WorldWideScience

Sample records for high performance diesel

  1. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  2. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration

    International Nuclear Information System (INIS)

    Patil, K.R.; Thipse, S.S.

    2015-01-01

    Highlights: • First ever study on DEE–kerosene–diesel blends used in CI engine. • DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine. • Optimum performance blend has been found as DE15D. • Adulteration effects of kerosene with diesel have also been investigated. • Additions of kerosene with DE15D blend have deteriorated the overall engine performance. - Abstract: An experimental investigation had been carried out to evaluate the effects of oxygenated cetane improver diethyl ether (DEE) blends with kerosene and diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. Initially, 2%, 5%, 8%, 10%, 15%, 20% and 25% DEE (by volume) were blended into diesel. The DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine and the optimum performance blend has been found as DE15D. Similarly, 5%, 10% and 15% kerosene (by volume) were blended into diesel to investigate the adulteration effect. In addition, a study was carried out to evaluate the effects of kerosene adulteration on DE15D by blending with 5%, 10% and 15% kerosene (by volume). The engine tests were carried out at 10%, 25%, 50%, 75% and 100% of full load for all test fuels. Laboratory fuel tests showed that the DEE is completely miscible with diesel and kerosene in any proportion. It was observed that the density, kinematic viscosity and calorific value of the blends decreases, while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The experimental test results showed that the DEE–kerosene–diesel blends have low brake thermal efficiency, high brake specific fuel consumption, high smoke at full load, low smoke at part load, overall low NO, almost similar CO, high HC at full load and low HC at part load as compared to DE15D blend

  3. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    Science.gov (United States)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  4. High-performance plain bearings for diesel engines. Hochleistungs-Gleitlager fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.M.; Mathias, M.; Herrmann, B. (MTU, Friedrichshafen (Germany))

    1992-01-01

    The crankshaft bearings are among the most highly stressed engine components. Conventional plain bearings no longer fulfill the requirements of modern high-performance diesel engines. Introduction of the 'Sputter' technology, as a method of anti friction layer application, opened new perspectives in the field of plain bearing manufacture. In this presentation it is intended to compare various types of plain bearings and to demonstrate operation-oriented bearing testing. (orig.).

  5. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    were observed to be higher in comparison to diesel, A. The CO_2 (carbon dioxide) and CO (carbon monoxide) emissions were reported to be lower than diesel oil. The effect of using emulsion fuels decreased the NOx (nitrogen oxides) emissions at medium engine speeds, i.e. approximately 30.0%. Lesser NOx emission was attributed by the reduction of cetane number of the diesel-biodiesel-bioethanol emulsion fuels’ cetane number as the amount of bioethanol increases. However, the emissions of NOx were found to increase gradually at low speed (∼1600 rpm), high load; high speed (∼2400 rpm), medium load conditions. It was found that the combustion performance and emissions of the diesel engine very much depend on the fuel, its emulsion combination types and engine operating conditions.

  6. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  7. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  8. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  9. An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

    Directory of Open Access Journals (Sweden)

    Xiao Helin

    2017-01-01

    Full Text Available Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.

  10. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  11. Integrated approach for stress analysis of high performance diesel engine cylinder head

    Science.gov (United States)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.

  12. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    OpenAIRE

    Arifin Nur; Yanuandri Putrasari; Iman Kartolaksono Reksowardojo

    2012-01-01

    The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices we...

  13. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  14. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  15. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  16. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  17. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  18. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  19. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  20. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  1. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    Science.gov (United States)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  2. Performance diagnostic system for emergency diesel generators

    International Nuclear Information System (INIS)

    Logan, K.P.

    1991-01-01

    Diesel generators are commonly used for emergency backup power at nuclear stations. Emergency diesel generators (EDGs) are subject to both start-up and operating failures, due to infrequent and fast-start use. EDG reliability can be critical to plant safety, particularly when station blackout occurs. This paper describes an expert diagnostic system designed to consistently evaluate the operating performance of diesel generators. The prototype system is comprised of a suite of sensor monitoring, cylinder combustion analyzing, and diagnostic workstation computers. On-demand assessments of generator and auxiliary equipment performance are provided along with color trend displays comparing measured performance to reference-normal conditions

  3. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  4. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions

    International Nuclear Information System (INIS)

    Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M.

    2010-01-01

    Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory's (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices. (author)

  5. PERFORMANCE ANALYSIS OF 1,4 DIOXANE-ETHANOL-DIESEL BLENDS ON DIESEL ENGINES WITH AND WITHOUT THERMAL BARRIER COATING

    Directory of Open Access Journals (Sweden)

    Chockalingam Sundar Raj

    2010-01-01

    Full Text Available 1,4 dioxane, a new additive allows the splash blending of ethanol in diesel in a clear solution. The objective of this investigation is to first create a stable ethanol-diesel blended fuel with 10% 1,4 dioxane additive, and then to generate performance, combustion and emissions data for evaluation of different ethanol content on a single cylinder diesel engine with and without thermal barrier coating. Results show improved performance with blends compared to neat fuel for all conditions of the engine. Drastic reduction in smoke density is found with the blends as compared to neat diesel and the reduction is still better for coated engine. NOx emissions were found to be high for coated engines than the normal engine for the blends. The oxygen enriched fuel increases the peak pressure and rate of pressure rise with increase in ethanol ratio and is still superior for coated engine. Heat release pattern shows higher premixed combustion rate with the blends. Longer ignition delay and shorter combustion duration are found with all blends than neat diesel fuel.

  6. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  7. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Basbous, T.; Ilinca, A.; Dimitrova, M.

    2011-01-01

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  8. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  9. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  10. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  11. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  12. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  13. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  14. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  15. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  16. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

    International Nuclear Information System (INIS)

    Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfü; Aydın, Hüseyin

    2017-01-01

    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene. - Highlights: • Effects of kerosene and diesel addition to biodiesel in a diesel engine were investigated. • B80&K10 and B80&K10&D10 were tested and comparisons have been made with D2. • Similar fuel properties and combustion parameters have been found for all fuels. • Heat release initiated earlier for B80&K10 and B80&K10&D10. • CO and NOx emissions are lowered for B80&K10 and B80&K10&D10.

  17. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine

    International Nuclear Information System (INIS)

    Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, Ch.; Sakellaropoulos, F.

    2003-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions. (Author)

  18. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  19. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  20. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  1. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hespel, Camille [Universite d' Orleans, Laboratoire PRISME, Orleans (France); Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles [CORIA, UMR 6614, CNRS, Universite et INSA de Rouen, Saint Etienne du Rouvray (France)

    2012-07-15

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals. (orig.)

  2. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Science.gov (United States)

    Hespel, Camille; Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles

    2012-07-01

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals.

  3. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  4. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  5. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  6. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  7. PERFORMANCE ANALYSIS OF 1,4 DIOXANE-ETHANOL-DIESEL BLENDS ON DIESEL ENGINES WITH AND WITHOUT THERMAL BARRIER COATING

    OpenAIRE

    Chockalingam Sundar Raj; Sambandam Arul; Subramanian Sendilvelan; Ganapathy Saravanan

    2010-01-01

    1,4 dioxane, a new additive allows the splash blending of ethanol in diesel in a clear solution. The objective of this investigation is to first create a stable ethanol-diesel blended fuel with 10% 1,4 dioxane additive, and then to generate performance, combustion and emissions data for evaluation of different ethanol content on a single cylinder diesel engine with and without thermal barrier coating. Results show improved performance with blends compared to neat fuel for all conditions of th...

  8. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  9. The study of stability, combustion characteristics and performance of water in diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available A single cylinder diesel engine study of water in diesel emulsions was conducted to investigate the stability effect of emulsion fuel on three different fuel blends and the water emulsification effect on the engine performance. Emulsified fuels contained 2% of surfactant including Span 80 Tween 80 and tested 10 HLB number. The blends also varied of 5%, 10% and 15% of water in diesel ratios namely as BSW5, BSW10 and BSW15. The fuel blends performance was tested using a single cylinder, direct injection diesel engine, operating at 1860 rpm. The results on stability reveal that high shear homogenizer yields more stability on emulsion fuel than mechanical stirrer and ultrasonic water bath. The engine performance results show that the ignition delay and peak pressure increase with the increment of water percentage up to 15%. However, the results indicate the increment of water percentage is also shows a significant decrease in engine power.

  10. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  11. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel

    International Nuclear Information System (INIS)

    Ithnin, Ahmad Muhsin; Ahmad, Mohamad Azrin; Bakar, Muhammad Aiman Abu; Rajoo, Srithar; Yahya, Wira Jazair

    2015-01-01

    Highlights: • Effect of using emulsified fuel made from low-grade fuel in engine are investigated. • Specific fuel consumption of the engine is reduced overall for all types of W/D. • Comparable maximum in-cylinder pressure and pressure rise rate compared to D2. • NOx and PM are found to be reduced for all types of W/D. • CO and CO 2 emissions increase compared to D2 at low load and high load. - Abstract: In the present research, an experiment is designed and conducted to investigate the effect of W/D originating from low-grade diesel fuel (D2) on the combustion performance and emission characteristics of a direct injection diesel engine under varying engine loads (25–100%) and constant engine speed (3000 rpm). Four types of W/D are tested, which consist of different water percentages (5%, 10%, 15% and 20%), with constant 2% of surfactant and labelled as E5, E10, E15 and E20, respectively. The specific fuel consumption (SFC) of the engine when using each type of W/D is found to be reduced overall. This is observed when the total amount of diesel fuel in the emulsion is compared with that of neat D2. E20 shows a comparable maximum in-cylinder pressure and pressure rise rate (PRR) compared to D2 in all load conditions. In addition, it produces the highest maximum rate of heat release (MHRR) in almost every load compared to D2 and other W/Ds. NOx and PM are found to be reduced for all types of W/D. The carbon monoxide (CO) and carbon dioxide (CO 2 ) emissions increase compared to D2 at low load and high load, respectively. Overall, it is observed that the formation of W/D from low-grade diesel is an appropriate alternative fuel method that can bring about greener exhaust emissions and fuel savings without deteriorating engine performance

  12. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  13. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  14. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  15. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  16. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  17. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  18. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  19. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  20. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  1. Failure Analysis of a Modern High Performance Diesel Engine Cylinder Head

    Directory of Open Access Journals (Sweden)

    Bingbin Guo

    2014-05-01

    Full Text Available This paper presents a failure analysis on a modern high performance diesel engine cylinder head made of gray cast iron. Cracks appeared intensively at the intersection of two exhaust passages in the cylinder head. The metallurgical examination was conducted in the crack origin zone and other zones. Meanwhile, the load state of the failure part of the cylinder head was determined through the Finite Element Analysis. The results showed that both the point of the maximum temperature and the point of the maximum thermal-mechanical coupling stress were not in the crack position. The excessive load was not the main cause of the failure. The large cooling rate in the casting process created an abnormal graphite zone that existed below the surface of the exhaust passage (about 1.1 mm depth, which led to the fracture of the cylinder head. In the fractured area, there were a large number of casting defects (dip sand, voids, etc. and inferior graphite structure (type D, type E which caused stress concentration. Moreover, high temperature gas entered the cracks, which caused material corrosion, material oxidization, and crack propagation. Finally, premature fracture of the cylinder head took place.

  2. Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel–diesel fuel blends

    International Nuclear Information System (INIS)

    Sayin, Cenk; Gumus, Metin; Canakci, Mustafa

    2013-01-01

    In diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 × 2 (340 μm diameter holes with 2 holes in the nozzle), 240 × 4, 200 × 6, and 170 × 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel–diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO 2 and NO x increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel–diesel blends (B5 and B20). -- Highlights: • We used biodiesel–diesel blends with the injectors having different parameters. • Injector parameters have influences on the exhaust emissions. • Specific fuel consumption can be affected with injector parameters. • Injectors with proper hole numbers and size can be used for biodiesel–diesel blends

  3. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  4. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  5. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2009-01-01

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 deg. C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized.

  6. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  7. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  8. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  9. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  10. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  11. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    Science.gov (United States)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  12. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    Science.gov (United States)

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  13. Performance and emission characteristics of a turpentine-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, R. [Adhiparasakthi Engineering College, Melmaruvathur, Tamil Nadu (India); Mahalakshmi, N.V. [I.C. Engines Division, Department of Mechanical Engineering, College of Engineering Guindy, Chennai, Tamil Nadu (India)

    2007-07-15

    This paper describes an experimental study concerning the feasibility of using bio-oil namely turpentine obtained from the resin of pine tree. The emission and performance characteristics of a D.I. diesel engine were studied through dual fuel (DF) mode. Turpentine was inducted as a primary fuel through induction manifold and diesel was admitted into the engine through conventional fueling device as an igniter. The result showed that except volumetric efficiency, all other performance and emission parameters are better than those of diesel fuel with in 75% load. The toxic gases like CO, UBHC are slightly higher than that of the diesel baseline (DBL). Around 40-45% smoke reduction is obtained with DF mode. The pollutant No{sub x} is found to be equal to that of DBL except at full load. This study has proved that approximately 75% diesel replacement with turpentine is possible by DF mode with little engine modification. (author)

  14. Performance evaluation of a diesel engine using biodiesel

    International Nuclear Information System (INIS)

    Shahid, E.M.; Jamal, Y.

    2011-01-01

    This article is a comparative study of use of mineral diesel and biodiesel derived from cotton seed oil of Pakistani origin. The main problems associated with biodiesel are, its very high viscosity and specific gravity, which are due to long chain triglyceride esters with free fatty acids. The esters are converted into simple structure mono-glycerides esters via transesterification process. The experiments were carried out using blends of diesel and biodiesel with different ratios, to investigate the performance characteristics of engine and exhaust emissions. The experimental results show that the engine using B100 resulting in about 10% higher brake specific fuel consumption and about 10% lower brake thermal efficiency as compared to the use of B0. The engine emissions were almost free from SO/sub x/, having reduced amount of CO, CO/sub 2/0, and THC, but having higher amount of NOx, when B100 was used as fuel. The fuel is becoming more popular due to the reduction in nasty pollutant emissions. (author)

  15. Predicting emergency diesel starting performance

    International Nuclear Information System (INIS)

    DeBey, T.M.

    1989-01-01

    The US Department of Energy effort to extend the operational lives of commercial nuclear power plants has examined methods for predicting the performance of specific equipment. This effort focuses on performance prediction as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This paper describes a monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 2 refs

  16. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  17. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    International Nuclear Information System (INIS)

    Zhang, Zu-chuan; Cai, Zhen-bing; Peng, Jin-fang; Zhu, Min-hao

    2016-01-01

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives. (paper)

  18. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  19. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel

    International Nuclear Information System (INIS)

    Huang, Jincheng; Wang, Yaodong; Qin, Jian-bin; Roskilly, Anthony P.

    2010-01-01

    An experimental study of the performances and emissions of a diesel engine is carried out using two different biodiesels derived from Chinese pistache oil and jatropha oil compared with pure diesel. The results show that the diesel engine works well and the power outputs are stable running with the two selected biodiesels at different loads and speeds. The brake thermal efficiencies of the engine run by the biodiesels are comparable to that run by pure diesel, with some increases of fuel consumptions. It is found that the emissions are reduced to some extent when using the biodiesels. Carbon monoxide (CO) emissions are reduced when the engine run at engine high loads, so are the hydrocarbon (HC) emissions. Nitrogen oxides (NOx) emissions are also reduced at different engine loads. Smoke emissions from the engine fuelled by the biodiesels are lowered significantly than that fuelled by diesel. It is also found that the engine performance and emissions run by Chinese pistache are very similar to that run by jatropha biodiesel. (author)

  20. Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine

    International Nuclear Information System (INIS)

    Wei, Mingrui; Li, Song; Xiao, Helin; Guo, Guanlun

    2017-01-01

    Highlights: • The diesel/gasoline/iso-butanol blends were investigated in a CI engine. • Blend with gasoline or iso-butanol produce higher HC emission. • CO increase at low loads and decrease at medium and high loads with blend fuels. • Gasoline or iso-butanol decrease large particles but increase small particles. • Blend fuels reduce total PM number and mass concentrations. - Abstract: In this study, the effects of diesel/gasoline/iso-butanol blends, including pure diesel (D100), diesel (70%)/gasoline (30%) (D70G30, by mass), diesel (70%)/iso-butanol (30%) (D70B30) and diesel (70%)/gasoline (15%)/iso-butanol (15%) (D70G15B15), on combustion and exhaust pollutant emissions characteristics in a four-cylinder diesel engine were experimentally investigated under various engine load conditions with a constant speed of 1800 rpm. The results indicated that D70G30, D70G15B15 and D70B30 delayed the ignition timing and shortened the combustion duration compared to D100. Additionally, CA50 was retarded when engine fuelled with D70G30, D70G15B15 and D70B30 at low engine load conditions, but it was advanced at medium and high engine loads. The maximum pressure rise rates (MPRRs) of D70G30, D70G15B15 and D70B30 were increased compared with D100 except for at engine load of 0.13 MPa BMEP (brake mean effective pressure). Meanwhile, D70G15B15 and D70B30 produced higher brake specific fuel consumption (BSFC) than that of D100. The effects of diesel blend with gasoline or iso-butanol on exhaust pollutant emissions were varied with loads. CO emissions were increased obviously and NOx emissions were decreased under low engine loads. However, CO emissions were decreased and NOx emissions were slightly increased under the medium and high engine load conditions. However, D70G30, D70G15B15 and D70B30 leaded to higher HC emissions than D100 regardless the variation of engine load. Moreover, the particulate matter (PM) (diameter, number and mass concentrations) emissions by using

  1. Experimental Study of Using Emulsified Diesel Fuel on the Performance and Pollutants Emitted from Four Stroke Water Cooled Diesel Engine

    Science.gov (United States)

    Sakhrieh, A.; Fouad, R. H.; Yamin, J. A.

    2009-08-01

    A water-cooled, four stroke, four cylinder, direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0%, 5%, 10%, 15%, 20%, 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm, the torque, the BMEP and efficiency are found to have maximum values under these conditions. CO2 was found to increase with engine speed and to decrease with water content. NOx produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

  2. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  3. Production of additives from Jatropha Curcas L. methyl esther as a way to improve diesel engine performance

    Energy Technology Data Exchange (ETDEWEB)

    Silitonga, A.S. [Department of Mechanical Engineering, Medan State Polytechnic (Indonesia)], email: ardinsu@yahoo.co.id, email: a_atabani2@msn.com; Mahlia, T.M.I. [Department of Mechanical Engineering, Syiah Kuala University, (Indonesia); Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya (Malaysia); Ghofur, A. [Department of Mechanical Engineering, Lambung Mangkurat University (Indonesia); Abdullahe [Department of Chemical Engineering, Lambung Mangkurat University (Indonesia)

    2011-07-01

    Nowadays we are searching for ideal alternative fuels in order to reduce harmful gas emissions and improve air quality. And many kinds of bio-diesel have been proposed. This paper introduces a bio-diesel converted from the oil of Jatropha curcas L. through a series of physical and chemical processes. This bio-diesel, which has a high cetane number, is better adapted than diesel or other, edible, vegetable oils to be an ideal alternative fuel. Moreover, the additive promotes the physico-chemical characteristics of Jatropha curcas methyl ester, further enhancing its desirability as a substitute for diesel oil. This paper analyzes and reports the results of a laboratory-scale investigation of the feasibility of blending diesel with an additive produced from Jatropha curcas methyl ester. It finds that this additive can improve engine performance and reduce exhaust emissions.

  4. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  5. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  6. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Saleh [Mattaria, Helwan University, Cairo (Egypt). Department of Mechanical Power Engineering

    2008-10-15

    This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel No. 3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel No. 3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method. 26 refs., 15 figs., 5 tabs.

  7. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    fixation of man country life, the excellent and varied climatic conditions and several types of terrain become the country, with extensive workable areas, stand out in the world scenery if considering its great potentiality on generation of alternative fuels. The environmental preservation, important subject nowadays, makes that the human being work in searches for the development of alternative energies, mainly those originating from renewable and biodegradable sources of sustantable character. Taking in consideration those searches, the purpose of this work was to evaluate the performance of a diesel engine working in different moments with mineral diesel and mixtures of mineral diesel and biodiesel in the equivalent proportions B2 (98% mineral diesel and 2%biodiesel, B5 (95% mineral diesel and 5%biodiesel, B20 (80% mineral diesel and 20%biodiesel, and, finally, B100 (100% biodiesel. The rehearsal was accomplished in the dependences of the Engineering Department at UFLA - Federal University of Lavras, in Lavras, Minas Gerais, in July, 2005. For the accomplishment of the rehearsals it, was used an engine cycle diesel of a tractor VALMET 85 id, of 58,2kW (78 cv, following it methodology established by the norm NBR 5484 of ABNT (1985, that refers to the rehearsal dynamometric of engines cycle Otto and Diesel being proceeded. One noticed ended that the potency of the motor when using biodiesel was lower than one when using mineral diesel. One observed that, in some rotations, the mixtures B5 and B20 presented the same potency or even higher, in some situations, than the one when if using mineral diesel. The best thermal efficiency of the motor was verified in the rotation of 540 rpm of equivalent TDP to 1720 rpm of the motor.

  8. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  9. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    state Figure 5. Q criterion isosurface colored by streamwise velocity in the diesel spray injector as viewed from the nozzle exit. Figure 6. U contour...fidelity simulation approach was adopted to study the atom- ization physics of a diesel injector with detailed nozzle internal geometry. The nozzle flow...26; Stanford, CA 14. ABSTRACT A high fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector has been

  10. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  11. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  12. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  13. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  14. Performance of a cycle diesel engine fed with biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Volpato, Carlos Eduardo Silva; Barbosa, Jackson Antonio; Salvador, Nilson [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Engenharia], E-mails: volpato@ufla.br, salvador@ufla.br; Conde, Alexon do Prado [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)], E-mail: alconde@cemig.com.br

    2008-07-01

    The objective of this work was to evaluate the performance of a cycle diesel engine using soybean biodiesel (B100) in relation to mineral oil diesel. The work was performed at the Department of Engineering at the Federal University of Lavras (UFLA), in Lavras, in the State of Minas Gerais, Brazil, in May, 2007. The parameters analyzed were: effective and reduced power, torque, specific and energy consumption of fuel, efficiency term-mechanics and volumetric. The experiments were installed in an experimental delineation entirely randomized arranged in factorial scheme followed by ANOVA analysis and Tukey test at the level of 5% of probability. There were studied five rotation levels in four repetitions. The results showed the viability of operation of a cycle diesel engine with substitute fuels such as soybean B100. (author)

  15. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  16. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  17. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  18. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  19. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  20. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    Science.gov (United States)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  1. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    Science.gov (United States)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  2. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  3. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  4. Optimization of diesel engine performance by the Bees Algorithm

    Science.gov (United States)

    Azfanizam Ahmad, Siti; Sunthiram, Devaraj

    2018-03-01

    Biodiesel recently has been receiving a great attention in the world market due to the depletion of the existing fossil fuels. Biodiesel also becomes an alternative for diesel No. 2 fuel which possesses characteristics such as biodegradable and oxygenated. However, there are facts suggested that biodiesel does not have the equivalent features as diesel No. 2 fuel as it has been claimed that the usage of biodiesel giving increment in the brake specific fuel consumption (BSFC). The objective of this study is to find the maximum brake power and brake torque as well as the minimum BSFC to optimize the condition of diesel engine when using the biodiesel fuel. This optimization was conducted using the Bees Algorithm (BA) under specific biodiesel percentage in fuel mixture, engine speed and engine load. The result showed that 58.33kW of brake power, 310.33 N.m of brake torque and 200.29/(kW.h) of BSFC were the optimum value. Comparing to the ones obtained by other algorithm, the BA produced a fine brake power and a better brake torque and BSFC. This finding proved that the BA can be used to optimize the performance of diesel engine based on the optimum value of the brake power, brake torque and BSFC.

  5. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Bhupendra Singh; Du Jun, Yong; Lee, Kum Bae [Division of Automobile and Mechanical Engineering, Kongju National University (Korea); Kumar, Naveen [Department of Mechanical Engineering, Delhi Technological University, Bawana Road, Delhi 42 (India)

    2010-06-15

    Diesel engines have proved their utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NO{sub x} from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO{sub 2} (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 C considering the BTE, BSEC and gaseous emissions. (author)

  6. Study on performance of blended fuel PPO - Diesel at generator

    Science.gov (United States)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  7. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  8. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  9. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  10. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  11. Performance evaluation and experiment system for waste heat recovery of diesel engine

    International Nuclear Information System (INIS)

    Wenzhi, Gao; Junmeng, Zhai; Guanghua, Li; Qiang, Bian; Liming, Feng

    2013-01-01

    In this paper, a waste heat recovery system is proposed where a high speed turbocharged diesel engine acts as the topper of a combined cycle with exhaust gases used for a bottoming Rankine cycle. The paper describes a mathematical model to evaluate the performance of Rankine cycle system with a reciprocating piston expander. The paper focuses on the performance evaluation and parameter selection of the heat exchanger and reciprocating piston expander that are suitable to waste heat recovery of ICE (internal combustion engine). The paper also describes the experimental setup and the preliminary results. The simulation results show that a proper intake pressure should be 4–5 MPa at its given mass flow rate of 0.015–0.021 kg/s depending on the waste heat recovery of a turbocharged diesel engine (80 kW/2590 rpm). The net power and net power rise rate at various ICE rotation speeds are calculated. The result shows that introducing heat recovery system can increase the engine power output by 12%, when diesel engine operates at 80 kW/2590 rpm. The preliminary experimental results indirectly prove the simulation model by two negative work loops in the P–V curve, under a low intake pressure and steam flow rate condition. - Highlights: • We investigate waste heat recovery through secondary fluid power cycle. • We establish a thermodynamic model of reciprocating steam engine. • We conduct the performance evaluation and experimental system development. • Primary parameters of the heat exchangers and expander are determined

  12. Diesel® Plays the Fool: Translating Performance in Fashion Ads

    Directory of Open Access Journals (Sweden)

    Elena Siemens

    2017-06-01

    Full Text Available This paper discusses the controversial “Be Stupid” advertising campaign by Diesel, recipient of the Grand Prix Lion at the Cannes International Advertising Festival (2010. Banned in some countries for its potentially negative impact on children, this campaign employs theatrical staging combined with provocative slogans, such as “Stupid Might Fail. Smart Doesn’t Even Try.” Illustrated with orginal images inspired by Diesel, the paper refers to prominent theorists and artists (from Derrida to Warhol to consider the complex (and productive relationship between translation and performance.

  13. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel.

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.

  14. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  15. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  16. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  17. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  18. Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel

    International Nuclear Information System (INIS)

    Pali, Harveer S.; Kumar, N.; Alhassan, Y.

    2015-01-01

    Highlights: • Sal seed oil is unexplored biodiesel feedstock which is abundantly found in India. • Sal seed oil has good oxidation stability. • Performance and emission characteristics of the blends of Sal methyl esters with diesel evaluated. • At higher loads, CO, HC and smoke emissions of SME blends were lower than diesel. - Abstract: The present work deals with an underutilized vegetable oil; Sal seed oil (Shorea robusta) as a feedstock for biodiesel production. The production potential of Sal seed oil is very promising (1.5 million tons in a year) in India. The pressure filtered Sal seed oil was transesterified into Sal Methyl Ester (SME). The kinematic viscosity (5.89 cSt), density (0.8764 g/cc) and calorific value (39.65 MJ/kg) of the SME were well within the ASTM/EN standard limits. Various test fuels were prepared for the engine trials by blending 10%, 20%, 30% and 40% of SME in diesel on volumetric basis and designated as SME10, SME20, SME30 and SME40 respectively. The BTE, in general, was found to be decreased with increased volume fraction of SME in the blends. At full load, BSEC for SME10, SME20, SME30 and SME40 were 13.6 MJ/kW h, 14.3 MJ/kW h, 14.7 MJ/kW h and 14.8 MJ/kW h respectively as compared to 13.9 MJ/kW h in case of diesel. At higher load conditions, CO, UHC and smoke emissions were found lower for all SME blends in comparison to neat diesel due to oxygenated nature of fuel. SME10, SME20, SME30 and SME40 showed 51 ppm, 44 ppm, 46 ppm and 48 ppm of UHC emissions respectively as compared to 60 ppm of diesel. The NOx emissions were found to be increased for SME based fuel in comparison to neat diesel operation. At peak load condition, SME10, SME20, SME30 and SME40 had NOx emissions of 612 ppm, 644 ppm, 689 ppm and 816 ppm as compared to 499 ppm for diesel. It may be concluded from the experimental investigations that Sal seed biodiesel is a potential alternative to diesel fuel for reducing dependence on crude petroleum derived fuels and

  19. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  20. Bearings for high performance requirements in two-stroke and four-stroke diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, U.G.

    1983-11-01

    Most measures to reduce fuel consumption in diesel engines lead, directly or indirectly, to more severe operating conditions for the engine bearings. In ever more instances the bearings become the components which limit useful engine life and the time between overhauls. Bearings with improved performance characteristics are required. During recent years, Miba Gleitlager AG has developed several solutions to meet these requirements. They consist of either material improvements, such as a cast white metal (SnSb 12Cu 3 NiCd) with higher fatigue strength, or an electroplated overlay (PbSn 18 Cu) with improved fatigue and wear resistance. New design solutions found included the steel-Al Sn 6-WM 85 bearing for two-stroke engines, the steel-Al Sn 6 PbSn 18 Cu bearing applied to two-stroke crosshead bearings, the steel-AlZn 4,5 PbSn 18 Cu bearing for high bearing loads in four-stroke engines, and the Miba-Rillenlager with its radically new running-surface structure for extreme load and wear conditions. The application potential of these bearings and the operating experience with them are discussed in this article.

  1. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  2. The effect of supercharging on performance and emission characteristics of C.I. Engine with diesel-ethanol-ester blends

    Directory of Open Access Journals (Sweden)

    Donepudi Jagadish

    2011-01-01

    Full Text Available Biofuels like ethanol, biodiesel, have attracted attention of people worldwide and proved to be the successful fuel alternates to petroleum products. In the present investigation, the effect of supercharging is studied on the performance of a direct injection diesel engine using ethanol diesel blends with palm stearin methyl ester as additive. The performance of the engine is evaluated in terms of brake specific fuel consumption, thermal efficiency, exhaust gas temperature, un-burnt hydrocarbons, carbon monoxide, nitrogen oxide emissions, and smoke opacity. The investigation results showed that the output and torque performance of the engine with supercharging was improved in comparison with naturally aspirated engine. It is observed that the brake thermal efficiency of ethanol diesel blends was higher than that of diesel. With supercharging brake thermal efficiency is further improved. Brake specific fuel consumption of ethanol, ester and diesel blends are lower compared with diesel at full load. Further reduction in brake specific fuel consumption is observed with supercharging. Nitrous oxide formation seems to decrease with ethanol, ester and diesel blends. Hydrocarbons and carbon monoxide emissions are more with ethanol, ester and diesel blends with supercharging slight reduction in those values are observed.

  3. An analysis of the performance benefits of short-term energy storage in wind-diesel hybrid power systems

    International Nuclear Information System (INIS)

    Shirazi, M.; Drouilhet, S.

    1996-01-01

    A variety of prototype high penetration wind-diesel hybrid power systems have been implemented with different amounts of energy storage. They range from systems with no energy storage to those with many hours worth of energy storage. There has been little consensus among wind-diesel system developers as to the appropriate role and amount of energy storage in such systems. Some researchers advocate providing only enough storage capacity to supply power during the time it takes the diesel genset to start. Others install large battery banks to allow the diesel(s) to operate at full load and/or to time-shift the availability of wind-generated electricity to match the demand. Prior studies indicate that for high penetration wind-diesel systems, short-term energy storage provides the largest operational and economic benefit. This study uses data collected in Deering, Alaska, a small diesel-powered village, and the hybrid systems modeling software Hybrid2 to determine the optimum amount of short-term storage for a particular high penetration wind-diesel system. These findings were then generalized by determining how wind penetration, turbulence intensity, and load variability affect the value of short term energy storage as measured in terms of fuel savings, total diesel run time, and the number of diesel starts

  4. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  5. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  6. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  7. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Directory of Open Access Journals (Sweden)

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  8. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  9. Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification

    OpenAIRE

    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J.

    2017-01-01

    Ships, in particular service vessels, need to reduce fuel consumption, emissions and cavitation noise while maintaining manoeuvrability and preventing engine overloading. Diesel mechanical propulsion with controllable pitch propellers can provide high fuel efficiency with good manoeuvrability. However, the conventional control strategy with fixed combinator curves limits control freedom in trading-off performance characteristics. In order to evaluate performance of current state-of-the-art an...

  10. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels

    International Nuclear Information System (INIS)

    Lee, Wen-Jhy; Liu, Yi-Cheng; Mwangi, Francis Kimani; Chen, Wei-Hsin; Lin, Sheng-Lun; Fukushima, Yasuhiro; Liao, Chao-Ning; Wang, Lin-Chi

    2011-01-01

    Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65-90%) diesel using (5-30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel-diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5-30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated -0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW -1 h -1 ) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8-6.0% for NO x , 12.6-23.7% particulate matter (PM), 20.4-23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8-42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability. -- Highlights: → Water-containing ethanol was mixed with diesel using biodiesel and butanol as stabilizer and co-solvent, respectively. → Fuel blends with 4 v% water-containing ethanol, 1 v% butanol, 5-30 v% biodiesel and conventional diesel yielded a stable blended fuel after more than 30 days. → Due to more complete combustion and water quench effect, target fuel BD1041 was gave good energy performance and significant reduction of PM, NO x , total PAH and total BaPeq emissions.

  11. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  12. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  13. An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

    OpenAIRE

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2016-01-01

    Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to provide the force necessary to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a substantial proportion of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of die...

  14. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    International Nuclear Information System (INIS)

    Sluder, C.S.

    2001-01-01

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO(sub 2)-to-sulfate conversion during these light-duty drive cycles

  15. Hydrodesulfurization device for diesel fuel

    International Nuclear Information System (INIS)

    Al Asadi, Nadija

    2004-01-01

    New gas oil hydrodesulfurization unit was erected in OKTA Refinery. This unit is meant to produce low sulfur diesel. Capacity of the unit s 363.000 tons. Actually unit is producing diesel fuel with sulfur content of 0.035% wt, with possibility of decreasing sulfur content up to 0.005% wt. With this possibility OKTA reaches the target to supply market with diesel fuel satisfying local, and European fuel specifications. Feedstock for this unit are two gas oil fractions from the Crude oil atmospheric distillation column. As a result of new generation of CoMo and NiMo catalysts performance, high degree of desulfurization is reached at lower temperatures. Milder conditions enables longer operating period between two regenerations, savings of fuel, power etc. With further investments, and practically without changes, the unit will be able of producing diesel with sulfur content of 50 ppm and later with upgrading, 10 ppm. This means that OKTA has solved diesel quality problem for longer period. (Author)

  16. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    Science.gov (United States)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  17. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  18. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  19. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  20. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    Science.gov (United States)

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  1. Determination of performance degradation of a marine diesel engine by using curve based approach

    International Nuclear Information System (INIS)

    Kökkülünk, Görkem; Parlak, Adnan; Erdem, Hasan Hüseyin

    2016-01-01

    Highlights: • Mathematical model was developed for a marine diesel engine. • Measurements were taken from Main Engine of M/V Ince Inebolu. • The model was validated for the marine diesel engine. • Curve Based Method was performed to evaluate the performance. • Degradation values of a marine diesel engine were found for power and SFC. - Abstract: Nowadays, energy efficiency measures on ships are the top priority topic for the maritime sector. One of the important key parameters of energy efficiency is to find the useful tool to improve the energy efficiency. There are two steps to improve the energy efficiency on ships: Measurement and Evaluation of performance of main fuel consumers. Performance evaluation is the method that evaluates how much the performance changes owing to engine component degradation which cause to reduce the performance due to wear, fouling, mechanical problems, etc. In this study, zero dimensional two zone combustion model is developed and validated for two stroke marine diesel engine (MITSUI MAN B&W 6S50MC). The measurements are taken from a real ship named M/V Ince Inebolu by the research team during the normal operation of the main engine in the region of the Marmara Sea. To evaluate the performance, “Curve based method” is used to calculate the total performance degradation. This total degradation is classified as parameters of compression pressure, injection timing, injection pressure, scavenge air temperature and scavenge air pressure by means of developed mathematical model. In conclusion, the total degradation of the applied ship is found as 620 kW by power and 26.74 g/kW h by specific fuel consumption.

  2. An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel

    International Nuclear Information System (INIS)

    Hassan-beygi, Seyed Reza; Istan, Vahideh; Ghobadian, Barat; Aboonajmi, Mohammad

    2013-01-01

    Highlights: • The performance of a diesel engine was evaluated using newly developed D-Series fuel. • The specifications of D-Series fuel were in the range of ASTM D-6751-09 standard. • The D-Series fuel did not change the engine power and torque significantly except the D 65 B 25 E 10 fuel blend. • The D-Series fuel blends increased the engine specific fuel consumption compare with neat-diesel fuel. • The D 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel. - Abstract: This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P 65 B 25 E 10 , 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D 86 B 10 E 4 and D 79 B 15 E 6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application

  3. Design and test of a 5 kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Pasel, Joachim; Janßen, Holger; Lehnert, Werner; Peters, Ralf; Stolten, Detlef

    2014-01-01

    Highlights: • A fuel cell system for application as auxiliary power unit was developed. • Key components were a high-temperature PEFC stack and an autothermal reformer. • The system was tested with GTL kerosene, BTL diesel and premium diesel fuel. • The target electrical power of 5 kW was achieved with all fuels used. • Self-sustaining system operation was demonstrated with the integrated system design. - Abstract: A high-temperature PEFC system, developed with the aim of delivering 5 kW electrical power from the chemical energy stored in diesel and kerosene fuels for application as an auxiliary power unit, was simulated and tested. The key components of the system were an autothermal reformer, a water–gas shift reactor, a catalytic burner, and the HT-PEFC stack. The targeted power level of 5 kW was achieved using different fuels, namely GTL kerosene, BTL diesel and premium diesel. Using an integrated system approach, operation without external heat input was demonstrated. The overall analysis showed slight but non-continuous performance loss for 250 h operation time

  4. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    Science.gov (United States)

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  5. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME produced through hydrodynamic cavitation process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2018-03-01

    Full Text Available In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency and exhaust emission (CO, CO2 and NOx were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v can be used in a diesel engine without modifications. Keywords: Performance, Emission, Diesel engine, Schleichera Oleosa Oil, Biodiesel hydrodynamic cavitation (HC

  6. Experimental study on the performance and emissions of a compression ignition engine fuelled with butanol diesel blends

    International Nuclear Information System (INIS)

    Maki, Duraid F.; Prabhakaran, P.

    2010-01-01

    An experimental investigation on the application of the blends of butanol with diesel to a direct injection diesel engine was carried out. Experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with butanol to replace conventional diesel as the fuel for diesel engine; the fuel consumption, brake efficiency, exhaust temperature, and volumetric efficiency of the engine fuelled by the blends were comparable with that fuelled by diesel. The characteristics of the emissions were also studied. CO, CO 2 , HC and NO X are measured and compared with the base fuel case when the conventional diesel is used alone. The results were different for different speeds, loads and blends. (author)

  7. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  8. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  9. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    International Nuclear Information System (INIS)

    Hernández, J.J.; Lapuerta, M.; Barba, J.

    2015-01-01

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NO x emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NO x emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  10. Characterization of size, number, concentration and morphology of particulate matter emitted from a high performance diesel combustion system using biomass derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Om Parkash; Krishnamurthy, Ketan; Kremer, Florian; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Berg, Angelika von; Roth, Georg [RWTH Aachen Univ. (Germany). Inst. of Crystallography; Lueers, Bernhard; Kolbeck, Andreas; Koerfer, Thomas [FEV GmbH, Aachen (Germany)

    2013-06-01

    Motor vehicle emissions have been identified as a major source of particulates. Although the low limits of particulate matter cause a need for a particulate trap in most of the present day diesel engines, the physical and chemical characterization of particles with the measures of size, number, volatility and reactivity etc. is of increasing interest with respect to the regeneration frequency and regeneration efficiency of a particulate trap. Within the Cluster of Excellence ''Tailor-Made Fuels from Biomass (TMFB)'' at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for future combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6 compliant High Efficiency Diesel Combustion System (HECS) with petroleum based diesel fuel as reference and today's biofuel (i.e. FAME) as well as a potential future biomass derived fuel candidate (i.e. 2-MTHF I DBE), being developed under TMFB approach. Soot samples collected on polycarbonate filters were analyzed using SEM; revealing vital informations regarding particle size distribution. Furthermore, thermophoretic sampling was also performed on copper grids and samples were analyzed using TEM to determine its graphitic micro-structure. In addition, X-Ray diffraction (XRD) measurements were also performed to get further quantitative information regarding crystal lattice parameters and structure of investigated soot. The results indicate more than 90% reduction in the mass and number concentrations of engine out particle emissions using future biomass derived fuel candidate. A good co-relation was observed between TEM micro-structure results and quantitative crystal lattice and structure information obtained from XRD studies, indicating higher reactivity for soot emitted from 2-MTHF/DBE. (orig.)

  11. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan

    2013-01-01

    Highlights: • The effects of gasoline fumigation on the engine performance and NO x emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NO x emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NO x emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NO x emission is lower than that of neat diesel fuel (NDF). NO x emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1

  12. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  13. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  14. Diesel engine performance and emission analysis using soybean ...

    African Journals Online (AJOL)

    Biodiesel presents a large potential for replacing other fossil-based fuels. Thus, the present work aimed to assess the specific fuel consumption (SFC), thermal efficiency and emissions of nitric oxide (NO) and nitrogen oxides (NOx), in a cycle diesel engine-generator set, using soybean biodiesel and diesel as fuels.

  15. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  16. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    M. Nadeem; C. Rangkuti; K. Anuar; M.R.U. Haq; I.B. Tan; S.S. Shah [Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia)

    2006-10-15

    Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine's performance. Emulsion fuels with varying contents of water and diesel were prepared and stabilized by conventional and gemini surfactant, respectively. Surfactant's dosage, emulsification time, stirring intensity, emulsifying temperature and mixing time have been reported. Diesel engine performance and exhaust emission was also measured and analyzed with these indigenously prepared emulsified fuels. The obtained experimental results indicate that the emulsions stabilized by gemini surfactant have much finer and better-distributed water droplets as compared to those stabilized by conventional surfactant. A comparative study involving torque, engine brake mean effective pressure (BMEP), specific fuel consumption (SFC), particulate matter (PM), NOx and CO emissions is also reported for neat diesel and emulsified formulations. It was found that there was an insignificant reduction in engine's efficiency but on the other hand there are significant benefits associated with the incorporation of water contents in diesel regarding environmental hazards. The biggest reduction in PM, NOx, CO and SOx emission was achieved by the emulsion stabilized by gemini surfactant containing 15% water contents. 34 refs., 11 figs., 1 tab.

  17. STEADY STATE PERFORMANCES ANALYSIS OF MODERN MARINE TWO-STROKE LOW SPEED DIESEL ENGINE USING MLP NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Ozren Bukovac

    2016-01-01

    Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.

  18. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    International Nuclear Information System (INIS)

    Qi, D.H.; Lee, C.F.; Jia, C.C.; Wang, P.P.; Wu, S.T.

    2014-01-01

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NO x ) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  19. Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel

    Directory of Open Access Journals (Sweden)

    Mohammed EL-Kasaby

    2013-06-01

    Full Text Available Jatropha-curcas as a non-edible methyl ester biodiesel fuel source is used to run single cylinder, variable compression ratio, and four-stroke diesel engine. Combustion characteristics as well as engine performance are measured for different biodiesel – diesel blends. It has been shown that B50 (50% of biodiesel in a mixture of biodiesel and diesel fuel gives the highest peak pressure at 1750 rpm, while B10 gives the highest peak pressure at low speed, 1000 rpm. B50 shows upper brake torque, while B0 shows the highest volumetric efficiency. B50 shows also, the highest BSFC by about (12.5–25% compared with diesel fuel. B10 gives the highest brake thermal efficiency. B50 to B30 show nearly the lowest CO concentration, besides CO concentration is the highest at both idle and high running speeds. Exhaust temperature and NOx are maximum for B50. Delay period is measured and correlated for different blends. Modified empirical formulae are obtained for each blend. The delay period is found to be decreased with the increase of cylinder pressure, temperature and equivalence ratio.

  20. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  1. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  2. Performance and Emission Analysis of a Diesel Engine Using Linseed Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    M. M. Tunio

    2018-06-01

    Full Text Available The core object of this study is to examine the suitability of linseeds for biodiesel production. The performance of an engine at different proportions of linseed blends with petro-diesel and the amount of emissions rate were investigated. Initially, linseed biodiesel was produced through transesterification process, and then it was mixed with petro-diesel fuel (D100 blends at volumetric ratios of 10% (LB10, 20% (LB20, and 30% (LB30. The properties of linseed biodiesel and its blends were investigated and compared with petro-diesel properties with reference to ASTM standards. It has been observed that the fuel properties of produced biodiesel are within ASTM permissible limits. The specific fuel consumption (SFC of LB10 blend has been found lesser compared to LB20 and LB30. SFC of D100 is slightly less than that of all the blends. The brake thermal efficiency (BTE of LB30 is greater than that of pure diesel D100 at maximum load and greater than that of LB10 and LB20. The heat dissipation rate in all linseed blends is found to have been less than that of D100. Carbon monoxide, carbon dioxide and NOx emissions of linseed blends are mostly lower in comparison with D100’s. Among all blends, LB10 was found more suitable alternative fuel for diesel engines and can be blended with petro diesel without engine modifications. It can be concluded that cultivation and production of linseed in Pakistan is very promising, therefore, it is recommended that proper exploitation and use of linseed for energy production may be encouraged through pertinent agencies of Pakistan.

  3. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  4. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  5. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  6. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  7. Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel

    International Nuclear Information System (INIS)

    Chen, Chia-Yang; Lee, Wen-Jhy; Wang, Lin-Chi; Chang, Yu-Cheng; Yang, Hsi-Hsien; Young, Li-Hao; Lu, Jau-Huai; Tsai, Ying I.; Cheng, Man-Ting; Mwangi, John Kennedy

    2017-01-01

    Highlights: • WCO-based biodiesel blends cannot stimulate POPs formation in uncatalyzed DPF. • Formation mechanism of POPs in diesel engines is homogeneous gas-phase formation. • The gas-phase POPs are highly dominant in the raw exhausts of diesel engines. • The regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. - Abstract: This study evaluated the impact on persistent organic pollutant (POP) emissions from a diesel engine when deploying a diesel oxidation catalyst (DOC) combined with an uncatalyzed diesel particulate filter (DPF), as well as fueling with conventional diesel (B2) and waste cooking oil-based (WCO-based) biodiesel blends (B10 and B20). When the engine was fueled with WCO-based biodiesel blends (B10 and B20) in combination with deploying DOC+A-DPF, their levels of the chlorine and potassium contents could not stimulate the formation of chlorinated POPs (PCDD/Fs and PCBs), although previous studies had warned that happened on diesel engines fueled with biodiesel and deployed with iron-catalyzed DPFs. In contrast, the WCO-based biodiesel with a lower aromatic content reduced the precursors for POP formation, and its higher oxygen content compared to diesel promoted more complete combustion, and thus using WCO-based biodiesel could reduce both PM_2_._5 and POP emissions from diesel engines. This study also evaluated the impact of DPF conditions on the POP emissions from a diesel engine; that is, the difference in POP emissions before and just after the regeneration of the DPF. In comparison to the high soot-loaded DPF scenario, the regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. An approach was developed to correct the effects of sampling artifacts on the partitioning of gas- and particle-phase POPs in the exhaust. The gas-phase POPs are highly dominant (89.7–100%) in the raw exhausts of diesel engines, indicating that the formation mechanism of POPs in diesel

  8. Experimental Analysis of DI Diesel Engine Performance with Blend Fuels of Oxygenated Additive and COME Biodiesel

    OpenAIRE

    P. Venkateswara Rao; B.V. Appa Rao; D. Radhakrishna

    2012-01-01

    An experimental investigation was carried out to evaluate the effect of using Triacetin (T) as an additive with biodiesel on direct injection diesel engine for performance and combustion characteristics. Normally in the usage of diesel fuel and neat biodiesel, knocking can be detected to some extent. By adding triacetin [C9H14O6] additive to biodiesel, this problem can be alleviated to some extent and the tail pipe emissions are reduced. Comparative study was conducted using petro-diesel, bio...

  9. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  10. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  11. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  12. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  13. 150 years of Rudolf Diesel; 150 Jahre Rudolf Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Basshuysen, R. van; Siebenpfeiffer, W. (eds.)

    2008-03-15

    'My engine is still making great progress', Rudolf Diesel wrote in a letter to his wife on 3 July 1895. The fact that Diesel's statement still holds true can be seen every day on our roads and at sea. But it is equally true that the idea of this eccentric and doubter who wanted to dedicate himself with an over-inflated self-belief to the welfare of humanity, needed a certain time to take a form that others could recognise in order to continuously refine this life's work. Diesel himself did not live to see most of the milestones that were repeatedly set thanks to his engine. It was not until 23 years after his unexplained death in 1913 that people were able to buy the first passenger car to be equipped with a diesel engine - with a top speed of 90 km/h. Today, diesel cars can easily reach speeds of up to 300 km/h, and even if there is little point in such excessive speeds outside racetracks like Le Mans, they are nevertheless clear evidence of the incredible evolution of the noisy, smoky truck engine to a high-tech racing power unit, from the ear-splitting rattle of the pre-chamber diesel to the highly refined, soot-free, common-rail diesel engine of today. The Publisher hopes you enjoy reading this unique progress report. (orig.)

  14. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  15. Wind diesel systems - design assessment and future potential

    DEFF Research Database (Denmark)

    Infield, D.G.; Scotney, A.; Lundsager, P.

    1992-01-01

    Diesels are the obvious form. of back-up electricity generation in small to medium sized wind systems. High wind penetrations pose significant technical problems for the system designer, ranging from component sizing to control specification and dynamic stability. A key role is seen for proven...... system models for assessing both dynamic characteristics and overall performance and economics. An introduction is provided to the Wind Diesel Engineering Design Toolkit currently under development (for implementation on PC) by a consortium of leading wind diesel experts, representing six European...

  16. Performance and emission characteristics of turpentine-diesel dual fuel engine and knock suppression using water diluents

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, R. [Adhiparasakthi Engineering College, Tamil Nadu (India); Mahalakshmi, N.V. [College of Engineering Guindy, Tamil Nadu (India). Dept. of Mechanical Engineering

    2007-08-15

    In the present work, a normal diesel engine was modified to work in a dual fuel (DF) mode with turpentine and diesel as primary and pilot fuels, respectively. The resulting homogeneous mixture was compressed to a temperature below the self-ignition point. The pilot fuel was injected through the standard injection system and initiated the combustion in the primary-fuel air mixture. The primary fuel (turpentine) has supplied most of the heat energy. Usually, in all DF engines, low-cetane fuels are preferred as a primary fuel. Therefore, at higher loads these fuels start knocking and deteriorating in performances. Usually, DF operators suppress the knock by adding more pilot-fuel quantity. But in the present work, a minimum pilot-fuel quantity was maintained constant throughout the test and a required quantity of diluent (water) was added into the combustion at the time of knocking. The advantages of this method of knock suppression are restoration of performance at full load, maintenance of the same pilot quantity through the load range and reduction in the fuel consumption at full load. From the results, it was found that all performance and emission parameters of turpentine, except volumetric efficiency, are better than those of diesel fuel. The emissions like CO, UBHC are higher than those of the diesel baseline (DBL) and around 40-45% reduction of smoke was observed at 100% of full load. The major pollutant of diesel engine, NO{sub x}, was found to be equal to that of DBL. From the above experiment, it was proved that approximately 80% replacement of diesel with turpentine is quite possible. (author)

  17. THE EFFECTS OF INCREASE THE COMPRESSION RATIO ON PERFORMANCE OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adnan PARLAK

    2003-02-01

    Full Text Available An optimisation of the Diesel cycle has been performed for power output and thermal efficiency with respect to compression ratio for various extreme temperature ratio. The relation between compression ratio and extreme temperature ratio, which gives optimum performance is derived. As the compression ratio of the diesel engine is increased in comparison to the optimum value of the engine, it is shown that the performance of the engine is decreased. The experimental study agrees with these results. In this study, compression ratio of a single cylinder pre-combustion chamber variable compression ratio Ricardo E6 type engine with the optimum compression ratio of 18.20 was increased to 19.60. As a results of this increase, specific fuel consumption was increased about 8 % and brake thermal efficiency was decreased about 7.5 %.

  18. Investigation on the Nonlinear Control System of High-Pressure Common Rail (HPCR) System in a Diesel Engine

    Science.gov (United States)

    Cai, Le; Mao, Xiaobing; Ma, Zhexuan

    2018-02-01

    This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  19. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  20. Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► The oxygenated biodiesel has a lower calorific value and emits higher NO X than diesel. ► The objective is to study the water in palm oil biodiesel emulsion in a diesel engine. ► The tests are performed at higher compression ratio and retarded injection timing. ► The results obtained are compared with a POME run diesel engine. ► Higher efficiency, lower ignition delay and emissions are the outcomes. - Abstract: The popularity of emulsified fuels as alternative to diesel is cumulative. The water in diesel emulsion is the most practiced one. The presence of water in emulsion and its micro-explosion reduces emissions. However, the emulsified biodiesel is not properly explored. The reason may be due to its lesser calorific value that does not augment efficiency. Alongside oxygenated biodiesel generally emits higher NO X than diesel. Therefore, the present investigation targets at finding the performance, combustion and emission characteristics of emulsified biodiesel in a diesel engine at an elevated compression ratio (CR) and retarded injection timing (IT). This is because; at this CR–IT combination emulsified fuel will be injected at the warmer environment, mechanically created inside the cylinder. The objective is to achieve a faster combustion, lower ignition delay (ID), improved performance and emission characteristics. The biodiesel used in this work is the palm oil methyl ester (POME). The prepared two-phase water in POME (WIP) emulsion is tested in a variable compression ratio (VCR) diesel engine at CR = 18 and IT = 20°BTDC. The results obtained are then compared with the POME run engine data under the same CR and IT specifications. Additionally, experiments have also been conducted in the same engine at CR = 17.5 and IT = 23°BTDC to compare its results with those of WIP and POME run engines

  1. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R; Normen, E; Hellen, G [Wartsila Diesel International Ltd Oy, Vaasa (Finland); and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  2. Performance of cycle diesel engine using Biodiesel of olive oil (B100 Desempenho de motor diesel quatro tempos alimentado com biodiesel de óleo de oliva (B100

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Silva Volpato

    2012-06-01

    Full Text Available Biodiesel is a renewable fuel derived from vegetable oils used in diesel engines, in any proportion with petroleum diesel, or pure. It is produced by chemical processes, usually by transesterification, in which the glycerin is removed. The objective of this study was to compare the performance of a four stroke, four cylinder diesel cycle engines using either olive (B100 biodiesel oil or diesel oil. The following parameters were analyzed: effective and reduced power, torque, specific and hourly fuel consumption, thermo-mechanical and volumetric efficiency. Analysis of variance was performed on a completely randomized design with treatments in factorial and the Tukey test applied at the level of 5%. Five rotation speeds were researched in four replications (650, 570, 490, 410, 320 and 240 rpm. The engine fed with biodiesel presented more satisfactory results for torque, reduced power and specific and hourly consumptions than that fed with fossil diesel.Biodiesel é um combustível renovável derivado de óleos vegetais, usado em motores de ciclo diesel, em qualquer proporção com o diesel mineral, ou puro. É produzido por meio de processos químicos, normalmente por transesterificação, no qual é removida a glicerina. Este trabalho foi realizado com o objetivo de avaliar o desempenho de um motor de ciclo diesel quatro tempos e quatro cilindros, utilizando biodiesel de óleo de oliva (B100, em comparação ao óleo diesel. Foram analisados os parâmetros: potência efetiva e reduzida, torque, consumo específico e energético de combustível, eficiência termomecânica e volumétrica. Foi instalado um ensaio com delineamento inteiramente casualizado (DIC em esquema fatorial, realizada análise de variância e aplicado teste de Tukey, a 5%. Foram pesquisados cinco níveis de rotação em quatro repetições (650, 570, 490, 410, 320 e 240 rpm. O motor alimentado com biodiesel de oliva apresentou torque, potencia reduzida e consumos especifico e

  3. Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel

    International Nuclear Information System (INIS)

    Bueno, Andre Valente; Velasquez, Jose Antonio; Milanez, Luiz Fernando

    2011-01-01

    The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.

  4. Combustion of n-butanol/diesel mixtures in prechamber diesel engines. Die Verbrennung von n-Butanol-Dieselkraftstoff-Gemischen im Vorkammer-Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, E

    1989-01-01

    Systematic tests showed that n-butane was the most promising diesel fuel substitute. Mixtures of n-butanol and diesel fuel were tested on an engine test bench, and the performance was compared with commercial diesel fuels. Pollutant concentrations in the exhaust (soot, particulates, and NO/sub x/) were lower than with unmixed diesel fuel, while the engine performance remained more or less constant. In the problematic operating ranges, partial thermal insulation of the combustion chamber improved the performance of the n-butanol/diesel fuel mixture. (orig.) With 60 figs.

  5. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  6. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  7. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  8. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  9. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    Science.gov (United States)

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  10. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  11. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats

    Science.gov (United States)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.

    2011-05-01

    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  12. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere

    2017-06-01

    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  13. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  14. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo

    2013-01-01

    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  15. Exhaust emissions evaluation of Colombian commercial diesel fuels

    International Nuclear Information System (INIS)

    Torres, Jaime; Bello, Arcesio; Sarmiento, Jose; Rostkowski, Jacek; Brady, Jeremy

    2003-01-01

    Ecopetrol, based on the results obtained in the study, The effect of diesel properties on the emissions of particulate matter (Bello et al 2000), reformulated the diesel fuel distributed in Bogota, becoming it lighter and with lower sulfur content. In order to evaluate the environmental benefits that the reformulation of diesel fuel generate in Bogota, Instituto Colombiano del Petroleo (ICP), with the assistance of emissions research and measurement division (ERMD) from environment Canada, arranged a research project to determine the changes in CO, THC, NO x , CO 2 and particulate matter emissions. The research program was developed in two steps. First one, developed in Bogota, involved a fleet test with 15 public service buses that normally operate in Bogota's savannah, using a portable emissions sampling technology developed for ERMD (DOES2) and following a representative transient driving cycle. Second step, carried out in ERMD's Heavy-Duty engine emissions laboratory in Ottawa, tested a 1995 caterpillar 3406E 324/5 KW (435 HP) diesel truck engine on the same samples of Colombian diesel fuels used in the fleet tests performed in Bogota, baselining the tests with a Canadian commercial low sulfur diesel fuel. The two commercial Colombian diesel fuels used had the following properties: High Sulfur Diesel (HSD), with 3000 ppm (0,3 wt %) of sulfur and a final boiling point (FBP) of 633 K and the new reformulated diesel fuel, with 1000 ppm (0,1 wt %) of sulfur and FBP of 613 K, which is currently been distributed in Bogota. Fleet test show small reduction on CO, THC and TPM, and small increments on CO 2 and NO x but with not statistically significant results, while engine testing shows a strong reduction of 40/8% in TPM when you use the new reformulated diesel fuel (0,1 wt % of sulfur) instead of high sulfur diesel

  16. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  17. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, Talal

    2014-01-01

    Biodiesel is a recognized replacement for diesel fuel in compressed ignition engines due to its significant environmental benefits. The purpose of this study is to investigate the engine performance and emissions produced from Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in compressed ignition engine. The biodiesel production process and properties are discussed and a comparison of the three biodiesels as well as diesel fuel is undertaken. After that, engine performance and emissions testing was conducted using biodiesel blends 10%, 20%, 30% and 50% in a diesel engine at full throttle load. The engine performance shows that those biodiesel blends are suitable for use in diesel engines. A 10% biodiesel blend shows the best engine performance in terms of engine torque, engine power, fuel consumption and brake thermal efficiency among the all blending ratios for the three biodiesel blends. Biodiesel blends have also shown a significant reduction in CO 2 , CO and smoke opacity with a slight increase in NO x emissions. - Highlights: • The properties of JCME, CPME and CIME fulfill ASTM standard. • Engine performance and emission was conducted for JCME, CPME and CIME. • The B10 is the best engine performance and reduce in exhaust emission

  18. Performance of diesel engine fuelled with sunflower biodiesel blends; Desempenho de motor diesel com misturas de biodiesel de oleo de girassol

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Ila Maria; Maziero, Jose Valdemar Gonzalez; Bernardi, Jose Augusto; Storino, Moises [Instituto Agronomico de Campinas (CEA/IAC), SP (Brazil). Centro de Engenharia e Automacao; Ungaro, Maria Regina [Instituto Agronomico de Campinas (IAC), SP (Brazil). Centro de Graos e Fibras

    2006-07-01

    The aim of this paper was to evaluate the use of sunflower bio diesel blends in a CI engine, direct injection. The test procedure was done in a dynamometer bench had been determined the performance of engine through power take-off (PTO) with use of diesel and sunflower bio diesel blends (B5, B10, B20 and B100). The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kw; 271 g/kw.h); B5 (40,3 kw; 271 g/kw.h); B10 (39,8 kw; 277 g/kw.h); B20 (40,0 kw; 277 g/kw.h) e B100 (39,8 kw; 291 g/kw.h). It was conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analyze of lubricating oil showed that the viscosity, water content and level of iron were the parameters more affected, although it had been acceptable. (author)

  19. CFD simulations of the diesel jet primary atomization from a multihole injector

    OpenAIRE

    Chasos, Charalambos

    2017-01-01

    [EN] High pressure multi-hole diesel injectors are currently used in direct-injection common-rail diesel engines for the improvement of fuel injection and air/fuel mixing, and the overall engine performance. The resulting spray injection characteristics are dictated by the injector geometry and the injection conditions, as well as the ambient conditions into which the liquid is injected. The main objective of the present study was to design a high pressure multi-hole diesel inject...

  20. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  1. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  2. Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid

    International Nuclear Information System (INIS)

    Zhao, Yingru; Chen, Jincan

    2007-01-01

    An irreversible cycle model of the Diesel heat engine is established in which the temperature dependent heat capacities of the working fluid, the irreversibilities resulting from non-isentropic compression and expansion processes and heat leak losses through the cylinder wall are taken into account. The adiabatic equation of ideal gases with temperature dependent heat capacity is strictly deduced without using the additional approximation condition in the relevant literature and is used to analyze the performance of the Diesel heat engine. Expressions for the work output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the Diesel heat engine are presented for a set of given parameters. The optimum criteria of some important parameters such as the work output, efficiency, pressure ratio and temperatures of the working fluid are obtained. Moreover, the influence of the compression and expansion efficiencies, variable heat capacities, heat leak and other parameters on the performance of the cycle is discussed in detail. The results obtained may provide a theoretical basis for both optimal design and operation of real Diesel heat engines

  3. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  4. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  5. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  6. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  7. High quality diesel fuels by VO-LSGO hydrotreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stanica-Ezeanu, Dorin; Juganaru, Traian [Petroleum and Gas Univ. of Ploiesti (Romania)

    2013-06-01

    The aim of the paper is to obtain a high quality Diesel fuel by hydro-deoxigenation of vegetable oils (VO) mixed with a low sulfur gasoil (LSGO). The process is possible by using a bi-functional catalyst Ni-Mo supported by an activated Al{sub 2}O{sub 3} containing 2% Ultrastable Y-zeolite. The experimental conditions were: T =340 - 380 C, Pressure = 50 bar, LHSV = 1,5 h{sup -1}, H{sub 2}/Feed ratio = 15 mole H{sub 2} /mole liquid feed. The liquid product was separated in two fractions: a light distillate (similar to gasoline) and a heavy distillate (boiling point > 200 C) with very good characteristics for Diesel engines. The reaction chemistry is very complex, but the de-oxygenation process is decisive for the chemical structure of hydrocarbons from final product. Finally, a schema for the reaction mechanism is proposed. (orig.)

  8. An experimental study on the effect of using gas-to-liquid (GTL fuel on diesel engine performance and emissions

    Directory of Open Access Journals (Sweden)

    M.A. Bassiony

    2016-09-01

    Full Text Available Gas to Liquid (GTL fuel is considered one of the most propitious clean alternative fuels for the diesel engines. The aim of this study was to experimentally compare the performance and emissions of a diesel engine fueled by GTL fuel, diesel, and a blend of GTL and diesel fuels with a mixing ratio of 1:1 by volume (G50 at various engine load and speed conditions. Although using the GTL and G50 fuels decreased slightly the engine maximum power compared to the diesel fuel, both the engine brake thermal efficiency and engine brake specific fuel consumption were improved. In addition, using the GTL and G50 fuels as alternatives to the diesel resulted in a significant decrease in engine CO, NOx, and SO2 emissions.

  9. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure

    International Nuclear Information System (INIS)

    Wang Xiangang; Huang Zuohua; Kuti, Olawole Abiola; Zhang Wu; Nishida, Keiya

    2010-01-01

    Spray characteristics of biodiesels (from palm and cooked oil) and diesel under ultra-high injection pressures up to 300 MPa were studied experimentally and analytically. Injection delay, spray penetration, spray angle, spray projected area and spray volume were measured in a spray vessel using a high speed video camera. Air entrainment and atomization characteristics were analyzed with the quasi-steady jet theory and an atomization model respectively. The study shows that biodiesels give longer injection delay and spray tip penetration. Spray angle, projected area and volume of biodiesels are smaller than those of diesel fuel. The approximately linear relationship of non-dimensional spray tip penetration versus time suggests that the behavior of biodiesel and diesel sprays is similar to that of gaseous turbulent jets. Calculation from the quasi-steady jet theory shows that the air entrainment of palm oil is worse than that of diesel, while the cooked oil and diesel present comparable air entrainment characteristics. The estimation on spray droplet size shows that biodiesels generate larger Sauter mean diameter due to higher viscosity and surface tension.

  10. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  11. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  12. The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Mažeika, Marius

    2014-01-01

    Highlights: • Ethanol–diesel–biodiesel blends were tested at the same air–fuel ratios and three ranges of speed. • The fuel oxygen mass content reflects changes in the autoignition delay more predictably than the cetane number does. • Using of composite blend E15B suggests the brake thermal efficiency the same as the normal diesel fuel. • Adding of ethanol to diesel fuel reduces the NO x emission for richer air–fuel mixtures at all engine speeds. • The ethanol effect on CO, HC emissions and smoke opacity depends on the air–fuel ratio and engine speed. - Abstract: The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on start of injection, autoignition delay, combustion and maximum heat release rate, engine performance efficiency and emissions of the exhaust when operating over a wide range of loads and speeds. The test results were analysed and compared with a base diesel engine running at the same air–fuel ratios of λ = 5.5, 3.0 and 1.5 corresponding to light, medium and high loads. The same air–fuel ratios predict that the energy content delivered per each engine cycle will be almost the same for various ethanol–diesel–biodiesel blends that eliminate some side effects and improve analyses of the test results. A new approach revealed an important role of the fuel bound oxygen, which reflects changes of the autoignition delay more predictably than the cetane number does. The influence of the fuel oxygen on maximum heat release rate, maximum combustion pressure, NO x , CO emissions and smoke opacity

  13. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  14. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    Science.gov (United States)

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    International Nuclear Information System (INIS)

    Saravanan, N.; Nagarajan, G.

    2010-01-01

    Automobiles are one of the major sources of air pollution in the environment. In addition CO 2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 o crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 o CA before gas exchange top dead centre (BGTDC) with injection duration of 30 o CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO X emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO 2 ) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen

  16. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India)

    2010-07-15

    Automobiles are one of the major sources of air pollution in the environment. In addition CO{sub 2} emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 CA before gas exchange top dead centre (BGTDC) with injection duration of 30 CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO{sub X} emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO{sub 2}) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of

  17. Effect of a sustainable biofuel – n-octanol – on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Anish, V.; Nagendran, A.

    2016-01-01

    Highlights: • It is possible to operate a DI diesel engine with up to 30% n-octanol/diesel blends without modifications. • Addition of n-octanol prolonged the ignition delay, generated higher peaks of pressure and heat release rates. • Simultaneous reduction of NOx and smoke is possible under both naturally-aspirated and EGR conditions. • Engine performance improved with n-octanol addition. • HC and CO emissions decreased favorably with n-octanol addition. - Abstract: Higher alcohols above n-butanol can be excellent alternative fuels for diesel engines owing to their high energy content and high cetane number. The last three years has witnessed an advent of several sustainable pathways for n-octanol bio-synthesis using engineered-microbes like Escherichia coli and Clostridium species. Therefore an investigation to evaluate the compatibility of n-octanol in diesel engines becomes essential. The influence of blending n-octanol by up to 30 vol% with fossil diesel on combustion, performance and emission characteristics of a single cylinder direct-injection (DI) diesel engine under both naturally aspirated and exhaust gas recirculation (EGR) modes was investigated with reference to diesel. Results showed that n-octanol prolonged the ignition delay generating higher peaks of in-cylinder pressure and heat release rates (HRR) during the pre-mixed combustion phase. Brake thermal efficiency (BTE) increased while brake specific fuel consumption (BSFC) decreased with an increase in n-octanol fraction. Smoke, NOx (nitrogen oxides), HC (hydro-carbons) and CO (carbon monoxide) emissions decreased with n-octanol addition. NOx and smoke emissions also remained low at all EGR rates. Both BTE and BSFC suffered at increased EGR rates. HC and CO emissions increased with escalating EGR rates. n-Octanol was found to be very promising for replacing fossil-diesel by up to 30% (subject to long term durability tests), in terms of emissions and performance at both naturally

  18. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    Science.gov (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  19. Effect of intake swirl on the performance of single cylinder direct injection diesel engine

    Science.gov (United States)

    Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra

    2017-11-01

    In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.

  20. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  1. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell

    NARCIS (Netherlands)

    Bougie, H.J.T.; Tulej, M.; Dreier, T.; Dam, N.J.; Meulen, J.J. ter; Gerber, T.

    2005-01-01

    We report on spatially and temporally resolved optical diagnostic measurements of propagation and combustion of diesel sprays introduced through a single-hole fuel injector into a constant volume, high-temperature, high-pressure cell. From shadowgraphy images in non-reacting environments of pure

  2. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE)

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri

    2017-01-01

    Highlights: • Performance of a diesel engine is simulated by finite time thermodynamics. • Effect of steam injection on performance of a Miller cycle engine is examined. • Model results are verified with the experimental data with less than 7% error. - Abstract: In this study, application of the steam injection method (SIM), Miller cycle (MC) and turbo charging (TC) techniques into a four stroke, direct-injection diesel engine has been numerically and empirically conducted. NOx emissions have detrimental influences on the environment and living beings. They are formed at the high temperatures, thus the Diesel engines are serious NOx generation sources since they have higher compression ratios and higher combustion temperatures. The international regulations have decreased the emission limits due to environmental reasons. The Miller cycle (MC) application and steam injection method (SIM) have been popular to abate NOx produced from the internal combustion engines (ICEs), in the recent years. However, the MC application can cause a reduction in power output. The most known technique which maximizes the engine power and abates exhaust emissions is TC. Therefore, if these three techniques are combined, the power loss can be tolerated and pollutant emissions can be minimized. While the application of the MC and SIM causes to diminish in the brake power and brake thermal efficiency of the engine up to 6.5% and 10%, the TC increases the brake power and brake thermal efficiency of the engine up to 18% and 12%. The experimental and theoretical results have been compared in terms of the torque, the specific fuel consumption (SFC), the brake power and the brake thermal efficiency. The results acquired from theoretical modeling have been validated with empirical data with less than 7% maximum error. The results showed that developed combination can increase the engine performance and the method can be easily applied to the Diesel engines.

  3. Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil Adam

    2018-06-01

    Full Text Available In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel source from rubber seed oil (RSO is explored. However, a mixture with a high saturation content feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB or palm biodiesel (PB and varying percentage mixtures of these two feedstock oils biodiesel (RPB were evaluated on combustion performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP of 1.18–2.97% and lower brake specific fuel consumption (BSFC of 0.85–3.69%, smoke opacity (11.89–14.19%, carbon monoxide (CO of 2.48–6.93%, hydrocarbon (HC of 2.36–9.34%, and Nitrogen oxide (NO emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR of RPB blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion angles (SOC of RB and RPB blends were from −13 to −15 °C and from −13.2 to −15.6 crank angle degree (°CA before top dead center (BTDC, but the combustion delays were 6–8 °C and 5.4–7.8 °C shorter when compared to diesel fuel which were −10 °C BTDC and 11 °C, respectively. It can be concluded that RPB blends showed better performance and emissions over the individual rubber seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

  4. Operational performance of agricultural tractor in function of interior and metropolitano diesel mixture in mamona biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Tabile, Rubens Andre [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Lopes, Afonso; Toledo, Anderson de; Reis, Gustavo Naves dos; Silva, Rouverson Pereira da [Universidade Estadual Paulista (DER/UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural

    2008-07-01

    The great demand for energy sources by production systems allied to scarcity of fossil fuels has motivated the development and production of biodiesel, this is a fuel produced from renewable sources. Given that, the objective of this study was to compare the operating performance of an agricultural tractor, operating with interior and metropolitano diesel mixed to mamona biodiesel, in seven proportions. The tests were conducted in the Departamento de Engenharia Rural of UNESP/Jaboticabal - SP. The results showed that the kind of diesel did influence fuel consumption, and diesel metropolitano showed best quality. It was also observed that as biodiesel proportion increased, fuel consumption increased as well. (author)

  5. Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Teoh, Y.H.; How, H.G.

    2016-01-01

    Highlights: • The fuel properties of higher alcohol blended biodiesel were improved. • Higher alcohol shows remarkable increase in the BP, BTE and decrease the BSFC. • Alcohols mixed with biodiesel diminishes HC, CO and smoke significantly. • CO 2 emissions of pentanol blended fuel decreases at maximum speed. • Higher alcohol blended biodiesel showed improved combustion. - Abstract: Pentanol is a long-chain alcohol with five carbons in its molecular structure and is produced from renewable feedstock, which may help to improve the challenging problems of energy security and environmental issues. In this investigation, the performance, emission, and combustion characteristics of a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine were evaluated by using 10%, 15%, and 20% pentanol and Calophyllum inophyllum (CI) biodiesel blends in diesel under different speed conditions. The fuel properties of the blended fuels were measured and compared. Combustion attributes, such as cylinder pressure and heat-release rate, were also analyzed. Results indicated that increasing the proportion of pentanol in biodiesel blends improved the fuel properties compared with 20% blend of CI biodiesel (CI 20). The modified blends of pentanol showed reduced brake-specific fuel consumption with higher brake thermal efficiency and brake power than CI 20. Although the modified test blends showed a slightly higher nitric oxide emission, the carbon monoxide emission and unburned hydrocarbon emission for 15% and 20% blends of pentanol showed even better reduction than CI 20. Smoke emission was also reduced significantly. The carbon dioxide emission of the test blends were reduced at the maximum speed condition compared to CI 20. In terms of combustion, the modified test fuels exhibited a significant improvement, thus indicating better performance and emission. This study concluded that the 15% and 20% blends of biodiesel, diesel, and pentanol can optimize engine

  6. Desempeño y emisiones de un motor de combustión interna con combustible dual Diesel – Gas natural ;Performance and emissions study of an internal combustion engine with dual fuel diesel - natural gas

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2015-04-01

    Full Text Available Muchos de los problemas reportados para los sistemas duales diesel- gas natural ocurren por mala dosificación del gas. Por esta razón se adaptó un sistema de alimentación dual con inyección electrónica de gas natural a un motor de combustión interna encendido por compresión. Se plantea un diseño experimental controlando el dosado de gas natural.Como resultado se obtiene un análisis comparativo entre los valoresde desempeño y emisiones desde la operación Diesel y Diesel-Gas natural. A partir de este análisis es posible observar que el desempeño del motor no se ve afectado por la operación del motor bajo el esquema Dual Diesel-GN, es decir que el motor funcionando bajo modo dual puede sostener las cargas solicitadas al motor. También se observa que la eficiencia volumétrica mejora bajo todas las condiciones de operación dual y las emisiones son mejores sólo cuando el motor trabaja a altas cargas. Many of the problems reported for dual diesel-natural gas systems occur due to poor gas dosage. For this reason a natural gas electronic injection feeding system was adapted to a compression ignitios internal combustion engine. An experimental design controlling the natural gas dosage is considered. As a result a comparative analysis between performance and emissions from the Diesel-and diesel-Natural Gas operation is obtained. From this analysis it is possible to see that engine performance is not affected by operation of the engine under the dual mode, i.e. the motor running under dual mode can support the loads applied to the engine. It is also observed that the volumetric efficiency improves under all conditions of operation and emissions from the dual mode of operation are better only when working at high engine loads.

  7. Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner

    Science.gov (United States)

    Afify, E. M.; Roberts, W. L.

    1999-01-01

    This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.

  8. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. PERFORMANCE AND EMISSIONS OF A HEAVY DUTY DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL AND PREMIUM DIESEL

    Directory of Open Access Journals (Sweden)

    HELMER ACEVEDO

    2011-01-01

    Full Text Available Biodiesel es promocionado como combustible alternativo para sustituir combustibles de origen fósil y reducir emisiones de carbono. Algunos estudios han sido llevados a cabo para estudiar las emisiones de vehículos diesel de baja potencia. Sin embargo, las emisiones sólidas y gaseosas emitidas por vehículos de trabajo operados con biodiesel de palma africana y diesel de bajo contenido de azufre (~ 15 ppm han sido poco estudiadas. El objetivo de este estudio fue determinar el desempeño y emisiones de un motor Diesel Cummins, 4 tiempos, 9.5 litros, 6 cilindros con sistema de inyección "common rail", y sistema de recirculación de gases. El motor desarrolló una menor potencia (10 % cuando fue operado con biodiesel de palma africana. El motor cumplió con la norma ambiental 2004 cuando fue operado con combustible diesel, sin embargo, con biodiesel de palma africana las emisiones de material particulado y los óxidos de nitrógeno estuvieron fuera de norma.

  10. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  11. The diesel challenge

    International Nuclear Information System (INIS)

    Tobin, Geoff

    1997-01-01

    This article is focused on the challenges being faced by the diesel producer and these include a number of interesting developments which illustrate the highly competitive world of the European refiner. These include: The tightening quality requirements being legislated coupled with the availability of the ''city diesel'' from Scandinavia and elsewhere which is already being sold into the market. For a time there will be a clear means of product differentiation. One of the key questions is whether the consumer will value the quality difference; a growing demand for diesel which is outstripping the growth in gasoline demand and causing refiners headaches when it comes to balancing their supply/demand barrels; the emergence of alternative fuels which are challenging the traditional markets of the refiner and in particular, the niche markets for the higher quality diesel fuels. All of this at a time of poor margins and over-capacity in the industry with further major challenges ahead such as fuel oil disposal, tighter environmental standards and the likelihood of heavier, higher sulphur crude oils in the future. Clearly, in such a difficult and highly-competitive business environment it will be important to find low-cost solutions to the challenges of the diesel quality changes. An innovative approach will be required to identify the cheapest and best route to enable the manufacture of the new quality diesel. (Author)

  12. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  13. Comparative study of different exhaust heat exchangers effect on the performance and exergy analysis of a diesel engine

    NARCIS (Netherlands)

    Hatami, M.; Boot, M.D.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, the effect of three designed heat exchangers on the performance of an OM314 diesel engine and its exergy balance is investigated. Vortex generator heat exchanger (HEX), optimized finned-tube HEX and non-optimized HEX are considered and mounted on the exhaust of diesel engine.

  14. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    International Nuclear Information System (INIS)

    Bari, S.; Lim, T.H.; Yu, C.W.

    2002-01-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  15. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  16. Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines

    International Nuclear Information System (INIS)

    Aydin, Hüseyin

    2013-01-01

    The possibility of using pure vegetable oils in a thermally insulated diesel engine has been experimentally investigated. Initially, the standard diesel fuel was tested in the engine, as base experiment for comparison. Then the engine was thermally insulated by coating some parts of it, such as piston, exhaust and intake valves surfaces with zirconium oxide (ZrO 2 ). The main purpose of engine coating was to reduce heat rejection from the walls of combustion chamber and to increase thermal efficiency and thus to increase performance of the engine that using vegetable oil blends. Another aim of the study was to improve the usability of pure vegetable oils in diesel engines without performing any fuel treatments such as pyrolysis, emulsification and transesterification. Pure inedible cottonseed oil and sunflower oil were blended with diesel fuel. Blends and diesel fuel were then tested in the coated diesel engine. Experimental results proved that the main purpose of this study was achieved as the engine performance parameters such as power and torque were increased with simultaneous decrease in fuel consumption (bsfc). Furthermore, exhaust emission parameters such as CO, HC, and Smoke opacity were decreased. Also, sunflower oil blends presented better performance and emission parameters than cottonseed oil blends. -- Highlights: ► Usability of two different vegetable oils in a coated diesel engine was experimentally investigated. ► A diesel engine was coated with ZrO 2 layer to make the combustion chamber insulated. ► Test results showed significant improvements in performance parameters. ► While only minor reductions were observed in emissions with coated engine operation

  17. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  18. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  19. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  20. An experimental investigation of performance of diesel to CNG engine

    Science.gov (United States)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  1. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  2. Performance and emissions of a heavy-duty diesel/LPG dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, Paul [Sasol Technology, Cape Town (South Africa)

    2013-06-01

    This paper describes an investigation into the combustion characteristics and exhaust emissions of a heavy-duty truck engine which has been equipped with an aftermarket conversion kit to enable operation as a diesel/LPG (Liquefied Petroleum Gas) dual fuel engine. During operation diesel fuel is displaced by LPG which is vaporised and metered into the inlet manifold by means of solenoid injectors. It was found that, as the LPG fuelling rate is increased, the cylinder pressure rise rates and peak cylinder pressures increase, as do the carbon monoxide and unburned hydrocarbon emissions. At higher loads it was found that the LPG autoignites independently of the diesel fuel, resulting in very high rates of cylinder pressure rise. Particulate and nitrogen oxide emissions remain largely unchanged, and carbon dioxide emissions are reduced due to the lower carbon content of the LPG fuel. Different LPG compositions were also investigated and it was found that the LPG properties that have the most significant effect on combustion and emissions were the autoignition and volatility characteristics. (orig.)

  3. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  4. Diesel exhaust controls and aftertreatment

    Energy Technology Data Exchange (ETDEWEB)

    Rubeli, B. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    This presentation discussed the safe use of diesel fuels in underground mines, with particular reference to advanced technology engines and system technology options for mines. The use of diesel fuels underground requires well designed diesel engines with an effective preventive maintenance programs utilizing diesel emissions testing. The mines must have a well-engineered ventilation system and an adequate air quality monitoring system. An outline of diesel pollutant formation was included in the presentation. Diesel emission control technologies can address localized air quality problems and control emissions at the source. This presentation summarized the best available diesel emission control technologies for underground mines, namely diesel oxidation catalysts (DOC); diesel particulate filters (DPF); active diesel particulate filters (A-DPF); selective catalytic reduction (SCR); water scrubbers; and fume diluters. An emissions control plan using aftertreatment technology should target the vehicles that are the biggest contributors to diesel exhaust. Low sulphur fuel is a prerequisite for most emission control technologies. The successful control of emissions requires knowledge of the high emitting vehicle groups; an integrated ventilation and emission control technology application plan; ambient and tailpipe emissions testing; and training of operators and mechanics. tabs., figs.

  5. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  6. An enhanced data visualization method for diesel engine malfunction classification using multi-sensor signals.

    Science.gov (United States)

    Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan

    2015-10-21

    The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  7. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  8. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  9. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    Various solutions have been proposed for improving the combustion process of conventional diesel engines and reducing the exhaust emissions without making serious modifications on the engine, one of which is the use of natural gas as a supplement for the conventional diesel fuel, the so called dual fuel natural gas diesel engines. The most common type of these is referred to as the pilot ignited natural gas diesel engine (PINGDE). Here, the primary fuel is natural gas that controls the engine power output, while the pilot diesel fuel injected near the end of the compression stroke auto-ignites and creates ignition sources for the surrounding gaseous fuel mixture to be burned. Previous research studies have shown that the main disadvantage of this dual fuel combustion is its negative impact on engine efficiency compared to the normal diesel operation, while carbon monoxide emissions are also increased. The pilot diesel fuel quantity and injection advance influence significantly the combustion mechanism. Then, in order to examine the effect of these two parameters on the performance and emissions, a comprehensive two-zone phenomenological model is employed and applied on a high-speed, pilot ignited, natural gas diesel engine located at the authors' laboratory. According to the results, the simultaneously increase of the pilot fuel quantity accompanied with an increase of its injection timing results to an improvement of the engine efficiency (increase) and of the emitted CO emissions (decrease) while it has a negative effect (increase) of NO emissions

  10. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    Science.gov (United States)

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  11. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  12. Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Mohan, Balaji; An, Hui; Zhou, Dezhi; Yu, Wenbin

    2016-01-01

    Highlights: • An approach is used to develop a robust kerosene–diesel reaction mechanism. • Ignition delay of the kerosene sub-mechanism is well validated with experiments. • The kerosene sub-mechanism reproduces the flame lift-off lengths of Jet-A reasonably well. • The kerosene sub-mechanism performs reasonably well under engine conditions. - Abstract: The use of kerosene fuels in internal combustion engines is getting more widespread. The North Atlantic Treaty Organization military is pushing for the use of a single fuel on the battlefield in order to reduce logistical issues. Moreover, in some countries, fuel adulteration is a serious matter where kerosene is blended with diesel and used in diesel engines. So far, most investigations done regarding the use of kerosene fuels in diesel engines are experimental and there is negligible simulation work done in this area possibly because of the lack of a robust and compact kerosene reaction mechanism. This work focuses on the development of a small but reliable kerosene–diesel reaction mechanism, suitable to be used for diesel engine simulations. The new kerosene–diesel reaction mechanism consists only of 48 species and 152 reactions. Furthermore, the kerosene sub-mechanism in this new mechanism is well validated for its ignition delay times and has proven to replicate kerosene combustion well in a constant volume combustion chamber and an optical engine. Overall, this new kerosene–diesel reaction mechanism is proven to be robust and practical for diesel engine simulations.

  13. Systems engineering approach towards performance monitoring of emergency diesel generator

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Lee, Y.K.

    2013-01-01

    Full-text: Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort. (author)

  14. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  15. Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Yang, Ruzhi; Zhu, Tianru; Zhao, Ruiqing; Wang, Yaodong

    2015-01-01

    Highlights: • The effects of pre-injected timing and pre-injected mass were studied in CI engine. • The addition of n-butanol consumed OH free radicals, which delayed the ignition time. • With the increase of n-butanol, the BSFC and MPRR increased, NO_x and soot decreased. • With the advance of pilot injection timing, the BSFC increased, NO_x and soot decreased. • With the increase of pilot injection mass, NO_x increased, soot decreased then increased. - Abstract: The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NO_x and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NO_x emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NO_x and soot emissions decreasing. The simulation of the combustion of n-butanol–diesel fuel blends, which was based on the n-heptane–n-butanol–PAH–toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals

  16. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  17. Desempenho de misturas pré-aquecidas de óleo de soja cru e diesel como combustível para motores agrícolas Performance of preheated crude soybean oil-diesel blends as fuel in agricultural engines

    Directory of Open Access Journals (Sweden)

    José Fernando Schlosser

    2007-10-01

    Full Text Available O óleo de soja é um dos óleos vegetais que têm potencial de uso como combustível para motores diesel, pois é renovável, seguro e de fácil utilização. Em temperatura ambiente, o óleo cru apresenta uma viscosidade cerca de dez vezes maior que a do óleo diesel. Para reduzir a viscosidade do óleo de soja a níveis aceitáveis, é necessária uma temperatura de aquecimento em torno de aproximadamente 60°C ou misturá-lo com óleo diesel. O objetivo deste estudo foi avaliar o desempenho do óleo de soja cru e suas misturas com óleo diesel, pré-aquecidas antes da bomba injetora entre 57°C e 68°C, como combustível para motores diesel. O desempenho das misturas combustíveis foi avaliado num motor monocilíndrico de injeção indireta e comparado com o obtido pelo óleo diesel. Os ensaios de curta duração foram conduzidos entre 1.800 e 2.800rpm, sob condição de plena carga em dinamômetro hidráulico. Ensaios realizados a 68°C apresentaram sempre os melhores valores para torque, potência e consumo específico de combustível do que a 57°C. Uma mistura composta por 70% de óleo de soja e 30% de óleo diesel, aquecida a 68°C, apresentou os melhores resultados.Crude soybean oil is one of the vegetable oils that have potential for use as fuel for diesel engines. Soybean oil is renewable, and is safe and easy to handle. At room temperature crude oil has a viscosity about ten times higher than that of diesel oil. To lower soybean oil's viscosity to the acceptable levels a heating temperature at least 60°C is needed or blending with diesel fuel. The objective of this study was evaluating the soybean oil and blends performance as a fuel for diesel engines. On both crude soybean oil and soybean oil blends were used pre-heating temperature levels on the range between 57°C and 68°C, before fuel pump. The performance of the fuel blends were evaluated in a single cylinder indirect injection diesel engine and compared with the performance

  18. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  19. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Anker Degn; Jensen, Peter Arendt

    2013-01-01

    The utilization of bio-fuels, such as biodiesel, is expected to contribute significantly towards the planned 10% of renewable energy within the EU transport sector by 2020. Increased biodiesel blend percentages may change engine exit flue gas ash composition and affect the long-term performance...... of cleaning technologies, such as oxidation catalysts and diesel particulate filters. In this work the performance of a commercial catalyst has been studied for conversion of diesel particulate matter (SRM 2975) at 10% O2, in the presence of salts simulating ash species derived from engine oil and biodiesel...... the temperature at which the oxidation rate peaked from 662 ± 1 °C to 526 ± 19 °C. The introduction of biodiesel ash species such as Na2CO3, K2CO3 or K3PO4 decreased the peak conversion temperature further (422 ± 12; 404 ± 4 and 423 ± 7 °C), with a limited dependence on ash concentration. A deterioration...

  20. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    Science.gov (United States)

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  2. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  3. Physiochemical, energy characteristics and performance of coconut fiber in the sorption of diesel and bio diesel oils; Caracteristicas fisico-quimicas, energetica e desempenho da fibra de coco na sorcao de oleos diesel e biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriana Ferla de [Pos-Graduacao em Agronomia - Energia na Agricultura, Faculdade de Ciencias Agronomicas, Universidade Estadual Paulista - FCA/UNESP, Botucatu, SP (Brazil); Curso Superior de Tecnologia em Biocombustiveis, Universidade Federal do Parana - UFPR, Palotina, PR (Brazil)], e-mail: adrianaferla@ufpr.br; Leao, Alcides Lopes [Dept. de Recursos Naturais, Faculdade de Ciencias Agronomicas, Universidade Estadual Paulista - FCA/UNESP, Botucatu, SP (Brazil)], e-mail: alcidesleao@fca.unesp.br; Caraschi, Jose Claudio [Universidade Estadual Paulista - UNESP, Itapeva, SP (Brazil)], e-mail: carachi@itapeva.unesp.br; Oliveira, Luciano Caetano de [Curso de Agronomia, Universidade Federal do Parana - UFPR, Palotina, PR (Brazil)], e-mail: lucianocaetano@ufpr.br; Goncalves, Jose Evaristo [Pos-Graduacao em Agronomia - Energia na Agricultura, Faculdade de Ciencias Agronomicas, Universidade Estadual Paulista - FCA/UNESP, Botucatu, SP (Brazil)], e-mail: evaristto@yahoo.com.br

    2011-07-01

    Accidents involving oil spills and its derivatives on the soil and in hydric bodies are common and worrying once they endanger the quality of the ecosystem. An economical and efficient way of combating oil spills is the use of the sorption method using sorbent materials. There is a range of sorbent materials, however, the natural ones like biomass and vegetable fibers demonstrate interest due to the low cost and good sorbent capacity. There are works concerning the sorption of crude oil, however for diesel and bio diesel, which had their production increased, there is a little or even nothing exists in the literature. The aim of this work was to investigate the sorption capacity of coconut fiber (Cocos nucifera) confronting to the fuels, diesel and biodiesel and to compare them with the peat commercially used. The bio sorbents were also submitted to the physiochemical and energy characterization. Most of the tests were performed on the granulometric size range of {<=}180 {mu}m 180-425 {mu}m; 425-850 {mu}m e 850-3350 {mu}m. The coir fiber presented capacity of diesel and bio diesel sorption similar to the commercial sorbent made of peat. The determination of the calorific power of the bio sorbents shows that they can be used for energy generation before and after they are used as sorbents. This way, those materials can be used after studies of economical viability in this sector and still to increase the economy of the areas where they are abundant. (author)

  4. New local diesel power stations: an economic assessment

    International Nuclear Information System (INIS)

    Wills, R.J.; Reuben, B.G.

    1992-01-01

    A recent investigation examined the economic potential for electricity generation in the U.K. using large slow-speed two-stroke diesel engines of around 40MW unit output. Large diesels are a high efficiency technology, resilient to fuel quality, and with high reliability. Economic analysis compared diesels with other generating options for a range of fuel scenarios and discount rates. Merit order potential and total costs were also assessed. The diesels show superior economic qualities, both in terms of investment criteria and high merit position. They are economically comparable with combined cycle gas turbines, but combined cycle plant is essentially large-scale, whereas diesels in 40 MW units sizes can provide small-scale, high-efficiency local generation. Slow-speed diesels represent a sound investment for electricity supply. Diesels in local power stations in southern England would increase supply security and diversity. They are compatible with a cautious investment approach and are appropriate for the new market conditions in electricity supply. (author)

  5. Radium in diesel oil

    International Nuclear Information System (INIS)

    Kulich, J.

    1977-05-01

    In order to determine the addition of radon and radium to the air in mines, originatiny from the combustion of petroleum, measurements of the content of radium in diesel oil have been performed. Knowing the radium content theradon content can easily be calculated. The procedures used for the chemical analysis of radium is desribed. The ash remaining after combustion of the diesel oil is soluted in water and radium is precipiated as sulphate. The radium is detected by a ZnS (Ag) detector. The diesel oils from different petroleum companies contained between o.019-0.5pCi radium - 226. The conclution is that the consumption of diesel oils in motors used in mines does not contribute to the radium - 226 content at the air move than permissible according to norms.(K.K.)

  6. A reduced chemical kinetic model for the analytical investigations on the oxidation kinetics and performance characteristics of diesel fuel

    International Nuclear Information System (INIS)

    Selvaraj, N.; Manoj Kumar, C.V.; Babu, M.S.

    2010-01-01

    A detailed study of the combustion of diesel fuel has been conducted analytically using a kinetic scheme with 767 elementary reactions and 158 species. A program has been developed in MATLAB for the analysis of ignition delay, performance, soot formation and emission characteristics of diesel fuel. Nitrogen is considered as the diluent and its percentage is assumed as 79%. The criteria used for the determination of ignition delay time are based on OH concentration to reach a value of 1x10 -9 . A brief review of diesel combustion and soot formation is given. (author)

  7. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  8. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend

    International Nuclear Information System (INIS)

    İleri, Erol; Koçar, Günnur

    2013-01-01

    Highlights: • BHA, BHT, TBHQ, EHN synthetic antioxidants were employed in the study. • Antioxidant additives are a promising candidate for improving cetane number, oxidation stability and decreasing NO x emissions • Cetane number improving efficiency of the antioxidants was ordered as EHN>BHA>BHT>TBHQ. • Formation of CO emissions has been increased with addition of each of the antioxidants to B20. - Abstract: An experimental investigation has been carried out to analyze the effect of antioxidants on engine performance and exhaust emissions of a diesel engine fueled with B20 (20 vol.% canola oil methyl ester and 80 vol.% diesel fuel blend). The four synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ) and 2-ethylhexyl nitrate (EHN), were tested on a Land Rover turbocharged direct injection (TDI) 110 type diesel engine with water cooled, 4-cycl and 4-cylinder. The addition of antioxidants to B20 did not cause any negative effect on basic fuel properties of B20. According to engine performance test results, brake specific fuel consumption (BSFC) of B20 with antioxidants decreased compared to those of B20 without antioxidants. A 1000 ppm concentration of TBHQ was optimal as BSFC values were considerably reduced (10.19%) in the whole engine speeds when compared to B20. EHN antioxidant with B20 presented the best mean oxides of nitrogen (NO x ) with a reduction of 4.63%. However, formation of carbon monoxide (CO) emissions has been increased with addition of each of the antioxidants to B20

  9. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  10. Emission potentials of future diesel fuel injection systems; Emissionspotentiale zukuenftiger Diesel-Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schommers, J.; Breitbach, H.; Stotz, M.; Schnabel, M. [DaimlerChrysler AG (Germany)

    2007-07-01

    The historical evolution of the diesel engine correlates strongly with fuel injection system developments. Mercedes-Benz contributed significantly to the recent success of the diesel engine, being one of the first car manufacturers to introduce a modern common rail diesel engine in the Mercedes C220 CDI in 1997. The excellent characteristics of modern diesel engines resulted in a 50% market share in newly registered cars in Germany. These characteristics have to be further improved in the next years to keep the diesel engine attractive. Emissions and at the same time fuel consumption and noise need to be further reduced, while engine power has to go up. For Mercedes-Benz key steps to reach these goals are lower compression ratio, higher boost pressures, higher exhaust gas recirculation rates and better EGR cooling, multiple injection patterns and components with stable application parameters over lifetime. Important requirements for future fuel injection systems are high spray momentum, good stability over lifetime, good robustness of injected quantities for varying injection patterns and a low shot-to-shot variation of injected quantities. The high spray momentum has to be achieved especially for small injections and for part load operating points with low pressures. Therefore, the needle opening and closing velocities are of special importance. With special focus on the above requirements, different injector concepts were hydraulically evaluated. Both concepts in serial production and under development from system suppliers, as well as Mercedes-Benz developed prototype injector concepts were chosen. The concepts analysed are a servo-hydraulically driven injector with control piston, two servo-hydraulically driven injectors without control piston with differently adjusted hydraulics, and a direct driven injector, where the needle is driven directly from an actuator without servo-hydraulic amplification. The hydraulic investigations show an excellent performance of

  11. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  12. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  13. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  14. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  15. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  16. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  17. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    system does not provide direct current power to the preamplifier, equivalent pre-amplifiers with external power inputs were purchased , but the... behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission. Tribology International 39 (12) 12 / 01 / 1634-1642...diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering 1 454-463 26. Lowe, D. P., et al

  18. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  19. Reliability of the emergency diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    Verstegen, C.; Kotthoff, K. [Gesellschaft fuer Reaktorsicherheit - GRS mbH, Schwertnergasse 1, D-5000 Koeln 1, Cologne (Germany)

    1986-02-15

    The paper deals with a statistical investigation on the availability of diesel generators, which has been performed recently The investigation is based on the operating experiences of a total of 40-diesel generators in 10 German NPP's. Both unavailability of the diesel generators due to failures and due to maintenance and repair have been considered.The probability of diesel failure during start and short-time operation amounts?o about 8 x 10{sup -3}/demand. The probability of common mode failures is approximately one order of magnitude smaller. The influence of various parameters on the failure probability has been discussed. A statistically significant dependence could not be identified In addition the investigation shows that the unavailability of the diesel generators due to maintenance and repair is about of the same order magnitude as the probability of diesel failures. (authors)

  20. One step processing for future diesel specifications

    International Nuclear Information System (INIS)

    Brierley, G.R.

    1997-01-01

    The trend in diesel fuel specifications is to limit the sulfur level to less than 0.05 wt- per cent. Many regions have also specified that diesel fuels must have lower aromatic levels, higher cetane numbers, and lower distillation end points. These changes will require significant refinery investment to meet the new diesel fuel specifications. The changes may also significantly affect the value of synthetic crude stocks. UOP has developed a new hydroprocessing catalyst which makes it possible to meet the new diesel specifications in one single processing step and at minimal cost. The catalyst saturates aromatics while opening ring structures at the same time. By selectively cracking heavy components into the diesel range with minimal cracking to gas or naphtha, heavier feedstocks can be upgraded to diesel, and refinery diesel yield can be augmented. Synthetic crude distillate is often high in aromatics and low in cetane number. This new UOP hydroprocessing system will allow synthetic crude producers and refiners to produce diesel fuels with higher cetane numbers, high-quality distillate blendstocks and distillate fuels. 26 figs

  1. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  2. Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine

    OpenAIRE

    Petersen, John; Seivwright, Doug; Caton, Patrick; Millsaps, Knox

    2014-01-01

    The article of record as published may be found at http://dx.doi.org/10.1021/ef500565t In support of an ongoing U.S. Navy alternative fuel evaluation program, the combustion characteristics of two very different alternative diesel fuels were evaluated in a direct-injection marine diesel engine across a variety of speeds and loads. The fuels were an algal-based hydrotreated renewable diesel fuel (HRD) with cetane number of ∼75 and a synthetic paraffinic kerosene (SPK) with cetane n...

  3. MEA and DEE as additives on diesel engine using waste plastic oil diesel blends

    Directory of Open Access Journals (Sweden)

    Pappula Bridjesh

    2018-05-01

    Full Text Available Waste plastic oil (WPO is a standout amongst the most promising alternative fuels for diesel in view of most of its properties similar to diesel. The challenges of waste management and increasing fuel crisis can be addressed while with the production of fuel from plastic wastes. This experimental investigation is an endeavour to supplant diesel at least by 50% with waste plastic oil alongside 2-methoxy ethyl acetate (MEA and diethyl ether (DEE as additives. Test fuels considered in this study are WPO, 50D50W (50%Diesel + 50%WPO, 50D40W10MEA (50%Diesel + 40%WPO + 10%MEA and 50D40W10DEE (50%Diesel + 40%WPO + 10%DEE. The test results are compared with diesel. An increase in brake thermal efficiency and abatement in brake specific fuel consumption are seen with 50D40W10MEA, as well as reduction in hydro carbon, carbon monoxide and smoke emissions. 50D40W10DEE showed reduced NOx emission whereas 50D40W10MEA has almost no impact. Engine performance and emission characteristics under different loads for different test fuels are discussed. Keywords: 2-Methoxy ethyl acetate, Diethyl ether, Waste plastic oil, Pyrolysis

  4. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  5. Investigation of palm methyl-ester bio-diesel with additive on performance and emission characteristics of a diesel engine under 8-mode testing cycle

    Directory of Open Access Journals (Sweden)

    S. Senthilkumar

    2015-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its same diesel-like fuel properties and compatibility with petroleum-based diesel fueled engines. Therefore, in this paper the prospects and opportunities of using various blends of methyl esters of palm oil as fuel in an engine with and without the effect of multi-functional fuel additive (MFA, Multi DM 32 are studied to arrive at an optimum blend of bio-diesel best suited for low emissions and minimal power drop. Experimental tests were conducted on a four stroke, three cylinder and naturally aspirated D.I. Diesel engine with diesel and various blend percentages of 20%, 40%, 45%, and 50% under the 8 mode testing cycle. The effect of fuel additive was tested out on the optimum blend ratio of the bio-diesel so as to achieve further reduced emissions. Comparison of results shows that, 73% reduction in hydrocarbon emission, 46% reduction in carbon monoxide emission, and around 1% reduction in carbon dioxide emission characteristics. So it is observed that the blend ratio of 40% bio-diesel with MFA fuel additive creates reduced emission and minimal power drop due to effective combustion even when the calorific value is comparatively lower due to its higher cetane number.

  6. Determining the optimum conditions for modified diesel fuel combustion considering its emission, properties and engine performance

    International Nuclear Information System (INIS)

    Fayyazbakhsh, Ahmad; Pirouzfar, Vahid

    2016-01-01

    Highlights: • Gas emissions, fuel properties and performance engine modeling. • Optimization of new modified fuel prepared from n-Butanol and Nano particles. • Model accuracy analysis. - Abstract: This essay scrutinizes an experimental study conducted to appraise the influence of using n-Butanol with diesel fuel in 5% and 10% (volume) n-Butanol, 1% nitro methane (NM), injection timing and two Nano-particles (alumina and a type of silica powder) on the engine performance (brake specific fuel consumption and engine power), fuel properties (Cetane number and flash point) and exhaust emissions (soot, NO_x and CO) of an engine with 4-cylinder (with a system of common rail fuel injection), intercooling, cooled exhaust gas recirculation (EGR), and turbocharged. The tests are conducted by varying the engine load (25 and 75 nm) and changing engine speed (1500 and 2200 rpm). Normal Butanol presents better brake specific fuel consumption (BSFC) but this blend doesn’t reflect better engine power. All the percentages of n-Butanol in the fuel make Cetane number decrease but adding 1% of nitro methane makes Cetane number increase. For all the n-Butanol, the percentage flash makes the fuel decrease in comparison to pure diesel fuel. The current experimental study demonstrates that adding the n-Butanol and nitro methane to diesel fuel direct into diminishing soot emission. In contrast, this blend raises NO_x and CO emissions. Furthermore, this research indicates that the increase of engine speed dwindle air pollutants and enhances BSFC. It also remarks that power gets increased at low engine speed. However, power gets reducedat high speed. This article represents that the increasing of engine load leads to increasing all of air pollutant, increasing of power and decreasing of brake specific fuel consumption. Both the Cetane number and flash point are independent from engine speed and engine load. The present paper shows that the effect of silica with high percentage of n

  7. An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel

    International Nuclear Information System (INIS)

    Dhinesh, B.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • Cymbopogon Flexuosus biofuel is used as an alternative energy source. • Cymbopogon flexuosus biofuel 20% + Diesel 80% blend profile stayed close to diesel. • Resulting in higher thermal efficiency and reduced fuel consumption. • Reduced hydrocarbon, carbon monoxide and smoke emission. • Oxides of nitrogen and carbon di-oxide emission was marginally higher. - Abstract: The novelty of this manuscript is that it discusses about the experimental analysis of a new biofuel feedstock as an alternative fuel that has not drawn much attention among the researchers. An exploration for a new biofuel feedstock resulted in Cymbopogon flexuosus as an alternative energy source. Raw oil of Cymbopogon flexuosus was obtained through steam distillation process. Cymbopogon flexuosus biofuel was blended with diesel fuel in various proportions on volume basis, namely 10, 20, 30, 40, and 100 percent and its properties were assessed according to American Society for Testing and Materials standards. The considered test fuel was experimentally analysed in a single cylinder diesel engine at 1500 rpm for its performance, emission and combustion characteristics. Among various blends, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel profile stayed close to diesel fuel resulting in higher thermal efficiency and lower hydrocarbon, carbon monoxide, and smoke emission. However, oxides of nitrogen and carbon dioxide emission was marginally higher for the test fuel considered. Cylinder pressure and heat release rate curves were lower at full load condition as compared with diesel fuel. Against the grim background of fossil fuel depletion, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel acts as a promising alternative fuel and brings hope to the nation as well as the research world.

  8. Castor Seed from Melkasa Agricultural Research Centre, East Showa, Ethiopia and it’s biodiesel performance in Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Tesfahun Tegegne Akanawa

    2014-05-01

    Full Text Available This study focused in investigating the fuel properties of Castor oil Methyl Ester (CME and its blend with diesel fuel in running a diesel engine. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, and specific fuel consumption. Castor oil was extracted by using a mechanical pressing machine and trans-esterification was made by methyl alcohol and potassium hydroxide as a catalyst.  So that its viscosity and density were reduced and by increasing its volatility.  By following the procedures given in American Society for Testing and Materials (ASTM book the fuel characteristics were identified whether it fulfil the requirements needed to be used as a fuel in internal combustion engines or not. From the characterization result, it was proved that trans-esterified castor oil was found to be a promising alternative fuel for compression ignition (diesel engines. But the viscosity of CME was still higher and the energy content was a little bit less as compared to petro diesel. To solve these problems CME was blended with petro diesel in some proportion (B5, B10, B20, B40, B80. The torque, power and brake specific fuel consumption performances of CME and its blends with petro diesel were tested in a four stroke diesel engine. The analyzed results were compared with that of petro diesel and found to be very nearly similar, making CME a suiTable alternative fuel for petro diesel.

  9. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  10. Test results of pongamia pinnata methyl esters with direct injection diesel engine

    International Nuclear Information System (INIS)

    Bannikov, MG.; Chattha, J.A.; Khan, A.F.

    2011-01-01

    Pongamia Pinnata oil is considered as a potential source of biodiesel production in Pakistan. When selecting source for commercial production of biodiesel several criteria are used. One of them is that biodiesel or biodiesel/diesel fuel blends must provide satisfactory performance and emissions of the diesel engine without or with a little engine modification. In this research performance and emissions characteristics of a direct injection diesel engine running on Pongamia Pinnata methyl esters were discussed. Discussion was supported by an analysis of combustion characteristics derived from in-cylinder pressure data. Engine running on a neat biodiesel showed higher brake specific fuel consumption and lower brake fuel conversion efficiency at all loads, whereas emissions were improved except of carbon monoxide emission at high loads. Decrease in brake efficiency and reduction of nitrogen oxides emissions were attributed solely to the change in the rate of heat release. Deposits on fuel infector nozzle were observed when engine was running on the neat biodiesel. Based on test results conclusion was made that Pongamia biodiesel/diesel fuel blends can effectively be used as a diesel oil substitute. (author)

  11. Liquid alternative diesel fuels with high hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Hancsok, Jenoe; Varga, Zoltan; Eller, Zoltan; Poelczmann, Gyoergy [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon Processing; Kasza, Tamas [MOL Hungarian Oil and Gas Plc., Szazhalombatta (Hungary)

    2013-06-01

    Mobility is a keystone of the sustainable development. In the operation of the vehicles as the tools of mobility internal combustion engines, so thus Diesel engines will play a remarkable role in the next decades. Beside fossil fuels - used for power these engines - liquid alternative fuels have higher and higher importance, because of their known advantages. During the presentation the categorization possibilities based on the chronology of their development and application will be presented. The importance of fuels with high hydrogen content will be reviewed. Research and development activity in the field of such kind of fuels will be presented. During this developed catalytic systems and main performance properties of the product will be presented which were obtained in case of biogasoils produced by special hydrocracking of natural triglycerides and in case of necessity followed by isomerization; furthermore in case of synthetic biogasoils obtained by the isomerization hydrocracking of Fischer-Tropsch paraffins produced from biomass based synthesis gas. Excellent combustion properties (cetane number > 65-75), good cold flow properties and reduced harmful material emission due to the high hydrogen content (C{sub n}H{sub 2n+2}) are highlighted. Finally production possibilities of linear and branched paraffins based on lignocelluloses are briefly reviewed. Summarizing it was concluded that liquid hydrocarbons with high isoparaffin content are the most suitable fuels regarding availability, economical and environmental aspects, namely the sustainable development. (orig.)

  12. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel

    International Nuclear Information System (INIS)

    Annamalai, M.; Dhinesh, B.; Nanthagopal, K.; SivaramaKrishnan, P.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • A novel biofuel, lemongrass is used as a renewable energy source. • Emulsion prepared using 5% of water, 93% of lemongrass oil and 2% of surfactant. • Emulsified nano biofuel performance profile stayed closer to diesel fuel. • Drastic reduction in HC, CO, NO_X and marginal decrease of smoke compared with diesel. - Abstract: The consequence of using cerium oxide (CeO_2) nanoparticle as additive in Lemongrass Oil (LGO) emulsion fuel was experimentally investigated in a single cylinder, constant speed diesel engine. A novel biofuel plant was introduced in this project, namely lemongrass whose binomial name is Cymbopogon flexuosus. The main objective of the project is to reduce the level of harmful pollutants in the exhaust such as unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NO_X), and smoke. The engine performance could also be increased due to the addition of CeO_2 nanoparticle. The LGO emulsion fuel was prepared in the proportion of 5% of water, 93% of LGO and 2% of span80 by volume basis. Span80 acted as surfactant and it would reduce surface tension between the liquids with a hydrophilic-lipophilic balance (HLB) value of 4.2. The ceria nanoparticle was dispersed with the LGO emulsion fuel in the dosage of 30 ppm (ppm). The diesel engine performance, combustion behavior and emission magnitude were compared with diesel and LGO as the base fuels. The whole investigation was conducted with a single cylinder diesel engine using the following fuels, namely neat diesel, neat LGO, LGO emulsion and LGO nano emulsion fuels respectively. The LGO emulsion fuel could reduce smoke and NO_X emissions and could improve Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC) compared with neat LGO despite the marginal increase in HC and CO emissions. For ceria nanoparticle blended test fuel, the drastic reduction of carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen (NO_X) and marginal decrease of

  13. Investigation of diesel-ethanol blended fuel properties with palm methyl ester as co-solvent and blends enhancer

    Directory of Open Access Journals (Sweden)

    Mat Taib Norhidayah

    2017-01-01

    Full Text Available Diesel engine is known as the most efficient engine with high efficiency and power but always reported as high fuel emission. Malaysia National Automotive Policy (NAP was targeting to improve competitive regional focusing on green technology development in reducing the emission of the engine. Therefore, ethanol was introduced to reduce the emission of the engine and while increasing its performance, Palm methyl ester was introduced as blend enhancer to improve engine performance and improve diesel-ethanol blends stability. This paper aimed to study the characteristics of the blends and to prove the ability of palm-methyl-ester as co-solvent in ethanol-diesel blends. Stability and thermophysical test were carried out for different fuel compositions. The stability of diesel-ethanol blended was proved to be improved with the addition of PME at the longer period and the stability of the blends changed depending on temperature and ethanol content. Density and viscosity of diesel-ethanol-PME blends also give higher result than diesel-ethanol blends and it's proved that PME is able to increase density and viscosity of blends. Besides, heating value of the blends also increases with the increasing PME in diesel-ethanol blends.

  14. Differences in rheological profile of regular diesel and bio-diesel fuel

    Directory of Open Access Journals (Sweden)

    Jiří Čupera

    2010-01-01

    Full Text Available Biodiesel represents a promising alternative to regular fossil diesel. Fuel viscosity markedly influences injection, spraying and combustion, viscosity is thus critical factor to be evaluated and monitored. This work is focused on quantifying the differences in temperature dependent kinematic viscosity regular diesel fuel and B30 biodiesel fuel. The samples were assumed to be Newtonian fluids. Vis­co­si­ty was measured on a digital rotary viscometer in a range of 0 to 80 °C. More significant difference between minimum and maximum values was found in case of diesel fuel in comparison with biodiesel fuel. Temperature dependence of both fuels was modeled using several mathematical models – polynomial, power and Gaussian equation. The Gaussian fit offers the best match between experimental and computed data. Description of viscosity behavior of fuels is critically important, e.g. when considering or calculating running efficiency and performance of combustion engines. The models proposed in this work may be used as a tool for precise prediction of rheological behavior of diesel-type fuels.

  15. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    International Nuclear Information System (INIS)

    Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Rizwanul Fattah, I.M.

    2014-01-01

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NO x and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NO x ) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NO x like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NO x and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  16. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine's performance and emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2017-09-01

    Full Text Available Nanofluids are suspensions of nanoparticles mixed in liquids and show significant enhancement in some thermophysical and combustion properties of the resulting suspension. In this study, the changes in the performance and emissions characteristics of a conventional diesel engine are verified experimentally using the combustion of a mixture of nanofluid (water and Al2O3 and conventional Iraqi diesel fuel. The nano-Al2O3 (51 nm diameter was used in this study; multiple weight ratios of this nanoparticle were mixed with water to form a nanoparticle suspension. The weight fractions used were 1%, 3%, 5%, 7%, and 10%. After that, a fixed volume ratio of the resulting suspension (10% was added to the diesel and completely mixed. The results indicate that the addition of the nano-alumina-water suspension has increased the brake thermal efficiency up to 5.5%, and reduced the relative fuel consumption up to 3.94%, compared to diesel fuel. In the analysis of emitted exhaust emissions, CO, HC, NOx, PM and noise emissions, they were found to be lower than diesel fuel, while CO2 emissions increased.

  17. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  18. Effects of trout-oil methyl ester on a diesel engine performance and emission characteristics

    International Nuclear Information System (INIS)

    Buyukkaya, Ekrem; Benli, Serdar; Karaaslan, Salih; Guru, Metin

    2013-01-01

    Highlights: ► Maximum engine power was obtained at 2400 rpm for all fuels. ► The maximum torque of engine was obtained at 1500 rpm for blend fuels. ► The BSFC of TOME’s blends became less. ► HC emissions were found to be lower for blends. ► NO x was obtained to decrease in particularly high engine loads. - Abstract: In this study, trout oil methyl ester fuel (TOME) was prepared by transesterification using potassium hydroxide as catalyst. The trout oil and its blends (B10, B20, B40 and B50) were tested in a single-cylinder natural aspirated indirect injection diesel engine. The tests showed significant changes in engine’s power and particularly torque as well as major improvements in the engine emission for B40 and B50 in general, except the increasing of nitrogen oxide (NO x ) emission due to high combustion temperature resulted by better combustion process. The brake specific fuel consumption of B50 fuel was almost the same as that of diesel fuel at the maximum torque and rated power conditions. Carbon monoxide (CO) and hydrocarbon emissions (HC) were reduced around on average 13% and 45%, respectively, in case of TOME compared to diesel

  19. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  20. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Ashraful, A.M.

    2016-01-01

    Highlights: • Ignition improver additives makes the biodiesel-alcohol blends more thermally stable. • Density and cetane number improved significantly with EHN mixing. • BP and BSFC improved by adding ignition improver additives. • Nitric oxides and smoke of the EHN treated blends decreased. • CO and HC increased slightly with EHN addition. - Abstract: Pentanol is a long chain alcohol produced from renewable sources and considered as a promising biofuel as a blending component with diesel or biodiesel blends. However, the lower cetane number of alcohols is a limitation, and it is important to increase the overall cetane number of biodiesel fuel blends for efficient combustion and lower emission. In this consideration, ignition improver additive 2-ethylhexyl nitrate (EHN) were used at a proportion of 1000 and 2000 ppm to diesel-biodiesel-pentanol blends. Experiments were conducted in a single cylinder; water-cooled DI diesel engine operated at full throttle and varying speed condition. The thermal stability of the modified ternary fuel blends was evaluated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis, and the physic-chemical properties of the fuel as well as engine characteristics were studied and compared. The addition of EHN to ternary fuel blends enhanced the cetane number significantly without any significant adverse effect on the other properties. TGA and DSC analysis reported about the improvement of thermal characteristics of the modified blends. It was found that, implementing ignition improver make the diesel-biodiesel-alcohol blends more thermally stable. Also, the brake specific fuel consumption (BSFC), nitric oxides (NO) and smoke emission reduced remarkably with the addition of EHN. Introducing EHN to diesel-biodiesel-alcohol blends increased the cetane number, shorten the ignition delay by increasing the diffusion rate and improve combustion. Hence, the NO and BSFC reduced while, carbon

  1. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    International Nuclear Information System (INIS)

    Yun, Young-Chul; Chung, Woo-Geun

    2016-01-01

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m 3 /hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability

  2. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young-Chul; Chung, Woo-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m{sup 3}/hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability.

  3. Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Trullo, Gianluca

    2016-01-01

    Highlights: • A Two-Stroke diesel engine for aircraft propulsion was modeled with a 0D/1D approach. • The results of the 0D/1D model are compared with those resulting from a 3D model. • The effect of several design and thermodynamic parameters have been analyzed. • Guidelines for the optimization of engine performance are provided. - Abstract: In Two-Stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency; moreover, both of them are influenced by geometric and thermodynamic parameters characterizing the design and operation of both the engine and the related supercharging system. Aim of this work is to provide several guidelines about the definition of design and operation parameters for a Two-Stroke two banks Uniflow diesel engine, supercharged with two sequential turbochargers and an aftercooler per bank, with the goal of either increasing the engine brake power at take-off or decreasing the engine fuel consumption in cruise conditions. The engine has been modeled with a 0D/1D modeling approach. Then, the model capability in describing the effect of several parameters on engine performance has been assessed comparing the results of 3D simulations with those of 0D/1D model. The validated 0D/1D model has been used to simulate the engine behavior varying several design and operation engine parameters (exhaust valves opening and closing angles and maximum valve lift, scavenging ports opening angle, distance between bottom edge of the scavenging ports and bottom dead center, area of the single scavenging port and number of ports, engine volumetric compression ratio, low and high pressure compressor pressure ratios, air/fuel ratio) on a wide range of possible values. The parameters most influencing the engine performance are then recognized and their effect on engine thermodynamic behavior is discussed. Finally, the system configurations leading to best engine power at sea level and lowest fuel consumption in cruise

  4. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  5. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  6. Study of In-Cylinder Reactions of High Power-Density Direct Injection Diesel Engines

    National Research Council Canada - National Science Library

    Jansons, M

    2004-01-01

    Direct-injection (DI) Diesel or compression-ignition (CI) engine combustion process is investigated when new design and operational strategies are employed in order to achieve a high power-density (HPD) engine...

  7. Residual diesel measurement in sand columns after surfactant/alcohol washing

    International Nuclear Information System (INIS)

    Martel, R.; Gelinas, P.J.

    1996-01-01

    A new simple gravimetric technique has been designed to determine residual oil saturation of complex hydrocarbon mixtures (e.g., diesel) in sand column experiments because reliable methods are lacking. The He/N 2 technique is based on drying of sand columns by circulating helium gas to drag oil droplets in a cold trap (liquid nitrogen). With this technique, residual diesel measurement can be performed easily immediately after alcohol/surfactant washing and in the same lab. For high residual diesel content in Ottawa sand (25 to 30 g/kg), the technique is much more accurate (± 2% or 600 mg/kg) than the standard analytical methods for the determination of mineral oil and grease. The average relative error on partial diesel dissolution in sand column estimated after alcohol/surfactant flooding (residual saturation of 10 to 15 g/kg) is as low as 5%. The precision of the He/N 2 technique is adequate to compare relative efficiency of washing solutions when partial extraction of residual oil in Ottawa sand columns is performed. However, this technique is not adapted for determination of traces of oil in sediment or for environmental control of contaminated soils. Each diesel determination by the He/N 2 technique costs less than $8 in chemical products (helium and liquid nitrogen). A simple laboratory drying setup can be built for less than $400 which makes this technique valuable for diesel analyses when a large number of tests are required

  8. Diesel Consumption of Agriculture in China

    Directory of Open Access Journals (Sweden)

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  9. Optimizing the efficiency of a diesel engine for a hybrid wind-diesel experimental validation; Optimisation de l'efficacite du moteur diesel pour un systeme hybride eolien-diesel-validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre Eolien, Murdochville, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This study examined the feasibility of using a wind-diesel compressed air storage system in large-scale gas turbines at remote sites where a good wind resource is available. Studies have shown that the system can increase the wind energy penetration rate, particularly when combined with a turbo diesel engine. The system increases the power and performance of the diesel engine and reduces fuel consumption and emissions of greenhouse gases greenhouse gases (GHG). This study included a comparison of different technical solutions for the compressed air energy storage system, and described the one that optimized the performance and cost of the overall system. The optimal solution allowed the turbocharger to operate independently of the engine due to the energy provided by the compressed air in the air turbine. Optimization required maximizing the compressor power as an objective function. The energy balance of the engine itself had to be taken into account, along with the turbo charging system. 12 refs., 2 tabs., 16 figs.

  10. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Silva, Fernando Neto da; Prata, Antonio Salgado; Teixeira, Jorge Rocha

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO x ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO x and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%. (Author)

  11. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Neto da Silva, Fernando; Salgado Prata, Antonio; Rocha Teixeira, Jorge

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO X ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO X and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%

  12. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  13. Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments

    International Nuclear Information System (INIS)

    Han, Gwangwoo; Lee, Sangho; Bae, Joongmyeon

    2015-01-01

    Highlights: • The concept of diesel reforming using hydrogen peroxide was newly proposed. • Characteristics of hydrogen peroxide was experimentally investigated. • Thermodynamically possible operating conditions were analyzed. • Catalytic performance of Ni–Ru/CGO for various diesel compounds was evaluated. • Long-term testing was successfully conducted using Korean commercial diesel. - Abstract: To operate fuel cells effectively in low-oxygen environments, such as in submarines and unmanned underwater vehicles, a hydrogen source with high hydrogen storage density is required. In this paper, diesel autothermal reforming (ATR) with hydrogen peroxide as an alternative oxidant is proposed as a hydrogen production method. Diesel fuel has higher hydrogen density than metal hydrides or other hydrocarbons. In addition, hydrogen peroxide can decompose into steam and oxygen, which are required for diesel ATR. Moreover, both diesel fuel and hydrogen peroxide are liquid states, enabling easy storage for submarine applications. Hydrogen peroxide exhibited the same characteristics as steam and oxygen when used as an oxidant in diesel reforming when pre-decomposition method was used. The thermodynamically calculated operating conditions were a steam-to-carbon ratio (SCR) of 3.0, an oxygen-to-carbon ratio (OCR) of 0.5, and temperatures below 700 °C to account for safety issues associated with hydrogen peroxide use and exothermic reactions. Catalytic activity and stability tests over Ni–Ru (19.5–0.5 wt.%)/Ce 0.9 Gd 0.1 O 2−x were conducted using various diesel compounds. Furthermore, long-term diesel ATR tests were conducted for 200 h using Korean commercial diesel. The degradation rate was 3.67%/100 h without the production of ethylene

  14. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    Science.gov (United States)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  15. The design and performance of the first fully automatic non-grid 5 MW multi-diesel / mini hydro / battery converter power stations

    International Nuclear Information System (INIS)

    Ahmad Shadzli Abdul Wahab

    2000-01-01

    Electricity power supply in remote communities and towns are traditionally and hitherto supplied by diesel generator sets of varying capacities and sizes -from few kilowatt to few megawatts. Its proven to be versatile, robust, modular cheaper capital investment, reliable and easy to operate and maintain. These features are what make diesel generators most preferred choice for generating electric power to power hungry remote communities. The main draw back, though, is its increasingly high cost of operation and maintenance, largely due to upward trend in the cost of diesel fuel, high cost of engines spare parts plus the inflationary nature of salary and wages of operators. For these reasons, engineers and technologists have for years worked tirelessly to find ways and means to reduce the O and M costs. One of the novel ideas was to hybrid the conventional diesel generating system with renewable energy resources, such as mini hydro, solar photovoltaic or wind energy. Many prototypes involving several configurations of energy resources eg diesel/PV/ battery, diesel/wind/battery, diesel/mini hydro/battery have been tested but none has so far has been as successful as Sema/ Powercorp automated Intelligent Power System (IPS). Based on microprocessor hardware, powerful computer software programming and satellite communication technology, the IPS -equipped diesel power station can now now be operated fully automatic with capability of remote control and monitoring. The system is versatile in maximising the use of renewable energy energy resources such as wind, mini hydro or solar thereby reducing very significantly the use of diesel fuel. Operation and maintenance costs also are reduced due to the use of minimum manpower and and increase in fuel efficiency of the engines. The tested and proven IPS technology has been operating successfully for the last ten years in remote diesel stations in Northern Territory, Australia, Rathlin Island, Northern Ireland and its latest and

  16. Performance and emission characteristics of biogas used in diesel engine operation

    International Nuclear Information System (INIS)

    Makareviciene, Violeta; Sendzikiene, Egle; Pukalskas, Saugirdas; Rimkus, Alfredas; Vegneris, Ricardas

    2013-01-01

    Highlights: • Biogas is an environmentally friendly biofuel for diesel engines. • Results of diesel engine tests when fuelling with biogas are presented. • Engine and environmental characteristics depends on carbon dioxide content in biogas. • Using biogas in a diesel engine requires certain operational modifications. - Abstract: The objective of this study it to evaluate the impact of the carbon dioxide concentration in biogas on the operating characteristics and exhaust gas emissions of a diesel engine running on a mixture of biogas and mineral diesel fuel. The tests were carried out in two stages. In the first stage, the impact of different biogas compositions and the exhaust gas recirculation system (EGR) on the engine parameters was determined. Lower pollutant levels were measured in the studies without the EGR system, except for the nitrogen oxides NO x levels. The NO x concentration decrease was directly proportional to the concentration of methane in the common fuel mixture. In the second stage, the gas with the highest methane content was used to determine the impact of the start of injection timing on the engine operating parameters. As the methane content in the common fuel mixture increased, the start of injection timing had to be progressively advanced to increase the thermal efficiency and to lower the fuel consumption, the CO and HC concentrations and the smokiness of the exhaust; however, advancing the start of injection timing increased NO x pollution

  17. Disappointed by Diesel? The impact of the shift to Diesels in Europe through 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, Lee (Precourt institute for Energy Efficiency, Stanford Univ., CA (United States)); Fulton, Lew (International Energy Agency, Energy Technology Policy Div., Paris (France))

    2009-07-01

    A previous review of trends in light-duty diesel vehicle sales and usage in Europe through the mid 1990s questioned whether the shift toward diesels would yield large energy savings (Schipper, Fulton and Marie 2002, SFM). This study expands the sample of countries in the previous work and adds about ten years more data from both new vehicle test fuel economy and on-road performance, including usage. The updated findings renew the concerns first expressed in SFM. Although there is still evidence that diesels of a certain size have a substantial (volumetric) fuel economy advantage over gasoline vehicles of a similar size (perhaps 30% on average), average new diesel cars and the stock of diesels on the road maintain a smaller efficiency advantage over gasoline, on the order of 15% in most countries as of 2005. When the higher energy content of diesel is considered, the new vehicle and on-road figures shrink to less than a 5% and 7% fuel intensity advantage for new diesel vehicles and stock, respectively. The net CO{sub 2}/km emissions advantage for diesels is even less; for new cars, below 5% in all but one country and 0% on average across the 8 sampled countries in 2005. For total stock, diesel has a 2% average CO{sub 2} advantage. Even normalizing for the larger average size of diesels, their CO{sub 2} advantage appears to be no more than 15-18% for vehicles of a similar size class. Diesels are typically larger and are driven 60-100% more per year than gasoline cars. While much of these differences could be ascribed to self selection and related effects, some are likely due to a rebound effect created by diesel's better fuel economy and (in many countries) the lower price of diesel fuel. Using typical elasticity estimates to measure the driving rebound effect, the average result is about a 5% increase in annual driving and up to a 12% increase depending on the country and assumed elasticity. This is small compared to the observed driving difference between

  18. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1997-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  19. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  20. Review of wind/diesel strategies

    Energy Technology Data Exchange (ETDEWEB)

    Infield, D G; Lipman, N H; Musgrove, P J; Slack, G W

    1983-12-01

    A large potential demand exists for electricity in areas isolated from grid supply. Diesel generation in these usually remote areas is expensive and wind/diesel systems, with the wind turbine viewed primarily as a fuel saver, can be seen as attractive. Integration of wind energy is not straightforward, and in particular can cause operational problems for the diesel generator set. These difficulties are discussed and various approaches, including a twin diesel system, are presented. The role of energy storage is examined, both to deal with operational problems and to improve wind-energy utilisation. An example of battery storage is developed in some detail. A summary of actual installations and their performance is included to highlight some of the problems, and indicate the approaches being taken to deal with them.

  1. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  2. Steam reforming of commercial ultra-low sulphur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.; Van Dijk, E.; De Munck, S.; Van den Brink, R. [Energy research Centre of The Netherlands, ECN Hydrogen and Clean Fossil Fuels, P.O. Box 1, NL1755ZG Petten (Netherlands)

    2011-03-11

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  3. Steam reforming of commercial ultra-low sulphur diesel

    Science.gov (United States)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  4. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  5. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G. [Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran); Yusaf, T.F. [University of Southern Queensland, Toowoomba 4350 QLD (Australia)

    2009-04-15

    This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model. (author)

  6. Effect of Exhaust Gas Recirculation (EGR on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    Directory of Open Access Journals (Sweden)

    Khalil Ibrahim Abaas

    2016-07-01

    Full Text Available Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a four-cylinder direct injection (DI diesel engine at constant engine speed (1500 rpm and variable loads (from no load to 86 kN/m2, the tests were repeated with constant load (77 kN/m2 and variable engine speeds (from 1250 to 3000 rpm.The experimental results showed that adding EGR to diesel engine provided significant reductions in brake power (bp, brake thermal efficiency and exhaust gas temperatures, while high increments in brake specific  fuel  consumption  (bsfc.  High  EGR  percentage  (as  30%  in  this  article  caused  an  11.7% reduction  in  brake  thermal  efficiency,  26.38%  reduction  in  exhaust  gas  temperatures  and  12.28%  in volumetric efficiency at full load conditions.

  7. Isolation and Screening of Diesel-Degrading Bacteria from the Diesel Contaminated Seawater at Kenjeran Beach, Surabaya

    Directory of Open Access Journals (Sweden)

    Pratiwi Putri Pranowo

    2016-07-01

    Full Text Available Samples of contaminated seawater by diesel were taken at Kenjeran Beach Surabaya using aseptic technique. Isolation was conducted using serial dilution and spread method on nutrient agar (NA media. The all bacteria colony were devided in to group based on with morphological characterization and gram staining. After that, those bacterial colonies were tested individually in NA media containing different concentration of diesel (2, 4, 6, 8, and 10% for up to 7 days at 30°C. The results showed that eight bacterial strains were isolated from diesel contaminated seawater in Kenjeran Beach Surabaya. Screening on diesel showed that all the isolation bacteria were capable of degrading diesel and bacteria with code of B and E haves highly percentage growth in compared to other bacterial isolation. In conclusion, bacteria with code of B and E have potential to be used in diesel bioremediation in contaminated seawater.

  8. Enhanced Component Performance Study: Emergency Diesel Generators 1998-2014

    International Nuclear Information System (INIS)

    Schroeder, John Alton

    2015-01-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use in NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.

  9. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  10. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig

    International Nuclear Information System (INIS)

    Xu, Yufu; Wang, Qiongjie; Hu, Xianguo; Li, Chuan; Zhu, Xifeng

    2010-01-01

    The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079-2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.

  11. Desempenho de motor diesel quatro tempos alimentado com biodiesel de óleo de soja (B 100 Performance of four stroke diesel cycle engine supplied with soybean oil biodiesel (B 100

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Silva Volpato

    2009-08-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o desempenho de um motor de ciclo diesel quatro tempos e quatro cilindros utilizando biodiesel de óleo de soja (B100, em comparação ao óleo diesel. Foram analisados os parâmetros: potência efetiva e reduzida, torque, consumo específico e energético de combustível, eficiência termomecânica e volumétrica. Foi instalado um ensaio com delineamento inteiramente casualizado (DIC em esquema fatorial, realizada análise de variância e aplicado teste de Tukey, a 5%. Foram pesquisados cinco níveis de rotação em quatro repetições (650, 570, 490, 410, 320 e 240 rpm. O motor alimentado com biodiesel apresentou torque e potência reduzida um pouco menor que quando alimentado com óleo diesel fóssil, entretanto, os consumos especifico e horário, apresentaram resultados mais satisfatórios que o diesel fóssil.The aim of this work was to compare the performance of a four stroke diesel cycle engine and a four cylinder using biodiesel made from soy oil (B100, in comparison with the diesel oil. The parameters analyzed were: effective power and reduced power, torque, specific and energetic consumption of fuel, thermal-mechanics and volumetric efficiency. An entirely randomized experiment design was installed (DIC in a factorial structure, the analysis of variance was carried out and the Tukey test was applied at the level of 5%. Five rotation levels were researched in four replications (650, 570, 490, 410, 320, and 240 rpm. The engine fed with biodiesel presented torque and reduced power a little lower than the engine fed with fossil diesel. However, specific and hourly consumptions presented more satisfactory results.

  12. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    Science.gov (United States)

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  13. Wind-diesel and distributed diesel co-generation in remote communities

    International Nuclear Information System (INIS)

    Lodge, M.A.

    1995-01-01

    One of the most popular and feasible strategies to reduce costs for electrical and other energy supply in remote communities is the development of wind-diesel systems. In these systems, a significant share of the electrical energy requirements of a community can be provided by wind turbines connected to the community electrical distribution system. One of the characteristics of the systems having a relatively large ratio of wind turbine capacity to community load, called High Penetration Wind-Diesel Systems (HPWDS), is that during high wind periods there will be electrical energy available in excess of the net load on the system. An important concept of the HPWDS strategy is that this excess energy can be directed to a practical use, such as heating. The concept of HPWDS was shown to be economically and technically feasible in communities having no heat recovery on the diesel plants. It proved to be even more attractive as a strategy for self sufficiency of electrical supply in communities with waste heat recovery. 1 fig., 1 tab

  14. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  15. Diesel engine performance and emissions with fuels derived from waste tyres.

    Science.gov (United States)

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  16. Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine

    International Nuclear Information System (INIS)

    Yilmaz, Emre; Solmaz, Hamit; Polat, Seyfi; Uyumaz, Ahmet; Şahin, Fatih; Salman, M. Sahir

    2014-01-01

    Highlights: • Mono-ethylene glycol was used as an auxiliary emulsifier. • Using mono ethylene glycol prolonged precipitation duration of emulsions. • With using E5 and E10 fuels engine torque averagely increased by 0.35% and 1.73% respectively. • It was found that specific fuel consumption of emulsions is lower than diesel. • Using E10 fuel reduced CO, NO x and soot emissions 44%, 47% and 5% respectively. - Abstract: Diesel engines are used widely as they have lower fuel consumption and higher thermal efficiency in transportation sector. However, the emitted high NO x , CO and soot emissions have led researchers to search different alternative fuels. At this point, diesel fuels emulsions help to reduce exhaust emissions. In this study, the effects of diesel fuel emulsions containing 5% (E5) and 10% (E10) water on engine performance an exhaust emissions has been investigated. Mono ethylene glycol was used as an auxiliary emulsifier in the preparation of the emulsion. Use of the mono ethylene glycol reduced the subsidence rate of the E5 and E10 about 34.5% and 47.1% respectively. The experiments were conducted at full load condition and at 2500, 3250 and 4000 rpm engine speeds. Engine torque and power increased according to diesel fuel between 2400 and 3600 engine speed range when emulsified fuels were used. But significant reductions were observed after that engine speed range. It was observed that the nitrogenoxide (NO x ) emission reduced 5.42% and 11.01% with using E5 and E10 fuel respectively according to diesel fuel at 2500 rpm. Also the soot emissions reduced 12.39% and 22.97% with using E5 and E10

  17. The effects of ethanol addition with waste pork lard methyl ester on performance, emission and combustion characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    John Panneer Selvam Dharmaraj

    2014-01-01

    Full Text Available In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.

  18. The injection equipment of future high-speed DI diesel engines with respect to power and pollution requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, A. (Monobloc Dieselmotoren GmbH, Vienna (AT))

    1990-01-01

    The development of high specific output DI diesel engines started at the low-speed end some 50 years ago primarily for marine and traction applications. Movement towards the high-speed end has been slow but steady with the majority of truck engines being very conservatively rated. There has been recent major effort on the automotive car and light commercial vehicle diesel application leading to lightweight DI diesel engines with an engine speed of 4000-5000 r/min and a rated power of 50 kW/litre displacement. These are expected to be on the market in a short period of time. The key point of this development has been the injection equipment including combustion control. In this area the use of modulated injection has the possibility of solving power and pollution requirements. (author).

  19. Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures

    Directory of Open Access Journals (Sweden)

    Candan Feyyaz

    2017-01-01

    Full Text Available In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.

  20. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  1. Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel

    International Nuclear Information System (INIS)

    Sureshkumar, K.; Ganesan, R.; Velraj, R.

    2008-01-01

    Transport vehicles greatly pollute the environment through emissions such as CO, CO 2 , NO x , SO x , unburnt or partially burnt HC and particulate emissions. Fossil fuels are the chief contributors to urban air pollution and major source of green house gases (GHGs) and considered to be the prime cause behind the global climate change. Biofuels are renewable, can supplement fossil fuels, reduce GHGs and mitigate their adverse effects on the climate resulting from global warming. This paper presents the results of performance and emission analyses carried out in an unmodified diesel engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Engine tests have been conducted to get the comparative measures of brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC) and emissions such as CO, CO 2 , HC, NO x to evaluate the behaviour of PPME and diesel in varying proportions. The results reveal that blends of PPME with diesel up to 40% by volume (B40) provide better engine performance (BSFC and BSEC) and improved emission characteristics. (author)

  2. System for exposing animals to radiolabeled diesel exhaust

    International Nuclear Information System (INIS)

    Lopez, J.A.; Wolf, I.; Wolff, R.K.; Sun, J.D.; Mokler, B.V.

    1981-01-01

    One approach to determining the deposition and fate of inhaled diesel particles is the conduct of inhalation exposure studies with radiolabeled diesel fuel. A system was designed, constructed and tested for the simultaneous exposure of animals to radiolabeled diesel exhaust and collection of large quantities of radiolabeled diesel exhaust particles from a single cylinder diesel engine. The system performance was characterized and evaluated over a range of operating conditions: 0 to 1800 watts of engine load, 1000 to 2500 rpm and dilution air rates of 1:2 and 1:10. The exposure system met required design and operating criteria for safety, portability, space and flexibility

  3. Evaluation of the agricultural tractor using biofuel and diesel oil; Avaliacao de um trator agricola utilizando biocombustivel e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Pinheiro Neto, Raimundo; Meyer, Wagner; Mendonca, Elton Costa de; Roberti, Marcelo [Universidade Estadual de Maringa (UEM), PR (Brazil)], Emails: raplopes@uem.br, rpneto@uem.br

    2009-07-01

    Test with alternative fuels is essential to evaluate the performance of machines and engines. In this paper, the performance of a tractor in chiseling operation was evaluated using oil diesel and biofuel (oil diesel + soybean vegetable oil mixture). Speed of displacement, slip wheels, force traction bar and fuel consumption was evaluated in areas under tillage and no-tillage. The speed of displacement of the set presented similar behavior in tillage and no-tillage. Bigger values mean force in the bar of traction, slip and fuel consumptions had been observed for no-tillage with the tractor operating with diesel. Bigger values mean consumption the biofuel had been observed in areas under tillage. The coverings of the soil had influenced in the values of force bar traction, slip wheels, speed of displacement and fuel consumption. In the studied conditions, the tests demonstrate that the mixture oil diesel + soybean vegetable oil had not influenced in the performance of the tractor. (author)

  4. Reducing Diesel Engine Emission Using Reactivity Controlled Approach

    Directory of Open Access Journals (Sweden)

    Osama Hasib Ghazal

    2018-01-01

    Full Text Available Several automobile manufacturers are interested in investigating of dual fuel internal combustion engines, due to high efficiencand low emissions. Many alternative fuels have been used in dual fuel mode for IC engine, such as methane, hydrogen, and natural gas. In the present study, a reactivity controlled compression ignition (RCCI engine using gasoline/diesel (G/D dual fuel has been investigated. The effectof mixing gasoline with diesel fuel on combustion characteristic, engine performance and emissions has been studied. The gasoline was injected in the engine intake port, to produce a homogeneous mixture with air. The diesel fuel was injected directly to the combustion chamber during compression stroke to initiate the combustion process. A direct injection compression ignition engine has been built and simulated using ANSYS Forte professional code. The gasoline amount in the simulation varied from (50%-80% by volume. The diesel fuel was injected to the cylinder in two stages. The model has been validated and calibrated for neat diesel fuel using available data from the literature. The results show that the heat release rate and the cylinder pressure increased when the amount of added gasoline is between 50%-60% volume of the total injected fuels, compared to the neat diesel fuel. Further addition of gasoline will have a contrary effect. In addition, the combustion duration is extended drastically when the gasoline ratio is higher than 60% which results in an incomplete combustion. The NO emission decreased drastically as the gasoline ratio increased. Moreover, addition of gasoline to the mixture increased the engine power, thermal efficienc and combustion efficienc compared to neat diesel fuel.

  5. The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2006-01-01

    This article presents the comparative bench testing results of a four stroke, four cylinder, direct injection, unmodified, naturally aspirated Diesel engine when operating on neat RME and its 5%, 10%, 20% and 35% blends with Diesel fuel. The purpose of this research is to examine the effects of RME inclusion in Diesel fuel on the brake specific fuel consumption (bsfc) of a high speed Diesel engine, its brake thermal efficiency, emission composition changes and smoke opacity of the exhausts. The brake specific fuel consumption at maximum torque (273.5 g/kW h) and rated power (281 g/kW h) for RME is higher by 18.7% and 23.2% relative to Diesel fuel. It is difficult to determine the RME concentration in Diesel fuel that could be recognised as equally good for all loads and speeds. The maximum brake thermal efficiency varies from 0.356 to 0.398 for RME and from 0.373 to 0.383 for Diesel fuel. The highest fuel energy content based economy (9.36-9.61 MJ/kW h) is achieved during operation on blend B10, whereas the lowest ones belong to B35 and neat RME. The maximum NO x emissions increase proportionally with the mass percent of oxygen in the biofuel and engine speed, reaching the highest values at the speed of 2000 min -1 , the highest being 2132 ppm value for the B35 blend and 2107 ppm for RME. The carbon monoxide, CO, emissions and visible smoke emerging from the biodiesel over all load and speed ranges are lower by up to 51.6% and 13.5% to 60.3%, respectively. The carbon dioxide, CO 2 , emissions along with the fuel consumption and gas temperature, are slightly higher for the B20 and B35 blends and neat RME. The emissions of unburned hydrocarbons, HC, for all biofuels are low, ranging at 5-21 ppm levels

  6. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  7. Desulfurization of oxidized diesel using ionic liquids

    Science.gov (United States)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  8. Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine

    International Nuclear Information System (INIS)

    Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Ashraful, A.M.; Mobarak, H.M.

    2014-01-01

    Highlights: • Palm, coconut and their combined biodiesel blend (PB15CB15) was studied. • Characterization and effect on engine performance and emission was analyzed. • Combined blend improves BP, BSFC and NOx emission compared to coconut. • Combined blend improves CO, HC emissions and BTE compared to palm. - Abstract: Biodiesel is a renewable and sustainable alternative fossil fuel that is derived from vegetable oils and animal fats. This study investigates the production, characterization, and effect of biodiesel blends from two prominent feedstocks, namely, palm and coconut (PB30 and CB30), on engines. To aggregate the advantages of high ignition quality of palm and high oxygen content of coconut, combined blend of this two biodiesels (PB15CB15) is examined to evaluate its effect on engine performance and emission characteristics. Biodiesels are produced using the alkali catalyzed transesterification process. Various physicochemical properties are measured and compared with the ASTM D6751 standard. A 10 kW, horizontal, single-cylinder, four-stroke, and direct-injection diesel engine is employed under a full load and varying speed conditions. Biodiesel blends produce a low brake torque and high brake-specific fuel consumption (BSFC). However, all emissions, except for NOx, are significantly reduced. PB15CB15 improves brake torque and power output while reducing BSFC and NOx emissions when compared with CB30. Meanwhile, compared with PB30, PB15CB15 reduces CO and HC emissions while improving brake thermal efficiency. The experimental analysis reveals that the combined blend of palm and coconut oil shows superior performance and emission over individual coconut and palm biodiesel blends

  9. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  10. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  11. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  12. Rudolph Diesel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rudolph Diesel. Articles written in Resonance – Journal of Science Education. Volume 17 Issue 4 April 2012 pp 406-424 Classics. Diesel's Rational Heat Motor · Rudolph Diesel · More Details Fulltext PDF ...

  13. A potential study on clove oil, eugenol and eugenyl acetate as diesel fuel bio-additives and their performance on one cylinder engine

    Directory of Open Access Journals (Sweden)

    A. Kadarohman

    2010-03-01

    Full Text Available Research on the potency of essential oils as diesel fuel bio-additives has been reported. It also has been found out that clove oil has a better performance than turpentine oil on decreasing Break Specific Fuel Consumption (BSFC and reduces the exhaust emissions of the engine. Clove oil is essential oil the content of which is made of eugenol acting as the main component. Eugenol has a bulky structure, two oxygen atoms and can form eugenyl acetate from ester reaction. Eugenyl acetate has a bulkier structure and higher oxygen content than eugenol which leads to optimizing the process of fuel combustion. This experiment can give information about the potency of the bio-additive based on clove oil and eugenol and about the influence of oxygen enrichment with eugenol on the performance of the diesel fuel bio-additive. In general, this experiment covered three stages. The first step is the characterization of the diesel fuel bio-additive using a GCMS and FTIR spectrophotometer. The second step is the characterization of the diesel fuel bio-additive and composition optimization. The final step is conducting a diesel fuel bio-additive performance test on one cylinder engine on a laboratory scale. The results of the carried out experiment show that clove oil, eugenol and eugenyl acetate can decrease Break Specific Fuel Consumption (BSFC and reduce the exhaust emissions of the engine as well as oxygen enrichment can help in reaching optimal fuel combustion.

  14. Pitch control for ships with diesel mechanical and hybrid propulsion : Modelling, validation and performance quantification

    NARCIS (Netherlands)

    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J.

    2017-01-01

    Ships, in particular service vessels, need to reduce fuel consumption, emissions and cavitation noise while maintaining manoeuvrability and preventing engine overloading. Diesel mechanical propulsion with controllable pitch propellers can provide high fuel efficiency with good manoeuvrability.

  15. Application of wear resistant spraying for diesel engine; Diesel kikan eno taimamo yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Y. [Mitsui Engineering and Shipbuliding Co. Ltd., Tokyo (Japan)

    1999-03-31

    Diesel engines used widely as propelling engines of ships have increasingly been provided with a high output and a high thermal efficiency; their structural members, particularly, the component parts for combustion chambers are therefore used under severe conditions, giving rise to the need of surface treatment and surface reforming of the members. Parts for marine diesel engines are huge, so that the technology applicable to the surface treatment and reforming are limited in point of facility and cost; therefore, most suitable is thermal spraying. This paper primarily discusses, among marine diesel engines, a 2-cycle low-speed engine with a 260-980mm bore used for the main engine of a merchant ship such as a container ship, bulk carrier or a tanker, and a 4-cycle medium-speed engine with a 300-420mm bore used for the main engine of a naval vessel; the paper explains the application status of a thermal spraying technology which is in progress to cope with the high output and high thermal efficiency of the diesel engines, explaining particularly the story of the development and the technological features of the wear resistant thermal spraying, which has been put to practical use, on the cylinder liner and the piston ring of the 4-cycle medium-speed engine. (NEDO)

  16. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  17. Motor gerador ciclo diesel sob cinco proporções de biodiesel com óleo diesel Engine-generator diesel cycle under five proportions of biodiesel and diesel

    Directory of Open Access Journals (Sweden)

    Marcelo J. da Silva

    2012-01-01

    that, when operating at lower loads (less than 1.5 kW, the engine-generator performance decreased, while the specific consumption increased, leading to an efficiency reduction. The biodiesel proportions B40, B60 and B100 described reduction in caloric value and increased the specific fuel consumption. Therefore, comparing the proportions of biodiesel with diesel oil, the proportion B20 replaced diesel oil without significant losses in engine-generator performance.

  18. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Lin, Sheng-Lun; Wang, Lin-Chi

    2013-01-01

    Highlights: • Water-containing ABE solution (W-ABE) in the diesel is a stable fuel blends. • W-ABE can enhance the energy efficiency of diesel engine and act as a green energy. • W-ABE can reduce the PM, NOx, and PAH emissions very significantly. • The W-ABE can be manufactured from waste bio-mass without competition with food. • The W-ABE can be produced without dehydration process and no surfactant addition. - Abstract: Acetone–Butanol–Ethanol (ABE) is considered a “green” energy resource because it emits less carbon than many other fuels and is produced from biomass that is non-edible. To simulate the use of ABE fermentation products without dehydration and no addition of surfactants, a series of water-containing ABE-diesel blends were investigated. By integrating the diesel engine generator (DEG) and diesel engine dynamometer (DED) results, it was found that a diesel emulsion with 20 vol.% ABE-solution and 0.5 vol.% water (ABE20W0.5) enhanced the brake thermal efficiencies (BTE) by 3.26–8.56%. In addition, the emissions of particulate matter (PM), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), and the toxicity equivalency of PAHs (BaP eq ) were reduced by 5.82–61.6%, 3.69–16.4%, 0.699–31.1%, and 2.58–40.2%, respectively, when compared to regular diesel. These benefits resulted from micro-explosion mechanisms, which were caused by water-in-oil droplets, the greater ABE oxygen content, and the cooling effect that is caused by the high vaporization heat of water-containing ABE. Consequently, ABE20W0.5, which is produced by environmentally benign processes (without dehydration and no addition of surfactants), can be a good alternative to diesel because it can improve energy efficiency and reduce pollutant emissions

  19. New perspectives for advanced automobile diesel engines

    Science.gov (United States)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  20. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  1. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  2. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  3. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  4. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  5. Development of condition monitoring and diagnosis system for standby diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Hee; Park, Jong Hyuck; Park, Jong Eun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The emergency diesel generator (EDG) of the nuclear power plant is designed to supply the power to the nuclear on Station Black Out (SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a condition monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developed the online condition monitoring and diagnosis system for the wolsong unit 3 and 4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring and diagnosis system (SDG MDS) for the wolsong standby diesel generator are described. By using the condition monitoring module of the SDG MDS, performance monitoring function for major operating parameters of EDG reliability program required by Reg. guide 1.155 can be operated as on line monitoring system.

  6. Development of condition monitoring and diagnosis system for standby diesel generator

    International Nuclear Information System (INIS)

    Choi, Kwang Hee; Park, Jong Hyuck; Park, Jong Eun

    2009-01-01

    The emergency diesel generator (EDG) of the nuclear power plant is designed to supply the power to the nuclear on Station Black Out (SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a condition monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developed the online condition monitoring and diagnosis system for the wolsong unit 3 and 4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring and diagnosis system (SDG MDS) for the wolsong standby diesel generator are described. By using the condition monitoring module of the SDG MDS, performance monitoring function for major operating parameters of EDG reliability program required by Reg. guide 1.155 can be operated as on line monitoring system

  7. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

    International Nuclear Information System (INIS)

    Bora, Bhaskor J.; Saha, Ujjwal K.; Chatterjee, Soumya; Veer, Vijay

    2014-01-01

    Highlights: • Maximum brake thermal efficiency of 20.04% was obtained in dual fuel mode. • Compression ratio of 18 produced the maximum brake thermal efficiency. • Maximum replacement of diesel was found to be 79.46% at a compression ratio of 18. • CO gets reduced by 26.22% with the increase of compression ratio from 16 to18. • HC gets reduced by 41.97% with the increase of compression ratio from 16 to18. - Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression

  8. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Mohammadi, Pouya; Pourvosoughi, Navid; Nikbakht, Ali M.; Goli, Sayed Amir Hossein

    2015-01-01

    Highlights: • Exergy analysis of diesel engine fuelled with various SBE biodiesel–diesel blends containing EPS. • Profound effect of engine speed and load on exergetic performance parameters of diesel engine. • Selection of B5 containing 50 g EPS/L biodiesel as the best mixture. • Potential application of the applied framework for optimizing sustainability index of IC engines. - Abstract: Exergy analysis of a DI diesel engine running on several biodiesel/diesel blends (B5) containing various quantities of expanded polystyrene (EPS) was carried out. Neat diesel and B5 were also investigated during the engine tests. The biodiesel used was produced using waste oil extracted from spend bleaching earth (SBE). The experiments were conducted to assess the effects of fuel type, engine speed, and load on thermal efficiency, exergetic parameters, and sustainability index of the diesel engine. The obtained results revealed that the exergetic parameters strongly depended on the engine speed and load. Generally, increasing engine speed remarkably decreased the exergy efficiency and sustainability index of the diesel engine. However, increasing engine load initially enhanced the exergy efficiency and sustainability index, while its further augmentation did not profoundly affect these parameters. The maximum exergy efficiency and sustainability index of the diesel engine (i.e. 40.21% and 1.67, respectively) were achieved using B5 containing 50 g EPS/L biodiesel. Generally, the approach presented herein could be a promising strategy for energy recovery from polymer waste, emissions reduction, and performance improvement. The findings of the present study also confirmed that exergy analysis could be employed to minimize the irreversibility and losses occurring in modern engines and to enhance the sustainability index of combustion processes.

  9. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  10. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  11. Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach

    International Nuclear Information System (INIS)

    Bose, Probir Kumar; Deb, Madhujit; Banerjee, Rahul; Majumder, Arindam

    2013-01-01

    Environmental issues and rapid exhaustion of fossil fuels are the major concerns over the past two decades to search for alternative fuels. Among various alternatives hydrogen is a long-term renewable and least polluting fuel. Its clean burning capability helps to meet the stern emission norms. Full substitution of diesel with hydrogen may not be convenient for the time being but employing of hydrogen in a diesel engine in dual fuel mode is possible. In this experimental investigation a TMI (timed manifold injection) system has been developed using ECU (electronic control unit) with varying injection strategy to deliver hydrogen on to the intake manifold. Through adopting this technique in the existing diesel engine a momentous improvement in performance and combustion parameters has been observed. The study also attempts to explain the application of the fuzzy logic based Taguchi analysis to optimize the performance parameters i.e. BSEC (Brake specific energy consumption), Vol. Eff. (Volumetric efficiency) and BTHE (brake thermal efficiency) for the different hydrogen injection strategies. - Highlights: • A timed manifold injection system has been developed which enhances the BTHE by 31.74% at full load conditions. • Use of hydrogen-diesel dual fuel of BSEC was reduced by a maximum of 68.98% at full load condition compared to diesel. • Τhe Vol. Eff. reduced by 73.14% in dual fuel mode as compared to 77.23% at full load condition with base diesel. • A fuzzy based Taguchi's parameter design technique has been involved in multi objective optimization for prediction. • Predicted optimum combination improved BTHE and Vol. Eff. by 24.04% and 72.87% respectively and reduced BSEC by 59.03%

  12. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A.

    2016-01-01

    Highlights: • Four higher-alcohols namely, iso-butanol, n-pentanol, n-hexanol and n-octanol, were used. • Iso-butanol/diesel blend presented longest ignition delay, highest peak pressures and peak heat release rates. • NOx emissions were high for n-pentanol/diesel and n-hexanol/diesel blends at high load conditions. • Smoke opacity is highest for n-octanol/diesel blend and lowest for iso-butanol/diesel blend. • HC emissions are high for iso-butanol/diesel and n-pentanol/diesel blends. - Abstract: Higher alcohols are attractive next generation biofuels that can be extracted from sugary, starchy and ligno-cellulosic biomass feedstocks using sustainable pathways. Their viability for use in diesel engines has greatly improved ever since extended bio-synthetic pathways have achieved substantial yields of these alcohols using engineered micro-organisms. This study sets out to compare and analyze the effects of some higher alcohol/diesel blends on combustion and emission characteristics of a direct-injection diesel engine. Four test fuels containing 30% by vol. of iso-butanol, n-pentanol, n-hexanol and n-octanol (designated as ISB30, PEN30, HEX30 and OCT30 respectively) in ultra-low sulfur diesel (ULSD) were used. Results indicated that ISB30 experienced longest ignition delay and produced highest peaks of pressure and heat release rates (HRR) compared to other higher-alcohol blends. The ignition delay, peak pressure and peak HRR are found to be in the order of (from highest to lowest): ISB30 > PEN30 > HEX30 > OCT30 > ULSD. The combustion duration (CD) for all test fuels is in the sequence (from shortest to longest): ISB30 OCT30 > HEX30 > PEN30 > ISB30. HC emissions are high for ISB30 and PEN30 while it decreased favorably for HEX30 and OCT30. It was of the order (from highest to lowest): ISB30 > PEN30 > ULSD > HEX30 > OCT30. CO emissions of the blends followed the trend of smoke emissions and remained lower than ULSD with the following order (from highest to

  13. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  14. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  15. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  16. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME) produced through hydrodynamic cavitation process

    OpenAIRE

    Ashok Kumar Yadav; M. Emran Khan; Amit Pal; Uttam Ghosh

    2018-01-01

    In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester) blended with die...

  17. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  18. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  19. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  20. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  1. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  2. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  3. Characterization of performance-emission indices of a diesel engine using ANFIS operating in dual-fuel mode with LPG

    Science.gov (United States)

    Chakraborty, Amitav; Roy, Sumit; Banerjee, Rahul

    2018-03-01

    This experimental work highlights the inherent capability of an adaptive-neuro fuzzy inference system (ANFIS) based model to act as a robust system identification tool (SIT) in prognosticating the performance and emission parameters of an existing diesel engine running of diesel-LPG dual fuel mode. The developed model proved its adeptness by successfully harnessing the effects of the input parameters of load, injection duration and LPG energy share on output parameters of BSFCEQ, BTE, NOX, SOOT, CO and HC. Successive evaluation of the ANFIS model, revealed high levels of resemblance with the already forecasted ANN results for the same input parameters and it was evident that similar to ANN, ANFIS also has the innate ability to act as a robust SIT. The ANFIS predicted data harmonized the experimental data with high overall accuracy. The correlation coefficient (R) values are stretched in between 0.99207 to 0.999988. The mean absolute percentage error (MAPE) tallies were recorded in the range of 0.02-0.173% with the root mean square errors (RMSE) in acceptable margins. Hence the developed model is capable of emulating the actual engine parameters with commendable ranges of accuracy, which in turn would act as a robust prediction platform in the future domains of optimization.

  4. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    Science.gov (United States)

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  5. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – Evaluation of engine performance, exhaust emissions, heat release and flammability analysis

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan; Aksu, Orhan N.

    2015-01-01

    Highlights: • n-Butanol/diesel fuel blends and n-butanol fumigation investigated experimentally. • Flammability analysis of n-butanol performed. • Smoke decreases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • HC emission increases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • 2% n-Butanol/diesel fuel blend decreases slightly BSFC. - Abstract: The aim of this paper is to investigate and compare the effects of n-butanol/diesel fuel blends (nBDFBs) and n-butanol fumigation (nBF) on the engine performance and exhaust emissions in a turbocharged automobile diesel engine. Also, evaluations based on heat release and flammability analysis have been done. Experiments have been performed for various n-nBDFBs and nBF at different engine speeds and loads. For nBDFBs and nBF tests; nB2, nB4 and nB6 and nBF2, nBF4 and nBF6n-butanol percentages were selected. Here, for example nB2 and nBF2 contains 2% n-butanol and 98% diesel fuel by volume respectively. The test results showed that smoke decreases significantly by applying both of these two methods. However, decrement ratios of smoke for fumigation method are higher than that of blend method. NO x emission decreases for nB2, but it increases for nB4 and nB6 at selected engine speeds and loads. NO x emission decreases generally for nBF. For nB2 and nB4, BSFC decreases slightly but it increases for nB6. For nBF, BSFC increases at all of the test conditions. Adding n-butanol to diesel fuel becomes expensive for two methods. For nBDFBs, heat release rate (HRR) diagrams exhibit similar typical characteristic to NDF. However, for nBF, HRR shows slightly different pattern from NDF and a double peak is observed in the HRR diagram. The first peak occurs earlier than NDF and the second peak takes places later. In addition, this diagram shows that the first peak becomes larger and the second peak diminishes as n-butanol ratio is increased. Because of pilot injection of

  6. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  7. Investigation of the influence of physical and chemical properties of biodiesel in the fuel economy, energy and environmental performance of motor diesel

    Directory of Open Access Journals (Sweden)

    Korpach А.

    2016-08-01

    Full Text Available Due to exhaustion of world energy reserves and significant environmental pollution by harmful substances, current research aimed at determining the effectiveness of alternative fuels. In the article compare two samples of biodiesel and studied their physical and chemical properties accordance with International Standard. Effect of different samples of biodiesel in fuel economy, energy and environmental performance automotive diesel determined by the bench tests of 4CH11,0/12.5 (D-241 diesel. The difference between physical and chemical properties of two biodiesel samples influenced to the fuel efficiency and environmental performance of the diesel. Operation on biodiesel with higher density and kinematic viscosity provide increases of maximum power and torque and increase fuel consumption. It also increases the concentration of nitrogen oxides in exhaust gases and it opacity. The results allow evaluate how the deviation of physical and chemical properties of biodiesel could affect the operational performance of the engine.

  8. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  9. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  10. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    Science.gov (United States)

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  12. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  13. Modelling of the work processes high-pressure pump of common rail diesel injection system

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2016-01-01

    Full Text Available Common rail injection systems are becoming a more widely used solution in the fuel systems of modern diesel engines. The main component and the characteristic feature of the system is rail injection of the fuel under high pressure, which is passed to the injector and further to the combustion chamber. An important element in this process is the high-pressure pump, continuing adequate pressure in the rail injection system. Common rail (CR systems are being modified in order to optimise their work and virtual simulations are a useful tool in order to analyze the correctness of operation of the system while varying the parameters and settings, without any negative impact on the real object. In one particular study, a computer simulation of the pump high-pressure CR system was made in MatLab environment, based on the actual dimensions of the object – a one-cylinder diesel engine, the Farymann Diesel 18W. The resulting model consists of two parts – the first is responsible for simulating the operation of the high-pressure pump, and the second responsible for simulation of the remaining elements of the CR system. The results of this simulation produced waveforms of the following parameters: fluid flow from the manifold to the injector [m3/s], liquid flow from the manifold to the atmosphere [m3/s], and manifold pressure [Pa]. The simulation results allow for a positive verification of the model and the resulting system could become a useful element of simulation of the entire position and control algorithm.

  14. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Amplitude-phase characteristics of regulators of high -speed automobile diesels

    OpenAIRE

    Тырловой, С. И.

    2009-01-01

    The regulator frequency response has been analyzed to work out a strategy for repairing and renewal of fuel equipment used by foreign high-speed automobile diesels. For taking into consideration the heavy gradients of kinetic energy of the regulator elements the Lagrange equation of the second kind that includes the partial derivative of kinetic energy along the axis of motion of a gauge clutch was used.  Such a record, which was not kept for the known models, allowed for considerable clarifi...

  16. Market penetration of large wind/diesel systems

    International Nuclear Information System (INIS)

    Kronborg, T.

    1992-01-01

    Burmeister ampersand Wain is developing a large size wind/diesel package in collaboration with Micon, the Danish wind turbine manufacturer, and the Danish utility NESA. The package comprises an initial calculation of the technical feasibility and the economic viability of an actual project, installing the optimum number of large wind turbines, and service, operation, and maintenance as needed. The concept should be seen as an addition to existing diesel-based power stations. Wind turbines are especially advantageous in smaller diesel-based electrical systems in the 1-20 MW range because such systems can have high fuel costs and expensive maintenance. Analysis of the market for the wind/diesel concept indicates islands and remote areas with limited population are likely candidates for implementation of wind/diesel systems. An example of an economic analysis of a wind/diesel application on an isolated island is presented, showing the cost savings possible. To obtain practical experience and to demonstrate the wind/diesel concept, a MW-size demonstration plant is being constructed in Denmark

  17. Performance deterioration and durability issues while running a diesel engine with crude palm oil

    International Nuclear Information System (INIS)

    Bari, S.; Yu, C.W.; Lim, T.H.

    2003-01-01

    Short-term performance tests using crude palm oil (CPO) as fuel for a diesel engine showed CPO to be a suitable substitute, with a peak pressure about 5 per cent higher and an ignition delay about 3 deg shorter compared with diesel. Emissions of NO and CO were about 29 and 9 per cent higher respectively for CPO. However, prolonged use of CPO as fuel caused the engine performance to deteriorate. After 500 h cumulative running with CPO, the maximum power was reduced by about 20 per cent and the minimum brake specific fuel consumption (b.s.f.c.) was increased by about 26 per cent. Examination of the different parts after the engine was dismantled revealed heavy carbon deposits in the combustion chamber; traces of wear on the piston rings, the plunger and the delivery valve of the injection pump; slight scuffing of the cylinder liner; and uneven spray from the nozzles. The affected parts were installed in a new identical engine one by one to evaluate the performance of each respectively. Tests revealed that the main reason for engine performance deterioration was 'valve sticking', caused by carbon deposits on the valve seats and stems. This resulted in leakage during the compression and power strokes and a reduced effective compression ratio and subsequently affected the power and fuel economy. Valve sticking alone contributed about 18 and 23 per cent to the deterioration in maximum power and minimum b.s.f.c. respectively. (Author)

  18. Effects of a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine

    International Nuclear Information System (INIS)

    Tziourtzioumis, Dimitrios; Stamatelos, Anastassios

    2012-01-01

    Highlights: ► We demonstrate how the fuel injection system responds to different fuel properties. ► Improvements to the ECU maps of the engine are suggested. ► These allow operation at high biodiesel blends without loss in engine performance. ► Continued operation with high biodiesel fuel blend, resulted in fuel pump failure. - Abstract: The results of steady state and transient engine bench tests of a 2.0l common-rail passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. The macroscopic steady-state performance and emissions of the same engine has already been presented elsewhere. The current study demonstrates how the engine management system responds to different fuel properties, with focus to the fuel system dynamics and the engine’s transient response. A set of characteristic transient operation points was selected for the tests. Data acquisition of engine ECU variables was made by means of INCA software/ETAS Mac2 interface. Additional data acquisition regarding engine performance was based on external sensors. The results indicate significant differences in fuel system dynamics and transient engine operation with the B70 blend at high fuel flow rates. Certain modifications to engine ECU maps and control parameters are proposed, aimed at improvement of transient performance of modern engines run on high percentage biodiesel blends. However, a high pressure pump failure that was observed after prolonged operation with the B70 blend, hints to the use of more conservative biodiesel blending in fuel.

  19. Theoretical and experimental investigations on the performance of dual fuel diesel engine with hydrogen and LPG as secondary fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lata, D.B.; Misra, Ashok [Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 (India)

    2010-11-15

    The mathematical models to predict pressure, net heat release rate, mean gas temperature, and brake thermal efficiency for dual fuel diesel engine operated on hydrogen, LPG and mixture of LPG and hydrogen as secondary fuels are developed. In these models emphasis have been given on spray mixing characteristics, flame propagation, equilibrium combustion products and in-cylinder processes, which were computed using empirical equations and compared with experimental results. This combustion model predicts results which are in close agreement with the results of experiments conducted on a multi cylinder turbocharged, intercooled gen-set diesel engine. The predictions are also in close agreement with the results on single cylinder diesel engine obtained by other researchers. A reasonable agreement between the predicted and experimental results reveals that the presented model gives quantitatively and qualitatively realistic prediction of in-cylinder processes and engine performances during combustion. (author)

  20. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives

    International Nuclear Information System (INIS)

    El-Seesy, Ahmed I.; Abdel-Rahman, Ali K.; Bady, Mahmoud; Ookawara, S.

    2017-01-01

    Highlights: • Considerable improvements in the combustion of JB20D50MWCNTs compared to pure JB20D. • p_m_a_x, dp/dθ_m_a_x and dQg/dθ_m_a_x increased by 7%, 4% and 4%, respectively. • Brake specific fuel consumption decreased by 15%. • NO_x, CO, and UHC reduced by 35%, 50%, and 60%, respectively. • Significant enhancement in all engine performance was achieved at a concentration of 40 mg/l. - Abstract: In this work, the effects of adding Multi-Walled Carbon nanotubes (MWCNTs) to Jojoba methyl ester-diesel blended fuel (JB20D) on performance, combustion and emissions characteristics of a compression-ignition engine were experimentally investigated. The JB20D with 10, 20, 30, 40 and 50 mg/l of MWCNTs were examined at different engine loads and speeds. Compared to pure diesel, the use of JB20D without MWCNTs caused a slight decrease in the engine performance and an increase in the engine emissions at most examined conditions. The MWCNTs–B20D blended fuel attained a maximum increase of 16% in the brake thermal efficiency and a decrease of 15% in the brake specific fuel consumption at the dose level of 50 mg/l compared to JB20D. The MWCNTs-JB20D blended fuel also brought about an enhancement in combustion characteristics where the peak cylinder pressure, the maximum rate of pressure rise and the peak heat release rate were increased by 7%, 4%, and 4%, respectively, at the same dose level. According to the measured emissions, a significant reduction of engine emissions was achieved at the dose level of 20 mg/l, where NO_x, CO, and UHC were reduced by 35%, 50%, and 60%, respectively. According to the obtained results, the recommended concentration of MWCNTs in JB20D was concluded to be 40 mg/l, which could give significant improvements in overall the parameters of engine performance and emissions with a good balance between them.

  1. Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: Performance review and identification of high-emitters.

    Science.gov (United States)

    Huang, Yuhan; Organ, Bruce; Zhou, John L; Surawski, Nic C; Hong, Guang; Chan, Edward F C; Yam, Yat Shing

    2018-06-01

    A two-year remote sensing measurement program was carried out in Hong Kong to obtain a large dataset of on-road diesel vehicle emissions. Analysis was performed to evaluate the effect of vehicle manufacture year (1949-2015) and engine size (0.4-20 L) on the emission rates and high-emitters. The results showed that CO emission rates of larger engine size vehicles were higher than those of small vehicles during the study period, while HC and NO were higher before manufacture year 2006 and then became similar levels between manufacture years 2006 and 2015. CO, HC and NO of all vehicles showed an unexpectedly increasing trend during 1998-2004, in particular ≥6001 cc vehicles. However, they all decreased steadily in the last decade (2005-2015), except for NO of ≥6001 cc vehicles during 2013-2015. The distributions of CO and HC emission rates were highly skewed as the dirtiest 10% vehicles emitted much higher emissions than all the other vehicles. Moreover, this skewness became more significant for larger engine size or newer vehicles. The results indicated that remote sensing technology would be very effective to screen the CO and HC high-emitters and thus control the on-road vehicle emissions, but less effective for controlling NO emissions. No clear correlation was observed between the manufacture year and percentage of high-emitters for ≤3000 cc vehicles. However, the percentage of high-emitters decreased with newer manufacture year for larger vehicles. In addition, high-emitters of different pollutants were relatively independent, in particular NO emissions, indicating that high-emitter screening criteria should be defined on a CO-or-HC-or-NO basis, rather than a CO-and-HC-and-NO basis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  3. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  4. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  5. Dieselization in Sweden

    International Nuclear Information System (INIS)

    Kågeson, Per

    2013-01-01

    In Sweden the market share of diesel cars grew from below 10 per cent in 2005 to 62 per cent in 2011 despite a closing gap between pump prices on diesel oil and gasoline, and diesel cars being less favored than ethanol and biogas cars in terms of tax cuts and other subsidies offered to “environment cars”. The most important factor behind the dieselization was probably the market entrance of a number of low-consuming models. Towards the end of the period a growing number of diesel models were able to meet the 120 g CO 2 threshold applicable to “environment cars” that cannot use ethanol or biogas. This helped such models increase their share of the diesel car market from zero to 41 per cent. Dieselization appears to have had only a minor effect on annual distances driven. The higher average annual mileage of diesel cars is probably to a large extent a result of a self-selection bias. However, the Swedish diesel car fleet is young, and the direct rebound effect stemming from a lower variable driving cost may show up more clearly as the fleet gets older based on the assumption that second owners are more fuel price sensitive than first owners. - Highlights: ► This paper tries to explain the fast dieselization of the new Swedish car fleet. ► It identifies changes in supply and the impact of tax benefits. ► Finally it studies the impact on the annual average mileage

  6. Engine performance and emission characteristics of plastic oil produced from waste polyethylene and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    This paper describes an experiment to determine the possibility of transforming waste plastics into a potential source of diesel fuel. Experiments were done on the use of various blends of plastic oil produced from waste polyethylene (WPE) with diesel fuel (D) at different volumetric ratios and the results were reviewed. WPE was thermally degraded with catalysis of sodium aluminum silicate at optimum conditions (414-480 degree celsius range and 1 h reaction time) and the collected oil was fractionated at various temperatures. The properties of the fuel blends at different volumetric ratios were measured in this study. It was shown that these blends can be used as fuel in compression ignition engines without any modification. With respect to engine performance and exhaust emission, it was found that using a 5% WPE-D (WPE5) blend instead of diesel fuel reduced carbon monoxide (CO) emission. However, the results of experiment showed that carbon dioxide (CO2) emission and oxides of nitrogen (NOx) emission rose.

  7. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    Science.gov (United States)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  8. Diesel conservation: GSRTC'S experience

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, I V

    1980-01-01

    The Gujarat State Road Transport Corporation (GSRTC) in India has a fleet of about 6000 buses. The increasing cost of fuel and lubricants added to uncertainty in supplies, has necessitated the need for conserving High Speed Diesel Oil (HSD). GSRTC had achieved an overall average Kilometre Per Litre (kmpl) of 4.44 in the year 1976-1977 due to a variety of measures. In the year 1978-1979 the average kmpl was 4.52 and it is expected to be 4.60 for 1979-1980. The case study outlined describes the measures taken by GSRTC in conserving high speed diesel oil by various methods.

  9. High oleic sunflower bio diesel: quality control and different purification methods

    Energy Technology Data Exchange (ETDEWEB)

    Pighlinelli, A. L. M. T.; Ferrari, R. A.; Miguel, A. M. R. O.; Park, K. J.

    2011-07-01

    The objective of the present work is to evaluate the production of bio diesel using ethanol and sunflower oil. The extraction of the sunflower oil was evaluated first. An experimental design was used to estimate the influence of the independent variables grain temperature (25 degree centigrade to 110 degree centigrade) and expelled rotation (85 to 119rpm) on the crude oil. The best result obtained was 68.38%, achieved with a rotation from 100 to 115rpm, grain temperature ranging from 25 degree centigrade to 30 degree centigrade and moisture content of around 7%. The next study consisted of transesterification, evaluating the influence of the ethanol, oil molar ratio and the catalyst concentration (sodium methylate) on the ester-rich phase yield. The highest yield was 98.39% obtained with a molar ratio of 9:1 and 3% catalyst. An experiment was then carried out on a small reactor and the bio diesel produced was purified by three different methods: acidified water, silica and distillation. The quality aspects of the purified bio diesel samples were evaluated according to the Brazilian specifications for bio diesel, and distillation was shown to be the best method of purification. (Author) 28 refs.

  10. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  11. Theoretical Study for The Influence of Biodiesel Addition on The Combustion, Performance and Emissions Parameters of Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody

    2017-08-01

    Full Text Available This study examines the characteristics of combustion, performance and emission of constant speed compression ignition engine fed with different percentages of diesel fuel and rapeseed methyl ester (RME on a volume basis by using the well-known software simulation Diesel-RK. As the percentage of RME increased, the maximal pressure is noticed to be closer to top dead center (TDC. It was found that 47.27 %, 81.06 %, 82.56 % and 93.36 % reduction in the Bosch smoke number is obtainable with 10% RME, 20% RME, 50% RME and 100% RME respectively, compared with ordinary diesel. The blends of RME are noticed to emit higher NOx emissions. The result signals that 10% RME is the promising ratio of blending which reports less performance variations and reduced carbon emissions as well. The effect of variable injection timings is studied to moderate biodiesel NOx effects on the 10% RME and 18 degree crank angle before top dead center (BTDC was recorded as the advisable injection timing which gives a promising reduction in NOx emissions.

  12. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  13. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  14. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel

    Directory of Open Access Journals (Sweden)

    Soha S.M. Mostafa

    2017-05-01

    In this study, the feasibility of biodiesel production from microalga Spirulina platensis has been investigated. The physico–chemical characteristics of the produced biodiesel were studied according to the standards methods of analysis (ASTM and evaluated according to their fuel properties as compared to Egyptian petro-diesel. Blends of microalgae biodiesel and petro-diesel (B2, B5, B10 and B20 were prepared on a volume basis and their physico–chemical characteristics have been also studied. The obtained results showed that; with the increase of biodiesel concentration in the blends; the viscosity, density, total acid number, initial boiling point, calorific value, flash point, cetane number and diesel index increase. While the pour point, cloud point, carbon residue and sulfur, ash and water contents decrease. The observed properties of the blends were within the recommended petro-diesel standard specifications and they are in favor of better engine performance.

  15. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC) Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    OpenAIRE

    Chen Bei; Hongguang Zhang; Fubin Yang; Songsong Song; Enhua Wang; Hao Liu; Ying Chang; Hongjin Wang; Kai Yang

    2015-01-01

    The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC) system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC...

  16. Effect of ethanol/water blends addition on diesel fuel combustion in RCM and DI diesel engine

    International Nuclear Information System (INIS)

    Nour, Mohamed; Kosaka, Hidenori; Sato, Susumu; Bady, Mahmoud; Abdel-Rahman, Ali K.; Uchida, Kenta

    2017-01-01

    Highlights: • Effect of ethanol/water addition on diesel combustion studied using optical diagnostics. • The addition of water to ethanol improves engine combustion and soot oxidation. • Ethanol/water injection into exhaust manifold eliminates their endothermic effect. • Ethanol with high water content is recommended for better engine combustion. • Soot concentration reduced by 50% and NO x emissions reduced by 88%. - Abstract: The effect of ethanol/water blends addition on diesel fuel combustion and emissions is investigated experimentally in this study using optical diagnostics. Basic study is performed using rapid compression machine (RCM) under CI conditions. The tested ethanol energy fractions varied in the range of 10–40% of the total added fuel energy, while water volume ratios varied in the range of 10–40% of the injected ethanol. Ethanol and water were evaporated before entering the combustion chamber to eliminate their endothermic effect. Results reveal that addition of ethanol/water blends to diesel fuel results in longer ignition delay and promote the apparent heat release rate (AHRR) at the premixed combustion phase compared to absolute ethanol addition. Additionally, soot and NO x emissions are reduced with ethanol/water addition compared to absolute ethanol addition and neat diesel combustion. The basic study is then extended to investigate the effect ethanol/water blends addition on diesel fuel combustion using single cylinder diesel engine. Waste heat in exhaust manifold is utilized to vaporize ethanol/water blends before combustion. Results reveal that ethanol/water blends injection leads to increase in peak cylinder pressure, indicated mean effective pressure (IMEP), and AHRR at premixed combustion phase. Additionally, the ignition delay increased with ethanol/water addition. NO x emission is decreased up to 88% along with a reduction in soot by 50%. The lower ethanol to water volume ratios show better combustion efficiency, IMEP

  17. Diesel Engine Mechanics.

    Science.gov (United States)

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  18. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  19. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    International Nuclear Information System (INIS)

    Gumus, M.

    2008-01-01

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  20. Evaluation of failure of high lift diesel No. 2

    International Nuclear Information System (INIS)

    Loundagin, R.L.

    1976-01-01

    At 6:30 a.m., September 21, 1976, the No. 2 Emergency High Lift Pump Diesel Engine was remotely started from the N Reactor Control Room to provide water for flushing the N Reactor Emergency Cooling System piping. The engine is a General Motors Diesel Engine Model 16-278A, 2 cycle V type, 16 cylinder, developing 1600 horsepower at 750 revolutions per minute. During the flush, water was observed to be overflowing the engine's jacket cooling water expansion tank. The N Reactor Control Room was notified, and the engine was shut down after having run for approximately 15 minutes. Examination of the engine found the No. 5 cylinder liner had ruptured, causing air to be forced into the cooling system. When the engine was stopped, cooling water was admitted to the engine air box and crankcase. All 16 cylinder heads were removed and the cylinder liners were examined using liquid penetrant to detect cracks. A cracked cylinder liner was found in cylinder No. 6, and the cylinder head of cylinder No. 1 was also found to be cracked. An adherent scale and light pitting were observed on the heads of the pistons in cylinders No. 1, 5, and 6, but not in any other cylinders. All damaged parts were replaced, and the engine was reassembled, tested, and declared serviceable

  1. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  2. The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine

    International Nuclear Information System (INIS)

    Lešnik, Luka; Biluš, Ignacijo

    2016-01-01

    Highlights: • Sub-models for parameter determination can be derived using experimental results. • Proposed sub-models can be used for calculation of model parameters. • Biodiesel fuel reduces emissions compared to diesel fuel on full engine load. • Usage of biodiesel fuel slow down the emission formation rate. • Oxygen content in biodiesel fuel decreases the amount of formatted CO emissions. - Abstract: This study presents the influence of biodiesel fuel and blends with mineral diesel fuel on diesel engine performance, the combustion process, and the formation of emissions. The study was conducted numerically and experimentally. The aim of the study was to test the possibility of replacing mineral diesel fuel with biodiesel fuel made from rapeseed oil. Pure biodiesel fuel and three blends of biodiesel fuel with mineral diesel fuel were tested experimentally for that purpose on a heavy-duty bus diesel engine. The engine’s performance, in-cylinder pressure, fuel consumption, and the amount of produced NO_x and CO emissions were monitored during experimental measurements, which were repeated numerically using the AVL BOOST simulation program. New empirical sub-models are proposed for determining a combustion model and emission models parameters. The proposed sub-models allow the determination of necessary combustion and emission model parameters regarding the properties of the tested fuel and the engine speed. When increasing the percentage of biodiesel fuel within the fuel blends, the reduction in engine torque and brake mean effective pressures are obtained for most of the test regimes. The reduction is caused due to the lower calorific value of the biodiesel fuel. Higher oxygen content in biodiesel fuel contributes to a better oxidation process within the combustion chamber when running on pure biodiesel or its blends. Better oxidation further results in a reduction of the formatted carbon and nitrogen oxides. The reduction of carbon emission is also

  3. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    Science.gov (United States)

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  4. Scrutinizing the combustion, performance and emissions of safflower biodiesel–kerosene fueled diesel engine used as power source for a generator

    International Nuclear Information System (INIS)

    Aydın, Hüseyin

    2016-01-01

    Highlights: • Effects of kerosene addition to biodiesel in a diesel engine were investigated. • S90&K10, S75&K25 and S50&K50 were tested and comparisons have been made with D2. • Patterns of combustion parameters have found be quite similar for blend fuels and D2. • The highest efficiency value is obtained for S50&K50 blend. • HC emissions a bit increased and NOx emissions were decreased. - Abstract: When neat biodiesel or its blends with diesel fuel that contain high amounts of biodiesel are used in diesel engines some operational problems such as poor injection, bad atomization and incomplete combustion occur mainly due to higher viscosity and surface tension. Engine problems with the use of biodiesel–fuel blends that contain higher percentages of biodiesel need to be solved in order to utilize the advantages of biodiesel in environmental and economical ways. The mentioned problems can also be solved by blending biodiesel with another low density or viscosity fuel such as kerosene. In present study biodiesel was produced from safflower oil. S90&K10, S75&K25 and S50&K50 were prepared by blending biodiesel with kerosene. A 4 cylinder diesel engine that was used to drive an electric generator was used to deeply investigate the similarity of combustion, performance and emission characteristics of the blend fuels to D2. All experiments were carried out at constant loads of 3.6, 7.2 and 10.8 kW generated powers. Patterns of combustion parameters found to be quite similar for blends and D2 fuel. NO_x emissions were considerably decreased with percentages of 68.2%, 56.9% and 55.1% for S50&K50, S75&K25 and S90&K10, respectively while unburned HC emissions were a bit increased. Mass fuel consumption and BSFC were slightly increased for S75&K25 and S90&K10, but they were decreased with an average increase in BTE by 3.84% for S50&K50 fuel when compared to D2. Eventually, it was concluded that high percentages of safflower oil biodiesel can be a potential

  5. Sound design for diesel passenger cars

    Energy Technology Data Exchange (ETDEWEB)

    Belluscio, Michele; Ruotolo, Romualdo [GM Powertrain Europe, Torino (Italy); Schoenherr, Christian; Schuster, Guenter [GM Europe, Ruesselsheim (Germany); Eisele, Georg; Genender, Peter; Wolff, Klaus; Van Keymeulen, Johan [FEV Motorentechnik GmbH, Aachen (Germany)

    2008-07-01

    With the growing market contribution of diesel passenger cars in Europe, it becomes more important to create a brand and market segment specific vehicle sound. Beside the usually considered pleasantness related topics like diesel knocking and high noise excitation, it is important to fulfil also the requirements regarding a dynamic vehicle impression. This impression is mainly influenced by the load dependency of the engine induced noise, which is reduced for diesel engines due to the missing throttle valve and the damping effect of the turbocharger and the diesel particulate filter. By means of a detailed noise transfer path analysis the contribution with dynamic potential can be identified. Furthermore the load dependency itself of a certain noise contribution can be strengthened, which allows for a dynamic sound character comparable to sporty gasoline vehicles. (orig.)

  6. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin, E-mail: mguru@gazi.edu.t [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2011-01-15

    In this experimental study, influence of the metallic-based additives on fuel consumption and exhaust emissions of diesel engine were investigated. The metallic-based additives were produced by synthesizing of resin acid (abietic acid) with MnO{sub 2} or MgO. These additives were doped into diesel fuel at the rate of 8 {mu}mol/l and 16 {mu}mol/l for preparing test fuels. Both additives improved the properties of diesel fuel such as viscosity, flash point, cloud point and pour point. The fuels with and without additives were tested in a direct injection diesel engine at full load condition. Maximum reduction of specific fuel consumption was recorded as 4.16%. CO emission and smoke opacity decreased by 16.35% and by 29.82%, respectively. NO{sub x} emission was measured higher and CO{sub 2} emission was not changed considerably with the metallic-based additives.

  7. Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Tabatabaei, Meisam; Aghbashlo, Mortaza; Yee, Por Lip; Petković, Dalibor

    2016-01-01

    Highlights: • SVM-based thermodynamic modelling of a DI diesel engine working with diesel/biodiesel blends containing EPS. • Comparison of SVM-WT, SVM-FFA, SVM-RBF, SVM-QPSO, and ANN approaches for exergetic modelling of the engine. • Satisfactory performance of the SVM-WT for performance modelling of the engine over the other approaches. - Abstract: In the present study, four Support Vector Machine-based (SVM-based) approaches and the standard artificial neural network (ANN) model were designed and compared in modelling the exergetic parameters of a DI diesel engine running on diesel/biodiesel blends containing expanded polystyrene (EPS) wastes. For this aim, the SVM was coupled with discrete wavelet transform (SVM-WT), firefly algorithm (SVM-FFA), radial basis function (SVM-RBF) and quantum particle swarm optimization (SVM-QPSO). The exergetic data were computed using mass, energy, and exergy balance equations for the engine at different speeds and loads as well as various biodiesel and EPS wastes quantities. Three statistical indicators namely root means square error, coefficient of determination and Pearson coefficient were used to access the capability of the developed approaches for exergetic performance modelling of the DI diesel engine. The modelling results indicated that the SVM-WT approach was more efficient in exergetic modelling of the engine than the other three approaches. Moreover, the results obtained confirmed the effectiveness of the SVM-WT model in identifying the most exergy-efficient combustion conditions and the best fuel composition for achieving the most cost-effective and eco-friendly combustion process.

  8. Ultrasound-Assisted Oxidative Desulfurization of Diesel

    Directory of Open Access Journals (Sweden)

    Niran K. Ibrahim

    2016-11-01

    Full Text Available Due to the dramatic environmental impact of sulfur emissions associated with the exhaust of diesel engines, last environmental regulations for ultra-low-sulfur diesel require a very deep desulfurization (up to 15 ppm, which cannot be met by the conventional hydrodesulfurization units alone. The proposed method involves a batch ultrasound-assisted oxidative desulfurization (UAODS of a previously hydrotreated diesel (containing 480 ppm sulfur so as to convert the residual sulfur-bearing compounds into their corresponding highly polar oxides, which can be eliminated easily by extraction with a certain highly polar solvent. The oxidizing system utilized was H2O2 as an oxidant, CH3COOH as a promoter, with FeSO4 as a catalyst; whereas acetonitrile was used as extractant. The major influential parameters related to UAODS process have been investigated, namely: ratio of oxidant/fuel, ratio of the promoter/oxidant, dose of catalyst, reaction temperature, and intensity of ultrasonic waves. Kinetics of the reaction has been also studied; it was observed that the UAODS of diesel fuels fitted pseudo-first-order kinetics under the best experimental conditions, whereas values of the apparent rate constant and activation energy were 0.373 min-1 and 24 KJ/mol, respectively. The oxidation treatment, in combination with ultrasonic irradiation, revealed a synergistic effect for diesel desulfurization. The experimental results showed that sulfur removal efficiency could amount to 98% at mild operating conditions (70 ○C and 1 bar. This indicates that the process is efficient and promising for the production of ultra-low-sulfur diesel fuels.

  9. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.

    Science.gov (United States)

    Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2012-10-01

    Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  11. Prospects of biogas as dual fuel in small diesel engines

    International Nuclear Information System (INIS)

    Singh, Irvinder; Mittal, V.K.

    1992-01-01

    A study was conducted on diesel engines to find out the effect of induction rate of biogas on engine performance indices. The results of dual fuel engine performance was compared with diesel mode for various levels of biogas induction rate (0.3 to 7.2 l/s) engine load (20% to full load) and injection timing (20.6 to 48 before top dead centre). At full and 80% brake load, the best energy mix between diesel and biogas was 1.5:1 and 4:1 respectively. (author). 7 refs., 7 figs., 4 tabs

  12. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  13. The Diesel as a Vehicle Engine

    Science.gov (United States)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  14. Diesel fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bensaid, B.; Saint-Antonin, V

    2003-07-01

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO{sub 2} emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  15. Diesel fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bensaid, B; Saint-Antonin, V

    2003-07-01

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO{sub 2} emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  16. Diesel fuel in the United States

    International Nuclear Information System (INIS)

    Bensaid, B.; Saint-Antonin, V.

    2003-01-01

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO 2 emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  17. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine

    International Nuclear Information System (INIS)

    Zhu, Yanchun; Chen, Zheng; Liu, Jingping

    2014-01-01

    Highlights: • Dual-injection combustion for diesel n-butanol dual-fuel is investigated. • Higher EGR rate results in lower NOx and ITE, but higher smoke, HC and CO. • Larger butanol fraction results in lower smoke and ITE, but higher NOx, HC and CO. • Advanced injection can decrease smoke, HC and CO, and increase ITE. • Coupling of butanol fraction, EGR and injection timing makes for a better performance. - Abstract: In this work, a dual-injection combustion mode for diesel n-butanol dual-fuel, combined direct injection (DI) of diesel with port fuel injection (PFI) of n-butanol, was introduced. Effects of n-butanol fraction, EGR rate and injection timing on this mode were studied on a modified single-cylinder diesel engine at the speed of 1400 r/min and the IMEP of 1.0 MPa. The results indicate that with increased EGR rate, NOx emissions reduce, but smoke emissions increase. As n-butanol fraction is increased, smoke emissions decrease with a small increase in NOx. However, higher HC and CO emissions, higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE) have to be paid with increased n-butanol fraction, especially at high EGR condition. Advancing diesel injection timing suitably has the capacity of mitigating those costs and further decreasing smoke emissions with a small penalty in NOx emissions. Coupling of large butanol fraction, high EGR rate, and advanced injection suitably contributes to a better balance between emissions and efficiency in the diesel n-butanol dual-injection engine

  18. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  19. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

    2002-09-30

    Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  1. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  2. Diesel upgrading into a low emissions fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tailleur, Roberto Galiasso [Department of Thermodynamics, Simon Bolivar University, Sartenejas, Baruta, Caracas (Venezuela)

    2006-09-15

    The revamp of existing diesel hydrotreating units using SHP technology was studied to improve the emission of the diesel engine. Gas and liquid-phase reactors were sequentially added to the actual trickle bed reactor. A special catalyst was employed. Micro-plant kinetic studies were performed and the results compared with those obtained with conventional trickle bed reactor operation. It was shown that using the gas and liquid-phase reactor, the hydrogenation, hydrogenolysis, and ring-opening reactions can be enhanced, so can be the sulfur and cetane number properties. The new scheme decreased the mono-aromatic content in the lighter part of the diesel that improve the NO{sub x} and particulate emissions in exhaust gases of a diesel engine. A simplified kinetic model for gas and liquid-phase reactors was developed to optimize SHP reactors and to minimize investment. (author)

  3. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    OpenAIRE

    Mantas Smolnikovas; Gintas Viselga; Greta Viselgaitė; Algirdas Jasinskas

    2016-01-01

    The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  4. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    Science.gov (United States)

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  5. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  7. Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine

    International Nuclear Information System (INIS)

    Arbab, M.I.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Imtenan, S.; Sajjad, H.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Properties limitation of biodiesel has been overcome using multiple biodiesel blends. • New biodiesel was developed using biodiesel–biodiesel optimum blend. • Engine performance and emission was tested with the newly developed biodiesels. • New biodiesels showed better engine performance than other tested fuels. - Abstract: Fossil fuel depletion, global warming with rapid changes in climate, and increases in oil prices have motivated scientists to search for alternative fuel. Biodiesel can be an effective solution despite some limitations, such as poor fuel properties and engine performance. From this perspective, experiments were carried out to improve fuel properties and engine performance by using a binary blend of palm and coconut biodiesel at an optimized ratio. MATLAB optimization tool was used to determine this blend ratio. A new biodiesel was developed and represented by PC (optimum blend of palm and coconut biodiesel). Engine performance and emission were tested under a full load at variable speed condition by using a 20% blend of each biodiesel with petroleum diesel, and the results were compared with petroleum diesel under both turbocharged and non-turbocharged conditions. PC20 (blend of 20% PC biodiesel and 80% petroleum diesel) showed the highest engine power with lower brake-specific fuel consumption than the other tested fuels in the presence of a turbocharger. The emissions of PC20 were lower than those of all other tested fuels. The experimental analysis reveals that PC showed superior performance and emission over palm biodiesel blend

  8. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  9. Impact of fuels on diesel exhaust emissions

    International Nuclear Information System (INIS)

    Westerholm, R.

    1991-09-01

    This report presents an investigation of the emissions from eight diesel fuels with different sulphur and aromatic content. A bus and a truck were used in the investigation. Chemical analysis and biological testing have been performed. The aim of this project was to find a 'good' diesel fuel which can be used in urban areas. Seven of the fuels were meant to be such fuels. It has been confirmed in this study that there exists a quantifiable relationship between the variables of the diesel fuel blends and the variables of the chemical emissions and their biological effects. 119 figs., 12 tabs., approx. 100 refs

  10. Some results concerning no-storage wind-diesel systems control

    Directory of Open Access Journals (Sweden)

    Ciprian VLAD

    2006-12-01

    Full Text Available This paper deal with the dynamics of an autonomous no storage wind-diesel system, comprising a diesel generator and a controlled wind system with a hypo/hyper synchronous cascade. The objective is to maximize the wind energy penetration rate, by an optimization control system, respecting the quality standard concerning the frequency deviation in the AC local grid. Also, the influence of the diesel drive train on the system’s dynamics performances is discussed.

  11. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm"3, allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  12. Economic analysis and performance of a low power diesel engine using soybean oil refined; Analise economica e de desempenho de um motor diesel de baixa potencia utilizando oleo de soja refinado

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Guilherme Ladeira dos; Fernandes, Haroldo Carlos; Alvarenga, Cleyton Batista de; Leite, Daniel Mariano; Siqueira, Wagner da Cunha [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mails: glsantos@yahoo.com.br, haroldo@ufv.br, cleyton.alvarenga@ufv.br, daniel.mariano@ufv.br, wagner.siqueira@ufv.br

    2011-07-01

    Oil is the main source of energy available to power internal combustion engines, enabling its transformation into mechanical energy. To meet the production of vegetable oils, many cultures can be used, according to regional conditions, especially those that are already commercially exploited, such as peanuts, Soybeans, Corn, Palm oil, Sunflower and Canola, and other public regional and castor oil, Andiroba, Pequi, Buriti, Inaja, Carnauba, Jatropha, among others. The objective of this work make an economic analysis of replacing diesel fuel by mixing and compare performance on the engine and using B{sub 2} biodiesel fuel mixture of diesel with 2 % Refined Soybean Oil (SAB). The loads applied by the dynamometer in the engine were 7, 9, 11, 13, 15, 17, 19 and 21.5 lbs. The engine was coupled to the dynamometer with the aid of pulleys and belts of the type V with gear ratio of 1:1,9. Apparently, the best vegetable oil mixture was 30 %, both in terms of specific consumption and cost from R$ kW{sup -1} h{sup -1}. Providing the same cost of pure diesel. (author)

  13. PENGARUH TEMPERATUR SOLAR TERHADAP PERFORMA MESIN DIESEL DIRECK INJECTION PUTARAN KONSTAN

    Directory of Open Access Journals (Sweden)

    Murni Murni

    2012-07-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine’s performance.Nonhomogen air–fuel mixing process is one of the factors which cause the imperfect combustion.By heating upthe diesel solar up to a certain temperature before it goes through the high pressure injection pump will lowerits density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets offuel spray which result in a more homogenious air–fuel mixture. Also by using higher temperature will make thediesel fuel easier to ignite in order to compensate the limited time which is available in high speed operatingconditions. Diesel engine Dong Feng 1 cylinder direct injection at constant speed was used in this research. Thefuel used are solar with temperature variations in the range from 30oC to 70oC . The best thermal efficiency forsolar fuel is 30 % at 60oC with 28 % BSFC. In this condition, the fuel consumption was decreased 4 % bycomparing with that at 30oC.

  14. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  15. Biodiesel as an Alternative Fuel for Diesel Engines

    OpenAIRE

    F. Halek; A. Kavousi; M. Banifatemi

    2009-01-01

    There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) ...

  16. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    Science.gov (United States)

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  17. The new 2.2 l Diesel engine from Mazda; Der neue 2,2-l-Dieselmotor von Mazda

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, Yasunori; Kouzuki, Masashi; Mori, Tsunehiro; Naito, Masahiro; Morinaga, Shinichi; Yasuda, Hiroaki; Yamauchi, Michihiro; Tanimura, Kenji [Mazda Motor Corporation, Hiroshima (Japan); Kunz, Joachim [Mazda Motor Europe, Oberursel (Germany). R and D Centre

    2009-06-15

    Diesel engines for the European market should deliver impressive performance and fuel economy but also high levels of environmental performance, good noise and vibration suppression. With this in mind, Mazda developed a new diesel engine for the launch of the second-generation Mazda 6 with the aim of realising its product philosophy of sustainability combined with a sportive driving experience. The new MZR-CD 2.2 engine will be available for future models like the all-new Mazda 3 as well. (orig.)

  18. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  19. System requirements of diesel reforming for the SOFC

    International Nuclear Information System (INIS)

    Harasti, P.T.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Thurgood, C.P.

    2003-01-01

    Diesel fuels are currently a very attractive source of hydrogen due to the global infrastructure for production and distribution that exists today. In order to extract the hydrogen, the hydrocarbon molecules must be chemically reformed into manageable, hydrogen-rich product gases that can be directly used in electrochemical energy conversion devices such as fuel cells. High temperature fuel cells are particularly attractive for diesel-fuelled systems due to the possibility of thermal integration with the high temperature reformer. The methods available for diesel fuel processing are: Steam Reforming, Partial Oxidation, and Auto-Thermal Reforming. The latter two methods introduce air into the process in order to cause exothermic oxidation reactions, which complement the endothermic heating requirement of the reforming reactions. This helps to achieve the high temperature required, but also introduces nitrogen, which can yield unwanted NO x emissions. The components of the reformer should include: an injection system to mix and vaporize the diesel fuel and steam while avoiding the formation of carbon deposits inside the reactor; a temperature and heat management system; and a method of sulphur removal. This presentation will discuss the operating conditions and design requirements of a diesel fuel processor for a solid oxide fuel cell (SOFC) system. (author)

  20. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  1. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    Science.gov (United States)

    2015-11-05

    Machinery Research and Engineering Dept., Philadelphia, PA, USA. 2. University of California Riverside (UCR), Bourns College of Engineering-Center for...Research and Engineering Dept., Philadelphia, PA, USA. 2. University of California Riverside (UCR), Bourns College of Engineering-Center for Environmental...four Detroit Diesel Corporation ( DDC ) 71-series 12-cylinder engines – two for propulsion and two for power generation (Jane’s 2001). Investigating

  2. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Reyes; M.A. Sepulveda [University of Concepcion (Chile). Department of Mechanization and Energy, Faculty of Agricultural Engineering

    2006-09-15

    Power response and level of particulate emissions were assessed for blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel. Crude Biodiesel and refined Biodiesel or methyl ester, were made from salmon oil with high content of free fatty acids, throughout a process of acid esterification followed by alkaline transesterification. Blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel were tested in a diesel engine to measure simultaneously the dynamometric response and the particulate material (PM-10) emission performance. The results indicate a maximum power loss of about 3.5% and also near 50% of PM-10 reduction with respect to diesel when a 100% of refined Biodiesel is used. For blends with less content of either crude Biodiesel or refined Biodiesel, the observed power losses are lower but at the same time lower reduction in PM-10 emissions are attained. 21 refs., 4 figs., 2 tabs.

  3. High-throughput approach to the catalytic combustion of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, Eduard Emil; Bassou, Badr; Guilhaume, Nolven; Farrusseng, David; Desmartin-Chomel, Arnold; Bianchi, Daniel; Mirodatos, Claude [Institut de recherches sur la catalyse et l' environnement de Lyon IRCELYON, UMR5256 CNRS Universite Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Lombaert, Karine [Renault, Diesel Innovative Catalytic Materials, Direction de l' Ingenierie Materiaux, 1 Allee Cornuel, 91510 Lardy (France)

    2008-08-30

    A methodology for the evaluation of diesel soot oxidation catalysts by high-throughput (HT) screening was developed. The optimal experimental conditions (soot amount, catalyst/soot ratio, type of contact, composition and flow rate of gas reactants) ensuring a reliable and reproducible detection of light-off temperatures in a 16 parallel channels reactor were set up. The temperature profile measured in the catalyst/soot bed under TPO conditions when the exothermic combustion of soot takes place was shown to provide an accurate measurement of the ignition. Its reproducibility and relevance were checked. The results obtained with a reference noble metal free catalyst (La{sub 0.8}Cr{sub 0.8}Li{sub 0.2}O{sub 3} perovskite) agree very well with literature data. Qualitative mechanistic features could be derived from these experiments, stressing the likely limiting step of oxygen transfer from catalyst surface to soot particulates to ignite the soot combustion. Ceria material was shown to be more appropriate than perovskite one. From an HT screening of a large diverse library (over 100 mixed oxides catalysts) under optimized conditions, about 10 new formulations were found to perform better than selected noble metal free reference materials. (author)

  4. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  5. Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Tan, C.W.; Yatim, A.H.M.

    2015-01-01

    Standalone diesel systems have been widely used on Malaysian islands due to the isolated locations of the islands. Nevertheless, the high diesel prices and the high cost of transporting diesel to islands cause the use of standalone diesel systems to be uneconomical. This study analyzes the feasibility of implementing PV (photovoltaic) systems as alternatives to standalone diesel systems by considering the effects of annual real interest rates, diesel prices and load sizes, using the HOMER (hybrid optimization of multiple energy resources) software. The results indicate that, at the ordinary diesel price of $ 0.61/L, low interest rates (0–3%) are desirable for the implementation of hybrid PV/diesel with battery systems over standalone diesel systems, regardless of the load sizes. Although different load sizes may affect the decisions on the implementation of PV systems at higher interest rates (6–9%), these effects become less pronounced as the price of diesel increases to $ 1.22/L or higher. Also, under high diesel prices, the choice of optimal system configurations obtained for small load sizes should be applicable for larger load sizes, albeit with different component ratings. Although the current study is intended for Malaysian islands, the findings can be generalized for other places with similar solar radiation levels. - Highlights: • Photovoltaic systems for Malaysian islands have been analyzed using HOMER. • Interest rates, diesel prices and load sizes affect optimal system configurations. • Effects of interest rates and load sizes reduce with increasing diesel prices. • Photovoltaic systems' implementation is feasible at high diesel prices. • The findings can be generalized for places with similar solar radiation levels

  6. The economics of a variable speed wind-diesel

    International Nuclear Information System (INIS)

    Moll, W.

    1992-01-01

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  7. Performance of diesel cycle engine-generator operating on dual fuel ...

    African Journals Online (AJOL)

    The Brazilian Federal Government aims to expand the electrical energy ... at the generator, leading to a power increase of 43.8% saving R$ 0.86 for each kW h-1. ... the diesel consumption to produce electricity in the isolated communities.

  8. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  9. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  10. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  11. Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminary study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lujan, J.M.; Tormos, B.; Salvador, F.J.; Gargar, K. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2009-06-15

    The present work consists of introducing the tests and facilities used to perform a comparative analysis of a diesel engine working with different blends of biodiesel fuel during the New European Driving Cycle. Furthermore, as a preliminary study, it was interesting to know the effects of biodiesel fuel on a common-rail high pressure injection system, those more useful in modern light duty diesel engines, as a consequence of its different physicochemical properties compared with conventional diesel fuel. As the real goal of the study is to compare fairly performance and emissions from the engine, it was essential to know any injection effects owed to fuel's own characteristics that finally would affect those parameters that will be evaluated. A complete fuel characterization for diesel and biodiesel fuels, as the EN 590 and the EN 14214 standard specifications, was performed in order to quantify the differences between both fuels. A priori, it could be thought that viscosity and density values will be the most significant parameters capable of altering the injection rate. As positive results, it was obtained that the common-rail high pressure injection system was totally blind in the injection rate measurements, even the significant differences between both fuels, taking into account the counterbalancing effects generated by two parameters mentioned before. The second part of the study deals with engine performance and pollutant emissions on an unmodified common-rail turbocharged diesel engine running with biodiesel fuel blends during the New European Driving Cycle. (author)

  12. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  13. TECHNICAL AND ENERGY PARAMETERS IMPROVEMENT OF DIESEL LOCOMOTIVES THROUGH THE INTRODUCTION OF AUTOMATED CONTROL SYSTEMS OF A DIESEL

    Directory of Open Access Journals (Sweden)

    M. I. Kapitsa

    2015-04-01

    Full Text Available Purpose. Today the issue, connected with diesel traction remains relevant for the majority of industrial enterprises and Ukrainian railways and diesel engine continues to be the subject of extensive research and improvements. Despite the intensive process of electrification, which accompanies Railway Transport of Ukraine the last few years, diesel traction continues to play an important role both in the main and in the industrial railway traction rolling stock. Anyway, all kinds of maneuvering and chores are for locomotives, they are improved and upgraded relentlessly and hourly. This paper is focused on finding the opportunities to improve technical and energy parameters of diesels due to the development of modern control method of the fuel equipment in the diesel engine. Methodology. The proposed method increases the power of locomotives diesel engines in the range of crankshaft rotation (from idle running to maximum one. It was based on approach of mixture ignition timing up to the top «dead» center of piston position. Findings. The paper provides a brief historical background of research in the area of operating cycle in the internal combustion engine (ICE. The factors affecting the process of mixing and its quality were analyzed. The requirements for fuel feed system in to the cylinder and the «weak points» of the process were presented. A variant of the modification the fuel pump drive, which allows approaching to the regulation of fuel feed system from the other hand and to improve it was proposed. Represents a variant of embodiment of the complex system with specification of mechanical features and control circuits. The algorithm of the system operation was presented and its impact on the performance of diesel was made. Originality. The angle regulating system of fuel supply allows automating the process of fuel injection advance angle into the cylinder. Practical value. At implementation the angle regulating system of fuel supply

  14. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  15. Oil extracted from spent coffee grounds for bio-hydrotreated diesel production

    International Nuclear Information System (INIS)

    Phimsen, Songphon; Kiatkittipong, Worapon; Yamada, Hiroshi; Tagawa, Tomohiko; Kiatkittipong, Kunlanan; Laosiripojana, Navadol; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • The spent coffee oil with high FFAs was hydrotreated to liquid biofuel. • Pd/C gave higher olefins while NiMo/γ-Al_2O_3 gave higher isoparaffins liquid products. • The diesel fuel fraction can have a cetane number as high as 80. • The physiochemical properties of diesel fraction comply with commercial standard. - Abstract: Oil extracted from spent coffee grounds is utilized as a renewable source for bio-hydrotreated fuel production. In the present work, oil yield up to 13% can be obtained by Soxhlet extraction with hexane as a solvent. As the extracted oil contained high content of free fatty acids (6.14%), therefore one step alkali-catalyzed for ester based biodiesel production is impractical. Hydrotreating of extracted oil was performed over two catalysts i.e. NiMo/γ-Al_2O_3 and Pd/C with different operating parameters i.e. reaction time, operating temperature, and H_2/oil. It was found that the reaction time of 2 h and the reaction temperature of 400 °C are favorable operating conditions. The liquid products mostly consisted of n-pentadecane and n-heptadecane, which contain one carbon atom shorter than the corresponding fatty acid (C_n_−_1) i.e. palmitic and stearic acid, respectively. Unfavorable cracking of diesel product is pronounced at high temperature and prolonged reaction time. In addition, although increased H_2/oil promoted overall reaction and hydrodeoxygenation activity (C_n_−_1/C_n decreased) for both catalysts, hydrocracking is enhanced over Pd/C, leading to significant increase in gasoline yield. Moreover, Pd/C gave higher olefin content in liquid product (22.3 wt%) than NiMo/γ-Al_2O_3 (4.8 wt%). However, NiMo/γ-Al_2O_3 shows higher isomerization activity. The amount of isoparaffins catalyzed by NiMo/γ-Al_2O_3 and Pd/C were 10.8 and 1.7 wt%, respectively. Physiochemical analysis of the diesel fraction exhibit satisfactory properties. The density and kinematic viscosity were consistent with the specification of

  16. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  17. Utilisation of diesel engine waste heat by Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Kölsch, Benedikt; Radulovic, Jovana

    2015-01-01

    In this paper, three different organic liquids were investigated as potential working fluids in an Organic Rankine Cycle. Performance of Methanol, Toluene and Solkatherm SES36 was modelled in an ORC powered by a diesel engine waste heat. The ORC model consists of a preheater, evaporator, superheater, turbine, pump and two condensers. With variable maximum cycle temperatures and high cycle pressures, the thermal efficiency, net power output and overall heat transfer area have been evaluated. Methanol was found to have the best thermal performance, but also required the largest heat transfer area. While Toluene achieved lower thermal efficiency, it showed great work potential at high pressures and relatively low temperatures. Our model identified the risks associated with employing these fluids in an ORC: methanol condensing during the expansion and toluene not sufficiently superheated at the turbine inlet, which can compromise the cycle operation. The best compromise between the size of heat exchanger and thermodynamic performance was found for Methanol ORC at intermediate temperatures and high pressures. Flammability and toxicity, however, remain the obstacles for safe implementation of both fluids in ORC systems. - Highlights: • ORC powered by diesel-engine waste heat was developed. • Methanol, Toluene and Solkatherm were considered as working fluids. • Methanol was selected due to the best overall thermal performance. • Optimal cycle operating parameters and heat exchanger area were evaluated

  18. Replacing diesel by solar in the Amazon: short-term economic feasibility of PV-diesel hybrid systems

    International Nuclear Information System (INIS)

    Schmid, A.L.; Hoffmann, C.A.A.

    2004-01-01

    Energy planning in the Brazilian Amazon faces two major challenges. One is that of helping the off-grid population improve a situation of discomfort, environmental risks and high lighting costs. Another is that of cutting fuel subsidies in the local utility grids supplied by diesel generators. Simulation shows that PV systems with energy storage connected to existing diesel generators, allowing them to be turned of during the day, provide the lowest energy costs. Implementation potential of that choice is evaluated for local grids up to 100 kW, where transportation costs cause maximal wholesale diesel prices for Northern Brazil to be increased of 15% and more, it is economical to convert diesel systems up to 50 kW peak power into hybrid systems. In locations where the costs increase is of 45% and more, systems up to 100 kW turn economical. A new legal mechanism for subrogation of diesel subsidies to renewable energy projects changes those limits to 0% and 21%, respectively. Therefore, the actors in power generation are motivated to consider solar energy. A program with the scope described should give the Brazilian photovoltaic industry a relevant push and launch a transition towards a sustainable power supply for the region

  19. Numerical modelling of diesel spray using the Eulerian multiphase approach

    International Nuclear Information System (INIS)

    Vujanović, Milan; Petranović, Zvonimir; Edelbauer, Wilfried; Baleta, Jakov; Duić, Neven

    2015-01-01

    Highlights: • Numerical model for fuel disintegration was presented. • Fuel liquid and vapour were calculated. • Good agreement with experimental data was shown for various combinations of injection and chamber pressure. - Abstract: This research investigates high pressure diesel fuel injection into the combustion chamber by performing computational simulations using the Euler–Eulerian multiphase approach. Six diesel-like conditions were simulated for which the liquid fuel jet was injected into a pressurised inert environment (100% N 2 ) through a 205 μm nozzle hole. The analysis was focused on the liquid jet and vapour penetration, describing spatial and temporal spray evolution. For this purpose, an Eulerian multiphase model was implemented, variations of the sub-model coefficients were performed, and their impact on the spray formation was investigated. The final set of sub-model coefficients was applied to all operating points. Several simulations of high pressure diesel injections (50, 80, and 120 MPa) combined with different chamber pressures (5.4 and 7.2 MPa) were carried out and results were compared to the experimental data. The predicted results share a similar spray cloud shape for all conditions with the different vapour and liquid penetration length. The liquid penetration is shortened with the increase in chamber pressure, whilst the vapour penetration is more pronounced by elevating the injection pressure. Finally, the results showed good agreement when compared to the measured data, and yielded the correct trends for both the liquid and vapour penetrations under different operating conditions

  20. Air and fuel supercharge in the performance of a diesel cycle engine

    Directory of Open Access Journals (Sweden)

    Marcelo Silveira de Farias

    Full Text Available ABSTRACT: This paper aimed to evaluate the performance of a Diesel cycle engine, changing the configurations for the air and fuel supply system. Variables analyzed were torque, power, specific fuel consumption and thermal efficiency in four different engine configurations (aspirated, aspirated + service, turbocharged + service and turbocharged. For that, there were dynamometer experiments by power take-off of an agricultural tractor. The experimental outline used was entirely randomized, in a bifatorial design with three repetitions. Results indicated that the engine supercharge, compared to its original configuration, provided a significant increase of torque and power. Only the addition of turbo does not caused a significant effect in the engine performance. Application of turbocharger provides an improvement in the burning of the air/fuel mixture, which favors the increase of engine power and; consequently, reduced the specific fuel consumption.

  1. Preliminary report and design of using Jack Pines for the phytoremediation of diesel-contaminated soils in northern Saskatchewan

    International Nuclear Information System (INIS)

    McLean, L.; Ireland, J.; Hohn, S.; Herman, L.; Hanna, A.

    1999-01-01

    A study is being conducted to evaluate the feasibility of using Jack Pines for the phytoremediation of diesel-contaminated soils in northern Saskatchewan. The sites have some level of diesel contamination from spills associated with generators belonging to SaskTel. The first phase of the study was conducted under controlled conditions in a greenhouse. Seedlings of Jack Pine were planted in sand with a range of diesel concentrations. A control planting of seedlings with no diesel was also conducted. The study also included control pots of sand with diesel and no seedlings for comparison of diesel degradation. The results from this first phase will help determine the feasibility of performing more extensive testing of phytoremediation on site in northern Saskatchewan. Results will be conclusive in August 2000. So far, the results show that Jack Pines can survive in soil highly contaminated with hydrocarbons. The second phase will include field trials. Diesel concentrations at the sites range from 0 ppm to 30,000 ppm. 4 refs., 2 tabs., 5 figs

  2. Preliminary report and design of using Jack Pines for the phytoremediation of diesel-contaminated soils in northern Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    McLean, L; Ireland, J; Hohn, S; Herman, L [ERIN Consulting Ltd., Regina, SK (Canada); Hanna, A [SaskTel, Regina, SK (Canada)

    1999-01-01

    A study is being conducted to evaluate the feasibility of using Jack Pines for the phytoremediation of diesel-contaminated soils in northern Saskatchewan. The sites have some level of diesel contamination from spills associated with generators belonging to SaskTel. The first phase of the study was conducted under controlled conditions in a greenhouse. Seedlings of Jack Pine were planted in sand with a range of diesel concentrations. A control planting of seedlings with no diesel was also conducted. The study also included control pots of sand with diesel and no seedlings for comparison of diesel degradation. The results from this first phase will help determine the feasibility of performing more extensive testing of phytoremediation on site in northern Saskatchewan. Results will be conclusive in August 2000. So far, the results show that Jack Pines can survive in soil highly contaminated with hydrocarbons. The second phase will include field trials. Diesel concentrations at the sites range from 0 ppm to 30,000 ppm. 4 refs., 2 tabs., 5 figs.

  3. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    Science.gov (United States)

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  4. Effect of ambient gas density for diesel spray; Diesel funmu ni taisuru fun`iki mitsudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yokohashi, M; Suzuki, T; Oshima, R [Tohokugakuin University, Sendai (Japan); Ono, A [Shinryo Corp., Tokyo (Japan)

    1997-10-01

    Effect of ambient gas density for fuel spray are measured to investigate the Diesel spray behavior. The change of ambient gas density has been given by pressuring N2 gas and using a high density atmospheric pressure SF6 gas. The measurement are performed for the spray penetration and angle. As a result, the spray penetration is confirmed same tendency at the change of density by pressuring N2 and using SF6. Though spray angle is required modification with viscosity. 2 refs., 11 figs.

  5. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S; Yokota, H; Kakegawa, T [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  6. The hard choice for alternative biofuels to diesel in Brazil.

    Science.gov (United States)

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  7. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  8. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  9. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  10. Role of biodiesel-diesel blends in alteration of particulate matter emanated by diesel engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Shahid, E.M.

    2015-01-01

    The current study is focused on the investigation of the role of biodiesel in the alteration of particulate matter (PM) composition emitted from a direct injection-compression ignition. Two important blends of biodiesel with commercial diesel known as B20 (20% biodiesel and 80% diesel by volume) and B50 were used for the comparative analysis of their pollutants with those of 100% or traditional diesel (D). The experiments were performed under the auspices of the Chinese 8-mode steady-state cycle on a test bench by coupling the engine with an AC electrical dynamometer. As per experimental results, over-50 nm aerosols were abated by 8.7-47% and 6-51% with B20 and B50, respectively, on account of lofty nitrogen dioxide to nitrogen oxides (NO2/NO) ratios. In case of B50, sub-50 nm aerosols and sulphates were higher at maximum load modes of the test, owing to adsorption phenomenon of inorganic nuclei leading to heterogeneous nucleation. Moreover, trace metal emissions (TME) were substantially reduced reflecting the reduction rates of 42-57% and 64-80% with B20 and B50, respectively, relative to baseline measurements taken with diesel. In addition to this, individual elements such as Ca and Fe were greatly minimised, while Na was enhanced with biodiesel blended fuels. (author)

  11. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  12. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  13. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.

    2011-01-01

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  14. Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Shiquan Feng

    2017-01-01

    Full Text Available Based on the theory of direct relation graph (DRG and the sensitivity analysis, a reduced mechanism for the diesel-syngas dual fuel was constructed. Three small thresholds were applied in the process of the detailed mechanism simplification by DRG, and a skeletal mechanism with 185 elements and the 832 elementary reactions was obtained. According to the framework of the skeletal mechanism, the time-consuming approach of sensitivity analysis was employed for further simplification, and the skeletal mechanism was further reduced to the size of 158 elements and 705 reactions. The Chemkin software with the detailed mechanism was utilized to calculate the effect of syngas addition on the combustion characteristics of diesel combustion. The findings showed that the addition of syngas could reduce the ignition delay time and increase the laminar flame speed. Based on the reduced mechanism and engine parameters, a 3D model of the engine was constructed with the Forte code. The 3D model was adopted to study the effect of syngas addition on the performance and exhaust emissions of the engine and the relevant data of the experiment was used in the calibration of the 3D model.

  15. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  16. Short-term break in the French love for diesel?

    International Nuclear Information System (INIS)

    Hivert, Laurent

    2013-01-01

    From 1980 to 1995, France was the first European country in which diesel cars became more popular than petrol cars. In addition to offering improved performance, this preference was notably due to a much cheaper cost of use, in line with the taxation on both fuel types. But the advantage of diesel technology does not clearly seem to extend to energy and CO2 savings. In this paper, French trends over the last 15 years and latest annual available statistics about both diesel car ownership and use are analysed, on the basis of the “ParcAuto” panel data source. The results notably show that, from the moment the gap between fuel prices was reduced, the annual mileage amounts of diesel cars have fallen faster than those of petrol cars. A specific section summarizes the results of our work on the behaviour of French households who chose to replace their petrol car with a diesel. Detailed examination of these switching behaviours, involving a complex set of variables, confirms that there are increases in driving associated with “new diesel motorists”. The final section of this paper briefly discusses recent evolutions of fuel expenditures. - Highlights: ► Latest figures/long-term trends about French diesel cars analysed using panel data. ► French preference for diesel was notably due to a much cheaper cost of use. ► Switching from petrol to diesel car commonly induced an increase in driving. ► Diesel sales and mileages have fallen faster when the gap between fuel prices reduced. ► Recent fuel prices sharp increase involved major changes in car use behaviours

  17. NOx Emissions from Diesel Passenger Cars Worsen with Age.

    Science.gov (United States)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  18. Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H_2, CH_4, and conventional diesel)

    International Nuclear Information System (INIS)

    Abu-Jrai, Ahmad M.; Al-Muhtaseb, Ala'a H.; Hasan, Ahmad O.

    2017-01-01

    In this study, the effect of tri fuel (ULSD, H_2, and CH_4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al_2O_3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H_2 and CH_4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH_4 content tend to reduce NOx formation, whereas, fuels with high H_2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads. - Highlights: • Effect of tri fuel (ULSD, H_2, CH_4) on combustion and engine emissions was examined. • Fuel with high CH_4 content (H50-M50 and H25-M75) tend to reduce NOx formation. • Fuel with high H_2 content (H75-M25 and H50-M50) tend to reduce PM formation. • Increasing the percentage of H_2 in the feed gas improved the NO_x reduction. • The hydrocarbon-SCR catalyst has shown satisfactory performance in NO_x reduction.

  19. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends

    International Nuclear Information System (INIS)

    Chen, Guisheng; Shen, Yinggang; Zhang, Quanchang; Yao, Mingfa; Zheng, Zunqing; Liu, Haifeng

    2013-01-01

    In the paper, combustion and emissions of a multi-cylinder CI (compression-ignition) engine fueled with DMF–diesel, n-butanol–diesel and gasoline–diesel blends were experimentally investigated, and fuel characteristics of DMF, n-butanol and gasoline were compared. Diesel was used as the base fuel. And 30% of DMF, n-butanol and gasoline were blended with the base fuel by volume respectively, referred to as D30, B30 and G30. Results show that compared to B30 and G30, D30 has longer ignition delay because of lower cetane number, which leads to faster burning rate and higher pressure rise rate. With increasing EGR (exhaust gas recirculation) rate, D30 gets the lowest soot emissions, and extended ignition delay and fuel oxygen are two key factors reducing soot emissions, and ignition delay has greater effects than fuel oxygen on soot reduction. In addition, D30 and B30 improve the trade-off of NO x -soot remarkably and extend low-emission region without deteriorating fuel efficiency by utilizing medium EGR rates ( x , THC and CO emissions and BSFC, but reduce soot greatly. • Fuel oxygen is more efficient than air oxygen while ignition delay has greater effects than fuel oxygen to reduce soot. • As diesel additive, DMF is superior to n-butanol and gasoline for reducing soot emissions. • Using DMF–diesel blends combined with medium EGR may be a better way to meet future emission standards

  20. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    International Nuclear Information System (INIS)

    Oh, Yeong Og

    2002-02-01

    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil