjing; Ma Buzhou

    2006-01-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml

  14. High-k shallow traps observed by charge pumping with varying discharging times

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  15. High-confinement NBI discharges in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Stroth, U.; Baldzuhn, J.; Geiger, J.; Geist, T.; Giannone, L.; Hartfuss, H.-J.; Hirsch, M.; Jaenicke, R.; Kick, M.; Koponen, J.P.; Kuehner, G.; Penningsfeld, F.-P.; Wagner, F.

    1998-01-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar e approx. 10 20 m -3 . Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  16. High-confinement NBI discharges in the W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Baldzuhn, J; Geiger, J; Geist, T; Giannone, L.; Hartfuss, H -J; Hirsch, M; Jaenicke, R; Kick, M; Koponen, J P; Kuehner, G; Penningsfeld, F -P; Wagner, F [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    1998-08-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar{sub e} approx. 10{sup 20}m{sup -3}. Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  17. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    Science.gov (United States)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  18. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    Science.gov (United States)

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  19. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  20. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  1. Improving the fast discharge performance of high-voltage LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} spinel by Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} tri-doping

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jicheng [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Xu, Youlong, E-mail: ylxuxjtu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Xiong, Lilong; Li, Liang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Sun, Xiaofei [Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Zhang, Yuan [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China)

    2016-08-25

    The sluggish Li{sup +} ion diffusion coefficient at ∼4.7 V (vs. Li{sup +}/Li) greatly impairs the fast discharge performance of LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} cathode material. Herein, a tri-doping strategy is proposed where Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} ions are partially substituted for Ni{sup 2+} and Mn{sup 4+}. Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} tri-doping effectively suppresses the Li{sub x}Ni{sub 1−x}O impurity phase, increases the cation mixing in the octahedral B-site in the spinel, enlarges the electronic conductivity, and enhances the structural stability. Most importantly, the Li{sup +} diffusion coefficients show a peculiar boost at 4.7 V by two orders of magnitude after tri-doping. Compared to the pristine LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (denoted P-LNM), the tri-doped Li[Ni{sub 0.455}Cu{sub 0.03}Al{sub 0.03}Mn{sub 1.455}Ti{sub 0.03}]O{sub 4} (denoted TD-LNM) exhibits much better fast discharge performance, delivering a specific capacity of ∼101 mAh g{sup −1} at 100 C discharge rate. - Graphical abstract: For the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} cathode material, the sluggish Li{sup +} ion diffusion coefficient around the ∼4.7 V (vs. Li{sup +}/Li) plateau greatly impair its fast discharge performance, which therefore limit its application in electric vehicles. Herein, a tri-doping strategy is proposed where Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} ions are partially substituted for Ni{sup 2+} and Mn{sup 4+}. After tri-doping, the Li{sup +} diffusion coefficient at 4.7 V (vs. Li{sup +}/Li) is boosted by two orders of magnitude. Compared to the pristine LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (denoted P-LNM), the tri-doped Li[Ni{sub 0.455}Cu{sub 0.03}Al{sub 0.03}Mn{sub 1.455}Ti{sub 0.03}]O{sub 4} (denoted TD-LNM) exhibits much better fast discharge performance, delivering a capacity of ∼101 mAh·g{sup −1} at 100 C discharge rate. - Highlights: • Cu, Al, Ti Tri-doping improves electronic conductivity of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}. • Cu

  2. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    Science.gov (United States)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  3. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    Science.gov (United States)

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  4. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  5. Coated Porous Si for High Performance On-Chip Supercapacitors

    Science.gov (United States)

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  6. Performances of helium, neon and argon glow discharges for reduction of fuel hydrogen retention in tungsten, stainless steel and graphite

    International Nuclear Information System (INIS)

    Hino, T.; Yamauchi, Y.; Kimura, Y.; Matsumoto, A.; Nishimura, K.; Ueda, Y.

    2012-11-01

    It is quite important to investigate the performance of glow discharge conditionings for controls of in-vessel tritium (T) inventory and hydrogen recycling. For this purpose, first, the deuterium (D) retentions in tungsten (W), graphite (C) and stainless steel (SS) were measured. The retention in W was not small as expected, several times larger than that of SS, although the retention in SS was one order smaller than that of C. Such the large retention in W is owing to the growth of rough surface structure produced by plasma irradiations. For reduction of deuterium retention in W, SS and C, second, inert gas (He, Ne, Ar) glow discharges were conducted under the same condition, and these performances were compared. The removal ratio of deuterium retention was highest in He discharge, and lowest in Ar discharge. These values are well explained by the numerical analyses using SRIM code. The removal ratios for SS and C were significantly large, but quite small for W. This reason is again owing to the rough surface structure in W. For W, thirdly, the hydrogen isotope exchange and the wall baking experiments were conducted. It is found that the wall backing with a temperature higher than 700 K can well reduce the retention, and the hydrogen isotope exchange using deuterium glow discharge is also useful to reduce the tritium retention in the wall. The present results significantly contribute to control the fuel hydrogen retention and to reduce the in-vessel tritium inventory in fusion reactors. (author)

  7. The effect of active antennas on the hot-restrike of high intensity discharge lamps

    International Nuclear Information System (INIS)

    Hoebing, T; Bergner, A; Ruhrmann, C; Mentel, J; Awakowicz, P; Koch, B; Manders, F

    2014-01-01

    The ignition voltage of high intensity discharge (HID) lamps with mercury as the buffer gas may rise from 3 kV for the cold state up to more than 15 kV for a hot lamp. By coating a lamp burner with an electrically conductive layer, which operates as an active antenna, the ignition voltage of HID lamps can be significantly reduced. An active antenna connected to one of the lamp electrodes transports the potential from this electrode to the vicinity of the opposite electrode and generates an enhanced electric field inside the burner. On applying a symmetrically shaped ignition pulse, a weak pre-discharge within the first half-cycle produces free charge carriers initiating ignition of the lamp within the subsequent second half-cycle. The authors present a set-up for electrical and optical investigations of hot-restrike in HID lamps. The ignition voltage is measured for two different polarities as a function of the cooldown time. An analysis of its reduction is given. Furthermore, the pre-discharge is investigated by means of short-time photography. It is demonstrated that a negative polarity of the active antenna within the first half-cycle and a positive polarity within the second one is the most effective succession. (paper)

  8. Analysis of experimental routines of high enthalpy steam discharge in subcooled water

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Rafael R., E-mail: Rafael.rade@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Andrade, Delvonei A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The discharge of high enthalpy steam through safety release valves out from pressurizers in PWR's needs to be condensed in order to allow the treatment of possibly present radwaste within. The Direct Contact Condensation is used in a relief tank to achieve the condensation. Care must be taken to avoid the bypass of the steam through the subcooled water, what would increase the peak of pressure and the necessity of structural reinforcement of the relief tank. An experiment to determine the optimal set up of the relief tank components and their characteristics (type of sprinkler, level of water, volume of tank, discharge direction, pressure in the pressurizer among others) was executed in 2000, in the CTE 150 facility, in CTMSP. In a total, 144 routines varying its components and characteristics were made, although no comprehensive analysis of its results were yet made, since the mass of data was too big to be readily analyzed. In order to comprehensively analyze it, a VBA program is being made to compile and graphically represent the mass of data. The current state of this program allowed conclusions over the peak pressure, adiabatic assumption of the experiment, and the quality of the steam generated due to the discharge. (author)

  9. Analysis of experimental routines of high enthalpy steam discharge in subcooled water

    International Nuclear Information System (INIS)

    Pacheco, Rafael R.; Andrade, Delvonei A.

    2015-01-01

    The discharge of high enthalpy steam through safety release valves out from pressurizers in PWR's needs to be condensed in order to allow the treatment of possibly present radwaste within. The Direct Contact Condensation is used in a relief tank to achieve the condensation. Care must be taken to avoid the bypass of the steam through the subcooled water, what would increase the peak of pressure and the necessity of structural reinforcement of the relief tank. An experiment to determine the optimal set up of the relief tank components and their characteristics (type of sprinkler, level of water, volume of tank, discharge direction, pressure in the pressurizer among others) was executed in 2000, in the CTE 150 facility, in CTMSP. In a total, 144 routines varying its components and characteristics were made, although no comprehensive analysis of its results were yet made, since the mass of data was too big to be readily analyzed. In order to comprehensively analyze it, a VBA program is being made to compile and graphically represent the mass of data. The current state of this program allowed conclusions over the peak pressure, adiabatic assumption of the experiment, and the quality of the steam generated due to the discharge. (author)

  10. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  11. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  12. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1994-01-01

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n) 0 . The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density N st.p , defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as N st.p ∝ p 21/4 τ -3/4 . This pressure scaling disagrees with the p 3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density n e of free electrons becomes larger than the density N st.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  13. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  14. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  15. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  16. Subnanosecond breakdown development in high-voltage pulse discharge: Effect of secondary electron emission

    Science.gov (United States)

    Alexandrov, A. L.; Schweigert, I. V.; Zakrevskiy, Dm. E.; Bokhan, P. A.; Gugin, P.; Lavrukhin, M.

    2017-10-01

    A subnanosecond breakdown in high-voltage pulse discharge may be a key tool for superfast commutation of high power devices. The breakdown in high-voltage open discharge at mid-high pressure in helium was studied in experiment and in kinetic simulations. The kinetic model of electron avalanche development was constructed, based on PIC-MCC simulations, including dynamics of electrons, ions and fast helium atoms, produced by ions scattering. Special attention was paid to electron emission processes from cathode, such as: photoemission by Doppler-shifted resonant photons, produced in excitation processes involving fast atoms; electron emission by ions and fast atoms bombardment of cathode; the secondary electron emission (SEE) by hot electrons from bulk plasma. The simulations show that the fast atoms accumulation is the main reason of emission growth at the early stage of breakdown, but at the final stage, when the voltage on plasma gap diminishes, namely the SEE is responsible for subnanosecond rate of current growth. It was shown that the characteristic time of the current growth can be controlled by the SEE yield. The influence of SEE yield for three types of cathode material (titanium, SiC, and CuAlMg-alloy) was tested. By changing the pulse voltage amplitude and gas pressure, the area of existence of subnanosecond breakdown is identified. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time value as small as τs = 0.4 ns, for the pulse voltage amplitude of 5÷12 kV. An increase of gas pressure from 15 Torr to 30 Torr essentially decreases the time of of current front growth, whereas the pulse voltage variation weakly affects the results.

  17. Interbasin flow revisited: The contribution of local recharge to high-discharge springs, Death Valley, CA

    Science.gov (United States)

    Anderson, Katherine; Nelson, Stephen; Mayo, Alan; Tingey, David

    2006-05-01

    Springs in the Furnace Creek area (Texas, Travertine, and Nevares Springs) of Death Valley National Park exhibit high discharge rates and depleted δ18O VSMOW (˜-13‰) and δD VSMOW (˜-102‰) values. Isotopic depletion of this magnitude and large spring fluxes (˜10,000 L/min) suggests that modern local recharge in the arid Furnace Creek drainage cannot be responsible for spring fluxes. An alternate explanation, interbasin flow, is difficult to envisage due to the stratigraphic and structural relationships of bedrock in intervening ranges, although it is the most common conceptual model for Furnace Creek spring flows. High-flux springs at Furnace Creek nonetheless respond modestly to modern climate in terms of discharge rate and isotopic composition. Hydrographs show a climate response and variations in time-series stable isotope data of widely spaced springs track one another. Small, but measurable quantities of tritium (water for these springs may be, there appears to be a subtle, but recent climatic influence. Estimates of flow at nearby mountain springs produce discharge rates per square kilometer of catchment that, by analogy, could support from 20 to 300% of the flow at large Death Valley springs under the current climate. Yet, 14C model ages suggest valley-bottom springs at Furnace Creek (5500-14,500 yr) contain a large component of older water, suggesting that much of the water was recharged during a pluvial period (Younger Dryas?) when net infiltration would have been much higher and isotopically depleted. 14C model ages are also of similar age, or younger, than many 'up gradient' waters, rather than being older as would be expected for interbasin flow. Chemical evolution models of solutes are consistent with both local recharge and interbasin transfer from Ash Meadows. However, when considered with isotopic constraints, interbasin flow becomes obviously untenable. Estimates of the thickness of alluvium and semi-consolidated Tertiary units in the

  18. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  19. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  20. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-02-01

    The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.

  1. Investigation of high-current low pressure quasistationary volume discharge in cross-field ExH

    International Nuclear Information System (INIS)

    Bashutin, O.A.; Vovchenko, E.D.; Kirnev, G.S.

    1995-01-01

    Different types of high current discharge permitted to create large volume of high density homogeneous plasma are widely used in modern technique. Such discharges are applied as plasma emitters of charged particles and also in various technologies for sputtering, implantation and etching of materials. The results of a plasma electron density dynamics investigation of low pressure quasistationary volume discharge in cross-field E x H is described in this paper. The discharge was created in a quadrupole magnetic system with special form electrodes and has following characteristics current up to 1,8 kA, voltage on the interval 80-120 V, existence time up to 1,5 ms. The discharge conserves diffusive character of plasma and cathode layer on all current range. On a first research stage plasma parameters of discharge were determined by means of Langmuir probe, that could been used in central discharge region only, where magnetic field was equal to zero. An obtained plasma density was reached 1,5*10 15 cm -3 with electron temperature T e =10 eV. The research of discharge plasma in regions with magnetic field had required to use interferometric measurement technique

  2. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal

    International Nuclear Information System (INIS)

    Perrier, F.; Byrdina, S.; Richon, P.; Bollinger, L.; Bureau, S.; Richon, P.; France-Lanord, Ch.; Rajaure, S.; Koirala, Bharat Prasad; Shrestha, Prithvi Lal; Gautam, Umesh Prasad; Tiwari, Dilli Ram; Sapkota, Soma Nath; Revil, A.; Revil, A.; Contraires, S.

    2009-01-01

    Gas discharges have been identified at the Syabru-Bensi hot springs, located at the front of the High Himalaya in Central Nepal, in the Main Central Thrust zone. The hot spring waters are characterized by a temperature reaching 61 C, high salinity, high alkalinity and δ 13 C varying from +0. 7 parts per thousand to +4. 8 parts per thousand. The gas is mainly dry carbon dioxide, with a δ 13 C of -0. 8 parts per thousand. The diffuse carbon dioxide flux, mapped by the accumulation chamber method, reached a value of 19000 g m -2 day -1 , which is comparable with values measured on active volcanoes. Similar values have been observed over a two-year time interval and the integral around the main gas discharge amounts to 0. 25 ± 0. 07 mol s -1 , or 350 ± 100 ton a -1 . The mean radon-222 concentration in spring water did not exceed 2. 5 Bq L -1 , exponentially decreasing with water temperature. In contrast, in gas bubbles collected in the water or in the dry gas discharges, the radon concentration varied from 16 000 to 41000 Bq m -3 . In the soil, radon concentration varied from 25000 to more than 50000 Bq m -3 . Radon flux, measured at more than fifty points, reached extreme values, larger than 2 Bq m -2 s -1 , correlated to the larger values of the carbon dioxide flux. Our direct observation confirms previous studies which indicated large degassing in the Himalaya. The proposed understanding is that carbon dioxide is released at mid-crustal depth by metamorphic reactions within the Indian basement, transported along pre-existing faults by meteoric hot water circulation, and degassed before reaching surface. This work, first, confirms that further studies should be undertaken to better constrain the carbon budget of the Himalaya, and, more generally, the contribution of mountain building to the global carbon balance. Furthermore, the evidenced gas discharges provide a unique natural laboratory for methodological studies, and appear particularly important to study as

  3. Production and study of high intensity discharges; Production et etude de decharges a forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Breton, C.; Charbon, J.; Hubert, P.; Vendryes, G.; Yvon, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    High intensity discharges have been induced in a pyrex toroid filled with argon or deuterium at low pressure. An attempt was made to stabilise the ring of plasma by the joint action of a metal screen and a longitudinal magnetic field. Penetrating X-ray have been observed under certain conditions. (author) [French] Des decharges a forte intensite ont ete induites dans une tore en pyrex rempli d'argon ou de deuterium sous basse pression. On a cherche a stabiliser l'anneau de plasma par l'action conjuguee d'un champ magnetique longitudinal. Un rayon X penetrant a ete observe dans certaines conditions. (auteur)

  4. Production and study of high intensity discharges; Production et etude de decharges a forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Breton, C; Charbon, J; Hubert, P; Vendryes, G; Yvon, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    High intensity discharges have been induced in a pyrex toroid filled with argon or deuterium at low pressure. An attempt was made to stabilise the ring of plasma by the joint action of a metal screen and a longitudinal magnetic field. Penetrating X-ray have been observed under certain conditions. (author) [French] Des decharges a forte intensite ont ete induites dans une tore en pyrex rempli d'argon ou de deuterium sous basse pression. On a cherche a stabiliser l'anneau de plasma par l'action conjuguee d'un champ magnetique longitudinal. Un rayon X penetrant a ete observe dans certaines conditions. (auteur)

  5. Optical fiber sensor of partial discharges in High Voltage DC experiments

    Science.gov (United States)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  6. Observation of a very high electron current extraction mode in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1993-01-01

    Earlier results by Hershcovitch, Kovarik, and Prelec in J. Appl. Phys. 67, 671 (1990) proved that, in a low-pressure operating mode, hollow cathode discharges can have a two-component electron population, one of which is that of ''fast'' electrons having an energy corresponding to the cathode potential and a thermal spread of about 0.13 eV, which could form a basis for an excellent electron gun. Investigations of extracted electron currents in this low pressure mode indicate the existence of a narrow pressure range characterized by very high electron current extraction

  7. Impact of audit and feedback and pay-for-performance interventions on pediatric hospitalist discharge communication with primary care providers.

    Science.gov (United States)

    Tejedor-Sojo, Javier; Creek, Tracy; Leong, Traci

    2015-01-01

    The study team sought to improve hospitalist communication with primary care providers (PCPs) at discharge through interventions consisting of (a) audit and feedback and (b) inclusion of a discharge communication measure in the incentive compensation for pediatric hospitalists. The setting was a 16-physician pediatric hospitalist group within a tertiary pediatric hospital. Discharge summaries were selected randomly for documentation of communication with PCPs. At baseline, 57% of charts had documented communication with PCPs, increasing to 84% during the audit and feedback period. Following the addition of a financial incentive, documentation of communication with PCPs increased to 93% and was sustained during the combined intervention period. The number of physicians meeting the study's performance goal increased from 1 to 14 by the end of the study period. A financial incentive coupled with an audit and feedback tool was effective at modifying physician behavior, achieving focused, measurable quality improvement gains. © 2014 by the American College of Medical Quality.

  8. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer

    International Nuclear Information System (INIS)

    Ganguly, Sayantan; Mohan Kumar, M.S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    Highlights: • A 3D coupled thermo-hydrogeological numerical model of an ATES system is presented. • Importance of a few parameters involved in the study is determined. • Thermal energy discharge by the ATES system for two seasons is estimated. • A strategy and a safe well spacing are proposed to avoid thermal interference. • The proposed model is applied to simulate a real life ATES field study. - Abstract: A three-dimensional (3D) coupled thermo-hydrogeological numerical model for a confined aquifer thermal energy storage (ATES) system underlain and overlain by rock media has been presented in this paper. The ATES system operates in cyclic mode. The model takes into account heat transport processes of advection, conduction and heat loss to confining rock media. The model also includes regional groundwater flow in the aquifer in the longitudinal and lateral directions, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. The thermal interference caused by the premature thermal-breakthrough when the thermal-front reaches the production well results in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions which may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Parameter studies are also performed which reveals that permeability of the confining rocks; well spacing and injection temperature are important parameters which influence transient heat transport in the subsurface porous media. Based on the simulations here a safe well spacing is proposed. The thermal energy produced by the system in two seasons is estimated for four different cases and strategy to avoid the premature thermal-breakthrough in critical cases is

  9. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  10. Mozart K.448 attenuates spontaneous absence seizure and related high-voltage rhythmic spike discharges in Long Evans rats.

    Science.gov (United States)

    Lin, Lung-Chang; Juan, Chun-Ting; Chang, Hsueh-Wen; Chiang, Ching-Tai; Wei, Ruey-Chang; Lee, Mei-Wen; Mok, Hin-Kiu; Yang, Rei-Cheng

    2013-05-01

    Recent research has revealed more evidence supporting the positive effects of music on humans and animals. However, evidence of music's effects on improving epilepsy in animals is sparse. This study aimed to clarify the influence of Mozart's music in Long Evans rats, which are characterized by spontaneous absence epilepsy (SAE) and high-voltage rhythmic spike (HVRS) discharges. Continuous electroencephalograms comprised of HVRS discharges, and behavioral performance were recorded in Long Evans rats (n=5) before, during, and after exposure to the Mozart's Sonata for Two Pianos in D Major, K.448 (Mozart K.448). The same evaluation was repeated after they had been subjected to daily exposure of the music for 20 days. Seizure frequencies and spontaneous HVRS discharges were reduced in all of the SAE rats during and after music exposure compared with the pre-music stage. The average seizure frequencies were 79.8±24.6, 48±15.2, and 33±12.1/h before, during, and after music exposure, respectively. The average run of spike episodes were 84.6±18.4, 52±17.8, and 36.8±16.9/h before, during, and after music exposure, respectively. The seizure frequencies and related run of spike episodes decreased by 39.8% and 38.5% during, and 58.6% and 56.6% post music exposure, respectively. The average run of spike durations and spike numbers also showed significant decreases (reduction by 47.1%, 47.8% during music and 60.8%, 61.3% post music). After daily music exposure for 20 days, the number of HVRS discharges and seizure frequencies during and after music exposure, however, showed no further accumulative reduction or adaptation effect. These results suggest that Mozart K.448 had a positive short-term effect in attenuating the spontaneous HVRS discharges in Long Evans rats. However, the mechanism needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Purulent vaginal discharge in grazing dairy cows: Risk factors, reproductive performance, and prostaglandin F2α treatment.

    Science.gov (United States)

    Giuliodori, M J; Magnasco, M; Magnasco, R P; Lacau-Mengido, I M; de la Sota, R L

    2017-05-01

    The objectives of this study were to assess the association of a 4-point scale of vaginal discharge score (VDS) with time to pregnancy to define criteria for a practical case of purulent vaginal discharge (PVD) in dairy cows, to test the risk factors for PVD, and, finally, the effect of a dose of PGF 2α on cure and reproductive performance. In experiment 1, grazing Holstein cows (n = 2,414) had their vaginal discharge scored at ∼32 d in milk (DIM) on a 4-point scale, the effect of VDS on the hazard of pregnancy by 300 DIM was then assessed to derive a case definition of PVD. Risk factors for PVD and self-cure were also assessed. In experiment 2, grazing Holstein cows (n = 6,326) from 5 herds were checked for PVD at ∼30 DIM. Cows with PVD were assigned to receive one dose of 500 μg of PGF 2α analog (Cloprostenol; Ciclase, Syntex SA, Buenos Aires, Argentina) per cow (odd ear tag number) or to remain untreated (even tag number). Cure was declared if cows presented clear normal vaginal discharge (VDS-0) at visit 2 (∼62 DIM). Data were analyzed with Cox's regression and mixed logistic models. In experiment 1, cows with VDS ≥1 had lower hazard of pregnancy and longer calving to pregnancy interval than cows with VDS-0. This finding was not affected by the time at which the diagnosis was performed. Therefore, a cow ≥21 DIM and having VDS ≥1 was used to define a case of PVD. The odds of PVD were greater in primiparous cows compared with multiparous, in cows with abnormal calving compared with those with normal calving, and in those losing BCS peripartum. In experiment 2, PGF 2α treatment tended to slightly increase the hazard of pregnancy (adjusted hazard ratio = 1.13). Conversely, PGF 2α had no effect on the odds of cure of PVD [adjusted odds ratio (AOR) = 1.19], pregnancy at first service (AOR = 1.03), or pregnancy by 100 DIM (AOR = 0.89) or 200 DIM (AOR = 1.27). In conclusion, cows with VDS ≥1 can be considered to have PVD because of their lower hazard

  12. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  13. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    International Nuclear Information System (INIS)

    Kaye, S.M.; Bell, M.; Bol, K.

    1983-11-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub α/ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix

  14. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  15. The Performance of the Vaginal Discharge Syndromic Management in Treating Vaginal and Cervical Infection: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zemouri, Charifa; Wi, Teodora Elvira; Kiarie, James; Seuc, Armando; Mogasale, Vittal; Latif, Ahmed; Broutet, Nathalie

    2016-01-01

    This review aimed to synthesize and analyze the diagnostic accuracy and the likelihood of providing correct treatment of the syndromic approach Vaginal Discharge Flowchart in managing cervical infections caused by Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT), and vaginal infections caused by Trichomonas vaginalis (TV) and Bacterial vaginosis (BV) and Candida albicans. This review will inform updating the WHO 2003 guidelines on Vaginal Discharge syndromic case management. A systematic review was conducted on published studies from 01-01-2000 to 30-03-2015 in multiple databases. Studies evaluating the diagnostic accuracy and validation of the WHO Vaginal Discharge Flowchart were included. Validation parameters including sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and the 95% confidence intervals for the different types of the flowchart were taken as outcomes, re-calculated, and analysed using a fixed model meta-analysis for data pooling. The level of agreement between the index and reference test were determined by the Cohen's Kappa co-efficiency test. Each individual study was assessed on quality using the QUADAS-2 tool. The search yielded 2,845 studies of which 16 met the eligibility criteria for final analysis. The diagnostic performance to identify cervical infections was low and resulted in a high proportion of over and missed treatment. The four flowcharts had a sensitivity between 27.37% in history and risk assessment and 90.13% with microscopy, with the inverse in specificity rates. The treatment performances between the flowcharts were inconsistent. The same applies to the use of vaginal discharge flowchart for treating vaginal infections. For vaginal infections the vaginal discharge flowchart had a good performance in flowchart 3 with 91.68% of sensitivity; 99.97% specificity; 99.93% PPV and 0.02% who missed their treatment and 8.32% of women who were over treated by the vaginal discharge

  16. The Performance of the Vaginal Discharge Syndromic Management in Treating Vaginal and Cervical Infection: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Charifa Zemouri

    Full Text Available This review aimed to synthesize and analyze the diagnostic accuracy and the likelihood of providing correct treatment of the syndromic approach Vaginal Discharge Flowchart in managing cervical infections caused by Neisseria gonorrhoeae (NG and Chlamydia trachomatis (CT, and vaginal infections caused by Trichomonas vaginalis (TV and Bacterial vaginosis (BV and Candida albicans. This review will inform updating the WHO 2003 guidelines on Vaginal Discharge syndromic case management.A systematic review was conducted on published studies from 01-01-2000 to 30-03-2015 in multiple databases. Studies evaluating the diagnostic accuracy and validation of the WHO Vaginal Discharge Flowchart were included. Validation parameters including sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV and the 95% confidence intervals for the different types of the flowchart were taken as outcomes, re-calculated, and analysed using a fixed model meta-analysis for data pooling. The level of agreement between the index and reference test were determined by the Cohen's Kappa co-efficiency test. Each individual study was assessed on quality using the QUADAS-2 tool.The search yielded 2,845 studies of which 16 met the eligibility criteria for final analysis. The diagnostic performance to identify cervical infections was low and resulted in a high proportion of over and missed treatment. The four flowcharts had a sensitivity between 27.37% in history and risk assessment and 90.13% with microscopy, with the inverse in specificity rates. The treatment performances between the flowcharts were inconsistent. The same applies to the use of vaginal discharge flowchart for treating vaginal infections. For vaginal infections the vaginal discharge flowchart had a good performance in flowchart 3 with 91.68% of sensitivity; 99.97% specificity; 99.93% PPV and 0.02% who missed their treatment and 8.32% of women who were over treated by the vaginal

  17. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  18. Discharge simulations performed with a hydrological model using bias corrected regional climate model input

    NARCIS (Netherlands)

    Pelt, van S.C.; Kabat, P.; Maat, ter H.W.; Hurk, van den B.J.J.M.; Weerts, A.H.

    2009-01-01

    Studies have demonstrated that precipitation on Northern Hemisphere mid-latitudes has increased in the last decades and that it is likely that this trend will continue. This will have an influence on discharge of the river Meuse. The use of bias correction methods is important when the effect of

  19. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  20. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    Science.gov (United States)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  1. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    International Nuclear Information System (INIS)

    Purwins, H-G; Stollenwerk, L

    2014-01-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  2. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    Science.gov (United States)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  3. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  4. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    Science.gov (United States)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  5. Some aspects of the study of gas-discharge plasma and production of high magnetic fields

    International Nuclear Information System (INIS)

    Novitskii, V.G.

    This collection is compiled from the papers presented in the section of MHD generators and superconducting devices at the Institute of Electromechanics Conference held in May 1965. The subjects discussed include three-phase plasmatrons, their operational characteristics, and the nature of the physical processes occurring in the arc chamber. The collection also contains the results of experimental and theoretical research on gas-discharge plasma, conduction phenomena in flowing gaseous plasmas, and energy balance and radiation in the case of gas-discharge plasma. It also considers the stability of arcs, the effect of the transverse magnetic field and gas flow on breakdown voltages, the electrode phenomena and the distribution of current on the electrodes. Results of research on the conditions of electric-arc contraction and the characteristics of a contracted arc are given. The problems associated with the production of high magnetic fields and the use of superconducting materials to this end are discussed. The experience gained in the design and fabrication of superconducting magnets and cryostats is described. The results of design calculations for magnetic systems of the Bitter type are also presented

  6. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    Science.gov (United States)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  7. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  8. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  9. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen.

    Science.gov (United States)

    Yang, Bin; Zhou, Minghua; Lei, Lecheng

    2005-07-01

    The technology of combined liquid and gas phase discharges (LGD) using pulsed high voltage for dyes degradation was developed in this study. Apparent synergistic effects for Acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of AO degradation rate was around 302%. Furthermore, higher energy efficiency was obtained comparing with individual liquid phase discharge (LD) or gas phase discharge process (GD). The AO degradation in the presence of oxygen by LGD proceeded through the direct ozone oxidation and the ozone decomposition induced by LD. Important operating parameters such as electrode distance, applied voltage, pulse repetition rate, and types of dyes were further investigated.

  10. Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves

    International Nuclear Information System (INIS)

    Liu Yan; Yang Li; Yang Gang; Zhang Yanzong; Zhang Xiaohong; Deng Shihuai

    2014-01-01

    Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed in the combined treatment. Results showed that the combined treatment was effective for dye wastewater degradation; when the dosage of STLs was 3.2 g/L, the degradation efficiency reached 90% after 15 min treatment, and STLs showed a good repeatability. The degradation rate decreased with increasing initial MB concentration but not related to the solution pH in the combined treatment. Fourier-transform infrared spectra and N 2 adsorption suggested that the number of acidic and basic groups in the STL surface increased after the treatment, but the surface area and pore volume remained unchanged. (plasma technology)

  11. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  12. Development of high-performance solar LED lighting system

    International Nuclear Information System (INIS)

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring.

  13. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  14. Hip Fracture-Related Pain Strongly Influences Functional Performance of Patients With an Intertrochanteric Fracture Upon Discharge From the Hospital

    DEFF Research Database (Denmark)

    Kristensen, Morten Tange

    2013-01-01

    .7 seconds to perform the TUG. No significant differences were observed in baseline characteristics or pain medication given for patients with a cervical versus an intertrochanteric fracture (P ≥ .22), but patients with an intertrochanteric fracture presented more often with moderate to severe pain during......OBJECTIVE: To examine whether functional performance upon hospital discharge is influenced by pain in the region of the hip fracture or related to the fracture type. DESIGN: Prospective observational study. SETTING: A 20-bed orthopedic hip fracture unit. PATIENTS: Fifty-five cognitively intact...... patients (20 men and 35 women; ages 75.8 ± 10 years), 33 with a cervical hip fracture and 22 with an intertrochanteric hip fracture, all of whom were allowed to bear full weight after surgery. METHODS: All patients were evaluated upon discharge from the hospital to their own homes at a mean of 10 ± 6 days...

  15. Performance Optimization of Electrical Discharge Machining (Die Sinker for Al-6061 via Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Qaiser Saleem

    2015-04-01

    Full Text Available This paper parametrically optimizes the EDM (Electrical Discharge Machining process in die sinking mode for material removal rate, surface roughness and edge quality of aluminum alloy Al-6061. The effect of eight parameters namely discharge current, pulse on-time, pulse off-time, auxiliary current, working time, jump time distance, servo speed and work piece hardness are investigated. Taguchi's orthogonal array L18 is employed herein for experimentation. ANOVA (Analysis of Variance with F-ratio criterion at 95% confidence level is used for identification of significant parameters whereas SNR (Signal to Noise Ratio is used for determination of optimum levels. Optimization obtained for Al-6061 with parametric combination investigated herein is validated by the confirmation run.

  16. Information of Zeff from the sawtooth-performances in the center of ohmic tokamak discharges

    International Nuclear Information System (INIS)

    Eberhagen, A.

    1987-09-01

    Achievement of information on the mean effective ion charge in the center of ohmic tokamak discharges from sawtooth-relaxations of the plasma is considered. This method is found to supply trustworthy results for usual tokamak parameters. While its application requires some effort in data analysis, it can provide a valuable determination of Z eff -data, independent of the information from bremsstrahlung radiation losses of the plasma. (orig.)

  17. Increasing the Performance of a Sliding Discharge Actuator Through the Application of Multiple Potentials

    Science.gov (United States)

    2011-09-01

    particle image velocimetry (PIV). In probe measurement techniques a probe, either a pitot static probe or a CTA hot wire probe, is inserted into the flow...and pitot probes and noted the differences that resulted between the probe results and the PIV results by seeding material type [20]. The PIV setup...Barrier Discharge Aerodynamic Actuator,” AIAA Paper 2009–4285, 2009. 188 41. Humble, R., Henry , G., and Larson, W., Space Propulsion Analysis and Design

  18. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    Science.gov (United States)

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P motor units in the tibialis anterior.

  19. Infrared losses from a Na/Sc metal-halide high intensity discharge arc lamp

    International Nuclear Information System (INIS)

    Smith, D J; Bonvallet, G A; Lawler, J E

    2003-01-01

    A study of the near-infrared (IR) emission from the arc of a metal-halide high intensity discharge (MH-HID) lamp with a sodium/scandium chemistry is reported. Radiometrically calibrated spectra from 0.7 to 2.5 μm were recorded as a function of position on the arc tube of a 250 W lamp. These spectra were analysed to determine the relative densities of Na and Sc atoms and the arc temperature as a function of radius. Information from these spectra, combined with absorption measurements in the companion paper (Bonvallet and Lawler 2003), were used to determine the absolute output power in the near-IR from the MH-HID lamp

  20. Electronic Dimmable Ballasts for High-Intensity Discharge Sodium Vapor and Metal Halide Lamps

    Science.gov (United States)

    Boulanger, Richard

    2002-01-01

    Two types of high-intensity discharge lamps were tested using dimmable ballasts. The main purpose for evaluating this lighting system was to determine its efficacy for saving power. Whereas previous variable level lighting systems for HID lamps in Advanced Life Support applications were adjustable in two or three steps using capacitive switching, this system allows for continuously adjustable lamp output. This type of lighting system when used as part of an Advanced Life Support biomass production system would provide only the amount of light energy a crop needed at any particular point in its growth cycle. Since most of the equivalent system mass in an ALS system is from the light energy required to grow the crops, controlling that light energy dynamically over a continuous range of operation would dramatically reduce the power consumption and reduce system mass.

  1. Mercury-free high pressure discharge lamps dominated by molecular radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaening, M; Hitzschke, L; Berger, M [Research Europe, OSRAM GmbH, Werner-von-Siemens Strasse 6, 86159 Augsburg (Germany); Schalk, B [Vitec Group Videocom Division, Erfurter Strasse 16, 85386 Eching (Germany); Franke, St; Methling, R, E-mail: m.kaening@osram.de [INP, Leibniz-Institut fuer Plasmaforschung und Technologie e. V., Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany)

    2011-06-08

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W{sup -1} and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  2. Ionized-cluster source based on high-pressure corona discharge

    International Nuclear Information System (INIS)

    Lokuliyanage, K.; Huber, D.; Zappa, F.; Scheier, P.

    2006-01-01

    Full text: It has been demonstrated that energetic beams of large clusters, with thousands of atoms, can be a powerful tool for surface modification. Normally ionized cluster beams are obtained by electron impact on neutral beams produced in a supersonic expansion. At the University of Innsbruck we are pursuing the realization of a high current cluster ion source based on the corona discharge.The idea in the present case is that the ionization should occur prior to the supersonic expansion, thus supersede the need of subsequent electron impact. In this contribution we present the project of our source in its initial stage. The intensity distribution of cluster sizes as a function of the source parameters, such as input pressure, temperature and gap voltage, are investigated with the aid of a custom-built time of flight mass spectrometer. (author)

  3. Mercury-free high pressure discharge lamps dominated by molecular radiation

    International Nuclear Information System (INIS)

    Kaening, M; Hitzschke, L; Berger, M; Schalk, B; Franke, St; Methling, R

    2011-01-01

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W -1 and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  4. High Risk Human Papilloma Virus Genotypes in Kurdistan Region in Patients with Vaginal Discharge.

    Science.gov (United States)

    Hussein, Nawfal R; Balatay, Amer A; Assafi, Mahde S; AlMufty, Tamara Abdulezel

    2016-01-01

    The human papilloma virus (HPV) is considered as the major risk factor for the development of cervical cancer. This virus is of different genotypes and generally can be classified into high and low risk types. To determine the rate of high risk HPV genotypes in women with vaginal discharge and lower abdominal pain in Kurdistan region, Iraq. Cervical swabs were taken from 104 women. DNA was extracted and the polymerase chain reaction (PCR) technique was used to determine the presence of high risk genotypes. It was found that 13/104 (12.5%) of the samples were positive for high risk HPV genotypes. Amongst those who were positive, 4/13 (30.7%) were typed as genotype 16 and 7/13 (53.8%) showed mixed genotyping. On the other hand, genotypes 53 and 56 were found in only one sample each. High risk HPV genotypes are not uncommon and further community based study is needed to determine the prevalence of HPV and its genotypes and plan for prevention of infection.

  5. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  6. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  7. High-performance composite chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  8. High-Performance Composite Chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  9. Toward High-Performance Organizations.

    Science.gov (United States)

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  10. Methods and techniques for obtaining significant discharge measurements on high-voltage bushings

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, H E.W.

    1965-05-01

    Forms of discharge tests are described and compared. The use of the Arman and Starr discharge bridge with cathode-ray-tube display is shown to be practicable for bushing testing up to 600 kV. Spurious discharge effects and the precautions necessary to eliminate them are discussed. Consideration is given to calibration methods and to the errors to be expected with various practical circuits. The problem of establishing safe discharge limits for bushings is considered on the basis of a large number of test results and on service experience.

  11. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  12. Long sustainment of quasi-steady-state high βp H mode discharges in JT-60U

    International Nuclear Information System (INIS)

    Isayama, A.; Kamada, Y.; Ozeki, T.; Ide, S.; Fujita, T.; Oikawa, T.; Suzuki, T.; Neyatani, Y.; Isei, N.; Hamamatsu, K.; Ikeda, Y.; Takahashi, K.; Kajiwara, K.

    2001-01-01

    Quasi-steady-state high β p H mode discharges performed by suppressing neoclassical tearing modes (NTMs) are described. Two operational scenarios have been developed for long sustainment of the high β p H mode discharge: NTM suppression by profile optimization, and NTM stabilization by local electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH) at the magnetic island. Through optimization of pressure and safety factor profiles, a high β p H mode plasma with H 89PL = 2.8, HH y,2 = 1.4, β p ∼ 2.0 and β N ∼ 2.5 has been sustained for 1.3 s at small values of collisionality ν e* and ion Larmor radius ρ i* without destabilizing the NTMs. Characteristics of the NTMs destabilized in the region with central safety factor above unity are investigated. The relation between the beta value at the mode onset β N on and that at the mode disappearance β N off can be described as β N off /β N on =0.05-0.4, which shows the existence of hysteresis. The value of β N /ρ i* at the onset of an m/n = 3/2 NTM has a collisionality dependence, which is empirically given by β N /ρ i* ∝ ν e* 0.36 . However, the profile effects such as the relative shapes of pressure and safety factor profiles are equally important. The onset condition seems to be affected by the strength of the pressure gradient at the mode rational surface. Stabilization of the NTM by local ECCD/ECH at the magnetic island has been attempted. A 3/2 NTM has been completely stabilized by EC wave injection of 1.6 MW. (author)

  13. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges

    International Nuclear Information System (INIS)

    Haruki, Takayuki; Yousefi, Hamid Reza; Masugata, Katsumi; Sakai, Jun-Ichi; Mizuguchi, Yusuke; Makino, Nao; Ito, Hiroaki

    2006-01-01

    In an experimental plasma, high-energy particles were observed by using a plasma focus device, to obtain energies of a few hundred keV for electrons, up to MeV for ions. In order to study the mechanism of high-energy particle production in pinched plasma discharges, a numerical simulation was introduced. By use of a three-dimensional relativistic and fully electromagnetic particle-in-cell code, the dynamics of a Z-pinch plasma, thought to be unstable against sausage and kink instabilities, are investigated. In this work, the development of sausage and kink instabilities and subsequent high-energy particle production are shown. In the model used here, cylindrically distributed electrons and ions are driven by an external electric field. The driven particles spontaneously produce a current, which begins to pinch by the Lorentz force. Initially the pinched current is unstable against a sausage instability, and then becomes unstable against a kink instability. As a result high-energy particles are observed

  14. Performance of lead-acid batteries. Experimental study and discharge process modelling; Desempenho de baterias chumbo-acido. Estudo experimental e modelamento do processo de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, G; Bottura, C P [Universidade Estadual de Campinas, SP (Brazil); Oliveira, M G [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1985-12-31

    Commercial lead-acid batteries performance when continuously discharge is valued in this work. The model relating battery capacity and discharge current is confirmed through the analysis of experimental results relating voltage to time for various discharge currents. Such model was determined for the tested batteries and can be interpreted in terms of diffusional limitations and plate passivation. (author). 2 figs., 1 tab., 12 refs

  15. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT......The world of finance faces the computational performance challenge of massively expanding data volumes, extreme response time requirements, and compute-intensive complex (risk) analyses. Simultaneously, new international regulatory rules require considerably more transparency and external...... auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...

  16. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  17. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  18. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  19. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  20. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  1. High Performance JavaScript

    CERN Document Server

    Zakas, Nicholas

    2010-01-01

    If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstra

  2. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  3. 42 CFR 412.104 - Special treatment: Hospitals with high percentage of ESRD discharges.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES Special Treatment of Certain Facilities Under the Prospective Payment System for Inpatient... established that ESRD beneficiary discharges, excluding discharges classified into MS-DRG 652 (Renal Failure...

  4. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    Science.gov (United States)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  5. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  6. A novel diagnostic protocol to identify patients suitable for discharge after a single high-sensitivity troponin

    Science.gov (United States)

    Carlton, Edward W; Cullen, Louise; Than, Martin; Gamble, James; Khattab, Ahmed; Greaves, Kim

    2015-01-01

    Objective To establish whether a novel accelerated diagnostic protocol (ADP) for suspected acute coronary syndrome (ACS) could successfully identify low-risk patients suitable for discharge after a single high-sensitivity troponin T (hs-cTnT) taken at presentation to the emergency department. We also compared the diagnostic accuracy of this ADP with strategies using initial undetectable hs-cTnT. Methods This prospective observational study evaluated the ability of the Triage Rule-out Using high-Sensitivity Troponin (TRUST) ADP to identify low-risk patients with suspected ACS. The ADP incorporated a single presentation hs-cTnT of <14 ng/L, a non-ischaemic ECG and a modified Goldman risk score. Diagnostic performance of the ADP was compared with the detection limit cut-offs of hs-cTnT (<5 ng/L and <3 ng/L). The primary end point was fatal/non-fatal acute myocardial infarction (AMI) within 30 days. Results 960 participants were recruited, mean age 58.0 years, 80 (8.3%) had an AMI. The TRUST ADP classified 382 (39.8%) as low-risk with a sensitivity for identifying AMI of 98.8% (95% CI 92.5% to 99.9%). hs-cTnT detection limits (<5 ng/L and <3 ng/L) had a sensitivity of 100% (94.3 to 100) and 100% (94.4 to 100), respectively. The TRUST ADP identified more patients suitable for early discharge at 39.8% vs 29.3% (<5 ng/L) and 7.9% (<3 ng/L) (p<0.001) with a lower false-positive rate for AMI detection; specificity 43.3% (95% CI 42.7% to 43.4%) vs 32.0% (95% CI 31.5% to 32.0%) and 8.6% (95% CI 8.1% to 8.6%), respectively. Conclusions The TRUST ADP, which incorporates structured risk-assessment and a single presentation hs-cTnT blood draw, has potential to allow early discharge in 40% of patients with suspected ACS and has greater clinical utility than undetectable hs-cTnT strategies. Trial registration number ISRCTN No. 21109279. PMID:25691511

  7. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  8. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    -resolution internal D/A converters are required. Unit-element mismatch-shaping D/A converters are analyzed, and the concept of mismatch-shaping is generalized to include scaled-element D/A converters. Several types of scaled-element mismatch-shaping D/A converters are proposed. Simulations show that, when implemented...... in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential......-order difference of the output signal from the loop filter's first integrator stage. This technique avoids the need for accurate matching of analog and digital filters that characterizes the MASH topology, and it preserves the signal-band suppression of quantization errors. Simulations show that quantizers...

  9. Does zero-water discharged technology enhance culture performance of pacific white shrimp (Litopenaeus vannamei Boone.)?

    Science.gov (United States)

    Suantika, Gede; Anggraeni, Jayanty; Hasby, Fahri Azhari; Yanuwiarti, Ni Putu Indah

    2014-03-01

    Litopenaeus vannamei or white leg shrimp is an introduced shrimp which has successfully cultured in Indonesia. In Indonesia, L. vannamei is commonly cultured on outdoor/earthen pond that requires renewal of water, less control in term of water quality and disease and attributed to unpredictable yield production. Based on the existing culture condition, a system that enable to minimize water consumption, improve the hygiene of the culture and at the same time maintain a more stable yield production is urgent to be developed by using a zero water discharge system. The system consists of: (a) culture tank - to retain and culture the shrimp; (b) CaCO3 grained - buffering agent and substrate of nitrifying bacteria; (c) aeration line - to provide O2 and homogenize the culture; (d) ancho (feeding) - to control an appropriate feed; (e) nitrifying bacteria adding - to consume ammonium and nitrite then convert it to nitrate, and also control pathogen Vibrio sp.; (f) diatom microalgae (Chaetoceros gracilis) - to uptake nitrate, bacteriostatic agent, feed source, provide O2 and shading. In this study, there were 2 treatments: the static culture (batch) system was set as control (K) (in 70 PL/m2), and culture system with zero-water discharge system which was inoculated by 0.02% v/v 106 CFU/ml of mixed culture nitrifying bacteria and diatom microalgae in 70 PL/m2 (P1). The white leg shrimp used in this experiment was at post larvae (PL) 10 and cultured in a batch system (1 × 1 × 0.5 m3 pond) during 2 months. Several parameters including survival rate, mean body weight, and water quality (salinity, temperature, pH, DO, ammonium, nitrite, and nitrate) were measured. Based on the results, biomass of P1 (237.12 ± 31.11) gram is significantly higher than control (K) (180.80 ± 12.26) gram (Pshrimp post larvae, except ammonium concentration in control (K) (2.612 ± 0.56) mg/L which is significantly different from P1 (1.287 ± 0.49) mg/L. Based on this research, zero-water discharge

  10. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  11. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  12. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    Science.gov (United States)

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rajeshbhu1@gmail.com [Yonsei University, Department of Materials Science & Engineering (Korea, Republic of); Singh, Rajesh Kumar, E-mail: rksbhu@gmail.com [Banaras Hindu University, Department of Applied Physics, Indian Institute of Technology (India); Dubey, Pawan Kumar [University of Allahabad, Nanotechnology Application Centre (India); Yadav, Ram Manohar [Rice University, Department of Materials Science and Nano Engineering (United States); Singh, Dinesh Pratap [Universidad de Santiago de Chile, Departamento de Física (Chile); Tiwari, R. S.; Srivastava, O. N. [Banaras Hindu University, Department of Physics (India)

    2015-01-15

    Three kinds of carbon nanostructures, i.e., graphene nanoflakes (GNFs), multi walled carbon nanotubes (MWCNTs), and spherical carbon nanoparticles (SCNPs) were comparatively investigated in one run experiment. These carbon nanostructures are located at specific location inside the direct current plasma-assisted arc discharge chamber. These carbon nanomaterials have been successfully synthesized using graphite as arcing electrodes at 400 torr in helium (He) atmosphere. The SCNPs were found in the deposits formed on the cathode holder, in which highly curled graphitic structure are found in majority. The diameter varies from 20 to 60 nm and it also appears that these particles are self-assembled to each other. The MWCNTs with the diameter of 10–30 nm were obtained which were present inside the swelling portion of cathode deposited. These MWCNTs have 14–18 graphitic layers with 3.59 Å interlayer spacing. The GNFs have average lateral sizes of 1–5 μm and few of them are stacked layers and shows crumpled like structure. The GNFs are more stable at low temperature (low mass loss) but SCNPs have low mass loss at high temperature.

  14. Runaway electron beam in atmospheric pressure discharges

    International Nuclear Information System (INIS)

    Oreshkin, E V; Barengolts, S A; Chaikovsky, S A; Oreshkin, V I

    2015-01-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes. (paper)

  15. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  16. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  17. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    Science.gov (United States)

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  18. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  19. Performance capabilities of EDM of high carbon high chromium steel with copper and brass electrodes

    Science.gov (United States)

    Surekha, B.; Swain, Sudiptha; Suleman, Abu Jafar; Choudhury, Suvan Dev

    2017-07-01

    The paper address the statistical modeling of input-output relationships of electric discharge machining. In the present work, peak current (I) pulse on time (T) and gap voltage of electric discharge machining (EDM) process are chosen as control parameters to analyze the performance of the process. The output characteristics, namely radial overcut, electrode wear rate (EWR) and metal removal rate (MRR) are treated as the responses. A full factorial design (FFD) of experiments has been used to conduct the experiments and linear regression models are developed for different process characteristics. While conducting the experiments, high carbon and high chromium steel is considered as work piece material and brass and copper are used as electrode material. It is important to note that the experimental conditions are kept similar while machining with the help of different electrode materials. The data obtained from the experiments has been used to develop the regression models for three process parameters for two electrode materials.

  20. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  1. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  2. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  3. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  4. Formation of Plasma Structures in Stimulated High-Pressure Microwave Discharge

    National Research Council Canada - National Science Library

    Popov, N. A; Vedenin, P. V

    2003-01-01

    In other papers, the possibility is observed of a jumplike propagation of an stimulated MW discharge toward the radiation source in the form of dipole plasma channels oriented along the electric field vector...

  5. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  6. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    Science.gov (United States)

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  8. Numerical investigation on the replacement of mercury by indium iodide in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Gnybida, M; Janssen, J F J; Van Dijk, J; Peerenboom, K S C; Rijke, A J; Kroesen, G M W; Suijker, J L G; Gendre, M

    2014-01-01

    Mercury-free high-pressure discharge lamps have been studied by means of a radial-dependent model. Xenon and indium iodide are chosen as start gas and buffer, respectively. Local thermodynamic equilibrium is assumed with a single temperature for all species. The model consists of the coupled description of the balance equation for the plasma temperature with the radiation transport equation. The plasma composition is calculated according to the Guldberg–Waage, Boltzmann and Saha laws. These laws were supplemented by additional equations specifying the total pressure, constant element ratios and quasineutrality. The model takes into account atomic, molecular as well as continuum radiation. The broadening of the optically thick lines is approximated by Stormberg's approach. The predicted spectrum is compared with a measured one and shows good agreement on a qualitative scale. From this comparison it is concluded that the largest part of the continuum radiation is produced by the free–free and free–bound AX transition in InI. (paper)

  9. High rate behavior and discharge limits in micro-pattern detectors

    CERN Document Server

    Bressan, A; Pagano, P; Ropelewski, Leszek; Sauli, Fabio; Biagi, S F; Buzulutskov, A F; Gruwé, M; De Lentdecker, G; Mörmann, D; Sharma, A

    1999-01-01

    We present and discuss a set of systematic measurements, carried out with gaseous proportional micro-pattern detectors, in order to assess their maximum gain when irradiated with high-rate soft X-rays and heavily ionizing alpha particles. The inventory of detectors tested includes: micro-strip micromegas, micro-dot, gas electron multiplier, CAT (compteur à trous), trench (or groove), micro-CAT (or WELL) detectors, as well as systems with two elements of gaseous amplification in cascade. We confirm the general trend of all single-stage detectors to follow Raether's criterion, i.e. a spontaneous transition from avalanche to streamer, followed by a discharge, when the avalanche size reaches a value of a few 10 7 ; a noticeable exception is the micro-dot counter holding more than 10 8. In multiple structures, where the gain under irradiation is increased by at least one order of magnitude; we speculate this to be a consequence of a voltage dependence of Raether's limit, larger for low operating potentials. Our c...

  10. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  11. High rate behavior and discharge limits in micro-pattern detectors

    International Nuclear Information System (INIS)

    Bressan, A.; Hoch, M.; Pagano, P.; Ropelewski, L.; Sauli, F.; Biagi, S.; Buzulutskov, A.; Gruwe, M.; De Lentdecker, G.; Moermann, D.; Sharma, A.

    1999-01-01

    We present and discuss a set of systematic measurements, carried out with gaseous proportional micro-pattern detectors, in order to assess their maximum gain when irradiated with high-rate soft X-rays and heavily ionizing alpha particles. The inventory of detectors tested includes: micro-strips, micromegas, micro-dot, gas electron multiplier, CAT (compteur a trous), trench (or groove), micro-CAT (or WELL) detectors, as well as systems with two elements of gaseous amplification in cascade. We confirm the general trend of all single-stage detectors to follow Raether's criterion, i.e. a spontaneous transition from avalanche to streamer, followed by a discharge, when the avalanche size reaches a value of a few 10 7 ; a noticeable exception is the micro-dot counter holding more than 10 8 . In multiple structures, where the gain is shared between two devices in cascade, the maximum overall gain under irradiation is increased by at least one order of magnitude; we speculate this to be a consequence of a voltage dependence of Raether's limit, larger for low operating potentials. Our conclusion is that only multiple devices can guarantee a sufficient margin of reliability for operation in harsh LHC running conditions

  12. Very high rotational excitation of CO in a cooled electric discharge through carbon monoxide

    Science.gov (United States)

    Cossart-Magos, Claudina; Cossart, Daniel

    2000-02-01

    Infrared emission from 12CO and 13CO, excited in the cathode region of a discharge tube immersed in liquid nitrogen, was recorded by Fourier-transform spectrometry at a resolution of 0.005 cm-1. The Δv=1 sequence bands recorded in the 2500-1800 cm-1 spectral interval, indicate the existence of three different rotational populations; (i) molecules in the zero-ground level with Trot≈100 K (responsible for reabsorption of part of the 1-0 emission band); (ii) molecules with Trot≈275 K (maximum intensity for Jmax'≈6 in each band, Tvib≈3000 K for v'=2-4, Tvib≈8600 K for v'=5-13); (iii) molecules with v' limited to 6, for which R-rotational lines are observed for J' values between 50 and 120 (Jmax'≈90, non-Boltzmannian population distribution). The full-width at half-maximum (FWHM) of all the observed lines is less than 0.007 cm-1. A Doppler width of 0.005 cm-1 and translational temperature Ttr≈280 K can be deduced. Such high-J levels of the CO molecule had never been observed in the laboratory. In the absorption spectrum of the Sun photosphere, the same lines present FWHM values 5-8 times larger. The best available Dunham coefficients are checked to reproduce the high-J lines wave numbers to at least 0.001 cm-1. Dissociative recombination of the dimer (CO)2+ cation, which is likely to be formed in our experimental conditions, is discussed as a possible mechanism to produce CO fragments with very high rotational excitation, while keeping vibrational excitation limited to v'=6.

  13. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  14. Possible precursors of ball lightning. Observation of closed loops in high voltage discharges

    International Nuclear Information System (INIS)

    Alexeff, I.; Rader, M.

    1995-01-01

    Several hundred photographs of ultrahigh voltage discharges have been obtained that show closed current loops. These closed current loops may be precursors of ball lightning. One feature of these discharges may explain why observations of ball lightning may be infrequent; that is, there is a distinct threshold in voltage and/or current below which the closed loops do not occur. This threshold current fits other experimental data but is well above the usually observed currents in natural lightning. 10 refs., 3 figs

  15. Production of ceramic-metal joints for high-vacuum applications and development of simulation program for discharge tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Chung, K. H. [Seoul National University, Seoul (Korea)

    2000-04-01

    To develop a ceramic-metal jointed tube for high-vacuum applications, metalizing process and active metal brazing were investigated. Active metal brazing was adopted as a joining process to produce a high-vacuum tube which had high joint strength and reliability. A possibility for the development of new composition of Mo-Mn paste was studied. Also, to improve the strength and reliability of active metal brazed joint, TiN coating was introduced as a diffusion barrier. It was revealed that TiN coating could improve the joint strength and reliability. 100mm {phi} tube joint was produced using incusil ABA brazing alloy. The strength and reliability of manufactured tube showed higher value than commercial one. The electric field distribution in ceramic tube under high voltage was analyzed. Two dimensional electric field distribution was investigated under the existence of charged particles. From this result, electric field distribution at the surface of ceramic tube and the location of high electric field was predicted. Finally, Arc discharge was simulated to analyze the effect of arc discharge on the discharge tube wall. The maximum temperature of arc was 12000-13000K. The wall temperature was increased 100-170K by the arc discharge. 45 refs., 57 figs., 4 tabs. (Author)

  16. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    2013-12-01

    Full Text Available The ultra-high-frequency (UHF method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM waves excited by partial discharge (PD. As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.

  17. High-molecular products analysis of VOC destruction in atmospheric pressure discharge

    International Nuclear Information System (INIS)

    Grossmannova, Hana; Ciganek, Miroslav; Krcma, Frantisek

    2007-01-01

    We investigate the issue of applicability of the solid phase microextraction (SPME) in the analysis of volatile organic compounds (VOCs) destruction products in the gliding arc discharge. Our research is focused on the measurements with the simple one stage gliding arc reactor, applied voltage was varied in the range of 3.5-4 kV. As a carrier gas, the dry air and its mixtures with nitrogen and oxygen, enriched by toluene, with flow rate of 1000-3500 ml/min was used. Total decomposition of toluene of 97 % was achieved at the oxygen content in carrier gas of 60 %. For measurements with air as a carrier gas, the highest efficiency was 95 %. We also tested the SPME technique suitability for the quantitative analysis of exhausts gases and if this technique can be used efficiently in the field to extract byproducts. Carbowax/divinylbenzene and Carboxen/polydimethylsiloxane/divinylbenzene fibres were chosen for sampling. Tens of various high-molecular substances were observed, especially a large number of oxygenous compounds and further several nitrogenous and C x H y compounds. The concentrations of various generated compounds strongly depend on the oxygen content in gas mixture composition. The results showed that the fiber coated by Carbowax/divinylbenzene can extract more products independently on the used VOC compound. The Carboxen/polydimethylsiloxane/divinylbenzene fiber is useful for the analysis of oxygenous compounds and its use will be recommended especially when the destruction is done in the oxygen rich atmosphere. With the higher ratio of oxygen in the carrier gas a distinctive decline of C x H y compounds amount have been observed. We also tried to describe the significant production of some compounds like benzyl alcohol, benzeneacetaldehyde, even in oxygen content is proximate 0 %. Experimental data demonstrated that it is necessary to use several SPME fibres for full-scale high-molecular products analysis

  18. Heart attack - discharge

    Science.gov (United States)

    ... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...

  19. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  20. Development of a positive column pulsed capillary discharge source for use with high resolution Fourier transform spectrometer

    International Nuclear Information System (INIS)

    Syed, W A A

    2002-01-01

    We report the designing and application of a positive column pulsed capillary discharge with the Fourier transform spectrometer (FTS). The pulsed light source has been used for the first time with the ultraviolet FTS. The experiment has been carried out with the high energy pulsed discharge with energy of 2-3 J lasting about 300 ns. A system has been developed to trigger the discharge at about 600 Hz with the pulses directly taken from the FTS sampling system. The spectrum of Ar III has been recorded in the 19 000-50 000 cm -1 region with good signal to noise ratio. The results have opened a wide range of applications in spectroscopy of multiply ionized species

  1. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  2. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  3. Concentration-discharge relationships under the microscope: high frequency measurement in rivers

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Bouchez, J.; Tallec, G.; Gayer, E.; Ansart, P.; Blanchouin, A.

    2017-12-01

    Concentration-discharge relationships (C-Q) of river water is a powerful tool to track the coupling between water flow and chemical reactions in the Critical Zone. C-Q have been extensively studied the last two decades. We present a new C-Q data series recorded at 40-minutes frequency by a prototype called River Lab (RL) (Floury et al., 2017). Confined in a bungalow next to the river, the RL performs an of all major dissolved species (Na+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-) using ion chromatographs, through continuous sampling and filtration of the river water. The RL was deployed in 2015 in the Orgeval hydrological Observatory (OZCAR French Research Infrastructure), an agricultural watershed underlain by carbonates, France. We present five major flood events recorded over one hydrological year. We present the C-Q for each of the flood events. We observe i) element-specific C-Q ii) C-Q loops, the size and the excentricity of which decrease with the intensity of the flood. The most reproducible C-Q patterns are observed for Na+, Mg2+, Ca2+, Cl-, SO42-, whereas K+ and NO3- present a more erratic behaviour. We discuss the chemostatic behaviour of species concentrations using a fitting by a power law function. It is likely that C-Q will depend on the time during a single flood event and also over the year. The chemostatic behaviour of each species change over the year and also during a single flood event. We focus our interpretations on the recession of each flood event, where precipitation and evapotrapiration can be considered as negligible. We propose a "grey box" aproach such as already developed from stream flow (Kirchner, 2009) but here extended to solute fluxes. Floury et al. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-12, 2017. Kirchner. Water Ressources Research, VOL. 45, W02429, doi:10.1029/2008WR006912, 2009.

  4. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  5. Influence of the electrolyte distribution near the micropores of the activated carbon (AC) electrode on high rate performance of high voltage capacitors

    International Nuclear Information System (INIS)

    Lee, Chung ho; Xu, Fan; Jung, Cheolsoo

    2014-01-01

    Highlights: • TFB can enhance the rate performance of high voltage capacitors. • TFB can suppress to increase the discharge slope to improve the cell performance. • TFB decreases the charge transfer resistance of an AC cell. • TFB affects the distribution of the electrolyte components near the microporous AC. - Abstract: This paper presents a method to enhance the rate performance of high voltage capacitors using an electrolyte additive, 1,3,5-trifluorobenzene (TFB). With increasing discharge rate, the capacity of the activated carbon (AC)/lithium (Li) cell decreases with increasing the slope of the discharge curve and its potential drop at 4.6 V. By adding TFB, the discharge slope improves to increase the rate performance of the cell, and EIS showed that the charge transfer resistance (Rc) of the AC cell decreases. These results suggest that TFB affects the distribution of the electrolyte components near the microporous AC and improves the rate performance of the AC cell

  6. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  7. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  8. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  9. Numerical Simulation of a Nanosecond-Pulse Discharge for High-Speed Flow Control

    Science.gov (United States)

    Poggie, Jonathan; Adamovich, Igor

    2012-10-01

    Numerical calculations were carried out to examine the physics of the operation of a nanosecond-pulse, single dielectric barrier discharge in a configuration with planar symmetry. This simplified configuration was chosen as a vehicle to develop a physics based nanosecond discharge model, including realistic air plasma chemistry and compressible bulk gas flow. First, a reduced plasma kinetic model was developed by carrying out a sensitivity analysis of zero-dimensional plasma computations with an extended chemical kinetic model. Transient, one- dimensional discharge computations were then carried out using the reduced kinetic model, incorporating a drift-diffusion formulation for each species, a self-consistent computation of the electric potential using the Poisson equation, and a mass-averaged gas dynamic formulation for the bulk gas motion. Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on bow shock control with a nanosecond discharge in a Mach 5 cylinder flow. The computational results qualitatively reproduce many of the features observed in the experiments, including the rapid thermalization of the input electrical energy and the consequent formation of a weak shock wave. At breakdown, input electrical energy is rapidly transformed (over roughly 1 ns) into ionization products, dissociation products, and electronically excited particles, with subsequent thermalization over a relatively longer time-scale (roughly 10 μs).

  10. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    International Nuclear Information System (INIS)

    Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ 13 C org and δ 15 N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. - Highlights: •Pollution by untreated sewage discharge is evident at the outfall and in Salvador's coastal zone. •Seasonal wind- and tide-driven surface currents control advective transport of discharged sewage. •Water quality at Salvador's recreational beaches is impacted by a plume of untreated sewage.

  11. Performance, compliance and reliability of Waste stabilization pond: Effluent discharge quality and environmental protection agency standards in Ghana

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2015-01-01

    function to establish the relationship between the statistical coefficient of variation and the coefficient of reliability based on rth moment about the origin in the moment of generation function to generate the functions of the mean and standard deviation, properties of the standard Z normal distribution...... were used to establish the coefficient of reliability relationship depending on the coefficient of variation influenced by the standard of deviation. Discharge values of Physico-chemical Parameters measured from the WSP were found be performing acceptably based on the EPA standards, whereas only four......Measuring performance has been arguerably, one of the metric with many facets with different school of thoughts, as there exist different approaches of measuring it. Several of the existing approaches measure such metric by comparison with standards esherined in policy documents and as a result...

  12. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Güzelçimen, F.; Başar, Gö. [Faculty of Science, Physics Department, Istanbul University, Tr-34134 Vezneciler, Istanbul (Turkey); Tamanis, M.; Kruzins, A.; Ferber, R. [Laser Centre, The University of Latvia, Rainis Boulevard 19, LV-1586 Riga (Latvia); Windholz, L. [Institut für Experimentalphysik, Technische Universität Graz, A-8010 Graz, Petersgasse 16 (Austria); Kröger, S., E-mail: gbasar@istanbul.edu.tr, E-mail: sophie.kroeger@htw-berlin.de [Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstr. 75A, D-12459 Berlin (Germany)

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  13. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Langhans, R.W. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. This report describes the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses. Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with programmable, accurate temperature, relative humidity (RH) and irradiance control over wide ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research results directly to the greenhouse or outside. It was realized that sunlight and outside conditions could not be mimicked. Growth chambers are also used to study irradiance and spectral fluxes. Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 90% RH and ambient to 1000 ppm CO{sub 2}), and commonly independent of outside conditions. Irradiance requirements for growth rooms are similar to those of growth chambers. Growth rooms are also used for growing a large number of plants in a uniform standard environment condition and in commercial horticulture for tissue culture, seed germination (plugs) and seedling growth. Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially greenhouses were used to extend the growing season. Then as heating systems, and cooling systems improved, they were used year round. Low light during the winter months reduced plant growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to increase growth to rates close to that in summer months. Supplementary lighting is used during low light periods of the year and anytime to ensure consistent total daily irradiance for research plants.

  14. Understanding anode and cathode behaviour in high-pressure discharge lamps

    Science.gov (United States)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  15. Team Development for High Performance Management.

    Science.gov (United States)

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  16. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  17. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  18. Temperature and Discharge on a Highly Altered Stream in Utah's Cache Valley

    OpenAIRE

    Pappas, Andy

    2013-01-01

    To study the River Continuum Concept (RCC) and the Serial Discontinuity Hypothesis (SDH), I looked at temperature and discharge changes along 52 km of the Little Bear River in Cache Valley, Utah. The Little Bear River is a fourth order stream with one major reservoir, a number of irrigation diversions, and one major tributary, the East Fork of the Little Bear River. Discharge data was collected at six sites on 29 September 2012 and temperature data was collected hourly at eleven sites from 1 ...

  19. High Power DC Diaphragm Discharge Excited in a Vapor Bubble for the Treatment of Water

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Doležalová, Eva; Sisrová, Irena; Maršálková, Eliška; Maršálek, Blahoslav

    2013-01-01

    Roč. 33, č. 1 (2013), s. 83-95 ISSN 0272-4324 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080 Institutional support: RVO:61389021 ; RVO:67985939 Keywords : Diaphragm discharge * Water * Hydrogen peroxide * Phenol * Bacteria * Algae Subject RIV: BL - Plasma and Gas Discharge Physics; EF - Botanics (BU-J) Impact factor: 1.599, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11090-012-9432-6.pdf

  20. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  1. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  2. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  3. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  4. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  5. Impurity transport model for the normal confinement and high density H-mode discharges in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Ida, K; Burhenn, R; McCormick, K; Pasch, E; Yamada, H; Yoshinuma, M; Inagaki, S; Murakami, S; Osakabe, M; Liang, Y; Brakel, R; Ehmler, H; Giannone, L; Grigull, P; Knauer, J P; Maassberg, H; Weller, A

    2003-01-01

    An impurity transport model based on diffusivity and the radial convective velocity is proposed as a first approach to explain the differences in the time evolution of Al XII (0.776 nm), Al XI (55 nm) and Al X (33.3 nm) lines following Al-injection by laser blow-off between normal confinement discharges and high density H-mode (HDH) discharges. Both discharge types are in the collisional regime for impurities (central electron temperature is 0.4 keV and central density exceeds 10 20 m -3 ). In this model, the radial convective velocity is assumed to be determined by the radial electric field, as derived from the pressure gradient. The diffusivity coefficient is chosen to be constant in the plasma core but is significantly larger in the edge region, where it counteracts the high local values of the inward convective velocity. Under these conditions, the faster decay of aluminium in HDH discharges can be explained by the smaller negative electric field in the bulk plasma, and correspondingly smaller inward convective velocity, due to flattening of the density profiles

  6. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    Science.gov (United States)

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  7. Change of the arc attachment mode and its effect on the lifetime in automotive high intensity discharge lamps

    Science.gov (United States)

    Alexejev, Alexander; Flesch, Peter; Mentel, Jürgen; Awakowicz, Peter

    2016-10-01

    In modern cars, the new generation Hg-free high intensity discharge (HID) lamps, the so called xenon lamps, take an important role. The long lifetime of these lamps is achieved by doping the tungsten electrodes with thorium. Thorium forms a dipole layer on the electrode surface, thus reducing the work function of tungsten. However, thoriating the electrodes is also an issue of trade and transport regulation, so a substitute is looked into. This work shows the influence of the arc attachment mode on the lifetime of the lamps. The mode of the arc attachment changes during the run-up phase of automotive HID lamps after a characteristic time period depending, i.e., on the filling of the lamps, which is dominated by scandium. It will be shown that this characteristic time period for the change of the attachment mode determines the long term performance of Hg-free xenon lamps. Measurements attributing the mode change to the scandium density in the filling are presented. The emitter effect of scandium will be suggested to be the reason of the mode change.

  8. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  9. Physical performance in persons with spinal cord injuries after discharge from rehabilitation

    NARCIS (Netherlands)

    Dallmeijer, A J; van der Woude, L H; Hollander, P A; Angenot, E L

    PURPOSE: The purpose of this study was to investigate changes in physical capacity and performance of activities of daily living (ADL) during the postrehabilitation period of persons with spinal cord injuries and to determine the factors explaining the changes in physical capacity. METHODS: Nine

  10. Initiation of ignition by the action of a high-current pulsed discharge on a gas

    NARCIS (Netherlands)

    Starikovskii, AY

    2003-01-01

    The possibility of nonthermal initiation of chemical reactions by a uniform pulsed nanosecond discharge is demonstrated. Dependences of variation of the ignition delay on initial conditions are obtained. It is shown that the main role in combustion initiation under conditions of a pulsed gas

  11. Towards high quality ITO coatings: the impact of nitrogen admixture in HiPIMS discharges

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Bogdanowicz, R.; Sezemsky, P.; Wulff, H.; Kruth, A.; Smietana, M.; Kratochvíl, J.; Čada, Martin; Hubička, Zdeněk

    2018-01-01

    Roč. 335, Feb (2018), s. 126-133 ISSN 0257-8972 Institutional support: RVO:68378271 Keywords : film properties * HiPIMS * ITO * plasma deposition Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.589, year: 2016

  12. Plasma waves and electric discharges induced by a beam from a high-latitude satellite

    International Nuclear Information System (INIS)

    Kuns, G.; Koen, G.

    1985-01-01

    Using P78-2 satellite measurements of characteristics of space probe charging in synchronous orbit are carried out. A particle beam generation system including electron and ion guns was part of the satellite equipment. Electric charge analyser placed aboard the satellite in course of electron and ion beam generation recorded plasma waves and electric discharges

  13. Soft X-Ray Spectra from High Current Nitrogen Z-Pinch Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Nevrkla, M.; Jančárek, A.

    2016-01-01

    Roč. 3, č. 1 (2016), s. 48 ISSN 2336-2626. [SPPT 2016 - 27th Symposium on Plasma Physics and Technology/27./. Prague, 20.06.2016-23.06.2016] Institutional support: RVO:61389021 Keywords : Capillary discharge * recombination pumping * pinch dynamics * evolution of spectra emission * computer modelling Subject RIV: BH - Optics, Masers, Lasers www.plasmaconference.cz

  14. Online calibration of high-frequency partial discharge signals in three-phase belted power cables

    NARCIS (Netherlands)

    Wouters, P.A.A.F.

    2005-01-01

    Partial discharge (PD) magnitudes from classical detection techniques are expressed in terms of apparent charges. Signals from HF/VHF/UHF techniques on substation components are often hard to express in this quantity because of complex signal excitation and propagation channels. A method to

  15. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  16. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian

    2016-03-30

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  17. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  18. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  19. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    Science.gov (United States)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  20. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  1. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  2. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  3. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  4. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  5. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    ) high performance liquid chromatography (HPLC) grade .... applications. These are important requirements if the reagent is to be applicable to on-line pre or post column derivatisation in a possible automation of the analytical.

  6. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  7. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  8. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  9. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  10. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  11. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  12. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    Science.gov (United States)

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  13. Ion flux nonuniformities in large-area high-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Perret, A.; Chabert, P.; Booth, J.-P.; Jolly, J.; Guillon, J.; Auvray, Ph.

    2003-01-01

    Strong nonuniformities of plasma production are expected in capacitive discharges if the excitation wavelength becomes comparable to the reactor size (standing-wave effect) and/or if the plasma skin depth becomes comparable to the plate separation (skin effect) [M. A. Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)]. Ion flux uniformity measurements were carried out in a large-area square (40 cmx40 cm) capacitive discharge driven at frequencies between 13.56 MHz and 81.36 MHz in argon gas at 150 mTorr. At 13.56 MHz, the ion flux was uniform to ±5%. At 60 MHz (and above) and at low rf power, the standing-wave effect was seen (maximum of the ion flux at the center), in good quantitative agreement with theory. At higher rf power, maxima of the ion flux were observed at the edges, due either to the skin effect or to other edge effects

  14. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  15. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  16. High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Kumar, N.A.; Prasad, V.R.; Venkataramana, V.; Appalanaidu, S.; Sridevi, B.; Kumar, B.S.K.; Bharati, M.D.; Subbaiah, C.V.; Acharyya, T.; Rao, G.D.; Viswanadham, R.; Gawade, L.; Manjary, D.T.; Kumar, P.P.; Rajeev, K.; Reddy, N.P.C.; Sarma, V.V.; Kumar, M.D.; Sadhuram, Y.; Murty, T.V.R.

    ). Air-water flux of CO 2 was estimated following Wanninkhof (1992) using measured wind speed. 3. Results and discussion The dam controlled freshwater discharge into the Godavari estuary was maximal in August (Fig. 2a). There was virtually... bacterioplankton. Appl. Environ. Microbiol.52,1298-1303. Lewis, E., and D.W.R. Wallace (1998). Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy...

  17. Zirconium dioxide ultrafine powders formation in ultra-high frequency discharge plasma

    International Nuclear Information System (INIS)

    Triotskij, V.N.; Kurkin, E.N.; Torbov, V.I.; Berestenko, V.I.; Torbova, O.D.; Gurov, S.V.; Alekseev, N.V.

    1995-01-01

    ZrO 2 fine powders of 30...60 nm particle size were synthesized by ZrCl 4 oxidation in a flow of oxygen microwave plasma. Oxygen flow rate and ZrCl 4 feeding rate were the defining parameters effecting on powder particles size at constant discharge power.At predominant contribution of the coalescence process into ZrO 2 powder particles formation their heterogeneous growth was shown necessary to take into account. 16 refs.; 5 figs

  18. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Hubička, Zdeněk; Čada, Martin; Drache, S.; Tichý, M.; Hippler, R.

    2014-01-01

    Roč. 115, č. 15 (2014), "153301-1"-"153301-7" ISSN 0021-8979 R&D Projects: GA MŠk LH12043 Grant - others:AV ČR(CZ) M100101215 Institutional support: RVO:68378271 Keywords : electron-impact ionization * physical vapor-deposition * cross-sections * plasma parameters * rate coefficients * low-pressure * energy * atoms * films * ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014

  19. Carbon structures formation in low current high voltage electrical discharge in hydrocarbon vapours

    International Nuclear Information System (INIS)

    Sobczyk, A T; Jaworek, A

    2011-01-01

    The properties of carbon fibers and other carbon structures produced from hydrocarbon vapours decomposed in electrically generated plasma at atmospheric pressure are studied in this paper. The electrical discharge was generated between a stainless steel needle and a plate made of nickel alloy. The carbon fiber has grown at the tip of the needle electrode, while other microflower-like deposits were built at the plate. The physical properties of carbon fibers were investigated by SEM, Raman spectroscopy, XRD, and EDS methods.

  20. Plasma waves and electrical discharges stimulated by beam operations on a high altitude satellite

    International Nuclear Information System (INIS)

    Koons, H.C.; Cohen, H.A.

    1982-01-01

    A satellite experiment was conducted to measure the characteristics of the spacecraft charging process near synchronous orbit. The payload included a particle beam system (both an electron gun and an ion gun) and a charging electrical effects analyzer consisting of a pulse shape analyzer, a VLF analyzer, and an RF analyzer. The characteristics of plasma waves and electrical discharges measured by these instruments during electron and ion beam operations are discussed

  1. Explosive Processes on Cathode while Forming Nanosecond Pulsed Discharge of High Pressure

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2012-01-01

    Full Text Available The paper is devoted to research of cathode surfaces with different curvature radius (r = 1–8 mm while forming nanosecond pulsed discharge in dense air. Influence of field and air pressure heterogeneity rate in gas gap on size of micro-craters being formed on working cathode surface after pulsed effect has been shown in the paper. The paper reveals a maximum expansion of separate micro-crater size on cathode surface with small curvature radius.

  2. Governance among Malaysian high performing companies

    Directory of Open Access Journals (Sweden)

    Asri Marsidi

    2016-07-01

    Full Text Available Well performed companies have always been linked with effective governance which is generally reflected through effective board of directors. However many issues concerning the attributes for effective board of directors remained unresolved. Nowadays diversity has been perceived as able to influence the corporate performance due to the likelihood of meeting variety of needs and demands from diverse customers and clients. The study therefore aims to provide a fundamental understanding on governance among high performing companies in Malaysia.

  3. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  4. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  5. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  6. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor.

    Science.gov (United States)

    Bian, Wenjuan; Ying, Xiangli; Shi, Junwen

    2009-03-15

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10(-7) mol L(-1)s(-1), which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.

  7. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bian Wenjuan [School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China)], E-mail: bwenjuan@suda.edu.cn; Ying Xiangli; Shi Junwen [School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China)

    2009-03-15

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10{sup -7} mol L{sup -1} s{sup -1}, which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.

  8. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor

    International Nuclear Information System (INIS)

    Bian Wenjuan; Ying Xiangli; Shi Junwen

    2009-01-01

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10 -7 mol L -1 s -1 , which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased

  9. Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge

    International Nuclear Information System (INIS)

    Kossyi, I.A.; Silakov, V.P.; Tarasova, N.M.

    2001-01-01

    Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF 2 Cl 2 ) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH 4 + O 2 (air)+ CF 2 Cl 2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH 4 + O 2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge

  10. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    Science.gov (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  11. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    International Nuclear Information System (INIS)

    Silburn, S A; Matthews, G F; Challis, C D; Belonohy, E; Iglesias, D; Keeling, D L; King, D; Kirov, K; Lomas, P J; Frigione, D; Graves, J P; Mantsinen, M J; Hobirk, J; Lennholm, M; Moradi, S; Sips, A C C; Tsalas, M

    2017-01-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data. (paper)

  12. Enhanced performance and control issues in JT-60U long pulse discharges

    International Nuclear Information System (INIS)

    Sakamoto, Y

    2005-01-01

    Recent experimental results are reported on control issues involved in long timescales and enhanced performance in JT-60U. The control issues in neoclassical tearing mode (NTM) suppression in the weak shear plasma regime include background optimization through decreasing β p (L q /L p ) at the rational surface and active stabilization of NTMs using ECCD. By optimizing β p (L q /L p ), a condition of β N ∼ 2.5 was sustained for 10 times the current profile relaxation time and one of β N ∼ 2.4 with q min ∼ 1.5 was sustained for 2.8 times the current profile relaxation time, with nearly full non-inductive current drive. In addition, a condition of β N ∼ 3 was sustained for 5.5 s through stabilization of NTMs using ECCD, and an EC driven current nearly equal to the bootstrap current was required for complete stabilization. In the reversed shear plasma regime, the issue is the existence of the steady state solution with a large f BS value. By controlling the pressure gradient at the internal transport barrier through toroidal rotation to avoid the disruption, a large f BS value of approximately 75% was sustained for 2.7 times the current profile relaxation time, with nearly full non-inductive current drive, and a steady-state solution with a large f BS value is confirmed. The control issues for the edge pedestal and edge localized modes (ELMs) are control of the pedestal pressure and the energy loss through ELMs. The pedestal pressure increases by >40% through the change in toroidal rotation. The type of ELM can be controlled by toroidal rotation from type-I to grassy

  13. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  14. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  15. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  16. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  17. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  18. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    Science.gov (United States)

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  19. Faraday space in a high-frequency γ discharge and the influence of pressure on the normal current density effect of an α discharge and the nature of the α-γ transition

    International Nuclear Information System (INIS)

    Raizer, Yu.P.; Shneider, M.N.

    1992-01-01

    The essential differences between high-frequency capacative discharges at intermediate and low pressures are considered. A theory is developed for the negative emission region and the Faraday dark space in a γ discharge. It is based on the kinetic equation for electrons in the highly nonuniform field of an electrode sheath, which is solved in the forward-backward approximation. If a uniform positive column is formed in the middle of the gap of a γ discharge of average pressure which is not too short, then at low pressures the hf plasma acts as the equivalent of the negative emission or Faraday space of a glow discharge with a typical weak field and low electron temperature. A region of reversed average field also appears, which is characteristic of a glow discharge. The question of the normal current density effect in an α discharge is discussed. This effect is observed at average pressures. At low pressures the effect disappears, and even weak current covers the entire electrode; the pressures at which this occurs and the reasons for it are demonstrated. The nature of the α-γ transition, which takes place discontinuously at average pressures but continuously at lower pressures, is discussed. The reason for this behavior is discussed and the pressure at which the discontinuous mechanism changes into continuous is estimated

  20. Effect of Home Exercise Program Performance in Patients with Osteoarthritis of the Knee or the Spine on the Visual Analog Scale after Discharge from Physical Therapy

    Science.gov (United States)

    Chen, Hamilton; Onishi, Kentaro

    2012-01-01

    The aim of our study was to assess the effect of the frequency of home exercise program (HEP) performance on pain [10-point visual analog scale (VAS)] in patients with osteoarthritis of the spine or knee after more than 6 months discharge from physical therapy (PT). We performed a retrospective chart review of 48 adult patients with a clinical…

  1. Study of protection devices against the effects of electric discharges inside a very high voltage generator: the Vivitron accelerator

    International Nuclear Information System (INIS)

    Nolot, E.

    1996-01-01

    The Vivitron tandem is a large electrostatic accelerator comprising a Van de Graaff generator designed to reach terminal voltages of around 30 MV. The machine is limited at rather lower nominal voltages (about 20 MV) due to the sensitivity of the insulating column structure to transient overvoltages. These are induced by electrical discharges in compressed SF 6 . This thesis first aims at analysing the fundamental reasons of electrical discharges in order to limit the probability of their occurrence. Then we simulate the transient overvoltages induced and present some improvements which may lead to a stable behaviour of the Vivitron at nominal voltages higher than 20 MV. Initially we deduce discharge onset voltages and actual breakdown field limitations in the different gap geometries from analysis of possible breakdown mechanisms in compressed SF 6 . In a second part, some electrical characteristics of the insulating column structure are measured at high voltage. Fast rising oscillating waves induced by sparking in the Vivitron, along with the associated energies,are determined in the third part. The last part deals with new surge protections of the insulating column structure. Spark gaps with precise onset voltage and optimized shielding electrodes are discussed. ZnO-based varistors designed for operation at very high fields have also been developed in order to reduce transient overvoltage values. (author)

  2. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures

    Science.gov (United States)

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R.; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-01-01

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present. PMID:27551101

  3. The source of X-rays and high-charged ions based on moderate power vacuum discharge with laser triggering

    Directory of Open Access Journals (Sweden)

    Alkhimova Mariya A.

    2015-06-01

    Full Text Available The source of X-ray radiation with the energy of quanta that may vary in the range hν = 1÷12 keV was developed for studies in X-ray interaction with matter and modification of solid surfaces. It was based on a vacuum spark discharge with the laser triggering. It was shown in our experiments that there is a possibility to adjust X-ray radiation spectrum by changing the configuration of the electrode system when the energy stored in the capacitor is varied within the range of 1÷17 J. A comprehensive study of X-ray imaging and quanta energy was carried out. These experiments were carried out for the case of both direct and reverse polarity of the voltage on the electrodes. Additionally, ion composition of plasma created in a laser-triggered vacuum discharge was analyzed. Highly charged ions Zn(+21, Cu(+20 and Fe(+18 were observed.

  4. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-01-01

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles

  5. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin, E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  6. Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite

    International Nuclear Information System (INIS)

    Peters, F; Wieneke, S; Ohms, G; Viöl, W; Hünnekens, B; Militz, H

    2017-01-01

    In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s. (paper)

  7. Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite

    Science.gov (United States)

    Peters, F.; Hünnekens, B.; Wieneke, S.; Militz, H.; Ohms, G.; Viöl, W.

    2017-11-01

    In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s.

  8. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    Energy Technology Data Exchange (ETDEWEB)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen [Key Lab of Materials Modification, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  9. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  10. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  11. Implementation of a Total Hip Arthroplasty Care Pathway at a High-Volume Health System: Effect on Length of Stay, Discharge Disposition, and 90-Day Complications.

    Science.gov (United States)

    Featherall, Joseph; Brigati, David P; Faour, Mhamad; Messner, William; Higuera, Carlos A

    2018-06-01

    Standardized care pathways are evidence-based algorithms for optimizing an episode of care. Despite the theoretical promise of care pathways, there is an inconsistent literature demonstrating improvements in patient care. The authors hypothesized that implementing a care pathway, across 11 hospitals, would decrease hospital length of stay (LOS), decrease postoperative complications at 90 days, and increase discharges to home. A multidisciplinary team developed an evidence-based care pathway for total hip arthroplasty (THA) perioperative care. All patients receiving THA in 2013 (pre-protocol, historical control), 2014 (transition), and 2015 (full protocol implementation) were included in the analysis. Multivariable regression assessed the relationship of the care pathway to 90-day postoperative complications, LOS, and discharge disposition. Cost savings were estimated using previously published postarthroplasty episode and per diem hospital costs. A total of 6090 primary THAs were conducted during the study period. After adjusting for the covariates, the full protocol implementation was associated with a decrease in LOS (mean ratio, 0.747; 95% confidence interval [CI; 0.727, 0.767]) and an increase in discharges to home (odds ratio, 2.079; 95% CI [1.762, 2.456]). The full protocol implementation was not associated with a change in 90-day complications (odds ratio, 1.023; 95% CI [0.841, 1.245]). Payer-perspective-calculated theoretical cost savings, including both index admission and postdischarge costs, were $2533 per patient. The THA care pathway implementation was successful in reducing LOS and increasing discharges to home. The care pathway was not associated with a change in 90-day complications; further targeted interventions in this area are needed. Despite care standardization efforts, high-volume hospitals and surgeons had higher performance. Extrapolation of theoretical cost savings indicates that widespread THA care pathway adoption could lead to national

  12. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  13. Discharges with surgical procedures performed less often than once per month per hospital account for two-thirds of hospital costs of inpatient surgery.

    Science.gov (United States)

    O'Neill, Liam; Dexter, Franklin; Park, Sae-Hwan; Epstein, Richard H

    2017-09-01

    Most surgical discharges (54%) at the average hospital are for procedures performed no more often than once per month at that hospital. We hypothesized that such uncommon procedures would be associated with an even greater percentage of the total cost of performing all surgical procedures at that hospital. Observational study. State of Texas hospital discharge abstract data: 4th quarter of 2015 and 1st quarter of 2016. Inpatients discharged with a major therapeutic ("operative") procedure. For each of N=343 hospitals, counts of discharges, sums of lengths of stay (LOS), sums of diagnosis related group (DRG) case-mix weights, and sums of charges were obtained for each procedure or combination of procedures, classified by International Classification of Diseases version 10 Procedure Coding System (ICD-10-PCS). Each discharge was classified into 2 categories, uncommon versus not, defined as a procedure performed at most once per month versus those performed more often than once per month. Major procedures performed at most once per month per hospital accounted for an average among hospitals of 68% of the total inpatient costs associated with all major therapeutic procedures. On average, the percentage of total costs associated with uncommon procedures was 26% greater than expected based on their share of total discharges (Pcosts among surgical patients can be attributed to procedures performed at most once per month per hospital. The finding that such uncommon procedures account for a large percentage of costs is important because methods of cost accounting by procedure are generally unsuitable for them. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    Science.gov (United States)

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  15. Designing a High Performance Parallel Personal Cluster

    OpenAIRE

    Kapanova, K. G.; Sellier, J. M.

    2016-01-01

    Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible only because of the availability of such large scale computing infrastructures. Yet many challenges are still open. The cost of energy consumption, cooling, competition for resources have been some of the reasons why the scientifi...

  16. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  17. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  18. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  19. High-velocity facial gunshot wounds: multidisciplinary care from prehospital to discharge.

    Science.gov (United States)

    Sinnott, J D; Morris, G; Medland, P J; Porter, K

    2016-01-28

    A case is presented in which a high velocity rifle (shotgun) was fired into the inferior part of a patient's face in an attempted suicide causing widespread trauma to the inferior and left side of the patient's face. He presented to his general practitioner where an ambulance was called. The patient is followed from prehospital care (air ambulance) to resuscitation in accident and emergency and through the first stages of reconstructive surgery. The article focuses on the multidisciplinary approach to the patient's prehospital care and initial resuscitation at a major trauma centre. CT reconstruction images of the patient's skull allow visualisation of the extent of bone damage at presentation. Medical photography allows visualisation of the extent of the initial damage and shows how reconstructive surgery was undertaken early and in progressive stages. A literature review was performed allowing discussion of the current evidence and best practice in the management of facial gunshot wounds. 2016 BMJ Publishing Group Ltd.

  20. Numerical study of the enhancement of combustion performance in a scramjet combustor due to injection of electric-discharge-activated oxygen molecules

    International Nuclear Information System (INIS)

    Starik, A M; Bezgin, L V; Kopchenov, V I; Loukhovitski, B I; Sharipov, A S; Titova, N S

    2013-01-01

    A comprehensive analysis of the efficiency of an approach based on the injection of a thin oxygen stream, subjected to a tailored electric discharge, into a supersonic H 2 –air flow to enhance the combustion performance in the mixing layer and in the scramjet combustor is conducted. It is shown that for such an approach there exist optimal values of reduced electric field E/N and transversal dimension d of the injected oxygen stream, which provide the minimal length of induction zone in the mixing layer. The optimal values of E/N and d depend on air flow parameters and the specific energy put into the oxygen. The injection of a thin oxygen stream (d = 1 mm) subjected to an electric discharge with E/N = 50–100 Td, which produces mostly singlet oxygen O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and atomic oxygen, allows one to arrange stable combustion in a scramjet duct at an extremely low air temperature T air  = 900 K and pressure P air  = 0.3 bar even at a small specific energy put into the oxygen E s  = 0.2 J ncm −3 , and to provide rather high combustion completeness η = 0.73. The advance in the energy released during combustion is much higher (hundred times), in this case, than the energy supplied to the oxygen stream in the electric discharge. This approach also makes it possible to ensure the rather high combustion completeness in the scramjet combustor with reduced length. The main reason for the combustion enhancement of the H 2 –air mixture in the scramjet duct is the intensification of chain-branching reactions due to the injection of a small amount of cold non-equilibrium oxygen plasma comprising highly reactive species, O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and O atoms, into the H 2 –air supersonic flow. (paper)