WorldWideScience

Sample records for high penetration capability

  1. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  2. Managing high penetration of renewable energy in MV grid by electric vehicle storage

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    This paper proposes an intelligent algorithm for dealing with high penetration of renewable energy sources (RESs) in the medium voltage by intelligently managing electric vehicles (EVs), as one of the grid flexible loads. The MV grid used in this work is a CIGRE benchmark grid. Different...... residential and industrial loads are considered in this grid. The connection of medium voltage wind turbines to the grid is investigated. The solar panels in this study are residential panels. Also, EVs are located among the buses with residential demand. The study is done for different winter and summer...... scenarios, considering typical load profiles in Denmark. Different scenarios have been studied with different penetration level of RESs in the grid. The results show the capability of the proposed algorithm to reduce voltage deviations among the grid buses, as well as to increase the RES penetration...

  3. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  4. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  5. Overview of the U.S. inspection capability demonstration program for CRDM penetrations

    International Nuclear Information System (INIS)

    Melton, M.; Whitaker, D.; Ammirato, F.; Pathania, R.

    1994-01-01

    The US PWR Owners have developed a coordinated program to demonstrate the effectiveness of procedures for inspection of the Control Rod Drive Mechanism (CRDM) nozzle penetrations. The purpose of the inspections is to detect inside surface Primary Water Stress Corrosion Cracking (PWSCC). Reactor vessel manufacturers, PWR Owners Groups, and EPRI are participating in this cooperative program. Flaw detection, sizing, and location capability will be assessed in the program using realistic full-scale mockups containing intentional defects. The program is expected to be completed by January 1, 1994 and be available for qualification work at that time. The demonstration program is scheduled to become operational in 1993 to support 1994 and future inspections

  6. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  7. Southern California Edison High Penetration Photovoltaic Project - Year 1

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  8. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  9. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  10. High-Penetration Photovoltaic Planning Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David Wenzhong [Alternative Power Innovations, LLC, Broomfield, CO (United States); Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-24

    The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection to the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.

  11. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  12. Double ionization chamber survey meter for the separate measurement of penetrating and non-penetrating dose

    International Nuclear Information System (INIS)

    Lucas, A.C.

    1987-01-01

    The full capabilities of an advanced 8-bit microprocessor have been utilized in construction of a wide range, multiplexing survey meter based on dual electrometers and ionization chambers. The ionization chambers are constructed of modular conducting and non-conducting parts in such a way that the angular dependence for measurement of beta radiation is controlled by design. Display functions for the high range instrument include logarithmic or linear analog display, digital display of rate or dose, SI or English units, optionally for either total, penetrating, or non-penetrating dose. The instrument is presently configured to operate in the range 0.1 R/hr to 50,000 R/hr in support of the requirements of Regulatory Guide 19.7

  13. A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids with High PV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya

    2014-01-01

    In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....

  14. Sub-hourly impacts of high solar penetrations in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra; Brinkman, Greg; Florita, Anthony; Heaney, Michael; Hodge, Bri-Mathias; Hummon, Marissa; Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, Jack [RePPAE, Wexford, PA (United States)

    2012-07-01

    Until recently, it has been difficult to study the impacts of significant penetrations of hypothetical, utility-scale solar photovoltaic (PV) plants over large geographic regions. This was because of the lack of credible data to simulate the output of these plants with appropriate spatial and temporal correlation, especially on a sub-hourly basis. In the Western Wind and Solar Integration Study Phase 2 (WWSIS2), we used new technigues to synthesize sub-hourly high-resolution solar output for PV rooftops, utility-scale PV, and concentrating solar power (CSP). This allowed us to examine implications of 25 % solar (60/40 split of PV and CSP) and 8 % wind. In this paper, we present results of analysis on the sub-hourly impacts of high solar penetrations. Extreme event analysis showed that most of the large ramps were because of sunrise and sunset events, which have a significant predictability component. Variability in general was much higher with high penetrations of solar than with high penetrations of wind. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability. Significantly less transmission was required for high solar penetrations than wind and significantly less curtailment occurred in the high solar cases. (orig.)

  15. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accommodate piping imposed loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: the portion of the penetration sleeve which is exposed to containment ambient conditions and the portion of the penetration which connects the sleeve to process piping (flued head). The length and thickness of the sleeve must be designed to provide maximum heat dissipation to the atmosphere and minimum heat conduction through the sleeve to meet concrete temperature limitations. The sleeve must have the capability to transmit the postulated piping loads to concrete embedments in the containment shell. The penetration flued head design must be strong enough to transfer high mechanical loads and be flexible enough to accommodate the thermal stresses generated by the high temperature fluid. Analytical models using finite element representations of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head profiles, flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to lower the temperature at the concrete wall interface were investigated and fin geometry effects reported

  16. Technical impacts of high penetration levels of wind power on power system stability

    DEFF Research Database (Denmark)

    Flynn, Damian; Rather, Z.; Ardal, Atle

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level......, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and connected offshore through DC grids, offer many control opportunities to either replace or enhance existing...... capabilities. Achieving a complete understanding of future stability issues, and ensuring the effectiveness of new measures and policies, is an iterative procedure involving portfolio development and flexibility assessment, generation cost simulations, load flow, and security analysis, in addition...

  17. Impacts of reserve methodology on production cost in high-penetration renewable scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, G.; Lew, D.; Hummon, M.; Ibanez, E.; Ela, E.; Hodge, B.M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    Prior to wind and solar penetration, electric power systems were designed to handle variability in system load, uncertainty in load forecasts, and contingency events. Frequency regulations reserve typically handles high frequency (less than 5-minute time scale) variability. Contingency reserves supply energy in the case of the loss of a generator or transmission line. Wind and solar photovoltaic generation and variability to electric power system generation that must be balanced by the system operator. New ancillary service products may be necessary to minimize the cost of integrating these variable renewable generators. For example, California ISO is studying incorporating a flexible ramping product to ensure sufficient ramping capability. A flexibility reserve product could help ensure that sufficient capacity is online to handle unexpected variability in wind and solar generation. (orig.)

  18. Study on Penetration Characteristics of Tungsten Cylindrical Penetrator

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Hyun; Lee, Young Shin; Kim, Jae Hoon [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Bae, Yong Woon [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The design of missile require extremely small warheads that must be highly efficient and lethal. The penetration characteristics of each penetrator and the total number of penetrators on the warhead are obvious key factors that influence warhead lethality. The design of the penetrator shape and size are directly related to the space and weight of the warhead. The design of the penetrator L/D was directly related to the space and weight of the warhead. L and D are the length and the diameter of the projectile, respectively. The AUTODYN-3a code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, obliquity angle and L/D of penetrator. The residual velocity and residual mass were decreased with increasing initial impact velocity under L/D{<=}4.

  19. Assessment of high penetration of solar photovoltaics in Wisconsin

    International Nuclear Information System (INIS)

    Myers, Kevin S.; Klein, Sanford A.; Reindl, Douglas T.

    2010-01-01

    This paper provides an assessment of the large-scale implementation of distributed solar photovoltaics in Wisconsin with regard to its interaction with the utility grid, economics of varying levels of high penetration, and displaced emissions. These assessment factors are quantified using simulations with measured hourly solar radiation and weather data from the National Solar Radiation Database as primary inputs. Hourly utility load data for each electric utility in Wisconsin for a complete year were used in combination with the simulated PV output to quantify the impacts of high penetration of distributed PV on the aggregate Wisconsin electric utility load. As the penetration rate of distributed PV systems increases, both economic and environmental benefits experience diminishing returns. At penetration rates exceeding 15-20% of the aggregate utility load peak, less of the PV-energy is utilized and the contribution of the aggregate electricity generated from PV approaches a practical limit. The limit is not affected by costs, but rather by the time-distribution of available solar radiation and mismatch with the coincidence of aggregate utility electrical loads. The unsubsidized levelized cost of electricity from PV is more than four times greater than the current market price for electricity, based on time-of-use rates, in Wisconsin. At the present time, the investment in solar PV as a cost-effective means to reduce emissions from traditional electricity generation sources is not justified. (author)

  20. Application of Uintah-MPM to shaped charge jet penetration of aluminum

    International Nuclear Information System (INIS)

    Burghardt, J; Leavy, B; Brannon, R; Guilkey, J; Xue, Z

    2010-01-01

    The capability of the generalized interpolation material point (GIMP) method in simulation of penetration events is investigated. A series of experiments was performed wherein a shaped charge jet penetrates into a stack of aluminum plates. Electronic switches were used to measure the penetration time history. Flash x-ray techniques were used to measure the density, length, radius and velocity of the shaped charge jet. Simulations of the penetration event were performed using the Uintah MPM/GIMP code with several different models of the shaped charge jet being used. The predicted penetration time history for each jet model is compared with the experimentally observed penetration history. It was found that the characteristics of the predicted penetration were dependent on the way that the jet data are translated to a discrete description. The discrete jet descriptions were modified such that the predicted penetration histories fell very close to the range of the experimental data. In comparing the various discrete jet descriptions it was found that the cumulative kinetic energy flux curve represents an important way of characterizing the penetration characteristics of the jet. The GIMP method was found to be well suited for simulation of high rate penetration events.

  1. Storage Application in Smart Grid with High PV and EV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Yang, Guangya; Østergaard, Jacob

    2013-01-01

    grids with residential PVs and Electric Vehicles (EVs). The effect of EV home charging on EESS capacity in high PV penetration is also addressed. The results indicate that increasing the EV penetration in the network can decrease the EESS capacity need. This decrease is highest in situations with low PV...

  2. Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration

    International Nuclear Information System (INIS)

    Wang, Songyan; Chen, Ning; Yu, Daren; Foley, Aoife; Zhu, Lingzhi; Li, Kang; Yu, Jilai

    2015-01-01

    Highlights: • A flexible fault ride through strategy is proposed. • The strategy comprises of grid code requirements and power restrictions. • Slight faults and moderate faults are the main defending objectives. • Temporary overloading capability of the doubly fed induction generator is considered. - Abstract: This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults

  3. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy.

    Science.gov (United States)

    Jia, Yali; Sheng, Zonghai; Hu, Dehong; Yan, Fei; Zhu, Mingting; Gao, Guanhui; Wang, Pan; Liu, Xin; Wang, Xiaobing; Zheng, Hairong

    2018-04-25

    Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.

  4. Fault Analysis and Detection in Microgrids with High PV Penetration

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Mohamed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez Alvidrez, Javier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.

  5. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode

    International Nuclear Information System (INIS)

    Sumboja, Afriyanti; Wang Xu; Yan Jian; Lee, Pooi See

    2012-01-01

    Highlights: ► Preparation of organic/inorganic coaxial nanowires. ► Modifying current collector to improve both capacitance and rate capability simultaneously. ► Improvement in the charge transport process resulted in the superior rate capability. - Abstract: Indium tin oxide (ITO) nanowires array was used as current collector and building block for polyaniline based supercapacitor. Thin polyaniline coating was deposited on the nanowires and resulted in the formation of polyaniline ITO coaxial nanowires. This hybrid heterostructure design improved the specific capacitance, rate capability, and cycling stability of the supercapacitor electrode. Good conductivity harnessed by these directly grown ITO nanowires is useful to improve the charge transport during the charge discharge processes which were confirmed by the electrochemical impedance spectroscopy measurement. Electrochemical test in 1 M H 2 SO 4 at 4 A g −1 delivered specific capacitance as high as 738 F g −1 . In addition, sub-micron size of the intercoaxial nanowires spacing ensures the fast penetration of electrolyte ions which resulted in the superior rate capability (98% capacitance retention when applied current was varied from 4 to 25 A g −1 ). The capacitance retention is significantly higher as compared to other polyaniline composite electrodes and it is one of the best reported performances to date for polyaniline based supercapacitor electrodes. This work illustrates a promising platform that can be adopted for other redox nanocomposite materials while reaping the benefit as low cost and binder free electrode material for supercapacitor application.

  6. Cost allocation model for distribution networks considering high penetration of distributed energy resources

    DEFF Research Database (Denmark)

    Soares, Tiago; Pereira, Fábio; Morais, Hugo

    2015-01-01

    The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used...... in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed......, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle...

  7. Are high penetrations of commercial cogeneration good for society?

    Science.gov (United States)

    Keen, Jeremy F.; Apt, Jay

    2016-12-01

    Low natural gas prices, market reports and evidence from New York State suggest that the number of commercial combined heat and power (CHP) installations in the United States will increase by 2%-9% annually over the next decade. We investigate how increasing commercial CHP penetrations may affect net emissions, the distribution network, and total system energy costs. We constructed an integrated planning and operations model that maximizes owner profit through sizing and operation of CHP on a realistic distribution feeder in New York. We find that a greater penetration of CHP reduces both total system energy costs and network congestion. Commercial buildings often have low and inconsistent heat loads, which can cause low fuel utilization efficiencies, low CHP rates-of-return and diminishing avoided emissions as CHP penetration increases. In the northeast, without policy intervention, a 5% penetration of small commercially owned CHP would increase CO2 emissions by 2% relative to the bulk power grid. Low emission CHP installations can be encouraged with incentives that promote CHP operation only during times of high heat loads. Time-varying rates, such as time-of-day and seasonal rates, are one option and were shown to reduce customer emissions without reducing profits. In contrast, natural gas rate discounts, a common incentive for industrial CHP in some states, can encourage CHP operation during low heat loads and thus increase emissions.

  8. [Congenital valvular heart disease with high familial penetrance].

    Science.gov (United States)

    Dattilo, Giuseppe; Lamari, Annalisa; Tulino, Viviana; Scarano, Michele; De Luca, Eleonora; Mutone, Daniela; Busacca, Paolo

    2012-12-01

    Bicuspid valve aortic (BVA) is one of the most common congenital malformations. Only 20% of patients preserves a normal valve function throughout life. There are sporadic and familial forms, the latter to autosomal dominant. We present a case of familiarity of BVA high penetrance. Patient with aortic stenosis by BVA, is the father of two children with BVA.

  9. Influence of jet thrust on penetrator penetration when studying the structure of space object blanket

    Directory of Open Access Journals (Sweden)

    N. A. Fedorova

    2014-01-01

    Full Text Available The article presents the calculation-and-theory-based research results to examine the possibility for using the jet thrust impulse to increase a penetration depth of high-velocity penetrator modules. Such devices can be used for studies of Earth surface layer composition, and in the nearest future for other Solar system bodies too. Research equipment (sensors and different instruments is housed inside a metal body of the penetrator with a sharpened nose that decreases drag force in soil. It was assumed, that this penetrator is additionally equipped with the pulse jet engine, which is fired at a certain stage of penetrator motion into target.The penetrator is considered as a rigid body of variable mass, which is subjected to drag force and reactive force applied at the moment the engine fires. A drag force was represented with a binomial empirical law, and penetrator nose part was considered to be conical. The jet thrust force was supposed to be constant during its application time. It was in accordance with assumption that mass flow and flow rate of solid propellant combustion products were constant. The amount of propellant in the penetrator was characterized by Tsiolkovsky number Z, which specifies the ratio between the fuel mass and the penetrator structure mass with no fuel.The system of equations to describe the penetrator dynamics was given in dimensionless form using the values aligned with penetration of an equivalent inert penetrator as the time and penetration depth scales. Penetration dynamics of penetrator represented in this form allowed to eliminate the influence of penetrator initial mass and its cross-section diameter on the solution results. The lack of such dependency is convenient for comparing the calculation results since they hold for penetrators of various initial masses and cross-sections.To calculate the penetration a lunar regolith was taken as a soil material. Calculations were carried out for initial velocities of

  10. High Penetrated Wind Farm Impacts on the Electricity Price

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Yousefi, G. R.; Bak, Claus Leth

    2016-01-01

    of the high penetrated wind farm integration into electricity markets. Then, stochastic programming approach is employed to compare the volume of trades for a typical wind farm in a high and low wind penetrated market. Although increasing price spikes and volatility was reported in the literature......Energy trading policies, intermittency of wind farm output power, low marginal cost of the production, are the key factors that cause the wind farms to be effective on the electricity price. In this paper, the Danish electricity market is studied as a part of Nord Pool. Considering the completely...... fossil fuel free overview in Danish energy policies, and the currently great share of wind power (more than 100% for some hours) in supplying the load, it is an interesting benchmark for the future electricity markets. Negative prices, price spikes, and price volatility are considered as the main effects...

  11. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  12. FAA Fluorescent Penetrant Laboratory Inspections

    Energy Technology Data Exchange (ETDEWEB)

    WINDES,CONNOR L.; MOORE,DAVID G.

    2000-08-02

    The Federal Aviation Administration Airworthiness Assurance NDI Validation Center currently assesses the capability of various non-destructive inspection (NDI) methods used for analyzing aircraft components. The focus of one such exercise is to evaluate the sensitivity of fluorescent liquid penetrant inspection. A baseline procedure using the water-washable fluorescent penetrant method defines a foundation for comparing the brightness of low cycle fatigue cracks in titanium test panels. The analysis of deviations in the baseline procedure will determine an acceptable range of operation for the steps in the inspection process. The data also gives insight into the depth of each crack and which step(s) of the inspection process most affect penetrant sensitivities. A set of six low cycle fatigue cracks produced in 6.35-mm thick Ti-6Al-4V specimens was used to conduct the experiments to produce sensitivity data. The results will document the consistency of the crack readings and compare previous experiments to find the best parameters for water-washable penetrant.

  13. Penetration of Liquid Jets into a High-velocity Air Stream

    Science.gov (United States)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  14. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  15. Pumped storage in systems with very high wind penetration

    International Nuclear Information System (INIS)

    Tuohy, A.; O'Malley, M.

    2011-01-01

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  16. Hydrodynamic analysis and design of high-level radioactive waste disposal model penetrators

    International Nuclear Information System (INIS)

    Visintini, L.; Mazazzi, R.; Murray, C.N.

    1991-01-01

    The Commission of the European Communities is studying in the framework of the NEA/OECD Internationally Co-ordinational Seabed Programme the feasibility of using deep ocean sedimentary geological formations as a final disposal medium for vitrified high level waste and fuel elements. At present, two options are being considered for the embedment of such wastes in the sediment column, drilling and free fall penetrators. In the second case, the high level waste would be contained in specially designed drums which would be placed into torpedo-shaped projectiles. These penetrators would then be launched from a semi-submersible platform or ship and allowed to fall freely through the water column (≅ 5 km depth) and to bury themselves within the sediment column. The present article reports some work which has been carried out by the Joint Research Centre, Ispra Establishment on designing large model penetrators for tests at two sites in the North Atlantic

  17. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  18. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  19. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  20. Final Technical Report: Integrated Distribution-Transmission Analysis for Very High Penetration Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Hale, Elaine [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Hansen, Timothy M. [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Jones, Wesley [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Biagioni, David [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Baker, Kyri [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Wu, Hongyu [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Giraldez, Julieta [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Sorensen, Harry [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Lunacek, Monte [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Merket, Noel [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Jorgenson, Jennie [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)); Hodge, Bri-Mathias [NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))

    2016-01-29

    Transmission and distribution simulations have historically been conducted separately, echoing their division in grid operations and planning while avoiding inherent computational challenges. Today, however, rapid growth in distributed energy resources (DERs)--including distributed generation from solar photovoltaics (DGPV)--requires understanding the unprecedented interactions between distribution and transmission. To capture these interactions, especially for high-penetration DGPV scenarios, this research project developed a first-of-its-kind, high performance computer (HPC) based, integrated transmission-distribution tool, the Integrated Grid Modeling System (IGMS). The tool was then used in initial explorations of system-wide operational interactions of high-penetration DGPV.

  1. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    Science.gov (United States)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact

  2. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, Rick [Nhu Energy, Inc., Tallahassee, FL (United States); Florida State Univ., Tallahassee, FL (United States); Steurer, Mischa [Florida State Univ., Tallahassee, FL (United States); Faruque, MD Omar [Florida State Univ., Tallahassee, FL (United States); Langston, James [Florida State Univ., Tallahassee, FL (United States); Schoder, Karl [Florida State Univ., Tallahassee, FL (United States); Ravindra, Harsha [Florida State Univ., Tallahassee, FL (United States); Hariri, Ali [Florida State Univ., Tallahassee, FL (United States); Moaveni, Houtan [New York Power Authority (NYPA), New York (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (Unitied States); Click, Dave [ESA Renewables, LLC, Sanford, FL (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States); Reedy, Bob [University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States)

    2015-05-31

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was the partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.

  3. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  4. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Laboratories, Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  5. Numerical simulations of semi-armor-piercing warhead penetrating aircraft carrier target

    OpenAIRE

    Dong Sangqaing; Cai Xinghui; Wang Guoliang; Gao Yunliang; Lu Jiangren

    2015-01-01

    FEM models of semi-armor-piercing warhead penetrating aircraft carrier deck are established, which are validated by related experimental data. Base on the models, the process of semi-armor-piercing warhead penetrating aircraft carrier deck with different incidence angles and attack angles are carried out. The results show that incidence angles have no remarkable influence on penetration capability of the projectile under the circumstance of zero attack angle. Ductility reaming damage mode and...

  6. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Donnelly, Matt [Montana Tech., Butte, MT (United States); Sanchez-Gasca, Juan [GE Energy, Schenectady, NY (United States)

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  7. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh; Elgindy, Tarek; Liu, Yilu

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interest to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.

  8. Performance of kevlar fibre-reinforced rubber composite armour against shaped-charge jet penetration

    OpenAIRE

    Zu,Xu-dong; Huang,Zheng-xiang; Zhai,Wen

    2015-01-01

    AbstractThe protective capability of the Kevlar fibre-reinforced rubber composite armour (KFRRCA) at different obliquities is studied using depth-of-penetration experiments method against a 56 mm-diameter standard-shaped charge. Efficiency factors are calculated to evaluate the protection capability of the KFRRCA at different obliquities. Meanwhile, an X-ray experiment is used to observe the deformation, fracture, and scatter of the shaped-charge jet as it penetrates the composite armour. Fin...

  9. Demand side resource operation on the Irish power system with high wind power penetration

    International Nuclear Information System (INIS)

    Keane, A.; Tuohy, A.; Meibom, P.; Denny, E.; Flynn, D.; Mullane, A.; O'Malley, M.

    2011-01-01

    The utilisation of demand side resources is set to increase over the coming years with the advent of advanced metering infrastructure, home area networks and the promotion of increased energy efficiency. Demand side resources are proposed as an energy resource that, through aggregation, can form part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect. - Highlights: → Demand side resource model presented for use in unit commitment and dispatch calculations. → Benefits of demand side aggregation demonstrated specifically as a peaking unit and provider of reserve. → Potential to displace or defer construction of conventional peaking units.

  10. Enabling kinetic micro-penetrator technology for Solar System research

    Science.gov (United States)

    Gowen, R. A.

    2008-09-01

    well as public media images. These penetrators are ideal for vangard investigations of planetary bodies, or exploration of multiple sites where low mass is of particular benefit. They can provide a substantial scientific standalone capability; ground truth to orbiting instrument; provide concurrent missions with key data at other geographical locations; and provide broad scientific information to guide follow-on missions to more highly focused science investigations with more capable soft landed scientific instruments. Solar system bodies which are applicable to penetrator investigations are numerous and include the Moon, and the current ESA Cosmic Vision proposed missions to Europa, Titan and Enceladus. Other bodies would also include Near Earth Objects (NEOs) for which accelerometers in particular could be EPSC Abstracts, Vol. 3, EPSC2008-A-00526, 2008 European Planetary Science Congress, Author(s) 2008 instrumental in determining whether such objects are solid rock or loose rubble piles as currently thought. Though Mars already has a fairly mature and heavy investigative program both current and planned, the ability to implant a planet wide seismic network would be advantageous as well as extending astrobiologic investigations to new sites. The MoonLITE mission is a proposed UK led lunar mission which is planned to complete a phase-A study in the spring of 2009 with a possible launch in 2013. MoonLITE would comprise of 4 13 kg penetrators distributed widely upon the Moon including shaded polar craters and the far side. An orbiter would relay signals between penetrator and Earth. Key additional steps to enable exploration of other solar system bodies includes impact into harder (icy) and rough surfaces; increased radiation environments; and communications where a trailing aerial to mitigate signal attenuation through more heavily attenuating materials may be more prevalent. Also, significant is the desire to reduce the probe mass, which is envisaged to arise from a

  11. Performance of kevlar fibre-reinforced rubber composite armour against shaped-charge jet penetration

    Directory of Open Access Journals (Sweden)

    Xu-dong Zu

    Full Text Available AbstractThe protective capability of the Kevlar fibre-reinforced rubber composite armour (KFRRCA at different obliquities is studied using depth-of-penetration experiments method against a 56 mm-diameter standard-shaped charge. Efficiency factors are calculated to evaluate the protection capability of the KFRRCA at different obliquities. Meanwhile, an X-ray experiment is used to observe the deformation, fracture, and scatter of the shaped-charge jet as it penetrates the composite armour. Finally, scanning electron microscopy (SEM is used to analyse the effect of the Kevlar fibre-reinforced rubber for the composite armour to resist jet penetration. The results showed that the KFEECA can be used as additional armour, because it has excellent protection capability, and it can disturb the stability of the middle part of the shaped charge jet (SCJ obviously especially when the armour at 30°and 68° obliquities.

  12. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  13. Facing the challenges of distribution systems operation with high wind power penetration

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    power flow in 60kV distribution networks through controlling the ability of wind power plants (WPPs) to generate or absorb reactive power. This paper aims to understand the characteristics of a distribution network with high penetration of distributed generation. A detailed analysis of the active...... and reactive power flows in a real distribution network under different wind and load conditions based on actual measurements is performed in order to understand the correlation between the consumption, wind power production, and the network losses. Conclusive remarks are presented, briefly expressing......This paper addresses the challenges associated with the operation of a distribution system with high penetration of wind power. The paper presents some preliminary investigations of an ongoing Danish research work, which has as main objective to reduce the network losses by optimizing the reactive...

  14. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  15. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  16. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  17. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  18. Eddy current testing with high penetration

    International Nuclear Information System (INIS)

    Becker, R.; Kroening, M.

    1999-01-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de

  19. Microgrid optimal scheduling considering impact of high penetration wind generation

    Science.gov (United States)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  20. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    OpenAIRE

    Saber Talari; Miadreza Shafie-khah; Gerardo J. Osório; Fei Wang; Alireza Heidari; João P. S. Catalão

    2017-01-01

    Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind...

  1. High-strength uranium-0.8 weight percent titanium alloy penetrators

    International Nuclear Information System (INIS)

    Northcutt, W.G.

    1978-09-01

    Long-rod kinetic-energy penetrators, produced from a uranium-0.8 titanium (U-0.8 Ti) alloy, are normally water quenched from the gamma phase (approximately 800 0 C) and aged to the desired hardness and strength levels. High cooling rates from 800 0 C in U-0.8 Ti alloy cylindrical bodies larger than about 13 mm in diameter cause internal voids, while slower rates of cooling can produce material that is unresponsive to aging. For the present study, elimination of quenching voids was of paramount importance; therefore, a process including the quenching of plate was explored. Vacuum-induction-cast ingots were forged and rolled into plate and cut into blanks from which the penetrators were obtained. Quenched U-0.8 Ti alloy blanks were aged at 350 to 500 0 C to determine the treatment that would provide maximum tensile and impact strengths. Both tensile and impact strengths were maximized by aging in vacuum for six hours at 450 0 C

  2. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    Science.gov (United States)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  3. Development of a dynamic radiographic capability using high-speed video

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1984-01-01

    High-speed video equipment can be used to optically image up to 2000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 kV and 300 kV constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation

  4. Long-rod penetration: the transition zone between rigid and hydrodynamic penetration modes

    Directory of Open Access Journals (Sweden)

    Jian-feng Lou

    2014-06-01

    Full Text Available Long-rod penetration in a wide range of velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second. The long rods maintain rigid state when the impact velocity is low, the nose of rod deforms and even is blunted when the velocity gets higher, and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high due to instantaneous high pressure. That is, from low velocity to high velocity, the projectile undergoes rigid rods, deforming non-erosive rods, and erosive rods. Because of the complicated changes of the projectile, no well-established theoretical model and numerical simulation have been used to study the transition zone. Based on the analysis of penetration behavior in the transition zone, a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed, and a method to obtain the boundary velocity of transition zone is determined. A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions. The penetration depth predicted by this combined model is in good agreement with experimental result.

  5. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  6. Differences in Femoral Head Penetration Between Highly Cross-Linked Polyethylene Cemented Sockets and Uncemented Liners.

    Science.gov (United States)

    Morita, Daigo; Seki, Taisuke; Higuchi, Yoshitoshi; Takegami, Yasuhiko; Ishiguro, Naoki

    2017-12-01

    This study aimed at investigating differences in femoral head penetration between highly cross-linked polyethylene (HXLPE) cemented sockets and uncemented liners during 5 years postoperatively. Ninety-six patients (106 hips) with a mean age of 64.4 (range, 35-83) years underwent total hip arthroplasty using a HXLPE cemented socket or liner and were respectively divided into cemented (35 patients [37 hips]) and uncemented (61 patients [69 hips]) groups. Femoral head penetrations were evaluated on both anteroposterior (AP)-view and Lauenstein-view radiographs, and mean polyethylene (PE) wear rates were calculated based on femoral head penetration from 2 to 5 years. Multivariate analyses were performed to assess risk factors for PE wear. At 5 years postoperatively, the cemented and uncemented groups exhibited proximal direction femoral head penetrations of 0.103 mm and 0.124 mm (P = .226) and anterior direction penetrations of 0.090 mm and 0.151 mm (P = .002), respectively. The corresponding mean PE wear rates were 0.004 mm/y and 0.009 mm/y in the AP-view (P = .286) and 0.005 mm/y and 0.012 mm/y in the Lauenstein-view (P = .168), respectively. Left-side operation and high activity were independent risk factors for PE wear on AP-view. When HXLPE was used, all mean PE wear rates were very low and those of cemented sockets and uncemented liners were very similar. PE particle theory suggests that the occurrence of osteolysis and related aseptic loosening might consequently decrease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. High-Penetration PV Integration Handbook for Distribution Engineers

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, Rich [Electrical Distribution Design, Blacksburg, VA (United States); Woyak, Jeremy [Electrical Distribution Design, Blacksburg, VA (United States); Costyk, David [Electrical Distribution Design, Blacksburg, VA (United States); Hambrick, Josh [Electrical Distribution Design, Blacksburg, VA (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  8. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  9. High-resolution mapping, modeling, and evolution of subsurface geomorphology using ground-penetrating radar techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.

    subsurface. It has been useful to decipher shallow geomorphic structures having various options to use different antennas for different depth penetration (0-30 m) with higher resolution.   7.2 Principles of GPR  Ground Penetrating Radar (GPR) was invented... about 90m. Flat and plain land is being used, at present, for agriculture (paddy cultivation) practice. Sand dunes are low lying and highly reworked due to social forestry plantation (acacia) activities. 13    7.8.6 Paleo­Lagoon  GPR data shows two...

  10. Potential of ultrafine grained materials as high performance penetrator materials

    Directory of Open Access Journals (Sweden)

    Lee C.S.

    2012-08-01

    Full Text Available The shear formability and the metal jet formability are important for the kinetic energy penetrator and the chemical energy penetrator, respectively. The shear formability of ultrafine grained (UFG steel was examined, mainly focusing on the effects of the grain shape on the shear characteristics. For this purpose, UFG 4130 steel having the different UFG structures, the lamellar UFG and the equiaxed UFG, was prepared by equal channel angular pressing (ECAP. The lamellar UFG steel exhibited more sharper and localized shear band formation than the equiaxed UFG steel. This is because a lamellar UFG structure was unfavourable against grain rotation which is a main mechanism of the band propagation in UFG materials. Meanwhile, the metal jet formability of UFG OFHC Cu also processed by ECAP was compared to that of coarse grained (CG one by means of dynamic tensile extrusion (DTE tests. CG OFHC Cu exhibited the higher DTE ductility, i.e. better metal jet stability, than UFG OFHC Cu. The initial high strength and the lack of strain hardenability of UFG OFHC Cu were harmful to the metal jet formability.

  11. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Aluminum

    Science.gov (United States)

    Parker, Bradford, H.

    2009-01-01

    Historically both sensitivity level 3 and sensitivity level 4 fluorescent penetrants have been used to perform NASA Standard Level inspections of aerospace hardware. In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants were acceptable for inspections of NASA hardware. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections

  12. Penetrating bladder trauma: a high risk factor for associated rectal injury.

    Science.gov (United States)

    Pereira, B M; Reis, L O; Calderan, T R; de Campos, C C; Fraga, G P

    2014-01-01

    Demographics and mechanisms were analyzed in prospectively maintained level one trauma center database 1990-2012. Among 2,693 trauma laparotomies, 113 (4.1%) presented bladder lesions; 51.3% with penetrating injuries (n = 58); 41.3% (n = 24) with rectal injuries, males corresponding to 95.8%, mean age 29.8 years; 79.1% with gunshot wounds and 20.9% with impalement; 91.6% arriving the emergence room awake (Glasgow 14-15), hemodynamically stable (average systolic blood pressure 119.5 mmHg); 95.8% with macroscopic hematuria; and 100% with penetrating stigmata. Physical exam was not sensitive for rectal injuries, showing only 25% positivity in patients. While 60% of intraperitoneal bladder injuries were surgically repaired, extraperitoneal ones were mainly repaired using Foley catheter alone (87.6%). Rectal injuries, intraperitoneal in 66.6% of the cases and AAST-OIS grade II in 45.8%, were treated with primary suture plus protective colostomy; 8.3% were sigmoid injuries, and 70.8% of all injuries had a minimum stool spillage. Mean injury severity score was 19; mean length of stay 10 days; 20% of complications with no death. Concomitant rectal injuries were not a determinant prognosis factor. Penetrating bladder injuries are highly associated with rectal injuries (41.3%). Heme-negative rectal examination should not preclude proctoscopy and eventually rectal surgical exploration (only 25% sensitivity).

  13. Capabilities of nitrogen admixed cryogenic deuterium pellets

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, Igor; Sergeev, Vladimir [SPU, Saint-Petersburg (Russian Federation); Lang, Peter; Ploeckl, Bernhard; Cavedon, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP RMI, Budapest (Hungary); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Operation at high core density with high energy confinement - as foreseen in a future fusion reactor like DEMO - is being investigated at ASDEX Upgrade tokamak. The efficiency of pellet fuelling from the high-field side usually increases with increasing injection speed. Due to the fragile nature of the deuterium ice, however, the increment of pellet mass losses and subsequent pellet fragmentations take place when the speed is increased. Studies show, that admixing of a small amount of nitrogen (N{sub 2}) into D{sub 2} gas can be favorable for the mechanical stability of pellets. This might be helpful for deeper pellet penetration. Besides, seeding by N{sub 2} can enhance plasma performance due to both increasing the energy confinement time and reducing the divertor heat load in the envisaged ELMy H-mode plasma scenario. Fuelling efficiency of N{sub 2}-admixed solid D{sub 2} pellets and their nitrogen seeding capabilities were investigated. It was found that both the overall plasma density increase and the measured averaged pellet penetration depth were smaller in case of the admixed (1% mol. in the gas resulting in about 0.8% in the ice) pellet fuelling. Possibility of the N{sub 2}-seeding by admixed pellets was confirmed by CXRS measurements of N{sup 7+} content in plasma.

  14. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  15. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  16. Update on the Management of High-Risk Penetrating Keratoplasty.

    Science.gov (United States)

    Jabbehdari, Sayena; Rafii, Alireza Baradaran; Yazdanpanah, Ghasem; Hamrah, Pedram; Holland, Edward J; Djalilian, Ali R

    2017-03-01

    In this article, we review the indications and latest management of high-risk penetrating keratoplasty. Despite the immune-privilege status of the cornea, immune-mediated graft rejection still remains the leading cause of corneal graft failure. This is particularly a problem in the high-risk graft recipients, namely patients with previous graft failure due to rejection and those with inflamed and vascularized corneal beds. A number of strategies including both local and systemic immunosuppression are currently used to increase the success rate of high-risk corneal grafts. Moreover, in cases of limbal stem cell deficiency, limbal stem cells transplantation is employed. Corticosteroids are still the top medication for prevention and treatment in cases of corneal graft rejection. Single and combined administration of immunosuppressive agents e.g. tacrolimus, cyclosporine and mycophenolate are promising adjunctive therapies for prolonging graft survival. In the future, cellular and molecular therapies should allow us to achieve immunologic tolerance even in high-risk grafts.

  17. In-place HEPA filter penetration test

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical

  18. A Study of Crystalline Mechanism of Penetration Sealer Materials.

    Science.gov (United States)

    Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi

    2014-01-14

    It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.

  19. Transport mean free path related to trajectory patterns: Comparison of nonrelativistic and highly relativistic electron penetration through matter

    International Nuclear Information System (INIS)

    Liljequist, D.; Ismail, M.

    1987-01-01

    This analysis is based on the similarity between multiple scattering and slowing down (random walk) processes described by the same transport mean-free-path function λ/sub tr/(s) (s = path length). We discuss the connection between λ/sub tr/(s) and the characteristic appearance and scale of the trajectory pattern. Straggling is considered by means by stochastically discontinuous λ/sub tr/(s) functions. In the application to electron penetration, we show that while nonrelativistic electron penetration is modeled by λ/sub tr/ = (r-s)/α, where r is the range and α is a material-dependent dimensionless constant, highly relativistic electron penetration is modeled by λ/sub tr/proportionalexp(-s/Λ), where Λ is a length characteristic for the penetrated material. The respective trajectory patterns are distinctly different. The effect of straggling on the trajectory pattern in the highly relativistic case is demonstrated by means of a simple model of the stochastic λ/sub tr/(s) behavior

  20. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  1. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  2. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  3. Effects of Sizes and Conformations of Fish-Scale Collagen Peptides on Facial Skin Qualities and Transdermal Penetration Efficiency

    OpenAIRE

    Chai, Huey-Jine; Li, Jing-Hua; Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Shiau, Chyuan-Yuan; Wu, Chang-Jer

    2010-01-01

    Fish-scale collagen peptides (FSCPs) were prepared using a given combination of proteases to hydrolyze tilapia (Oreochromis sp.) scales. FSCPs were determined to stimulate fibroblast cells proliferation and procollagen synthesis in a time- and dose-dependent manner. The transdermal penetration capabilities of the fractionationed FSCPs were evaluated using the Franz-type diffusion cell model. The heavier FSCPs, 3500 and 4500?Da, showed higher cumulative penetration capability as opposed to the...

  4. Implementation and Assessment of a Decentralized Load Frequency Control: Application to Power Systems with High Wind Energy Penetration

    Directory of Open Access Journals (Sweden)

    Irene Muñoz-Benavente

    2017-01-01

    Full Text Available This paper describes and assesses a decentralized solution based on a wireless sensor-actuator network to provide primary frequency control from demand response in power systems with high wind energy penetration and, subsequently, with relevant frequency excursions. The proposed system is able to modify the electrical power demand of a variety of thermostatically-controlled loads, maintaining minimum comfort levels and minimizing both infrastructure requirements and primary reserves from the supply side. This low-cost hardware solution avoids any additional wiring, extending the wireless sensor-actuator network technology towards small customers, which account for over a 30% share of the current power demand. Frequency excursions are collected by each individual load controller, considering not only the magnitude of the frequency deviation, but also their evolution over time. Based on these time-frequency excursion characteristics, controllers are capable of modifying the power consumption of thermostatically-controlled loads by switching them off and on, thus contributing to primary frequency control in power systems with higher generation unit oscillations as a consequence of relevant wind power integration. Field tests have been carried out in a laboratory environment to assess the load controller performance, as well as to evaluate the electrical and thermal response of individual loads under frequency deviations. These frequency deviations are estimated from power systems with a high penetration of wind energy, which are more sensitive to frequency oscillations and where demand response can significantly contribute to mitigate these frequency excursions. The results, also included in the paper, evaluate the suitability of the proposed load controllers and their suitability to decrease frequency excursions from the demand side in a decentralized manner.

  5. Distribution Networks Management with High Penetration of Photovoltaic Panels

    DEFF Research Database (Denmark)

    Morais, Hugo

    2013-01-01

    The photovoltaic solar panels penetration increases significantly in recent years in several European countries, mainly in the low voltage and medium voltage networks supported by governmental policies and incentives. Consequently, the acquisition and installation costs of PV panels decrease...... and the know–how increase significantly. Presently is important the use of new management methodologies in distribution networks to support the growing penetration of PV panels. In some countries, like in Germany and in Italy, the solar generation based in photovoltaic panels supply 40% of the demand in some...

  6. Critical operations capabilities in a high cost environment: a multiple case study

    Science.gov (United States)

    Sansone, C.; Hilletofth, P.; Eriksson, D.

    2018-04-01

    Operations capabilities have been a popular research area for many years and several frameworks have been proposed in the literature. The current frameworks do not take specific contexts into consideration, for instance a high cost environment. This research gap is of particular interest since a manufacturing relocation process has been ongoing the last decades, leading to a huge amount of manufacturing being moved from high to low cost environments. The purpose of this study is to identify critical operations capabilities in a high cost environment. The two research questions were: What are the critical operations capabilities dimensions in a high cost environment? What are the critical operations capabilities in a high cost environment? A multiple case study was conducted and three Swedish manufacturing firms were selected. The study was based on the investigation of an existing framework of operations capabilities. The main dimensions of operations capabilities included in the framework were: cost, quality, delivery, flexibility, service, innovation and environment. Each of the dimensions included two or more operations capabilities. The findings confirmed the validity of the framework and its usefulness in a high cost environment and a new operations capability was revealed (employee flexibility).

  7. Control of spiking in partial penetration of electron beam welds. Final report, 1 October 1969--1 October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An investigation of the penetration mechanism of high energy density electron beams and an evaluation of electron beam deflection as a method of penetration control are presented. A discussion of electron beam mechanics including several penetration theories is presented in the introduction and background. Slur radiographs made using a pinhole x-ray camera are evaluated to determine velocity and acceleration of the point of beam impingement. Methods of cavity closure are discussed with possible causes of surface sealing of the beam cavity. A method of penetration, after the cavity has closed, based on the curves relating velocity and acceleration to penetration distance is considered. An estimate of cavity pressure is made from the maximum acceleration of the beam-metal interface. A system using an x-ray detector coupled with a beam deflecting device is detailed and evaluated. As this is the first attempt at penetration control by beam deflection the investigation seeks only to determine the feasibility of the idea without attempting a thorough analysis of range of abilities or quality of welds made by such devices. Based on several specimens which are presented beam deflection appears capable of controlling penetration depth. It is hoped that the ideas presented here will inspire future research along these lines

  8. In-place HEPA filter penetration test

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Elliott, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  9. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    Science.gov (United States)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  10. Defense Industrial Base Capabilities Study: Battlespace Awareness

    Science.gov (United States)

    2004-01-01

    not production capacity or workforce issues. It considers the best capabilities in both the domestic and foreign components of the industrial base...www.maliburesearch.com Ground Penetrating Radar MARIMATECH 1989 Aarhus, Denmark n.a. n.a. www.marimatech.com Sonar Maser Technology (NZ) Ltd. 1983 Auckland , New

  11. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  12. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  13. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-09-01

    Full Text Available Light has been clinically utilized as a stimulation in medical treatment, such as Low-level laser therapy and photodynamic therapy, which has been more and more widely accepted in public. The penetration depth of the treatment light is important for precision treatment and safety control. The issue of light penetration has been highlighted in biomedical optics field for decades. However, quantitative research is sparse and even there are conflicts of view on the capability of near-infrared light penetration into brain tissue. This study attempts to quantitatively revisit this issue by innovative high-realistic 3D Monte Carlo modeling of stimulated light penetration within high-precision Visible Chinese human head. The properties of light, such as its wavelength, illumination profile and size are concern in this study. We made straightforward and quantitative comparisons among the effects by the light properties (i.e., wavelengths: 660, 810 and 980nm; beam types: Gaussian and flat beam; beam diameters: 0, 2, 4 and 6cm which are in the range of light treatment. The findings include about 3% of light dosage within brain tissue; the combination of Gaussian beam and 810nm light make the maximum light penetration (>5cm, which allows light to cross through gray matter into white mater. This study offered us, the first time as we know, quantitative guide for light stimulation parameter optimization in medical treatment.

  14. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  15. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F. [and others

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  16. Mastering wireless penetration testing for highly secured environments

    CERN Document Server

    Johns, Aaron

    2015-01-01

    This book is intended for security professionals who want to enhance their wireless penetration testing skills and knowledge. Since this book covers advanced techniques, you will need some previous experience in computer security and networking.

  17. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years......With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...

  18. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  19. A Study of Crystalline Mechanism of Penetration Sealer Materials

    Directory of Open Access Journals (Sweden)

    Li-Wei Teng

    2014-01-01

    Full Text Available It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO3. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0–10 mm of sealer layer beneath the concrete surface.

  20. An integrated approach to fire penetration seal program management

    International Nuclear Information System (INIS)

    Rispoli, R.D.

    1996-01-01

    This paper discusses the utilization of a P.C. based program to facilitate the management of Entergy Operations Arkansas Nuclear One (ANO) fire barrier penetration seal program. The computer program was developed as part of a streamlining process to consolidate all aspects of the ANO Penetration Seal Program under one system. The program tracks historical information related to each seal such as maintenance activities, design modifications and evaluations. The program is integrated with approved penetration seal design details which have been substantiated by full scale fire tests. This control feature is intended to prevent the inadvertent utilization of an unacceptable penetration detail in a field application which may exceed the parameters tested. The system is also capable of controlling the scope of the periodic surveillance of penetration seals by randomly selecting the inspection population and generating associated inspection forms. Inputs to the data base are required throughout the modification and maintenance process to ensure configuration control and maintain accurate data base information. These inputs are verified and procedurally controlled by Fire Protection Engineering (FPE) personnel. The implementation of this system has resulted in significant cost savings and has minimized the allocation of resources necessary to ensure long term program viability

  1. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  2. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  3. High-accuracy defect sizing for CRDM penetration adapters using the ultrasonic TOFD technique

    International Nuclear Information System (INIS)

    Atkinson, I.

    1995-01-01

    Ultrasonic time-of-flight diffraction (TOFD) is the preferred technique for critical sizing of throughwall orientated defects in a wide range of components, primarily because it is intrinsically more accurate than amplitude-based techniques. For the same reason, TOFD is the preferred technique for sizing the cracks in control rod drive mechanism (CRDM) penetration adapters, which have been the subject of much recent attention. Once the considerable problem of restricted access for the UT probes has been overcome, this inspection lends itself to very high accuracy defect sizing using TOFD. In qualification trials under industrial conditions, depth sizing to an accuracy of ≤ 0.5 mm has been routinely achieved throughout the full wall thickness (16 mm) of the penetration adapters, using only a single probe pair and without recourse to signal processing. (author)

  4. The penetrating depth analysis of Lunar Penetrating Radar onboard Chang’e-3 rover

    Science.gov (United States)

    Xing, Shu-Guo; Su, Yan; Feng, Jian-Qing; Dai, Shun; Xiao, Yuan; Ding, Chun-Yu; Li, Chun-Lai

    2017-04-01

    Lunar Penetrating Radar (LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise. First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method (CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m ({\\varepsilon }r=6.6) and from 13.0 m to 17.5 m ({\\varepsilon }r=2.3), respectively.

  5. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  6. Dynamic voltage stability of a distribution system with high penetration of grid-connected photovoltaic type solar generators

    Directory of Open Access Journals (Sweden)

    Zetty Adibah Kamaruzzaman

    2016-06-01

    Full Text Available This paper presents the impact of grid-connected photovoltaic (PV generator on dynamic voltage stability of a power distribution system by considering solar intermittency, PV penetration level, and contingencies such as line outage and load increase. The IEEE 13 node test feeder is used as a test system, and a solar PV of 0.48 kV/0.5 MVA is integrated into the test system. Test results show that system voltage is stable at high PV penetration levels. Increase in load causes voltage instability, in which voltage drops below its allowable operating limit. Thus, increase in PV penetration level does not improve system voltage stability because the system experiences voltage collapse during line outage.

  7. Effects of Sizes and Conformations of Fish-Scale Collagen Peptides on Facial Skin Qualities and Transdermal Penetration Efficiency

    Directory of Open Access Journals (Sweden)

    Huey-Jine Chai

    2010-01-01

    Full Text Available Fish-scale collagen peptides (FSCPs were prepared using a given combination of proteases to hydrolyze tilapia (Oreochromis sp. scales. FSCPs were determined to stimulate fibroblast cells proliferation and procollagen synthesis in a time- and dose-dependent manner. The transdermal penetration capabilities of the fractionationed FSCPs were evaluated using the Franz-type diffusion cell model. The heavier FSCPs, 3500 and 4500 Da, showed higher cumulative penetration capability as opposed to the lighter FSCPs, 2000 and 1300 Da. In addition, the heavier seemed to preserve favorable coiled structures comparing to the lighter that presents mainly as linear under confocal scanning laser microscopy. FSCPs, particularly the heavier, were concluded to efficiently penetrate stratum corneum to epidermis and dermis, activate fibroblasts, and accelerate collagen synthesis. The heavier outweighs the lighter in transdermal penetration likely as a result of preserving the given desired structure feature.

  8. Report of the panel on the use of depleted uranium alloys for large caliber long rod kinetic energy penetrators

    International Nuclear Information System (INIS)

    Sandstrom, D.J.; Jessen, N.; Loewenstein, P.; Weirick, L.

    1980-01-01

    In early 1977 the National Materials Advisory Board, an operating unit in the Commission on Sociotechnical Systems of the National Research Council, NAS/NAE, formed a study committee on High Density Materials for Kinetic Energy Penetrators. The Specific objectives of the Committee were defined as follows. Assess the potential of two materials for use in kinetic energy penetrators, including such factors as: (a) properties (as applied to this application: strength, toughness, and dynamic behavior); (b) uniformity, reliability and reproducibility; (c) deterioration in storage; (d) production capability; (e) ecological impact; (f) quality assurance; (g) availability, and (h) cost. The Committee was divided into two Panels; one panel devoted to the study of tungsten alloys and the other devoted to the study of depleted uranium alloys for use in Kinetic energy penetrators. This report represents the findings and recommendation of the Panel on Uranium

  9. Effect of egg washing and correlation between cuticle and egg penetration by various Salmonella strains.

    Science.gov (United States)

    Gole, Vaibhav C; Roberts, Juliet R; Sexton, Margaret; May, Damian; Kiermeier, Andreas; Chousalkar, Kapil K

    2014-07-16

    In Australia, Europe and the United States, eggs and egg products are frequently associated with Salmonella food poisoning outbreaks. Many of the egg-associated Salmonella outbreaks have been due to the products such as mayonnaise, ice-cream and cold desserts which are eaten without cooking following the addition of raw egg. The ability of four Salmonella isolates (one each of S. Singapore, S. Adelaide, S. Worthington and S. Livingstone) to penetrate washed and unwashed eggs using whole egg and agar egg penetration methods was investigated in the current study. The results of the agar penetration experiment indicated that all the isolates used in the present study have the capacity to penetrate the eggshell. Eggshell penetration by the S. Worthington isolate was higher but not significant (p=0.06) in washed eggs compared to unwashed eggs. However, for all other isolates (S. Singapore, S. Adelaide and S. Livingstone), there was no significant difference in penetration of washed and unwashed eggs. Statistical analysis indicated that cuticle score was a significant linear predictor of Salmonella eggshell penetration. Whole egg penetration results showed that all of the Salmonella isolates used in the present study were capable of surviving on the eggshell surface after 21days of incubation (at 20°C) following a high dose of inoculation (10(5)CFU/mL). The combined data of all isolates demonstrated that, the survival rate of Salmonella on eggshells (inoculated with 10(5)CFU/mL) was significantly higher (p=0.002) at 20°C as compared to 37°C. S. Singapore, S. Worthington, and S. Livingstone were not detected in egg internal contents whereas S. Adelaide was detected in one egg's internal contents. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  10. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Directory of Open Access Journals (Sweden)

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  11. Highly accurate and fast optical penetration-based silkworm gender separation system

    Science.gov (United States)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  12. Campbell penetration depth in Fe-based superconductors

    International Nuclear Information System (INIS)

    Prommapan, Plegchart

    2011-01-01

    A 'true' critical current density, j c , as opposite to commonly measured relaxed persistent (Bean) current, j B , was extracted from the Campbell penetration depth, λ c (T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954 Ni 0.046 ) 2 As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2 As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c (2K) ≅ 3.3 x 10 6 A/cm 2 . The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53 Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6 K 0.4 Fe 2 As 2 (BaK122) and isovalent doped BaFe 2 (As 0

  13. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  14. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  15. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS-LER

    International Nuclear Information System (INIS)

    Mustari, A P A; Irwanto, Dwi; Yamaji, A

    2016-01-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS-LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS-LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS-LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate. (paper)

  16. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  17. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rashkin, Lee J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.

  18. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained......, partially or fully drained. However, lowering the penetration rate in silty soils has a great significance because of the soil permeability, and only a small change in penetration rate will result in changed cone penetration measurements. In this paper, analyses will be done on data from 15 field cone...

  19. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accomodate piping loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: 1) the portion of the penetration sleeve which is exposed to containment ambient conditions and 2) the portion of the penetration which connects the sleeve to process piping (flued head). Analytical models using finite element representation of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to further lower the temperature at the concrete wall interface were also investigated and fin geometry effects reported. (Auth.)

  20. Energy Storage Options for Voltage Support in Low-Voltage Grids with High Penetration of Photovoltaic

    DEFF Research Database (Denmark)

    Marra, Francesco; Tarek Fawzy, Y.; Bülo, Thorsten

    2012-01-01

    to be established. In the long term, these solutions should also aim to allow further more PV installed capacity, while meeting the power quality requirements. In this paper, different concepts of energy storage are proposed to ensure the voltage quality requirements in a LV grid with high PV penetration...

  1. Low Force Penetration of Icy Regolith

    Science.gov (United States)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  2. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    DEFF Research Database (Denmark)

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  3. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    Science.gov (United States)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS

  4. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  5. Penetrating ureteral trauma

    Directory of Open Access Journals (Sweden)

    Gustavo P. Fraga

    2007-04-01

    Full Text Available OBJECTIVE: The purpose of this series is to report our experience in managing ureteral trauma, focusing on the importance of early diagnosis, correct treatment, and the impact of associated injuries on the management and morbid-mortality. MATERIALS AND METHODS: From January 1994 to December 2002, 1487 laparotomies for abdominal trauma were performed and 20 patients with ureteral lesions were identified, all of them secondary to penetrating injury. Medical charts were analyzed as well as information about trauma mechanisms, diagnostic routine, treatment and outcome. RESULTS: All patients were men. Mean age was 27 years. The mechanisms of injury were gunshot wounds in 18 cases (90% and stab wounds in two (10%. All penetrating abdominal injuries had primary indication of laparotomy, and neither excretory urography nor computed tomography were used in any case before surgery. The diagnosis of ureteric injury was made intra-operatively in 17 cases (85%. Two ureteral injuries (10% were initially missed. All patients had associated injuries. The treatment was dictated by the location, extension and time necessary to identify the injury. The overall incidence of complications was 55%. The presence of shock on admission, delayed diagnosis, Abdominal Trauma Index > 25, Injury Severity Score > 25 and colon injuries were associated to a high complication rate, however, there was no statistically significant difference. There were no mortalities in this group. CONCLUSIONS: A high index of suspicion is required for diagnosis of ureteral injuries. A thorough exploration of all retroperitoneal hematoma after penetrating trauma should be an accurate method of diagnosis; even though it failed in 10% of our cases.

  6. Spinning reserve quantification by a stochastic–probabilistic scheme for smart power systems with high wind penetration

    International Nuclear Information System (INIS)

    Khazali, Amirhossein; Kalantar, Mohsen

    2015-01-01

    Highlights: • A stochastic–probabilistic approach is proposed for spinning reserve quantification. • A new linearized formulation integrating reliability metrics is presented. • The framework manages the reserve provided by responsive loads and storage systems. • The proposed method is capable of detaching the spinning reserve for different uses. - Abstract: This paper introduces a novel spinning reserve quantification scheme based on a hybrid stochastic–probabilistic approach for smart power systems including high penetration of wind generation. In this research the required spinning reserve is detached into two main parts. The first part of the reserve is procured to overcome imbalances between load and generation in the system. The second part of the required spinning reserve is scheduled according to the probability of unit outages. In order to overcome uncertainties caused by wind generation and load forecasting errors different scenarios of wind generation and load uncertainties are generated. For each scenario the reserve deployed by different components are taken account as the first part of the required reserve which is used to overcome imbalances. The second part of the required reserve is based on reliability constraints. The total expected energy not supplied (TEENS) is the reliability criterion which determines the second part of the required spinning reserve to overcome unit outage possibilities. This formulation permits the independent system operator to purchase the two different types of reserve with different prices. The introduced formulation for reserve quantification is also capable of managing and detaching the reserve provided by responsive loads and energy storage devices. The problem is formulated as a mixed integer linear programming (MILP) problem including linearized formulations for reliability metrics. Obtained results show the efficiency of the proposed approach compared with the conventional stochastic and deterministic

  7. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  8. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  9. Predicting the Consequences of MMOD Penetrations on the International Space Station

    Science.gov (United States)

    Hyde, James; Christiansen, E.; Lear, D.; Evans

    2018-01-01

    The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.

  10. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  11. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim [Department of Electro-Optical Engineering and TheIlse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602 (Singapore)

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  12. Revisiting long-run relations in power markets with high RES penetration

    International Nuclear Information System (INIS)

    Gianfreda, Angelica; Parisio, Lucia; Pelagatti, Matteo

    2016-01-01

    Electricity generation from renewable energy resources (RES) has become increasingly significant to reach EU and emissions reduction targets. At the same time, one of the main EU policy goals has been the creation of a common internal energy market for Europe. In this paper, we focus on these two issues previously studied separately, considering their possible interactions. We first analyze the long-run relationship between day-ahead electricity prices and fuel prices (natural gas and coal) looking at two samples of years characterized by low and high RES penetration, then we explore the integration of EU markets. We show that the electricity–fuel nexus found over 2006–2008 changed dramatically over 2010–2014 for the majority of countries considered. In particular, the long-run dependence of electricity from gas and coal prices is much lower in recent years. Furthermore, our results confirm that the considered EU countries are becoming less integrated as RES-E increases. Our findings suggest that nationally implemented policies to support renewables are successful in increasing RES penetration, but they have lessened the linkage among EU markets, then making integration more difficult to obtain. - Highlights: •RES lower the intra-daily electricity dependence from coal and natural gas. •RES affect the EU wholesale electricity market integration, studied at hourly level. •Overlapping national and supranational policies tackle the achievement of EU targets. •Strong policy coordination is required to avoid that the “greens” promote the “dirtiest”.

  13. Europa Kinetic Ice Penetrator (EKIP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed work is to validate an initial design for a Europa penetrator that can withstand the high g load associated with the expected hypervelocity...

  14. Improved Modeling Tools Development for High Penetration Solar

    Energy Technology Data Exchange (ETDEWEB)

    Washom, Byron [Univ. of California, San Diego, CA (United States); Meagher, Kevin [Power Analytics Corporation, San Diego, CA (United States)

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.

  15. Westinghouse Hanford Company package testing capabilities

    International Nuclear Information System (INIS)

    Hummer, J.H.; Mercado, M.S.

    1993-07-01

    The Department of Energy's Hanford Site is a 1,450-km 2 (560-mi 2 ) installation located in southeastern Washington State. Established in 1943 as a plutonium production facility, Hanford's role has evolved into one of environmental restoration and remediation. Many of these environmental restoration and remediation activities involve transportation of radioactive/hazardous materials. Packagings used for the transportation of radioactive/hazardous materials must be capable of meeting certain normal transport and hypothetical accident performance criteria. Evaluations of performance to these criteria typically involve a combination of analysis and testing. Required tests may include the free drop, puncture, penetration, compression, thermal, heat, cold, vibration, water spray, water immersion, reduced pressure, and increased pressure tests. The purpose of this paper is to outline the Hanford capabilities for performing each of these tests

  16. Resolution of issues with renewable energy penetration in a long-range power system demand-supply planning

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko; Ikeda, Yuichi; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi

    2012-01-01

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaic, the issue of supply demand balance should be evaluated and fixed. Technologies such as demand activation, and energy storage are expected to solve the issue. Under the situation, a long-range power system supply demand analysis should have the capability for the evaluation in its analysis steps of demand preparation, maintenance scheduling, and economic dispatch analysis. This paper presents results of a parametric analysis of the reduction of PV and Wind generation curtailment reduction by deployment of batteries. Based on a set of scenarios of the prospects of Japan's 10 power system demand-supply condition in 2030, the demand-supply balance capability are analyzed assuming PV and wind generation variation, demand activation and dispatchable batteries. (author)

  17. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  18. Technical impacts of high penetration levels of wind power on power system stability

    OpenAIRE

    Flynn, Damian; Rather, Z.; Ardal, Atle; Darco, Salvatore; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar; Estanqueiro, Ana; Gomez, Emilio; Menemenlis, Nickie; Smith, Charlie; Wang, Ye

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and con...

  19. Voltage magnitude and margin controller for remote industrial microgrid with high wind penetration

    DEFF Research Database (Denmark)

    Cai, Yu; Lin, Jin; Song, Yonghua

    2013-01-01

    It is well known that the remote industrial microgrid is located at the periphery of the grid, which is weakly connected to the main grid. In order to enhance the voltage stability and ensure a good power quality for industries, a voltage magnitude and margin controller based on wind turbines...... is proposed in this paper. This controller includes two parts to improve voltage stability in different time scales by using local measurements. Case studies conducted for a remote microgrid with high wind penetration have proved the effectiveness of the proposed control scheme....

  20. Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    In close future, with high Wind Energy (WE) penetration in the power system, the burden of Load-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip the VSWT with LFC capability to support the grid during sudden variation in generation or load...... regulation. The proposed scheme demonstrates remarkable improvement transient state of both voltage and frequency profiles in comparison with conventional LFC designs provided by Central Power Plants (CPP) or Wind Power Plants (WPP). Numerical simulations carried out in DigSilent Power- Factory confirm...

  1. Physical Penetration Testing: A Whole New Story in Penetration Testing

    NARCIS (Netherlands)

    Dimkov, T.; Pieters, Wolter

    2011-01-01

    Physical penetration testing plays an important role in assuring a company that the security policies are properly enforced and that the security awareness of the employees is on the appropriate level. In physical penetration tests the tester physically enters restricted locations and directly

  2. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

    Energy Technology Data Exchange (ETDEWEB)

    Warren, T.L.; Tabbara, M.R.

    1997-05-01

    In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

  3. Akon - A Penetrator for Europa

    Science.gov (United States)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  4. Distinctive Innovation Capabilities of Argentine Software Companies with High Innovation Results and Impacts

    Directory of Open Access Journals (Sweden)

    María Isabel Camio

    2018-04-01

    Full Text Available The software sector is of growing importance and, due to its degree of dynamism, the identification of capabilities for innovation is vital. This study identifies capabilities variables that distinguish Argentine software companies with high innovation results and high innovation impacts from those with lesser results and impacts. It is applied to a sample of 103 companies, a measurement model and the component variables of an innovation degree index for software companies (INIs formulated in previous studies. A Principal Component Analysis and a biplot are conducted. In the analysis of results and impacts, 100% of the variability within the first two components is explained, which shows the high correlation between variables. From the biplots, it appears that companies with high results have higher degrees in the variables of motivation, strategy, leadership and internal determinants; and those with high impacts present higher degrees of structure, strategy, leadership, free software and innovation activities. The findings add elements to the theory of capabilities for innovation in the software sector and allow us to consider the relative importance of different capabilities variables in the generation of innovation results and impacts.

  5. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  6. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    Science.gov (United States)

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. HMO penetration and the geographic mobility of practicing physicians.

    Science.gov (United States)

    Polsky, D; Kletke, P R; Wozniak, G D; Escarce, J J

    2000-09-01

    In this study, we assessed the influence of changes in health maintenance organization (HMO) penetration on the probability that established patient care physicians relocated their practices or left patient care altogether. For physicians who relocated their practices, we also assessed the impact of HMO penetration on their destination choices. We found that larger increases in HMO penetration decreased the probability that medical/surgical specialists in early career stayed in patient care in the same market, but had no impact on generalists, hospital-based specialists, or mid career medical/surgical specialists. We also found that physicians who relocated their practices were much more likely to choose destination markets with the same level of HMO penetration or lower HMO penetration compared with their origin markets than they were to choose destination markets with higher HMO penetration. The largely negligible impact of changes in HMO penetration on established physicians' decisions to relocate their practices or leave patient care is consistent with high relocation and switching costs. Relocating physicians' attraction to destination markets with the same level of HMO penetration as their origin markets suggests that, while physicians' styles of medical practice may adapt to changes in market conditions, learning new practice styles is costly.

  8. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  9. Quantitative assessment of liquid Ga penetration into an aluminium alloy by high-resolution X-ray tomography

    International Nuclear Information System (INIS)

    Ohgaki, T.; Toda, H.; Sinclair, I.; Buffiere, J.-Y.; Ludwig, W.; Kobayashi, T.; Niinomi, M.; Akahori, T.

    2005-01-01

    We have evaluated the liquid Ga penetration into an aluminium alloy by high-resolution X-ray tomography. The 3D visualization of a crack together with its surrounding grain structure was performed with the help of the Ga penetration technique. It is found that the advance directions of the crack-tip were strongly influenced by the grain microstructure and the branching of the crack is affected by grain distribution. In this study, the liquid Ga not only acts as a contrast agent for grain boundaries, but also expands the volume of the Al alloy due to Ga diffusion and associated processes. The 3D strain between the grains has been determined by microstructural gauging technique, which uses micropores as marker points. The 3D expansion of the sample volume, the volume reduction of micropores and the brittle fracture were evidently observed

  10. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  11. Static Equivalent of Distribution Grids With High Penetration of PV Systems

    DEFF Research Database (Denmark)

    Samadi, Afshin; Söder, Lennart; Shayesteh, Ebrahim

    2015-01-01

    High penetrations of photovoltaic (PV) systems within load pockets in distribution grids have changed pure consumers to prosumers. This can cause technical challenges in distribution and transmission grids, such as overvoltage and reverse power flow. Embedding voltage support schemes into PVs...... equivalent that can fairly capture the dominant behavior of the distribution grids. The aim of this paper is to use gray-box modeling concepts to develop a static equivalent of distribution grids comprising a large number of PV systems embedded with voltage support schemes. In the proposed model, the PV...... systems are aggregated as a separate entity, and not as a negative load, which is traditionally done. The results demonstrate the superior quality of the proposed model compared with the model with PV systems as the negative load....

  12. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  13. Perinatal market penetration rate. A tool to evaluate regional perinatal programs.

    Science.gov (United States)

    Powers, W F; McGill, L

    1987-01-01

    Very small babies born in tertiary centers fare better than outborn babies referred for tertiary care after birth. Viewing the 1001-1500 gm regional cohort of fetuses as a potential "market" for center delivery, and measuring a center's penetration into this market, quantitates how well a center draws to itself these small, high-risk fetuses for delivery. An Illinois center's annual penetration rate into its regional market for the years 1973-1983 is presented and significant increases are found. The penetration rates of nine Illinois perinatal centers are calculated and wide discrepancies are found. Defining a high-risk regional cohort as a market stresses a perinatal center's obligation to its region. The penetration rate into a defined market measures how well a center fulfills this obligation.

  14. The Norwegian PMS2 founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry.

    Science.gov (United States)

    Grindedal, Eli Marie; Aarset, Harald; Bjørnevoll, Inga; Røyset, Elin; Mæhle, Lovise; Stormorken, Astrid; Heramb, Cecilie; Medvik, Heidi; Møller, Pål; Sjursen, Wenche

    2014-01-01

    Using immunohistochemistry (IHC) to select cases for mismatch repair (MMR) genetic testing, we failed to identify a large kindred with the deleterious PMS2 mutation c.989-1G > T. The purpose of the study was to examine the sensitivity of IHC and microsatellite instability-analysis (MSI) to identify carriers of the mutation, and to estimate its penetrance and expressions. All carriers and obligate carriers of the mutation were identified. All cancer diagnoses were confirmed. IHC and MSI-analysis were performed on available tumours. Penetrances of cancers included in the Amsterdam and the Bethesda Criteria, for MSI-high tumours and MSI-high and low tumours were calculated by the Kaplan-Meier algorithm. Probability for co-segregation of the mutation and cancers by chance was 0.000004. Fifty-six carriers or obligate carriers were identified. There was normal staining for PMS2 in 15/18 (83.3%) of tumours included in the AMS1/AMS2/Bethesda criteria. MSI-analysis showed that 15/21 (71.4%) of tumours were MSI-high and 4/21 (19.0%) were MSI-low. Penetrance at 70 years was 30.6% for AMS1 cancers (colorectal cancers), 42.8% for AMS2 cancers, 47.2% for Bethesda cancers, 55.6% for MSI-high and MSI-low cancers and 52.2% for MSI-high cancers. The mutation met class 5 criteria for pathogenicity. IHC was insensitive in detecting tumours caused by the mutation. Penetrance of cancers that displayed MSI was 56% at 70 years. Besides colorectal cancers, the most frequent expressions were carcinoma of the endometrium and breast in females and stomach and prostate in males.

  15. Penetrating Cardiac and Hepatic Injury; Polytrauma of a Child After Bombing

    Directory of Open Access Journals (Sweden)

    Baris Akca

    2013-10-01

    Full Text Available After a bombing attack, patients were brought into hospital suffering from a combination of injuries caused by the blast, penetrating injuries and burns which as a case of polytrauma. In penetrating thoracoabdominal injuries due to bombing possibility of cardiac injury should be kept in mind. Penetrating cardiac injuries in children are rare but has a high mortality and morbidity. In some cases there may be difficulty in diagnosis of penetrating cardiac injury. In this case we want to share the diagnosis, treatment and follow-up processes of penetrating cardiac and hepatic injury with burns of a politrauma child due to bombing.

  16. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  17. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    Directory of Open Access Journals (Sweden)

    Saber Talari

    2017-11-01

    Full Text Available Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA method and Radial Basis Function Neural Network (RBFN. To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators.

  18. Penetrating ocular trauma from trampoline spring.

    Science.gov (United States)

    Spokes, David; Siddiqui, Salina; Vize, Colin

    2010-02-01

    The case is presented of a 12-year old boy who sustained severe penetrating ocular trauma while playing on a domestic trampoline. A main spring broke under tension and the hook had struck the eye at high velocity and penetrated the sclera. Primary repair was undertaken but on review it became apparent the eye could not be salvaged. Evisceration was carried out and an orbital implant was placed. Post-operative cosmesis is acceptable. This type of injury has not been reported before. Adult supervision of children on trampolines is recommended to minimise the chance of serious injury.

  19. Development Of The Nuclear Optical Penetration

    Science.gov (United States)

    Inoue, K.; Koike, K.; Imada, Y.

    1984-10-01

    We have developed the nuclear optical penetration to be incorporated in the wall penetration of the shell to introduce a data transmission system using optical fibers into a nuclear power plant with a pressurized water reactor. Radiation-induced coloration in optical glass seriously affects transmission characteristics of optical fibers, whereas it has been revealed that the pure-silica core optical fiber without any dopant in the core has wide applicability in radiation fields thanks to its very low radiation-induced attenuation. The wall penetration of the shell should have airtightness and resistivity to heat, vibration, and pressure, let alone radiation, excellent enough to be invariable in data transmission efficiency even when subjected to severe environmental tests. The sealing modules of this newly developed nuclear optical penetration are hermetically sealed. The gap between the optical fiber rod (100 pm in core diameter and 5 mm in rod diameter) and stainless steel tube is sealed with lamingted glass layer. As the result of He gas leakage test, high airtightness of less than 10 cc/sec was achieved. No thermal deformation of the core was caused by sealing with laminated glass layer, nor was observed transmission loss. Then the sealiing modules were subjected to the irradiation test using 60 Co gamma ray exposure of 2 x 10 rads. Though silica glass layer supporting the fiber rod and sealing glass portion turned blackish purple, transparency of the fiber was not affected. Only less than 0.5 dB of connecting loss was observed at the connecting point with the optical fiber cable. The sealing modules were also found to have resistivity to vibration and pressure as excellent as that of existing nuclear electric penetrations. We expect the nuclear optical fiber penetration will be much effective in improving reliability of data transmission systems using optical fibers in radiation fields.

  20. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  1. Exploring the Mediation Between KM Infrastructure Capabilities and Organisational Performance: The Penetration of Learning by KM Practices

    OpenAIRE

    Meng-Lin Shih; Shu-Hui Chuang; Chechen Liao

    2009-01-01

    Previous studies have examined the relationship between knowledge management (KM) infrastructure capabilities and organisational performance. However, most studies neglect the mediating effect of organisational learning by KM practices (OLKMP) in the relationship between KM infrastructure capabilities and organisational performance. This study uses the survey method to discuss the relationships governing KM infrastructure capabilities, OLKMP and organisational performance. Results of the anal...

  2. Measurement of Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation

    OpenAIRE

    木村, 恵理子; 河野, 雄一郎; 藤堂, 浩明; 五十嵐, 良明; 杉林, 堅次

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite?, was determined through intact rat skin and several damaged skins. Fluoresbrite? permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), wit...

  3. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  4. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  5. Distinctive Innovation Capabilities of Argentine Software Companies with High Innovation Results and Impacts

    OpenAIRE

    María Isabel Camio; María del Carmen Romero; María Belén Álvarez; Alfredo José Rébori

    2018-01-01

    The software sector is of growing importance and, due to its degree of dynamism, the identification of capabilities for innovation is vital. This study identifies capabilities variables that distinguish Argentine software companies with high innovation results and high innovation impacts from those with lesser results and impacts. It is applied to a sample of 103 companies, a measurement model and the component variables of an innovation degree index for software companies (INIs) formulated i...

  6. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    Science.gov (United States)

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  7. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration

    International Nuclear Information System (INIS)

    Joergensen, Claus; Ropenus, Stephanie

    2008-01-01

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm 3 . The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  8. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Claus [Materials Research Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ropenus, Stephanie [Systems Analysis Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2008-10-15

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm{sup 3}. The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  9. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Claus [Materials Research Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ropenus, Stephanie [Systems Analysis Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2008-10-15

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm{sup 3}. The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  10. An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements.

    Science.gov (United States)

    Del Dottore, Emanuela; Mondini, Alessio; Sadeghi, Ali; Mattoli, Virgilio; Mazzolai, Barbara

    2017-11-10

    This paper presents a comparative analysis in terms of energy required by an artificial probe to penetrate soil implementing two different strategies: a straight penetration movement; and a circumnutation, which is a peculiar root movement in plants. The role of circumnutations in plant roots is still reason of debate. We hypothesized that circumnutation movements can help roots in penetrating soil and we validated our assumption testing the probe at three distinct soil densities and using various combinations of circumnutation amplitude and period for each soil. The comparison was based on the total work done by the system while circumnutating at its tip level respect that showed by the same system in straight penetration. The total energy evaluation confirmed an improvement obtained by circumnutations up to 33%. We also proposed a fitting model for our experimental data that was used to estimate energy needed by the probe to penetrate soil at different dimensions and circumnutation amplitudes. Results show the existence of a trade-off among penetration velocity, circumnutation period and amplitude towards an energy consumption optimization, expressed by the lead angle of the helical path that should stay in the range between 46° and 65°. Moreover, circumnutations with appropriate amplitude (~10°) and period (~80 s) values are more efficient than straight penetration also at different probe tip dimensions up to a threshold diameter (from 2 mm to 55 mm). Based on the obtained results, we speculated that circumnutations can represent a strategy used by plant roots to reduce pressure and energy needed to penetrate soil. In perspective, the translation of this biological feature in robotic systems will allow improving their energetic efficiency in digging capabilities and thus opening new scenarios of use in search and rescue, environmental monitoring and soil exploration. Creative Commons Attribution license.

  11. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    Science.gov (United States)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  13. Penetrating chest injury: A miraculous life salvage

    Directory of Open Access Journals (Sweden)

    Santosh B Dalavi

    2013-01-01

    Full Text Available An unusual penetrating chest injury was caused by high velocity road traffic accident. An 18-year-old had a four wheeler accident and was brought in emergency department with a ′bamboo′ stick on the left side chest exiting through back. After the stabilization of vital parameters, an inter-costal tube drainage was done on the left side. Except the minor brochopleural fistula which healed by 10 th day, his recovery was uneventful. The outcome was consistent with current aggressive management of penetrating chest injuries. Management of penetrating chest injury involving pulmonary trauma is based on three principles. One is stabilization of hemodynamics of patient with proper clinical evaluation. Second, a mere intercostal tube drainage sufficient for majority of the cases. Third, post-operative active as well as passive physiotherapy is necessary for speedy recovery.

  14. Measurement and modeling of the low-temperature penetration-depth anomaly in high-quality MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agassi, Y.D. [Naval Surface Warfare Center, Carderock Division, Bethesda, MD 20817 (United States); Oates, D.E., E-mail: OATES@LL.MIT.EDU [MIT-Lincoln Laboratory, Lexington, MA 02420 (United States); Moeckly, B.H. [STI, Inc. Santa Barbara, CA 93111 (United States)

    2012-10-15

    Based on our measurements of intermodulation distortion in MgB{sub 2}, we have previously proposed that the {pi} energy-gap in MgB{sub 2} entails six nodal lines [Y.D. Agassi, D.E. Oates, and B.H. Moeckly, Phys. Rev. B 80 (2009) 174522]. Here we report high-precision measurements in MgB{sub 2} stripline resonators that show an increase of the penetration depth as the temperature is decreased below 5 K. This increase is consistent with the Script-Small-L = 6 symmetry of the {pi} energy gap that we have proposed. We interpret the increase as a manifestation of Andreev surface-attached states that are associated with the nodal lines of the {pi} energy gap. Penetration-depth calculations are in good agreement with our data. To reconcile the present interpretation with existing literature, we review other penetration-depth data, magnetic-impurity and tunneling experiments, and data on the paramagnetic Meissner effect. We conclude that these data do not rule out the interpretation of our experimental data based on a nodal {pi} energy gap.

  15. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R

    2012-01-01

    A theory is developed to predict the error-field penetration threshold in low density, ohmically heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in the vicinity of the resonant surface to the applied error-field is calculated from nonlinear drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory. Error-field penetration, and subsequent locked mode formation, is triggered once the destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect of the ion polarization current (caused by the propagation of the error-field-induced island chain in the local ion fluid frame). The predicted scaling of the error-field penetration threshold with engineering parameters is (b r /B T ) crit ∼n e B T -1.8 R 0 -0.25 , where b r is the resonant harmonic of the vacuum radial error-field at the resonant surface, B T the toroidal magnetic field-strength, n e the electron number density at the resonant surface and R 0 the major radius of the plasma. This scaling—in particular, the linear dependence of the threshold with density—is consistent with experimental observations. When the scaling is used to extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is (b r /B T ) crit ∼ 5 × 10 −5 , which just lies within the expected capabilities of the ITER error-field correction system. (paper)

  16. Review of Congestion Management Methods for Distribution Networks with High Penetration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Liu, Zhaoxi

    2014-01-01

    This paper reviews the existing congestion management methods for distribution networks with high penetration of DERs documented in the recent research literatures. The congestion management methods for distribution networks reviewed can be grouped into two categories – market methods and direct...... control methods. The market methods consist of dynamic tariff, distribution capacity market, shadow price and flexible service market. The direct control methods are comprised of network reconfiguration, reactive power control and active power control. Based on the review of the existing methods...

  17. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  18. Efficiency of low versus high airline pressure in stunning cattle with a pneumatically powered penetrating captive bolt gun.

    Science.gov (United States)

    Oliveira, Steffan Edward Octávio; Gregory, Neville George; Dalla Costa, Filipe Antonio; Gibson, Troy John; Paranhos da Costa, Mateus José Rodrigues

    2017-08-01

    The efficiency of stunning cattle was assessed in 443 animals (304 pure Zebu and 139 crossbred cattle), being mainly mature bulls and cows. Cattle were stunned using a Jarvis pneumatically powered penetrating captive bolt gun operating with low (160-175psi, N=82) and high (190psi, N=363) airline pressure, which was within the manufactures specifications. Signs of brain function and the position of the shots on the heads were recorded after stunning. Velocity of the captive bolt and its physical parameters were calculated. Cattle shot with low pressures showed more rhythmic respiration (27 vs. 8%, P<0.001), less tongue protrusion (4 vs. 12%, P=0.03) and less masseter relaxation (22 vs. 48%, P<0.001). There was an increased frequency of shots in the ideal position when cattle were shot with the low compared to high airline pressures (15.3 vs. 3.1%). Bolt velocity and its physical parameters were significantly (P<0.01) higher when using high pressure. Airline pressures below 190psi are inappropriate when shooting adult Zebu beef cattle with pneumatically powered penetrating captive bolt guns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    Science.gov (United States)

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  20. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bebic, Jovan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Hinkle, Gene [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Matic, Slobodan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Schmitt, William [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage and adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.

  1. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  2. Analysis of distribution systems with a high penetration of distributed generation

    DEFF Research Database (Denmark)

    Lund, Torsten

    Since the mid eighties, a large number of wind turbines and distributed combined heat and power plants (CHPs) have been connected to the Danish power system. Especially in the Western part, comprising Jutland and Funen, the penetration is high compared to the load demand. In some periods the wind...... power alone can cover the entire load demand. The objective of the work is to investigate the influence of wind power and distributed combined heat and power production on the operation of the distribution systems. Where other projects have focused on the modeling and control of the generators and prime...... movers, the focus of this project is on the operation of an entire distribution system with several wind farms and CHPs. Firstly, the subject of allocation of power system losses in a distribution system with distributed generation is treated. A new approach to loss allocation based on current injections...

  3. A case of an intrahepatic fish bone penetration

    International Nuclear Information System (INIS)

    Tsuboi, Kazuhiko; Nakajima, Yoshiro; Yamamoto, Shunji; Nagao, Masatoshi; Nishimura, Kazumasa.

    1981-01-01

    A 56-year-old man was admitted to our hospital because of epigastric discomfort, appetite loss and body weight loss. A gallstone, signs of chronic inflammation and CEA-Z: 12.5 ng/ml were found. Abdominal CT scan revealed an intrahepatic low density nodule and an intra-and-extrahepatic high-dense, needle-like foreign body. By laparotomy a fish bone penetrating into the left lateral segment of the liver from the anterior wall of the prepyloric region of the stomach was found. Cholecystectomy was performed. The penetrating fish bone was withdrawn from the liver easily. The Postoperative course was smooth. The possibility of the definitive preoperative diagnosis of the intestinal fish bone penetration by abdominal CT scan was suggested. (author)

  4. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use.

    Science.gov (United States)

    Yang, Yan; Ou, Rujing; Guan, Shixia; Ye, Xiaoling; Hu, Bo; Zhang, Yi; Lu, Shufan; Zhou, Yubin; Yuan, Zhongwen; Zhang, Jun; Li, Qing-Guo

    2015-12-01

    Terbinafine hydrochloride is an antifungal drug for onychomycosis. Poor permeability of its external preparation leads to poor curative effect. Transfersomes, also known as flexible liposome, could improve transmission of drug for local external use. Terbinafine hydrochloride-loaded liposome is expected to become a breakthrough on the treatment of onychomycosis. This study is aimed to prepare high skin penetration terbinafine hydrochloride transfersomes with high encapsulation efficiency, appropriate drug loading and good stability. Taking entrapment efficiency as the main indicator, the formulations and the processes of preparation were investigated. Transfersomes with different surfactants were prepared in the optimization processes, and the formulations were optimized through the transdermal test in vitro. As a result, a gel contained transfersomes was obtained with a brief evaluation. Its pharmacokinetic properties of going through the skin were studied by using the micro dialysis technology and liquid chromatography-mass spectrometry to assay the penetration behavior of terbinafine. Mean particle size of the terbinafine hydrochloride transfersomes was 69.6 ± 1.23 nm, and the entrapment efficiency was 95.4% ± 0.51. The content of the gel was 4.45 ± 0.15 mg/g. The accumulated permeation of the transfersomes gel in 12 h was 88.52 ± 4.06 µg cm -2 and the intracutaneous drug detention was 94.38 ± 5.26 µg cm -2 . The results of pharmacokinetic studies showed the C max and area under the curve (AUC) were apparently higher than the commercial cream. The terbinafine hydrochloride transfersomes was highly absorbed by the skin. The absorption rate was significantly higher than that of the commercial cream either in the transdermal test in vitro or in the pharmacokinetic studies in vivo.

  5. [Professor WU Zhongchao's experience of penetration needling].

    Science.gov (United States)

    Zhang, Ning; Wang, Bing; Zhou, Yu

    2016-08-12

    Professor WU Zhongchao has unique application of penetration needling in clinical treatment. Professor WU applies penetration needling along meridians, and the methods of penetration needling include self-meridian penetration, exterior-interior meridian penetration, identical-name meridian penetration, different meridian penetration. The meridian differentiation is performed according to different TCM syndromes, locations and natures of diseases and acupoint nature, so as to make a comprehensive assessment. The qi movement during acupuncture is focused. In addition, attention is paid on anatomy and long-needle penetration; the sequence and direction of acupuncture is essential, and the reinforcing and reducing methods have great originality, presented with holding, waiting, pressing and vibrating. Based on classical acupoint, the acupoint of penetration needling is flexible, forming unique combination of acupoints.

  6. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  7. Sustainability of High-Level Isolation Capabilities among US Ebola Treatment Centers.

    Science.gov (United States)

    Herstein, Jocelyn J; Biddinger, Paul D; Gibbs, Shawn G; Le, Aurora B; Jelden, Katelyn C; Hewlett, Angela L; Lowe, John J

    2017-06-01

    To identify barriers to maintaining and applying capabilities of US high-level isolation units (HLIUs) used during the Ebola virus disease outbreak, during 2016 we surveyed HLIUs. HLIUs identified sustainability challenges and reported the highly infectious diseases they would treat. HLIUs expended substantial resources in development but must strategize models of sustainability to maintain readiness.

  8. Metasploit penetration testing cookbook

    CERN Document Server

    Agarwal, Monika

    2013-01-01

    This book follows a Cookbook style with recipes explaining the steps for penetration testing with WLAN, VOIP, and even cloud computing. There is plenty of code and commands used to make your learning curve easy and quick.This book targets both professional penetration testers as well as new users of Metasploit, who wish to gain expertise over the framework and learn an additional skill of penetration testing, not limited to a particular OS. The book requires basic knowledge of scanning, exploitation, and the Ruby language.

  9. Cutaneous mucormycosis secondary to penetrative trauma.

    Science.gov (United States)

    Zahoor, Bilal; Kent, Stephen; Wall, Daryl

    2016-07-01

    Mucormycosis is a rare but serious sequelae of penetrating trauma [1-5]. In spite of aggressive management, mortality remains high due to dissemination of infection. We completed a review of literature to determine the most optimal treatment of cutaneous mucormycosis which occurs secondary to penetrating trauma. We completed a review regarding the management of mucormycosis in trauma patients. We selected a total of 36 reports, of which 18 were case-based, for review. Surgical debridement is a primary predictor of improved outcomes in the treatment of mucormycosis [3,6,7]. Anti-fungal therapy, especially lipid soluble formulation of Amphotericin B, is helpful as an adjunct or when surgical debridement has been maximally achieved. Further research is needed to fully evaluate the impact of topical dressings; negative pressure wound therapy is helpful. An aggressive and early surgical approach, even at the expense of disfigurement, is necessary to reduce mortality in the setting of cutaneous mucormycosis that results from penetrating trauma [4,8,9]. Anti-fungal therapy and negative pressure wound therapy are formidable adjuncts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  11. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  12. Persistent enhancement of bacterial motility increases tumor penetration.

    Science.gov (United States)

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  13. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    Science.gov (United States)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  14. Tungsten versus depleted uranium for armour-piercing penetrators

    International Nuclear Information System (INIS)

    Johnson, P.K.

    1983-01-01

    Tungsten alloys have been widely used in the production of armour-piercing (AP) penetrators for defense purposes for the past 40 years. In recent years, however, depleted uranium (DU) has also been utilised for this application. Both materials exhibit high density and strength, two properties necessary for kinetic-energy projectiles to penetrate armour on tanks and other vehicles. The facts, however, support the view that tungsten can and should be utilised as the primary material for most armour-defeating ordnance applications. (author)

  15. FAA Fluorescent Penetrant Activities - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.

    1998-10-20

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently characterizing low cycle fatigue specimens that will support the needs of penetrant manufacturers, commercial airline industry and the Federal Aviation Administration. The main focus of this characterization is to maintain and enhance the evaluation of penetrant inspection materials and apply resources to support the aircraft community needs. This paper discusses efforts to-date to document the Wright Laboratory penetrant evaluation process and characterize penetrant brightness readings in the initial set of sample calibration panels using Type 1 penetrant.

  16. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Michael, E-mail: Michael.schroeder@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Biedermann, Christoph; Vilbrandt, Reinhard [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: The study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. The results show, that the PT application on components for use under vacuum conditions can in general be allowed. The test surface should have a simple geometry. No gaps or holes. An efficient cleaning after PT is necessary. If PT is foreseen TIG should used as the welding procedure. PT tested components should be baked out after the cleaning in a vacuum chamber at min 150 °C. -- Abstract: The penetrant testing (PT) is a common non-destructive procedure for the testing of components and in particular of welds. With PT it is possible to detect surface imperfections (e.g. cracks) which have a special potential to lead to the failure of the component or of the weld. PT is substantially more sensitive than a purely visual examination. Because the complicated geometries of fusion experiments make the accessibility for repairs during the operation extremely difficult, very high efforts on testing with sensitive procedures, for instance with dye penetrant testing during assembly is required. In contrast to this desire for widespread penetrant testing, however, is the general fear that dye penetrant tested components or welds, which are used in the vacuum, are contaminated by the dye in such a way that they do not fulfill the cleanliness requirements for vacuum components. Therefore dye penetrant testing of such vacuum components is usually considered problematic. This study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. Recommendations are formulated concerning the PT procedure of vacuum components and the cleaning procedures for penetrant tested areas under vacuum necessary after a dye penetrant test.

  17. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  18. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  19. Mixed-Penetrant Sorption in Ultra-Thin Films of Polymer of Intrinsic Microporosity PIM-1

    KAUST Repository

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiao-Hua; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    Mixed penetrant sorption into ultra-thin films of a super-glassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in-situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultra-thin (12 - 14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane and ethanol and were chosen based on their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water / n-hexane or ethanol / n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents or catalysts. Mixed-penetrant effects are typically very challenging to study directly and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in pure component environment.

  20. Mixed-Penetrant Sorption in Ultra-Thin Films of Polymer of Intrinsic Microporosity PIM-1

    KAUST Repository

    Ogieglo, Wojciech

    2017-10-12

    Mixed penetrant sorption into ultra-thin films of a super-glassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in-situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultra-thin (12 - 14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane and ethanol and were chosen based on their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water / n-hexane or ethanol / n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers\\' behavior in applications such as high-performance membranes, adsorbents or catalysts. Mixed-penetrant effects are typically very challenging to study directly and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in pure component environment.

  1. Penetration Tester's Open Source Toolkit

    CERN Document Server

    Faircloth, Jeremy

    2011-01-01

    Great commercial penetration testing tools can be very expensive and sometimes hard to use or of questionable accuracy. This book helps solve both of these problems. The open source, no-cost penetration testing tools presented do a great job and can be modified by the user for each situation. Many tools, even ones that cost thousands of dollars, do not come with any type of instruction on how and in which situations the penetration tester can best use them. Penetration Tester's Open Source Toolkit, Third Edition, expands upon existing instructions so that a professional can get the most accura

  2. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  3. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation...... of "networks of power" via the interactions of politics, the techno-physics of electrons, and the market setting. The Danish case is about how an assemblage of new agencies has reorganized and reshaped society by building a new sociotechnical network. This has rendered developments highly unpredictable...... and highly experimental. The transformation process can be followed through the way successive technical engineering reports have represented the challenges associated with the penetration of wind power. The iteration shows how novel technical phenomena emerge and are assimilated, and how new engineering...

  4. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  5. Self-association of a highly charged arginine-rich cell-penetrating peptide

    Czech Academy of Sciences Publication Activity Database

    Tesei, G.; Vazdar, M.; Jensen, M. R.; Cragnell, C.; Mason, Philip E.; Heyda, J.; Skepö, M.; Jungwirth, Pavel; Lund, M.

    2017-01-01

    Roč. 114, č. 43 (2017), s. 11428-11433 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : cell-penetrating peptide * self-association * MD simulations * SAXS * NMR Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.661, year: 2016

  6. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  7. Web penetration testing with Kali Linux

    CERN Document Server

    Muniz, Joseph

    2013-01-01

    Web Penetration Testing with Kali Linux contains various penetration testing methods using BackTrack that will be used by the reader. It contains clear step-by-step instructions with lot of screenshots. It is written in an easy to understand language which will further simplify the understanding for the user.""Web Penetration Testing with Kali Linux"" is ideal for anyone who is interested in learning how to become a penetration tester. It will also help the users who are new to Kali Linux and want to learn the features and differences in Kali versus Backtrack, and seasoned penetration testers

  8. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  9. Percutaneous penetration studies for risk assessment

    DEFF Research Database (Denmark)

    Sartorelli, Vittorio; Andersen, Helle Raun; Angerer, Jürgen

    2000-01-01

    . In order to predict the systemic risk of dermally absorbed chemicals and to enable agencies to set safety standards, data is needed on the rates of percutaneous penetration of important chemicals. Standardization of in vitro tests and comparison of their results with the in vivo data could produce...... internationally accepted penetration rates and/or absorption percentages very useful for regulatory toxicology. The work of the Percutaneous Penetration Subgroup of EC Dermal Exposure Network has been focussed on the standardization and validation of in vitro experiments, necessary to obtain internationally...... accepted penetration rates for regulatory purposes. The members of the Subgroup analyzed the guidelines on percutaneous penetration in vitro studies presented by various organizations and suggested a standardization of in vitro models for percutaneous penetration taking into account their individual...

  10. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  11. Follicular and percutaneous penetration pathways of topically applied minoxidil foam.

    Science.gov (United States)

    Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie

    2010-11-01

    In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  13. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  14. A comparison of penetration and damage caused by different types of arrowheads on loose and tight fit clothing.

    Science.gov (United States)

    MacPhee, Nichole; Savage, Anne; Noton, Nikolas; Beattie, Eilidh; Milne, Louise; Fraser, Joanna

    2018-03-01

    Bows and arrows are used more for recreation, sport and hunting in the Western world and tend not to be as popular a weapon as firearms or knives. Yet there are still injuries and fatalities caused by these low-velocity weapons due to their availability to the public and that a licence is not required to own them. This study aimed to highlight the penetration capabilities of aluminium arrows into soft tissue and bones in the presence of clothing. Further from that, how the type and fit of clothing as well as arrowhead type contribute to penetration capacity. In this study ballistic gelatine blocks (non-clothed and loose fit or tight fit clothed) were shot using a 24lb weight draw recurve bow and aluminium arrows accompanied by four different arrowheads (bullet, judo, blunt and broadhead). The penetration capability of aluminium arrows was examined, and the depth of penetration was found to be dependent on the type of arrowhead used as well as by the type and fit or lack thereof of the clothing covering the block. Loose fit clothing reduced penetration with half of the samples, reducing penetration capacity by percentages between 0% and 98.33%, at a range of 10m. While the remaining half of the samples covered with tight clothing led to reductions in penetration of between 14.06% and 94.12%. The damage to the clothing and the gelatine (puncturing, cutting and tearing) was affected by the shape of the arrowhead, with the least damaged caused by the blunt arrowheads and the most by the broadhead arrows. Clothing fibres were also at times found within the projectile tract within the gelatine showing potential for subsequent infection of an individual with an arrow wound. Ribs, femur bones and spinal columns encased in some of the gelatine blocks all showed varying levels of damage, with the most and obvious damage being exhibited by the ribs and spinal column. The information gleaned from the damage to clothing, gelatine blocks and bones could potentially be useful for

  15. Estimation of the upper limit of aerosol nanoparticles penetration through inhomogeneous fibrous filters

    International Nuclear Information System (INIS)

    Podgorski, Albert

    2009-01-01

    The fully segregated flow model (FSFM) was formulated to describe filtration of aerosol nanoparticles in polydisperse fibrous filters made of fibers with different diameters. The model is capable of predicting significantly higher penetration of nanoparticles through polydisperse filters than it may be expected from the classical theory applied to a mean fiber diameter. The model was solved numerically in the case of the log-normal fiber size distribution, and a simple correlation between the actual penetration through a polydisperse filter and the one calculated for the geometric mean fiber diameter was proposed. Equivalent fiber diameter for deposition due to Brownian diffusion was determined and it was found to be dependent on particle size and filter's polydispersity degree, being significantly greater than any mean fiber diameter. It was noted that it is impossible to select any one universal mean fiber diameter to describe penetration of nanoparticles with different sizes. It was also shown that in the case of a polydisperse fibrous filter the apparent exponent of the Peclet number based on the mean fiber diameter is greater than the expected value of -2/3 for diffusional deposition in a monodisperse filter. This prediction is in agreement with the available experimental data. The FSFM is expected to give the estimation of the upper limit of nanoparticles penetration in polydisperse fibrous filters.

  16. Videofluoroscopic Predictors of Penetration-Aspiration in Parkinson's Disease Patients.

    Science.gov (United States)

    Argolo, Natalie; Sampaio, Marília; Pinho, Patrícia; Melo, Ailton; Nóbrega, Ana Caline

    2015-12-01

    Parkinson's disease (PD) patients show a high prevalence of swallowing disorders and tracheal aspiration of food. The videofluoroscopic study of swallowing (VFSS) allows clinicians to visualize the visuoperceptual and temporal parameters associated with swallowing disorders in an attempt to predict aspiration risk. However, this subject remains understudied in PD populations. Our aim was to identify the predictors of penetration-aspiration in PD patients using the VFSS. Consecutive patients were evaluated using VFSS with different consistencies and volumes of food. A speech-language pathologist measured the type of intra-oral bolus organization, loss of bolus control, bolus location at the initiation of the pharyngeal swallow, the presence of multiple swallows, piecemeal deglutition, bolus residue in the pharyngeal recesses and temporal measures. Scores ≥3 on the penetration-aspiration scale (PAS) indicated the occurrence of penetration-aspiration. Using logistic marginal regression, we found that residue in the vallecula, residue in the upper esophageal sphincter and piecemeal deglutition were associated with penetration-aspiration (odds ratio (OR) = 4.09, 2.87 and 3.83; P = 0.0040, 0.0071 and 0.0009, respectively). Penetration/aspiration occurred only with fluids (both of thin and thick consistency), and no significant differences were observed between fluid types or food volumes. The mechanisms underlying dysphagia and penetration/aspiration in PD patients and indications for further studies are discussed.

  17. A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration

    Directory of Open Access Journals (Sweden)

    Jianwen Ren

    2018-04-01

    Full Text Available This paper proposes a distributed robust dispatch approach to solve the economic dispatch problem of the interconnected systems with a high proportion of wind power penetration. First of all, the basic principle of synchronous alternating direction method of multipliers (SADMM is introduced to solve the economic dispatch problem of the two interconnected regions. Next, the polyhedron set of the robust optimization method is utilized to describe the wind power output. To adjust the conservativeness of the polyhedron set, an adjustment factor of robust conservativeness is introduced. Subsequently, considering the operation characteristics of the DC tie line between the interconnected regions, an economic dispatch model with a high proportion of wind power penetration is established and parallel iteration based on SADMM is used to solve the model. In each iteration, the optimized power of DC tie lines is exchanged between the regions without requiring the participation of the superior dispatch center. Finally, the validity of the proposed model is verified by the examples of the 2-area 6-node interconnected system and the interconnection of several modified New England 39-node systems. The results show that the proposed model can meet the needs of the independent dispatch of regional power grids, effectively deal with the uncertainty of wind power output, and maximize the wind power consumption under the condition of ensuring the safe operation of the interconnected systems.

  18. Elastic behavior of MFI-type zeolites: Compressibility of H-ZSM-5 in penetrating and non-penetrating media

    International Nuclear Information System (INIS)

    Quartieri, Simona; Montagna, Gabriele; Arletti, Rossella; Vezzalini, Giovanna

    2011-01-01

    The elastic behavior of H-ZSM-5 was investigated by in-situ synchrotron X-ray powder diffraction, using both silicone oil (s.o.) and (16:3:1) methanol:ethanol:water (m.e.w.) as 'non-penetrating' and 'penetrating' pressure transmitting media, respectively. From P amb to 6.2 GPa the volume reduction observed in s.o. is 16.6%. This testifies that H-ZSM-5 is one of the most flexible microporous materials up to now compressed in s.o. Volume reduction observed in m.e.w. up to 7.6 GPa is 14.6%. A strong increase in the total electron number of the extraframework system, due to the penetration of water/alcohol molecules in the pores, is observed in m.e.w. This effect is the largest up to now observed in zeolites undergoing this phenomenon without cell volume expansion. The higher compressibility in s.o. than in m.e.w. can be ascribed to the penetration of the extra-water/alcohol molecules, which stiffen the structure and contrast the channel deformations. - Graphical abstract: High-pressure behavior of H-ZSM-5 compressed in (16:3:1) methanol:ethanol:water: (a) projection of the structure along the [0 1 0] direction at P amb , 2 GPa and after pressure release to original ambient conditions (P amb (rev)), and (b) P-dependence of the extraframework content expressed as total number of electrons (gray square represents the number of the extraframework electrons at P amb after decompression). Highlights: → X-ray powder diffraction study of H-ZSM-5 compressibility. → H-ZSM-5 is one of the softest porous material compressed in silicon oil. → Penetration of additional water/alcohol molecules upon compression in m.e.w. → Extra molecules contribute to stiffen the structure and to contrast HP effects.

  19. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  20. Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

    Directory of Open Access Journals (Sweden)

    M. Kvicera

    2012-12-01

    Full Text Available Building penetration loss models presented in our previous paper [1] were valid for various scenarios, propagation conditions, frequency bands and hemispherical receiving antenna pointing towards zenith. These models had a significantly rising trend of penetration loss with increasing elevation angle of the link in common. In this paper we show that when working with non-isotropic terminal antennas, this trend relates primarily to the elevation trend of the corresponding reference level dependent on the receiving antenna radiation pattern. This is demonstrated by the results of single-input multiple-output (SIMO measurement trials performed at L-band in an office building and a brick building in the city of Prague. Further, based on the detailed analysis, a method to modify the elevation trend of a particular penetration loss model for different receiving antenna radiation patterns is derived and experimentally validated.

  1. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  2. Quantitative wood–adhesive penetration with X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Jesse L.; Kamke, Frederick A. (Oregon State U.); (Willamette Valley)

    2015-09-01

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximately 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  3. Study of the disorder by means of the superconducting penetration depth

    International Nuclear Information System (INIS)

    Arce, R.D.

    1982-11-01

    Measurements of the weak magnetic field penetration depth in the amorphous superconducting systems Lasub(1-x) Msub(x), being M = Cu, Al, Ga and Au, and in the Zr 70 Cu 30 system are presented. Measurements of the sample geometrical factors and the flux expulsion between the lowest temperature reached and the critical temperature, allows the determination of zero temperature penetration depth. The measurement of the flux expulsion as a function of temperature is used to determine the temperature dependence of penetration depth, used to evaluate the temperature dependence superconducting gap. The magnetization measurements have been made using an rf-SQUID. The evolution of the penetration depth with annealing is studied in the La 70 Cu 30 and Zr 70 Cu 30 systems. Measurements of the electrical resistivity and the critical temperature are used to verify the Gorkov equations in these materials. The variation of the penetration depth with annealing suggests that a metallurgical phase separation occurs within the submicrometer range. Penetration depth measurement is a tool to detect this type of phase separation in high kappa materials. (M.E.L.) [es

  4. Filter penetration and breathing resistance evaluation of respirators and dust masks.

    Science.gov (United States)

    Ramirez, Joel; O'Shaughnessy, Patrick

    2017-02-01

    The primary objective of this study was to compare the filter performance of a representative selection of uncertified dust masks relative to the filter performance of a set of NIOSH-approved N95 filtering face-piece respirators (FFRs). Five different models of commercially available dust masks were selected for this study. Filter penetration of new dust masks was evaluated against a sodium chloride aerosol. Breathing resistance (BR) of new dust masks and FFRs was then measured for 120 min while challenging the dust masks and FFRs with Arizona road dust (ARD) at 25°C and 30% relative humidity. Results demonstrated that a wide range of maximum filter penetration was observed among the dust masks tested in this study (3-75% at the most penetrating particle size (p masks did not vary greatly (8-13 mm H 2 O) but were significantly different (p mask. Microscopic analysis of the external layer of each dust mask and FFR suggests that different collection media in the external layer influences the development of the dust layer and therefore affects the increase in BR differently between the tested models. Two of the dust masks had penetration values masks, those with penetration > 15%, had quality factors ranging between 0.04-0.15 primarily because their initial BR remained relatively high. These results indicate that some dust masks analysed during this research did not have an expected very low BR to compensate for their high penetration.

  5. Melt pool and keyhole behaviour analysis for deep penetration laser welding

    International Nuclear Information System (INIS)

    Fabbro, R

    2010-01-01

    One usually defines the main characteristic of the welding performances of a given laser system by its 'penetration curve' that corresponds to the welding depth as a function of the welding speed V w for a given set of operating parameters. Analysis of a penetration curve is interesting and gives very fruitful results. Coupled with high-speed video imaging of melt pool surface and ejected plume behaviour, the analysis of this penetration curve on a very large range of welding speeds, typically from 0 to 50 m min -1 , has allowed us to observe very different and characteristic regimes. These regimes are mainly characterized by the physical processes by which they impede the laser beam penetration inside the material. We show that it is only at rather high welding speeds that these limiting processes are reduced. Consequently, the scaling law of welding depth with welding speed is in agreement with adapted modelling of this process. On the other hand, as the welding speed is reduced, different effects depending on the weld pool dynamics and plume interaction strongly disturb the keyhole stability and are responsible for the deviation of the penetration curve from the previous modelling that agrees with a 1/V w scaling law. A corresponding criterion for the occurrence of this effect is defined.

  6. Creative thinking level of students with high capability in relations and functions by problem-based learning

    Science.gov (United States)

    Nurdyani, F.; Slamet, I.; Sujadi, I.

    2018-03-01

    This research was conducted in order to describe the creative thinking level of students with high capability in relations and functions with Problem Based Learning. The subjects of the research were students with high capability grade VIII at SMPIT Ibnu Abbas Klaten. This research is an qualitative descriptive research. The data were collected using observation, tests and interviews. The result showed that the creative thinking level of students with high capability in relations and functions by Problem Based Learning was at level 4 or very creative because students were able to demonstrate fluency, flexibility, and novelty.

  7. Diffusion of radioactively tagged penetrants through rubbery polymers. II. Dependence on molecular length of penetrant

    International Nuclear Information System (INIS)

    Rhee, C.K.; Ferry, J.D.; Fetters, L.J.

    1977-01-01

    The diffusion of radioactively tagged n-hexadecane, n-dotriacontane, and a polybutadiene oligomer with molecular weight 1600 has been studied in 12 rubbery polymers. Diffusion coefficients were obtained from the theory for the thin smear method: for n-hexadecane and for n-dotriacontane (with one exception), in the form appropriate for a completely miscible polymer-penetrant pair, and for the oligomer in the form appropriate for slow entry of the pentrant across the penetrant-polymer interface. For the four flexible linear penetrants, n-dodecane, n-hexadecane, n-dotriacontane, and oligomer, the ratios of diffusion coefficients (or translational friction coefficients) are nearly the same in every polymer. It is concluded that these penetrants travel with similar segmentwise motions, although that is not the case with bulkier, more rigid penetrants. For the three normal paraffins, the friction coefficient is approximately proportional to molecular weight, but that for the oligomer is smaller than would be predicted on this basis

  8. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation...

  9. Kali Linux wireless penetration testing essentials

    CERN Document Server

    Alamanni, Marco

    2015-01-01

    This book is targeted at information security professionals, penetration testers and network/system administrators who want to get started with wireless penetration testing. No prior experience with Kali Linux and wireless penetration testing is required, but familiarity with Linux and basic networking concepts is recommended.

  10. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    Science.gov (United States)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  11. Mechanism of long-range penetration of low-energy ions in botanic samples

    International Nuclear Information System (INIS)

    Liu Feng; Wang Yugang; Xue Jianming; Wang Sixue; Du Guanghua; Yan Sha; Zhao Weijiang

    2002-01-01

    The authors present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar + ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 μm thick kidney bean slices with the probability of about 1.0 x 10 -5 . The energy spectrum of 1 MeV He + ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples

  12. Hermetic cable penetrations for containments of nuclear power reactors meet high safety standards

    International Nuclear Information System (INIS)

    Kusserow, J.; Gurr, W.; Pflug, H.

    1985-05-01

    Different types of cable penetrations for containments of nuclear power reactors have been developed and fabricated in the GDR. The technical parameters achieved are in accordance with the radiation protection requirements

  13. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  14. Ethical hacking and penetration testing guide

    CERN Document Server

    Baloch, Rafay

    2014-01-01

    Requiring no prior hacking experience, Ethical Hacking and Penetration Testing Guide supplies a complete introduction to the steps required to complete a penetration test, or ethical hack, from beginning to end. You will learn how to properly utilize and interpret the results of modern-day hacking tools, which are required to complete a penetration test. The book covers a wide range of tools, including Backtrack Linux, Google reconnaissance, MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker Defender rootkit. Supplying a simple and clean explanation of how to effectively utilize these tools, it details a four-step methodology for conducting an effective penetration test or hack.Providing an accessible introduction to penetration testing and hacking, the book supplies you with a fundamental understanding of offensive security. After completing the book you will be prepared to take on in-depth and advanced topics in hacking and penetration testing. The book walks you through each ...

  15. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    Science.gov (United States)

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  16. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  17. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  18. Optimal LFC SMC for three – area power system with high penetration of PV

    Directory of Open Access Journals (Sweden)

    Maksymilian Klimontowicz

    2016-03-01

    Full Text Available Electrical power systems are subjected to new trends appearing in grid structuring, electrical power sources, new control strategies, etc. The introduction of inverterbased distributed energy resources to replace conventional synchronous machines depletes the mechanical inertia, and causing the system to become more sensitive to disturbances. This paper proposed a simple and reliable solution to assure sufficient frequency stability of electrical power systems when subjected to high penetration of decoupled distributed generation. To achieve this, a decentralized sliding mode control was designed to operate as a compensator for conventional load frequency controllers. Subsequently, PV farms and battery energy storage systems were interconnected. Simulated network under different configurations were conducted using MATLAB.

  19. Costs and clinical quality among Medicare beneficiaries: associations with health center penetration of low-income residents.

    Science.gov (United States)

    Sharma, Ravi; Lebrun-Harris, Lydie A; Ngo-Metzger, Quyen

    2014-01-01

    Determine the association between access to primary care by the underserved and Medicare spending and clinical quality across hospital referral regions (HRRs). Data on elderly fee-for-service beneficiaries across 306 HRRs came from CMS' Geographic Variation in Medicare Spending and Utilization database (2010). We merged data on number of health center patients (HRSA's Uniform Data System) and number of low-income residents (American Community Survey). We estimated access to primary care in each HRR by "health center penetration" (health center patients as a proportion of low-income residents). We calculated total Medicare spending (adjusted for population size, local input prices, and health risk). We assessed clinical quality by preventable hospital admissions, hospital readmissions, and emergency department visits. We sorted HRRs by health center penetration rate and compared spending and quality measures between the high- and low-penetration deciles. We also employed linear regressions to estimate spending and quality measures as a function of health center penetration. The high-penetration decile had 9.7% lower Medicare spending ($926 per capita, p=0.01) than the low-penetration decile, and no different clinical quality outcomes. Compared with elderly fee-for-service beneficiaries residing in areas with low-penetration of health center patients among low-income residents, those residing in high-penetration areas may accrue Medicare cost savings. Limited evidence suggests that these savings do not compromise clinical quality.

  20. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    International Nuclear Information System (INIS)

    Geurts, Bernard J.; Pratte, Pascal; Stolz, Steffen; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    2011-01-01

    Advection-diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The advection-diffusion transport in a laminar Poiseuille flow is treated numerically for slender pores using a finite difference approach in cylindrical coordinates. The algebraic dependence of the penetration on the Peclet number as predicted theoretically, is confirmed by experimental findings at a variety of aspect ratios of the cylindrical pores. The effective penetration associated with a composite filtration element consisting of a set of parallel cylindrical pores is derived. The overall penetration of heterogeneous composite filtration elements shows an algebraic dependence to the fourth power on the radii of the individual pores that are contained. This gives rise to strong variations in the overall penetration in cases with uneven distributions of pore sizes, highly favoring filtration by the larger pores. The overall penetration is computed for a number of basic geometries, providing a point of reference for filtration design and experimental verification.

  1. Nonoperative management of penetrating kidney injuries: a prospective audit.

    Science.gov (United States)

    Moolman, C; Navsaria, P H; Lazarus, J; Pontin, A; Nicol, A J

    2012-07-01

    The role of nonoperative management for penetrating kidney injuries is unknown. Therefore, we review the management and outcome of penetrating kidney injuries at a center with a high incidence of penetrating trauma. Data from all patients presenting with hematuria and/or kidney injury discovered on imaging or at surgery admitted to the trauma center at Groote Schuur Hospital in Cape Town, South Africa during a 19-month period (January 2007 to July 2008) were prospectively collected and reviewed. These data were analyzed for demographics, injury mechanism, perioperative management, nephrectomy rate and nonoperative success. Patients presenting with hematuria and with an acute abdomen underwent a single shot excretory urogram. Those presenting with hematuria without an indication for laparotomy underwent computerized tomography with contrast material. A total of 92 patients presented with hematuria following penetrating abdominal trauma. There were 75 (80.4%) proven renal injuries. Of the patients 84 were men and the median age was 26 years (range 14 to 51). There were 50 stab wounds and 42 gunshot renal injuries. Imaging modalities included computerized tomography in 60 cases and single shot excretory urography in 18. There were 9 patients brought directly to the operating room without further imaging. A total of 47 patients with 49 proven renal injuries were treated nonoperatively. In this group 4 patients presented with delayed hematuria, of whom 1 had a normal angiogram and 3 underwent successful angioembolization of arteriovenous fistula (2) and false aneurysm (1). All nonoperatively managed renal injuries were successfully treated without surgery. There were 18 nephrectomies performed for uncontrollable bleeding (11), hilar injuries (2) and shattered kidney (3). Post-nephrectomy complications included 1 infected renal bed hematoma requiring percutaneous drainage. Of the injuries found at laparotomy 12 were not explored, 2 were drained and 5 were treated with

  2. The Basics of Hacking and Penetration Testing Ethical Hacking and Penetration Testing Made Easy

    CERN Document Server

    Engebretson, Patrick

    2011-01-01

    The Basics of Hacking and Penetration Testing serves as an introduction to the steps required to complete a penetration test or perform an ethical hack. You learn how to properly utilize and interpret the results of modern day hacking tools; which are required to complete a penetration test. Tool coverage will include, Backtrack Linux, Google, Whois, Nmap, Nessus, Metasploit, Netcat, Netbus, and more. A simple and clean explanation of how to utilize these tools will allow you  to gain a solid understanding of each of the four phases and prepare them to take on more in-depth texts and topi

  3. Turbulent penetration in T-junction branch lines with leakage flow

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: kickhofel@lke.mavt.ethz.ch; Valori, Valentina, E-mail: v.valori@tudelft.nl; Prasser, H.-M., E-mail: prasser@lke.mavt.ethz.ch

    2014-09-15

    Highlights: • New T-junction facility designed for adiabatic high velocity ratio mixing studies. • Trends in scalar mixing RMS and average in branch line presented and discussed. • Turbulent penetration has unique power spectrum relevant to thermal fatigue. • Forced flow oscillations translate to peaks in power spectrum in branch line. - Abstract: While the study of T-junction mixing with branch velocity ratios of near 1, so called cross flow mixing, is well advanced, to the point of realistic reactor environment fluid–structure interaction experiments and CFD benchmarking, turbulent penetration studies remain an under-researched threat to primary circuit piping. A new facility has been constructed for the express purpose of studying turbulent penetration in branch lines of T-junctions in the context of the high cycle thermal fatigue problem in NPPs. Turbulent penetration, which may be the result of a leaking valve in a branch line or an unisolable branch with heat losses, induces a thermal cycling region which may result in high cycle fatigue damage and failures. Leakage flow experiments have been performed in a perpendicular T-junction in a horizontal orientation with 50 mm diameter main pipe and branch pipe at velocity ratios (main/branch) up to 400. Wire mesh sensors are used as a means of measuring the mixing scalar in adiabatic tests with deionized and tap water. The near-wall region of highest scalar fluctuations is seen to vary circumferentially and in depth in the branch a great deal depending on the velocity ratio. The power spectra of the mixing scalar in the region of turbulent penetration are found to be dominated by high amplitude fluctuations at low frequencies, of particular interest to thermal fatigue. Artificial velocity oscillations in the main pipe manifest in the mixing spectra in the branch line in the form of a peak, the magnitude of which grows with increasing local RMS.

  4. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  5. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  6. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  7. Retaining the Value of PV at High Penetration Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Bolen, Michael

    2017-01-19

    PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challenges and gaps impeding implementation, and discussed future R&D needs and opportunities.

  8. A high capability teleoperated vehicle for hazardous applications

    International Nuclear Information System (INIS)

    Dudar, A.M.; Witherspoon, R.L.

    1995-01-01

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste

  9. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance.

    Directory of Open Access Journals (Sweden)

    Huiling He

    Full Text Available Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C in a large pedigree displaying non-medullary thyroid carcinoma (NMTC. This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.

  10. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  11. Evidence of weak pair coupling in the penetration depth of bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Yang Ren; Ossandon, J.G.; Christen, D.K.; Chakoumakos, B.C.; Sales, B.C.; Kerchner, H.R.; Sonder, E.

    1990-01-01

    The magnetic penetration depth λ(T) has been investigated in Bi(Pb)SrCaCuO high-T c compounds having 2- and 3-layers of copper-oxygen per unit cell. Studies of the magnetization in the vortex state were employed and the results were compared with weak and strong coupling calculations. The temperature dependence of λ is described well by BCS theory in the clean limit, giving evidence for weak pair coupling in this family of materials. For the short component of the λ tensor, we obtain values of 292 and 220 nm (T = 0) for Bi-2212 and (BiPb)-2223, respectively

  12. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Jenkin, Philipp Beiter, and Robert Margolis

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  13. Ethical Dilemmas and Dimensions in Penetration Testing

    OpenAIRE

    Faily, Shamal; McAlaney, John; Iacob, C.

    2015-01-01

    Penetration testers are required to attack systems to evaluate their security, but without engaging in unethical behaviour while doing so. Despite work on hacker values and studies into security practice, there is little literature devoted to the ethical pressures associated with penetration testing. This paper presents several ethical dilemmas and dimensions associated with penetration testing;\\ud these shed light on the ethical positions taken by Penetration testers, and help identify poten...

  14. High performance discharges and capabilities in Alcator C-Mod

    International Nuclear Information System (INIS)

    Porkolab, M.

    1996-01-01

    Alcator C-Mod is a compact, diverted, shaped, high magnetic field (B = 9 T) tokamak operating at the Massachusetts Institute of Technology Plasma Fusion Center. The machine interior is all metallic, and the walls and divertor region are covered with molybdenum tiles. The vacuum vessel is a continuous, thick wall stainless steel construction, prototypical of future fusion devices (e.g., ITER). Typical discharge cleaning utilizes ECDC, or electron-cyclotron discharge cleaning, in the steady state at low magnetic field (0.0875 T). While its dimensions are compact (R = 0.67 m, a = 0.22 m, K = 1.8), C-Mod is designed to operate up to 2.5 MA at 9.0 T magnetic field. To present date the machine has operated at currents up to 1.5 MA at B = 5.3 T, and magnetic fields up to 8.0 T at I p = 1.2 MA. Due to the high current density, line average densities of 4.0 x 10 20 m -3 are obtained with gas fueling, and peak densities in excess of 1.0 x 10 21 m -3 have been obtained with pellet fueling. Typical pulse lengths are up to 2.0 seconds, with a flat-top of typically 1.0 sec. Presently the device is equipped with 4.0 MW of ICRF heating power operating at 80 MHz, but this capability is being upgraded to 8.0 MW with the addition of 4.0 MW of tunable ICRF power operating at 40.80 MHz. A 20 pellet/pulse deuterium injector is operational, and a 4 pellet Li injector is also operational. To reduce the influx of metallic impurities during high power operation, recently boronization of the machine interior was begun prior to plasma discharges, this allowed plasma operation with full auxiliary power capability without excessive radiative power losses from the plasma core. 7 refs

  15. Capabilities, performance, and future possibilities of high frequency polyphase resonant converters

    International Nuclear Information System (INIS)

    Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.

    2004-01-01

    High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse

  16. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...... signal from the day ahead market the economical incentives for an EDV-owner will be small. If the EDV's can participate in the regulation of the grid through ancillary services the incentives will be increased to an attractive level....

  17. Skull penetrating wound

    International Nuclear Information System (INIS)

    Gonzalez Orlandi, Yvei; Junco Martin, Reinel; Rojas Manresa, Jorge; Duboy Limonta, Victor; Matos Herrera, Omar; Saez Corvo, Yunet

    2011-01-01

    The cranioencephalic trauma is common in the emergence centers to care for patients with multiple traumata and it becames in a health problem in many countries. Skull penetrating trauma is located in a special place due to its low frequency. In present paper a case of male patient aged 52 severely skull-injured with penetrating wound caused by a cold steel that remained introduced into the left frontotemporal region. After an imaging study the emergence surgical treatment was applied and patient evolves adequately after 25 days of hospitalization. Nowadays, she is under rehabilitation treatment due to a residual right hemiparesis.(author)

  18. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  19. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  20. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  1. No novel, high penetrant gene might remain to be found in Japanese patients with unknown MODY.

    Science.gov (United States)

    Horikawa, Yukio; Hosomichi, Kazuyoshi; Enya, Mayumi; Ishiura, Hiroyuki; Suzuki, Yutaka; Tsuji, Shoji; Sugano, Sumio; Inoue, Ituro; Takeda, Jun

    2018-07-01

    MODY 5 and 6 have been shown to be low-penetrant MODYs. As the genetic background of unknown MODY is assumed to be similar, a new analytical strategy is applied here to elucidate genetic predispositions to unknown MODY. We examined to find whether there are major MODY gene loci remaining to be identified using SNP linkage analysis in Japanese. Whole-exome sequencing was performed with seven families with typical MODY. Candidates for novel MODY genes were examined combined with in silico network analysis. Some peaks were found only in either parametric or non-parametric analysis; however, none of these peaks showed a LOD score greater than 3.7, which is approved to be the significance threshold of evidence for linkage. Exome sequencing revealed that three mutated genes were common among 3 families and 42 mutated genes were common in two families. Only one of these genes, MYO5A, having rare amino acid mutations p.R849Q and p.V1601G, was involved in the biological network of known MODY genes through the intermediary of the INS. Although only one promising candidate gene, MYO5A, was identified, no novel, high penetrant MODY genes might remain to be found in Japanese MODY.

  2. Correction of High Astigmatism after Penetrating Keratoplasty with Toric Multifocal Intraocular Lens Implantation

    Directory of Open Access Journals (Sweden)

    Raffaele Nuzzi

    2017-07-01

    Full Text Available After penetrating keratoplasty (PK, high astigmatism is often induced, being frequently about 4–6 dpt. According to the entity and typology of astigmatism, different methods of correction can be used. Selective suture removal, relaxing incisions, wedge resections, compression sutures, photorefractive keratectomy, and laser-assisted in situ keratomileusis can reduce corneal astigmatism and ametropia, but meanwhile they can cause a reduction in the corneal integrity and cause an over- or undercorrection. In case of moderate-to-high regular astigmatisms, the authors propose a toric multifocal intraocular lens (IOL implantation to preserve the corneal integrity (especially in PK after herpetic corneal leukoma keratitis. We evaluated a 45-year-old patient who at the age of 30 was subjected to PK in his left eye due to corneal leukoma herpetic keratitis, which led to high astigmatism (7.50 dpt cyl. 5°. The patient was subjected to phacoemulsification and customized toric multifocal IOL implantation in his left eye. The correction of PK-induced residual astigmatism with a toric IOL implantation is an excellent choice but has to be evaluated in relation to patient age, corneal integrity, longevity graft, and surgical risk. It seems to be a well-tolerated therapeutic choice and with good results.

  3. Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rongmei, E-mail: luorm_1999@126.com [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China); Huang, Dewu; Yang, Mingchuan; Tang, Enling; Wang, Meng; He, Liping [College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China)

    2016-10-15

    Rod penetrators with 95W–3.75Ni–1.25Fe fine-grained tungsten heavy alloy (fine-grained 95W) and conventional tungsten heavy alloy rod penetrators with the same chemical composition (conventional 95W) were subjected to ballistic impact to compare their penetration performance. “Self-sharpening” behavior and an average 10.5% increase in penetration depth compared to conventional 95W penetrators. An acute head remained on the fine-grained 95W rod with SEM results revealing many micro-cracks and small debris on surface layer of the rod head. The stress-strain curves collected in the Split Hopkinson Pressure Bar (SHPB) experiment showed that critical failure strain values of the fine-grained 95W were 0.12 and 0.39 at strain rate of 2×10{sup 3} s{sup −1} and 3.9×10{sup 3} s{sup −1}, respectively, approximately 40% and 10% lower than those of the conventional 95W. The dynamic strength values of fine-grained 95W were 2100 MPa and 2520 MPa, respectively, which were 500 MPa and 520 MPa higher than those of the conventional 95W. The relationship among microstructure, mechanical property and “self-sharpening” behavior of fine-grained 95W is discussed in this work.

  4. Operating methods to remove the excess of penetrant in surface. Preponderant and characteristic part of water for water washable penetrants

    International Nuclear Information System (INIS)

    Dubosc, P.

    1985-01-01

    Penetrant use for quality control, although very well known (nuclear, space industries, offshore platforms) is often poorly practiced. This is largely due to a lack of understanding by the users the way that the different components of the system (penetrants, solvents, emulsifiers, and developers) function. In this talk, we shall explain a particular characteristic that the manufacturers of reputable penetrant seek to build into their water washable penetrants. It is a viscosity curve which has the function of keeping water in a well defined form. We show why the form of the curve is crucial, which reaction between water and penetrant it corresponds to, and we deduce the practical consequences of bringing into play procedures for removing excess penetrant with or without water [fr

  5. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  6. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  7. Wind tunnel tests of a deep seabed penetrator model

    International Nuclear Information System (INIS)

    Visintini, L.; Murray, C.N.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The report summarizes the results of wind tunnel tests performed in March 1985 on a 1:2.5 scale model of a European Standard Penetrator in Aermacchi low speed wind tunnel. Tests covered the measurement of overall fluid dynamic forces at varying angle of attack and measurement of unsteady pressures acting on the instrumentation head protruding in the penetrator's wake. Overall force coefficients were found to be in good agreement with predictions. Unsteady pressures were found to be much smaller than expected so that no mechanical damage to instrumentation is to be foreseen even at the high dynamic pressures typical of the penetrator moving into water. The present work has been undertaken under contract 2450-84-08 ED ISP I of C.C.R. EURATOM ISPRA

  8. Varieties of cognitive penetration in visual perception.

    Science.gov (United States)

    Vetter, Petra; Newen, Albert

    2014-07-01

    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Influence of the impurities on the depth of penetration with carbon steel weldings

    Directory of Open Access Journals (Sweden)

    O. Savytsky

    2014-04-01

    Full Text Available In this paper the results of the research about the influence of the impurities on the depth of penetration with carbon steels weldings of different chemical composition are presented. These data suggest that presence of those impurities, such as sulphure and oxygen, in the steel, increases the depth of penetration to 1,3 - 1,5 times compared to welding refined steels. Applying activating fluxes for welding high tensile steels, provides an increase in the depth of penetration of 2 - 3 times.

  10. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    Science.gov (United States)

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  11. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  12. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Juan D. Deaton

    2008-09-01

    Full Text Available Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  13. Use of ground-penetrating radar techniques in archaeological investigations

    Science.gov (United States)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  14. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Kyungsung An

    2017-05-01

    Full Text Available This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs; EVs interact with the grid through grid-to-vehicle (G2V and vehicle-to-grid (V2G services to ensure reliable and cost-effective grid operation. This research provides a computational framework for this decision-making process. Charging and discharging strategies of EV aggregators are incorporated into a security-constrained optimal power flow (SCOPF problem such that overall energy cost is minimized and operation within acceptable reliability criteria is ensured. Particularly, this SCOPF problem has been formulated for Jeju Island in South Korea, in order to lower carbon emissions toward a zero-carbon island by, for example, integrating large-scale renewable energy and EVs. On top of conventional constraints on the generators and line flows, a unique constraint on the system inertia constant, interpreted as the minimum synchronous generation, is considered to ensure grid security at high renewable penetration. The available energy constraint of the participating EV associated with the state-of-charge (SOC of the battery and market price-responsive behavior of the EV aggregators are also explored. Case studies for the Jeju electric power system in 2030 under various operational scenarios demonstrate the effectiveness of the proposed method and improved operational flexibility via controllable EVs.

  15. PETA: Methodology of Information Systems Security Penetration Testing

    Directory of Open Access Journals (Sweden)

    Tomáš Klíma

    2016-12-01

    Full Text Available Current methodologies of information systems penetration testing focuses mainly on a high level and technical description of the testing process. Unfortunately, there is no methodology focused primarily on the management of these tests. It often results in a situation when the tests are badly planned, managed and the vulnerabilities found are unsystematically remediated. The goal of this article is to present new methodology called PETA which is focused mainly on the management of penetration tests. Development of this methodology was based on the comparative analysis of current methodologies. New methodology incorporates current best practices of IT governance and project management represented by COBIT and PRINCE2 principles. Presented methodology has been quantitatively evaluated.

  16. Factors affecting flood insurance penetration in residential properties in Johor Malaysia

    Science.gov (United States)

    Godwin Aliagha, U.; Ewe Jin, T.; Weng Choong, W.; Nadzri Jaafar, M.

    2014-04-01

    High impact flood has virtually become an annual experience in Malaysia, yet flood insurance has remained a grossly neglected part of comprehensive integrated flood risk management. Using discriminant analysis, this study seeks to indentify the demand-side variables that best predict flood insurance penetration and risk aversion between two groups of residential homeowners in three districts of Johor State, Malaysia: those who purchased flood insurance and the group that did not. Our result revealed 34% penetration rate with Kota Tinggi district having the highest penetration (44%) and thus, the highest degree of flood risk aversion. The Wilks' Lambda F test for equality of group means, SCDFC, structure correlation and canonical correlation have clearly shown that there are strong significant attribute differences between the two groups of homeowners based on measures of objective flood risk exposure, subjective risk perception, and socio-economic cum demographic variables. However, measures of subjective risk perception were found more predictive of flood insurance penetration and flood risk aversion.

  17. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  18. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.

    Science.gov (United States)

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-05-16

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li(+) diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe(3+) to Fe(2+) and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li(+) intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.

  19. Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling

    Czech Academy of Sciences Publication Activity Database

    Zíková, Naděžda; Ondráček, Jakub; Ždímal, Vladimír

    2015-01-01

    Roč. 49, č. 4 (2015), s. 239-249 ISSN 0278-6826 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : filters * size-resolved penetration * atmospheric aerosol sampling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.953, year: 2015

  20. Ground penetrating radar and microwave tomography for the safety management of a cultural heritage site: Miletos Ilyas Bey Mosque (Turkey)

    International Nuclear Information System (INIS)

    Kadioglu, Selma; Kadioglu, Yusuf Kagan; Catapano, Ilaria; Soldovieri, Francesco

    2013-01-01

    Detection and assessment of structural damage affecting foundation robustness is of significant relevance for the safety management of cultural heritage sites. In this framework, ground penetrating radar (GPR) is worth consideration owing to its capability of providing high resolution and detailed information about the inner status of a structure, without involving significant invasive actions and ensuring a fast survey. On the other hand, the effectiveness of a GPR diagnostic survey can be impaired by the low interpretability of the raw data radargrams; thus huge interest is currently focused on the development of advanced and application-oriented data processing strategies. In this paper, a data processing chain based on the combined use of the commercial REFLEXW program and a microwave tomography approach is presented. An assessment of the achievable imaging capabilities is provided by processing measurements collected during a survey at the Great Mosque of Ilyas Bey (Ilyas Bey Mosque), one of the most important cultural heritages in ancient Miletos-Iona in Söke-Aydin city (Turkey). (paper)

  1. Initial response of a rock penetrator

    International Nuclear Information System (INIS)

    Longcope, D.B.; Grady, D.E.

    1977-12-01

    An analysis based on elastic rod theory is given for the early-time axisymmetric response of pointed penetrators. Results of measurements by laser interferometry of the back surface particle velocity of laboratory scale penetrators impacted by sandstone targets are presented. Values of the initial pressure on the penetrator tip are determined which give good agreement between the analytical and experimental results. These initial tip pressures are found to be approximated by the stress-particle velocity Hugoniot for the target material

  2. Determining Maximum Photovoltaic Penetration in a Distribution Grid considering Grid Operation Limits

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    High penetration of photovoltaic panels in distribution grid can bring the grid to its operation limits. The main focus of the paper is to determine maximum photovoltaic penetration level in the grid. Three main criteria were investigated for determining maximum penetration level of PV panels...... for this grid: even distribution of PV panels, aggregation of panels at the beginning of each feeder, and aggregation of panels at the end of each feeder. Load modeling is done using Velander formula. Since PV generation is highest in the summer due to irradiation, a summer day was chosen to determine maximum......; maximum voltage deviation of customers, cables current limits, and transformer nominal value. Voltage deviation of different buses was investigated for different penetration levels. The proposed model was simulated on a Danish distribution grid. Three different PV location scenarios were investigated...

  3. Evaporation Limited Radial Capillary Penetration in Porous Media.

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  4. Abdominal penetrating trauma and organ damage and its prognosis

    Directory of Open Access Journals (Sweden)

    Babak Abri

    2016-12-01

    Full Text Available Introduction: Abdominal penetrating trauma is still a serious problem in the world, due to its high prevalence in young people that impose a heavy economic burden on our country, we decided to evaluate the epidemiologic and demographic status and patient’s prognosis. Methods: This is a descriptive cross-sectional study; all patients with abdominal penetrating trauma referred to the emergency department of Imam Reza Hospital between March 2012 and March 2014 were enrolled to study. Age, sex, injured organs, mechanism of trauma and the prognosis was documented in the checklist. Data was analyzed by SPSS 15.0, and descriptive analysis was run. Results: In this study, 137 patients were enrolled; 103 patients (75.20% did not have visceral damage. In visceral injury, the spleen was most commonly injured abdominal organs (8.03%. the damage to small intestine seen in 8 patients (5.84%, kidney and liver damage seen in 6 patients (4.38% and 5 patients, respectively, and finally diaphragm and colon injury was seen in 2 patients (1.46%. Conclusion: According to a recent study, abdominal penetrating trauma mostly occurred in men. The most common cause of abdominal penetrating trauma was related to knife damage; spleen was commonly damaged organ caused by knives and other sharp objects.

  5. NRC Information No. 88-04, Supplement 1: Inadequate qualification and documentation of fire barrier penetration seals

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Since August 9, 1979, Diablo Canyon has experienced four fires in which the penetration seal material ignited and burned. On March 25, 1986, Toledo Edison reported that the silicone foam sealant in a fire barrier penetration in the main steam line room of Davis-Besse appeared to have baked and pulled away from the pipe. This penetration was filled with low-density silicone foam, which is rated for a maximum temperature of 425 F. The main steam lines normally operate near 600 F. The licensee's corrective actions were to stuff ceramic fiber (Kaowool) into the seal for increased fire resistance and to expand the existing fire watch. The silicone foam seal material in the diesel generator exhaust pipe penetrations at Diablo Canyon was used as replacement material for the combustible foam plastic-type seals, which were involved in the 1975 fire at the Browns Ferry nuclear power plant. In addition to diesel generator exhaust pipe penetrations, some main steamline penetrations may be sealed with this material. The material is apparently designed to withstand maximum ambient temperatures of 400 F. and temporary exposure to 500 F., but not long-term exposure to higher temperatures. Although the measurement at Diablo Canyon in 1982 indicated a pipe temperature of about 600 F., average pipe temperatures are probably much higher. The licensee for Diablo Canyon determined that only six penetrations (all associated with diesel generator exhaust pipes) potentially exposed the silicone foam penetration seal material to high temperatures. For these penetration openings, the licensee plans to install a penetration seal material designed to withstand long-term exposure to high temperatures

  6. The market penetration of energy-efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L.

    1990-04-01

    The focus of this report is on one source of resource planning uncertainty: the expected market penetration of DSM (Demand Site Management) programs. Its purpose is to help refine planning assumptions and reduce uncertainty about the market penetration of utility DSM programs by: (1) investigating concepts and definitions of market penetration, (2) reviewing data that characterize patterns of variation (including ranges, averages and maximum levels) in program participation rates, (3) identifying the factors that affect participation, and (4) reviewing the structure and data requirements of models that forecast market penetration. 84 refs., 14 figs., 16 tabs.

  7. Simulations of the Penetration of 6061-T6511 Aluminum Targets by Spherical-Nosed VAR 4340 Steel Projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Tabbara, M.R.; Warren, T.L.

    1998-10-21

    In certain penetration events it is proposed that the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for discretizing the target as well as the need for a contact algorithm. Thus, this method substantially reduces the computer time and memory requirements. In this paper a forcing function which is derived from a spherical-cavity expansion (SCE) analysis has been implemented in a transient dynamic finite element code. This irnplementation is capable of computing the structural and component responses of a projectile due to a three dimensional penetration event. Simulations are presented for 7.1 l-mm-diameter, 74.7-mm-long, spherical-nose, vacuum- arc-remelted (VAR) 4340 steel projectiles that penetrate 6061-T6511 aluminum targets. Final projectile configurations obtained from the simulations are compared with post-test radiographs obtained from the corresponding experiments. It is shown that the simulations accurately predict the permanent projectile deformation for three dimensional loadings due to incident pitch and yaw over a wide range of striking velocities.

  8. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Deaton JuanD

    2008-01-01

    Full Text Available Abstract Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  9. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Directory of Open Access Journals (Sweden)

    Ki Jung Lim

    Full Text Available Cell-penetrating peptides (CPPs have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2 was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57. The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv directed toward a mutated K-ras (G12V. BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  10. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Science.gov (United States)

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  11. Real-Time Penetrating Particle Analyzer (PAN)

    Science.gov (United States)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  12. Study liquid length penetration results obtained with a direct acting piezo electric injector

    International Nuclear Information System (INIS)

    Payri, Raul; Gimeno, Jaime; Bardi, Michele; Plazas, Alejandro H.

    2013-01-01

    Highlights: ► A direct acting injector capable of controlling needle lift has been used to determine liquid phase penetration. ► The influence of injection pressure, chamber density and chamber temperature have been measured. ► When needle lift is reduced the stabilized liquid length is shortened. ► The relationship between needle lift and liquid length makes needle lift as a new way to control the injection event. - Abstract: A state of the art prototype common rail injector featuring direct control of the needle by means of a piezo stack (direct acting) has been tested. Liquid phase penetration of the sprays in diesel engine-like conditions has been studied via imaging technique in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic conditions (up to 1000 K and 15 MPa). This state of the art injector fitted with a 7-hole nozzle, allows a fully flexible control on the nozzle needle movement, enabling various fuel injection rate typologies. The temporal evolution of the seven sprays has been studied recording movies of the injection event in evaporative conditions via Mie scattering imaging technique and using a high speed camera. The results showed a strong influence of needle position on the stabilized liquid length while the effect of the injection pressure is negligible: the decrease of the needle lift causes a pressure drop in the needle seat and thus a reduction in the effective pressure upstream of the orifices (in the nozzle sac). According to known literature the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on fuel velocity at the orifice outlet. Therefore, due to small change in the spray cone-angle, higher injection pressures give slightly lower liquid length. However, partial needle lifts has an opposite effect: when needle is partially lifted a dramatic increase of the spray cone-angle and a consequent reduction of

  13. Control of penetration zone GMAW

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-11-01

    Full Text Available Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop

  14. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR.

    Science.gov (United States)

    Theek, Benjamin; Baues, Maike; Ojha, Tarun; Möckel, Diana; Veettil, Seena Koyadan; Steitz, Julia; van Bloois, Louis; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2016-06-10

    The Enhanced Permeability and Retention (EPR) effect is a highly variable phenomenon. To enhance EPR-mediated passive drug targeting to tumors, several different pharmacological and physical strategies have been evaluated over the years, including e.g. TNFα-treatment, vascular normalization, hyperthermia and radiotherapy. Here, we systematically investigated the impact of sonoporation, i.e. the combination of ultrasound (US) and microbubbles (MB), on the tumor accumulation and penetration of liposomes. Two different MB formulations were employed, and their ability to enhance liposome accumulation and penetration was evaluated in two different tumor models, which are both characterized by relatively low levels of EPR (i.e. highly cellular A431 epidermoid xenografts and highly stromal BxPC-3 pancreatic carcinoma xenografts). The liposomes were labeled with two different fluorophores, enabling in vivo computed tomography/fluorescence molecular tomography (CT-FMT) and ex vivo two-photon laser scanning microscopy (TPLSM). In both models, in spite of relatively high inter- and intra-individual variability, a trend towards improved liposome accumulation and penetration was observed. In treated tumors, liposome concentrations were up to twice as high as in untreated tumors, and sonoporation enhanced the ability of liposomes to extravasate out of the blood vessels into the tumor interstitium. These findings indicate that sonoporation may be a useful strategy for improving drug targeting to tumors with low EPR. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of penetrant materials from used oil

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Azhar Azmi

    2014-01-01

    This paper described the results of experiment to produce penetrant for nondestructive testing using used engine oil. The used engine oil was obtained from motor vehicle. It was mixed with kerosene at several mix proportion. The penetrability of these mixing were measured and compared with the penetrant available on the market. The results of measurement were explained and discussed. (author)

  16. Development of coring, consolidating, subterrene penetrators

    International Nuclear Information System (INIS)

    Murphy, H.D.; Neudecker, J.W.; Cort, G.E.; Turner, W.C.; McFarland, R.D.; Griggs, J.E.

    1976-02-01

    Coring penetrators offer two advantages over full face-melting penetrators, i.e., formation of larger boreholes with no increase in power and the production of glass-lined, structurally undisturbed cores which can be recovered with conventional core-retrieval systems. These cores are of significant value in geological exploratory drilling programs. The initial design details and fabrication features of a 114-mm-diam coring penetrator are discussed; significant factors for design optimization are also presented. Results of laboratory testing are reported and compared with performance predictions, and an initial field trial is described

  17. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; van Cleeff, A.; Pieters, Wolter; Hartel, Pieter H.

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  18. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal

    OpenAIRE

    Cho, Woo Kyung; Ankrum, James A.; Guo, Dagang; Chester, Shawn A.; Yang, Seung Yun; Kashyap, Anurag; Campbell, Georgina A.; Wood, Robert J.; Rijal, Ram K.; Karnik, Rohit; Langer, Robert; Karp, Jeffrey M.

    2012-01-01

    North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill’s geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations al...

  19. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  20. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    Science.gov (United States)

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  1. Assessing the credibility of diverting through containment penetrations

    International Nuclear Information System (INIS)

    Cooley, J.N.; Swindle, D.W. Jr.

    1980-01-01

    A viable approach has been developed for identifying those containment penetrations in a nuclear fuel reprocessing plant which are credible diversion routes. The approach is based upon systematic engineering and design analyses and is applied to each type of penetration to determine which penetrations could be utilized to divert nuclear material from a reprocessing facility. The approach is described and the results of an application are discussed. In addition, the concept of credibility is developed and discussed. For a typical reprocessing plant design, the number of penetrations determined to be credible without process or piping modifications was approx. 16% of the penetrations originally identified

  2. Relationship between bovine fertility and the number of spermatozoa penetrating the cervical mucus within straws.

    Science.gov (United States)

    Taş, Muzaffer; Bacinoglu, Suleyman; Cirit, Umüt; Ozdaş, Ozen Banu; Ak, Kemal

    2007-09-01

    In this study, by using a recently developed test technique, the relationship between the total spermatozoa number penetrating determined sites of bovine cervical mucus in straws and potential fertility of bulls, and other spermatological characteristics were investigated. Furthermore, we aimed to determine the effect on the test results, of two different incubation temperatures (37 and 41 degrees C) and two sperm penetration distance ranges (PDRs). Frozen semen samples of six Holstein bulls were used in the study. The bulls were divided into two fertility groups (high and low fertility) according to the "non-return rates" (NRR). For the penetration test, cervical mucus was drawn into transparent plastic straws and incubated with semen at 37 and 41 degrees C for 15 min. After the incubation, straws were frozen in liquid nitrogen vapour and stored at -20 degrees C. On the evaluation day, concentrations of spermatozoa penetrated to the PDRs, each of which was 2.5 mm, between 32.5 and 35 mm (first penetration distance range, PDR1), and 50 and 52.5 mm (second penetration distance range, PDR2) distance in the straws from the open end, were measured. When compared with the low fertility group, bulls from the high fertility group showed a higher number of spermatozoa at the determined PDRs, and a significant positive correlation was found between the total number of spermatozoa at the penetration distances and the NRR scores of the bulls.

  3. Achieving penetration and participation in Diabetes After Pregnancy prevention interventions following gestational diabetes

    DEFF Research Database (Denmark)

    Dasgupta, Kaberi; Terkildsen Maindal, Helle; Kragelund Nielsen, Karoline

    2018-01-01

    and/or telephone contact CONCLUSIONS: Although penetration and participation reporting is sub-optimal, penetration generally is high while participation is variable. Leveraging and structuring recruitment within standard GDM care and settings appears to be important to engage women in DAP prevention...... (enrolled/invited) rates were calculated after data extraction. RESULTS: Among 2,859 records, 33 intervention studies were identified, among which 16 had sufficient information to calculate penetration or participation. Penetration proportion (n=9 studies) was between 85-100% for two-thirds of studies...... included. Participation proportion (n=16 studies) varied substantially; when recruitment occurred during pregnancy or early postpartum participation was 40% or more, especially if face-to-face contact was used within the GDM care setting, compared to under 15% in mid/late postpartum with mailed invitation...

  4. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  5. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  6. In-wheel PM motor : compromise between high power density and extended speed capability

    NARCIS (Netherlands)

    Lomonova, E.; Kazmin, Evgeny; Tang, Y.; Paulides, J.J.H.

    2011-01-01

    Purpose – Today's brushless permanent magnet (PM) drive systems usually adopt motors including the advancements in magnet technology, e.g. better thermal characteristics and higher magnetic strength. By this means, they become capable in the roughest applications yet maintain a high accuracy at

  7. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    Wind power has gained a significant penetration level in several power systems all over the world. Due to this reason modern wind turbines are requested to contribute to power system support. Power system operators have thus introduced grid codes, which specify a set of requirements for wind...... turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...... important issues related to wind power grid integration. Then different wind turbine concepts are characterized and their grid support capabilities are analysed and compared. Simulation cases are presented in which the respective wind turbine concepts are subjected to a voltage dip specified in a grid code....

  8. BECCS Market Launch Strategy Aiming to Help Ensure Reliable Grid Power at High Penetrations of IRE (Intermittent Renewable Electricity)

    Science.gov (United States)

    WIlliams, R. H.

    2017-12-01

    Despite its recognized importance for carbon (C)-mitigation, progress in advancing biomass energy with CO2 capture and sequestration (BECCS) has been slow. A BECCS market launch strategy based on technologies ready for commercial-scale demonstration is discussed—based on co-gasification of coal and biomass to make H2 with CCS. H2 so produced would be a key element of a H2 balancing capacity (H2-BC) strategy for ensuring reliable grid power at high IRE penetrations. High grid penetrations of IRE must be complemented by fast-ramping balancing (backup and/or storage) capacity (BC) to ensure reliable grid power. BC provided now by natural gas-fired gas turbine combined cycle and combustion turbine units would eventually have to be decarbonized to realize C-mitigation goals, via CCS or other means. Capital-intensive CCS energy systems require baseload operation to realize favourable economics, but at high IRE penetrations, BC plants must be operated at low capacity factors. A H2-BC strategy is a promising way to address this challenge. The elements of a H2-BC system are: (a) H2 production from carbonaceous feedstocks in baseload plants with CCS; (b) H2 consumption in fast-ramping BC units that operate at low capacity factors; (c) Buffer underground H2 storage to enable decoupling baseload H2 production from highly variable H2 consumption by BC units. The concept is likely to "work" because underground H2 storage is expected to be inexpensive. A H2 production analysis is presented for a negative GHG-emitting H2-BC system based on cogasification of corn stover and coal, with captured CO2 used for enhanced oil recovery. The technical readiness of each system component is discussed, and preliminary insights are offered as to the conditions under which the corresponding H2-BC system might compete with natural gas in providing backup for IRE on US electric grids. Public policy to help advance this strategy might be forthcoming, because 2 US Senate bills with broad

  9. Thyroid Emphysema Following Penetrating Neck Trauma

    Directory of Open Access Journals (Sweden)

    Demet Karadağ

    2011-03-01

    Full Text Available Although traumatic thyroid gland rupture or hemorrhage is usually seen in goitrous glands, injuries of the normal thyroid gland after neck trauma have rarely been described in the literature. We describe a 44-year-old man who presented with thyroid emphysema and subcutaneous emphysema (SCE that occurred after penetrating neck trauma. CT images showed complete resolution of thyroid emphysema and subcutaneous emphysema at follow-up examination. Neck injuries can be life threatening. After penetrating neck traumas, physicians should consider subtle esophageal or tracheal laceration. Thyroid emphysema can occur as the result of penetrating neck trauma. The mechanism of emphysema of the thyroid parenchyma can be explained by the thyroid gland’s presence in a single visceral compartment that encompasses the larynx, trachea and thyroid gland. We describe an unusual case of thyroid emphysema of a normal thyroid gland following a penetrating neck injury.

  10. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  11. Bodily action penetrates affective perception

    Science.gov (United States)

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  12. Bodily action penetrates affective perception

    Directory of Open Access Journals (Sweden)

    Carlo Fantoni

    2016-02-01

    Full Text Available Fantoni & Gerbino (2014 showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP, they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015 would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions, in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top

  13. An unusual case of foreign body pulmonary embolus: case report and review of penetrating trauma at a pediatric trauma center.

    Science.gov (United States)

    Boomer, Laura A; Watkins, Daniel J; O'Donovan, Julie; Kenney, Brian D; Yates, Andrew R; Besner, Gail E

    2015-03-01

    Penetrating thoracic trauma is relatively rare in the pediatric population. Embolization of foreign bodies from penetrating trauma is very uncommon. We present a case of a 6-year-old boy with a penetrating foreign body from a projectile dislodged from a lawn mower. Imaging demonstrated a foreign body that embolized to the left pulmonary artery, which was successfully treated non-operatively. We reviewed the penetrating thoracic trauma patients in the trauma registry at our institution between 1/1/03 and 12/31/12. Data collected included demographic data, procedures performed, complications and outcome. Sixty-five patients were identified with a diagnosis of penetrating thoracic trauma. Fourteen of the patients had low velocity penetrating trauma and 51 had high velocity injuries. Patients with high velocity injuries were more likely to be older and less likely to be Caucasian. There were no statistically significant differences between patients with low vs. high velocity injuries regarding severity scores or length of stay. There were no statistically significant differences in procedures required between patients with low and high velocity injuries. Penetrating thoracic trauma is rare in children. The case presented here represents the only report of cardiac foreign body embolus we could identify in a pediatric patient.

  14. Crack growth rates in vessel head penetration materials

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Blazquez, F.

    1994-01-01

    The cracks detected in reactor vessel head penetrations in certain European plants have been attributed to Primary Water Stress Corrosion Cracking (PWSCC). The penetrations in question are made from Inconel 600. The susceptibility of this alloy to PWSCC has been widely studied in relation to use of this material for steam generator tubes. When the first reactor vessel head penetration cracks were detected, most of the available data on crack propagation rates were from test specimens made from steam generator tubes and tested under conditions that questioned the validity of these data for assessment of the evolution of cracks in penetrations. For this reason, the scope of the Spanish Research Project on the Inspection and Repair of PWR reactor vessel head penetrations included the acquisition of data on crack propagation rates in Inconel 600, representative of the materials used for vessel head penetrations. (authors). 1 fig., 2 tabs., 6 refs

  15. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  16. Single-Phase Microgrid with Seamless Transition Capabilities between Modes of Operation

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2015-01-01

    with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid.......Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid-connected...

  17. Analytical review of 664 cases of penetrating buttock trauma

    Science.gov (United States)

    2011-01-01

    A comprehensive review of data has not yet been provided as penetrating injury to the buttock is not a common condition accounting for 2-3% of all penetrating injuries. The aim of the study is to provide the as yet lacking analytical review of the literature on penetrating trauma to the buttock, with appraisal of characteristics, features, outcomes, and patterns of major injuries. Based on these results we will provide an algorithm. Using a set of terms we searched the databases Pub Med, EMBASE, Cochran, and CINAHL for articles published in English between 1970 and 2010. We analysed cumulative data from prospective and retrospective studies, and case reports. The literature search revealed 36 relevant articles containing data on 664 patients. There was no grade A evidence found. The injury population mostly consists of young males (95.4%) with a high proportion missile injury (75.9%). Bleeding was found to be the key problem which mostly occurs from internal injury and results in shock in 10%. Overall mortality is 2.9% with significant adverse impact of visceral or vascular injury and shock (P colon, or rectum injuries leading in shot wounds, whilst vascular injury leads in stab wounds (P trauma. In conclusion, penetrating buttock trauma should be regarded as a life-threatening injury with impact beyond the pelvis until proven otherwise. PMID:21995834

  18. Penetrating Osseous Spicules Causing High-Flow Ventral CSF Leaks in the Setting of Relatively Low BMI : A Preliminary Study.

    Science.gov (United States)

    Rosebrock, Richard E; Diehn, Felix E; Luetmer, Patrick H; Wald, John T; Lane, John I; Morris, Jonathan M; Lehman, Vance T; Carr, Carrie M; Mokri, Bahram; Thielen, Kent R

    2017-05-16

    We have anecdotally observed patients with high-flow ventral cerebrospinal fluid (CSF) leaks resulting from penetrating osseous spicules or calcified discs to be relatively thin. The purpose of this study was to explore the validity of this observation and determine if a potential association exists between low body mass index (BMI) and high-flow spinal ventral CSF leaks resulting from such dura-penetrating lesions. Sixteen consecutive patients with precisely localized high-flow ventral spinal CSF leaks on dynamic myelography were identified. The cause of the CSF leak was determined. The BMI on the date nearest to and within 2 weeks of myelography was recorded. Utilizing exact sign test, the body mass index was compared to the average BMI from the National Health and Nutrition Examination Survey (Centers for Disease Control), matched to sex and age-range. The cohort consisted of 10 males (63%) and 6 females with a mean age of 54 years (range 37-72 years). In all patients, a spiculated osteophyte/calcified disc was identified at the site of the leak. Fourteen patients (88%) had a BMI below the matched national average, while only two patients (13%) had values above the national average (p = 0.004). Patients with high-flow ventral CSF leaks resulting from spiculated osteophyte or calcified disc as identified by dynamic myelography are more likely to have a BMI below the U.S. national average, matched for gender and age-range. This exploratory analysis requires confirmation as well as further characterization of potential pathophysiologic mechanisms and impact on radiographic and clinical assessments.

  19. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  20. Ureteric transection secondary to penetrating handlebar injury

    Directory of Open Access Journals (Sweden)

    K.P. Debbink

    2017-08-01

    Full Text Available Ureteric trauma is rare, occurring in <1% of all traumas. We present a unique case of a 13 year old female who sustained a penetrating abdominal injury from a bicycle handlebar. Upon initial examination there was herniation of bowel through the abdominal wound, so exploratory laparotomy was performed. A serosal injury of the colon and bleeding mesenteric veins were encountered; the retroperitoneum was not explored at that time. Postoperative course was remarkable for a doubling of the serum creatinine, increasing abdominal distention and pain. Computed tomography on postoperative day five demonstrated a large amount of intra-abdominal fluid. The patient was taken for re-exploration. The left ureter was found to be completely transected. It was repaired over a double-J stent. This case demonstrates the need for a high index of suspicion in the diagnosis of ureteric injury. Keywords: Ureter, Bicycle, Handlebar, Penetrating

  1. Recursive Monte Carlo method for deep-penetration problems

    International Nuclear Information System (INIS)

    Goldstein, M.; Greenspan, E.

    1980-01-01

    The Recursive Monte Carlo (RMC) method developed for estimating importance function distributions in deep-penetration problems is described. Unique features of the method, including the ability to infer the importance function distribution pertaining to many detectors from, essentially, a single M.C. run and the ability to use the history tape created for a representative region to calculate the importance function in identical regions, are illustrated. The RMC method is applied to the solution of two realistic deep-penetration problems - a concrete shield problem and a Tokamak major penetration problem. It is found that the RMC method can provide the importance function distributions, required for importance sampling, with accuracy that is suitable for an efficient solution of the deep-penetration problems considered. The use of the RMC method improved, by one to three orders of magnitude, the solution efficiency of the two deep-penetration problems considered: a concrete shield problem and a Tokamak major penetration problem. 8 figures, 4 tables

  2. penetrating abdominal trauma

    African Journals Online (AJOL)

    gender, mechanism of injury, injury severity scores (ISS), penetrating ... ileus, reduced pulmonary function and loss of muscle mass and function, all of .... pathophysiology and rehabilitation. ... quality of life after surgery for colorectal cancer.

  3. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    Science.gov (United States)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  4. Characterization of nuclear reactor containment penetrations. Preliminary report

    International Nuclear Information System (INIS)

    Bump, T.R.; Seidensticker, R.W.; Shackelford, M.A.; Gambhir, V.K.; McLennan, G.L.

    1984-06-01

    This report summarizes the survey work conducted by Argonne National Laboratory on the design and details of major penetrations in 22 nuclear power plants. The survey includes all containment types and materials in current use. It also includes details of all types of penetrations (except for electrical penetration assemblies and valves) and the seals and gaskets used in them. The report provides a test matrix for testing major penetrations and for testing seals and gaskets in order to evaluate their leakage potential under severe accident conditions

  5. Vessel head penetrations: French approach for maintenance in the PLIM program

    International Nuclear Information System (INIS)

    Champigny, F.

    2002-01-01

    Full text: In 1991, in the Bugey nuclear power plant, for the first time a leak occurred at the level of a vessel head penetration made with base nickel alloy (Inconel 600). This leak was caused by a primary stress corrosion cracking coming from inside the penetration tube. The crack was trough wall extent and primary fluid went out from the top of the vessel head. Immediately, Electricite de France launched important research programs and expertise in order to understand the root causes and propose solutions to this problem. The root causes confirmed PWSCC, and in the same time solutions for repair were studied and an inspection program was established to check the base metal of other vessel head penetrations. After several tests, repair solutions were abandoned because of their high costs (financial and dosimetry). EDF decided to replace all the vessel heads with Inconel 600 penetrations. Non destructive developments leaded to use eddy currents for detection and characterization but also televisual techniques to confirm. In a second step, in order to inspect without removing the inside thermal sleeve, eddy current and ultrasonic sword probes were achieved and used to inspect all vessel heads penetrations. Up to now, 75% of the vessel head have been replaced on the 900 MW and 1300 MW fleets but to replace wisely the last vessel heads EDF continues to perform NDE of the penetrations on the basis of safety criteria. This paper describes the different steps of the applied policy in France, NDE methods, criteria and the results obtained. (author)

  6. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Providing Emergency Telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Juan D. Deaton

    2008-05-01

    Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  7. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    Science.gov (United States)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  8. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cho, Gyu-Jung [Sungkyunkwan University; Oh, Yun-Sik [Sungkyunkwan University; Kim, Min-Sung [Sungkyunkwan University; Kim, Ji-Soo [Sungkyunkwan University; Kim, Chul-Hwan [Sungkyunkwan University

    2017-06-29

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation of the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.

  9. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections

    DEFF Research Database (Denmark)

    Bahnsen, Jesper S; Franzyk, Henrik; Sayers, Edward J

    2015-01-01

    PURPOSE: To investigate the suitability of three antimicrobial peptides (AMPs) as cell-penetrating antimicrobial peptides. METHODS: Cellular uptake of three AMPs (PK-12-KKP, SA-3 and TPk) and a cell-penetrating peptide (penetratin), all 5(6)-carboxytetramethylrhodamine-labeled, were tested in He......La WT cells and analyzed by flow cytometry and confocal microscopy. Furthermore, the effects of the peptides on eukaryotic cell viability as well as their antimicrobial effect were tested. In addition, the disrupting ability of the peptides in the presence of bilayer membranes of different composition...... the cellular viability to an unacceptable degree. TPk showed acceptable uptake efficiency, high antimicrobial activity and relatively low toxicity, and it is the best potential lead peptide for further development....

  10. Penetrating abdominal trauma.

    Science.gov (United States)

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  11. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Science.gov (United States)

    2010-07-01

    ... fractions. 1065.365 Section 1065.365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a FID... penetration fractions of methane, PFCH4, and ethane, PF C2H6. As detailed in this section, these penetration...

  12. The penetration of aerosols through fine orifices

    International Nuclear Information System (INIS)

    Marshall, I.A.; Latham, L.J.; Ball, M.H.E.; Mitchell, J.P.

    1991-07-01

    A novel experimental technique has been extended to study the migration of gas-borne glass microspheres in the size range from about 1 to 15 μm volume equivalent diameter through orifices with bores and thicknesses in the range from 2 to 100 μm and 12.7 to 509 μm respectively. The penetration of these particles was significant with all orifices greater than 10 μm bore at a constant driving pressure of 100 kPa. However, few particles penetrated the 5 μm bore orifice, while virtually no particles penetrated the 2 μm bore orifice. Particle size distributions determined after penetration through the orifices were very similar to that of the upstream aerosol except when significant attenuation occurred. (author)

  13. Temporary fire sealing of penetrations on TFTR

    International Nuclear Information System (INIS)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications

  14. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  15. An Experimental Investigation on APR1400 Penetration Weld Failure by Metallic Melt

    International Nuclear Information System (INIS)

    An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The penetrations are considered as the most vulnerable parts with respect to the reactor vessel failure when a core melt severe accident occurs and the corium reaches the lower head. Penetration tube failure modes can be divided into two categories; tube ejection out of the vessel lower head and rupture of the penetration tube outside the vessel. Tube ejection begins with degrading the penetration tube weld strength to zero as the weld is exposed to temperatures as high as the weld melting temperature, which is called weld failure, and then overcoming any binding force in the hole in the vessel wall that results from differential thermal expansion of the tube and vessel wall. Tube rupture assumes that the debris bed has melted the instrument tube inside the reactor and melt migrates down into the tube to a location outside the vessel wall where a pressure rupture can occur, thus breaching the pressure boundary. In the present paper, we have a focus on the tube ejection failure mode, specifically on the APR1400 weld failure by direct contact with a metallic melt. The objective is to investigate experimentally the ablation kinetics of an APR1400 penetration weld during the interactions with a metallic melt and to suggest the modification of the existing weld failure model. This paper involves the interaction experiments of two different metallic melts (metallic corium and stainless steel melts) with a weld specimen, and rough estimation of weld failure time. The interaction experiments between the metallic melts and an APR1400 penetration weld were performed to investigate the ablation kinetics of the penetration weld. Metallic corium and stainless steel melts were generated using an induction heating technique and interacted with a penetration weld specimen. The ablation rate of the weld specimen showed a range from 0.109 to 0..244 mm/s and thus the APR1400 penetration weld was estimated to be failed at hundreds of times after the interaction with the melt

  16. Building virtual pentesting labs for advanced penetration testing

    CERN Document Server

    Cardwell, Kevin

    2014-01-01

    Written in an easy-to-follow approach using hands-on examples, this book helps you create virtual environments for advanced penetration testing, enabling you to build a multi-layered architecture to include firewalls, IDS/IPS, web application firewalls, and endpoint protection, which is essential in the penetration testing world. If you are a penetration tester, security consultant, security test engineer, or analyst who wants to practice and perfect penetration testing skills by building virtual pen testing labs in varying industry scenarios, this is the book for you. This book is ideal if yo

  17. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    Science.gov (United States)

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry.

  18. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    Science.gov (United States)

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  19. Particle size for greatest penetration of HEPA filters - and their true efficiency

    International Nuclear Information System (INIS)

    da Roza, R.A.

    1982-01-01

    The particle size that most greatly penetrates a filter is a function of filter media construction, aerosol density, and air velocity. In this paper the published results of several experiments are compared with a modern filtration theory that predicts single-fiber efficiency and the particle size of maximum penetration. For high-efficiency particulate air (HEPA) filters used under design conditions this size is calculated to be 0.21 μm diam. This is in good agreement with the experimental data. The penetration at 0.21 μm is calculated to be seven times greater than at the 0.3 μm used for testing HEPA filters. Several mechanisms by which filters may have a lower efficiency in use than when tested are discussed

  20. Application of advanced diffraction based optical metrology overlay capabilities for high-volume manufacturing

    Science.gov (United States)

    Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin

    2017-03-01

    On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.

  1. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions

    International Nuclear Information System (INIS)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350 0 F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage

  2. Chronic Disease Prevalence and Medicare Advantage Market Penetration

    Science.gov (United States)

    Bernell, Stephanie Lazarus; Casim, Faizan M.; Wilmott, Jennifer; Pearson, Lindsey; Byler, Caitlin M.; Zhang, Zidong

    2015-01-01

    By March 2015, 30% of all Medicare beneficiaries were enrolled in Medicare Advantage (MA) plans. Research to date has not explored the impacts of MA market penetration on individual or population health outcomes. The primary objective of this study is to examine the relationships between MA market penetration and the beneficiary’s portfolio of cardiometabolic diagnoses. This study uses 2004 to 2008 Medical Expenditure Panel Survey (MEPS) Household Component data to construct an aggregate index that captures multiple diagnoses in one outcome measure (Chronic Disease Severity Index [CDSI]). The MEPS data for 8089 Medicare beneficiaries are merged with MA market penetration data from Centers for Medicare and Medicaid Services (CMS). Ordinary least squares regressions are run with SAS 9.3 to model the effects of MA market penetration on CDSI. The results suggest that each percentage increase in MA market penetration is associated with a greater than 2-point decline in CDSI (lower burden of cardiometabolic chronic disease). Spill-over effects may be driving improvements in the cardiometabolic health of beneficiary populations in counties with elevated levels of MA market penetration. PMID:28462266

  3. High-rate capability of lithium-ion batteries after storing at elevated temperature

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Chiang, Pin-Chi Julia

    2007-01-01

    High-rate performances of a lithium-ion battery after storage at elevated temperature are investigated electrochemically by means of three-electrode system. The high-rate capability is decreased significantly after high-temperature storage. A 3 C discharge capacities after room-temperature storage and 60 o C storage are 650 and 20 mAh, respectively. Lithium-ion diffusion in lithium cobalt oxide cathode limits the battery's capacity and the results show that storage temperature changes this diffusion behavior. Transmission electron microscopy (TEM) images show that many defects are directly observed in the cathode after storage compared with the fresh cathode; the structural defects block the diffusion within the particles. Electrochemical impedance and polarization curve indicate that mass-transfer (diffusion) dominates the discharge capacity during high-rate discharge

  4. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  5. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-01-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant

  6. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.

    Science.gov (United States)

    Sander, Ulrich; Lubbe, Nils

    2018-06-01

    reduces only marginally at low penetration rates but this reduction increases with higher penetration rates. With 100 percent market penetration, one quarter of the vehicles still involved in straight crossing path accidents will sustain a delta-V higher than 17 km/h. Intersection AEB is very effective. Enabling a fast initial implementation of systems with wide field-of-view sensor(s) and ensuring a high market penetration over the longer term is essential to achieve high crash avoidance and injury mitigation rates over time. The standards for in-crash protection must be high to mitigate injury in the unavoidable, residual accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Stability analysis of transmission system with high penetration of distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Reza, M.

    2006-12-21

    Nowadays, interest in generating electricity using decentralized generators of relatively small scale ('distributed generation', DG) is increasing. This work deals with the impact of implementing DG on the transmission system transient stability, with the emphasis on a potential transition from a 'vertical power system' to a 'horizontal power system. A problem in power systems is maintaining synchronous operation of all (centralized) synchronous machines. This stability problem associated is called rotor angle stability. In this work, the impact of the DG implementation on this is investigated. The impact of DG levels on the system transient stability when the increasing DG level is followed by a reduction of centralized generators in service resulting in a 'vertical to horizontal' transformation of the power system is also investigated. Furthermore, a stochastic analysis is used to study the transient stability of the power systems. The results show that including the stochastic behavior of DG leads to a more complete and detailed view of the system performance. Finally, the situation when the power system is pushed towards a scenario, where DG penetration reaches a level that covers the total load of the original power system (100% DG level) is investigated. The research performed in this work indicates that from the transmission system stability point of view, if higher DG penetration levels are coming up, sufficient inertia and voltage support must be installed. Furthermore, one should be aware of the fact that the system behaves stochastically, especially with DG. To a certain extent regional balancing of power can be performed by local voltage control.

  8. Hacking and penetration testing with low power devices

    CERN Document Server

    Polstra, Philip

    2014-01-01

    Hacking and Penetration Testing with Low Power Devices shows you how to perform penetration tests using small, low-powered devices that are easily hidden and may be battery-powered. It shows how to use an army of devices, costing less than you might spend on a laptop, from distances of a mile or more. Hacking and Penetration Testing with Low Power Devices shows how to use devices running a version of The Deck, a full-featured penetration testing and forensics Linux distribution, and can run for days or weeks on batteries due to their low power consumption. Author Philip Polstra shows how to

  9. Penetrators for delivering Scientific equipment to minor bodies by flying-pass missions.

    Science.gov (United States)

    Bagrov, Alexander; Martynov, Maxim; Pichkhadze, Konstantin M.; Dolgopolov, Vladimir; Sysoev, Valentin

    Many space missions are planned to have close encounters with Solar system minor bodies as a pass-fly. Short time of such close encounters were effectively used for photographing of these bodies, i.e. for distant investigations only because of large velocities of the encounter. We propose to use high-velocity penetrators to provide contact investigations of the minor bodies in situ. These devices were designed by Lavochkin Association for lunar missions. They were designed for long lived scientific equipment to be placed under surface up to depth 2...3 m. Penetrators could survive under 500 g shock, so the contact velocity was from 90 to 250 m/s, so each of them had booster engine to decelerate orbital velocity. As flying-pass velocity near minor body can be more then 10 km/s, penetrators would hit target at speed above 1 km/s and successfully bear 1500 g. To do so we propose to fulfill whole internal space inside penetrator with distilled water and froze it to temperature - 80°C or lower. At this temperature water ice is as hard as steel, so penetrator will plunge into target like armour-piercing shell. After landing protective ice will be evaporated (particularly due to heating from collision) and all sensitive mechanics will be set free.

  10. Space Logistics: Launch Capabilities

    Science.gov (United States)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  11. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  12. The Influence of Salt Water on Chloride Penetration in Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Halim Like Novia

    2017-01-01

    Full Text Available This paper presents the influence of chloride ion penetration in geopolymer concrete. Fly ash as based material for geopolymer concrete was used in this mixture. Fly ash was mixed with sodium hydroxide (NaOH 8 M and sodium silicate (Na2SiO3 as the alkali solution. The sizes of cylindrical specimens were prepared with a diameter of 100 mm and 200 mm high. Some specimens were immersed in salt water at a concentration of 3.5%, and other control specimens were cured in tap water for 30, 60, 90, and 120 days. The mechanical properties were determined with compressive test which was conducted at 28, 30, 60, 90 and 120 days. Some durability tests were performed for porosity, chloride penetration, and pH measurement. It was found that geopolymer concrete has higher compressive strength than concrete made with Ordinary Portland cement (OPC. However, chloride penetration in geopolymer concrete is higher than OPC. The pH measurement showed that geopolymer concrete has less pH than OPC concrete. The porosity of concrete has been found to influence chloride penetration and pH of concrete.

  13. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation.

    Science.gov (United States)

    Kimura, Eriko; Kawano, Yuichiro; Todo, Hiroaki; Ikarashi, Yoshiaki; Sugibayashi, Kenji

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite®, was determined through intact rat skin and several damaged skins. Fluoresbrite® permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), with different molecular weights were also measured for comparison. The effects of molecular sizes and different skin pretreatments on the skin barrier were determined on the skin penetration/permeation of Fluoresbrite® and FDs. Fluoresbrite® was not permeated the intact skin, but FDs were permeated the skin. The skin distribution of titanium dioxide and zinc oxide nanoparticles was also observed after topical application of commercial cosmetics. Nanoparticles in sunscreen cosmetics were easily distributed into the groove and hair follicles after their topical application, but seldom migrated from the groove or follicles to viable epidermis and dermis. The obtained results suggested that nanoparticles did not permeate intact skin, but permeated pore-created skin. No or little permeation was observed for these nanomaterials through the stratum corneum.

  14. Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies

    Science.gov (United States)

    Quevedo Lopez, Manuel Angel

    Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.

  15. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  16. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  17. Performance of Magnetic Penetration Thermometers for X-Ray Astronomy

    Science.gov (United States)

    Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Porst, J. P.; Sadleir, J. E.; Seidel, G. M.; hide

    2012-01-01

    The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than leV FWHM for energies up to 10 keY. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of approx 2 eV FWHM at 1.5 keY and 4.3 eV FWHM at 5.9 keY.

  18. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    Science.gov (United States)

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  19. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  20. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  1. Penetration Testing Professional Ethics: a conceptual model and taxonomy

    Directory of Open Access Journals (Sweden)

    Justin Pierce

    2006-05-01

    Full Text Available In an environment where commercial software is continually patched to correct security flaws, penetration testing can provide organisations with a realistic assessment of their security posture. Penetration testing uses the same principles as criminal hackers to penetrate corporate networks and thereby verify the presence of software vulnerabilities. Network administrators can use the results of a penetration test to correct flaws and improve overall security. The use of hacking techniques, however, raises several ethical questions that centre on the integrity of the tester to maintain professional distance and uphold the profession. This paper discusses the ethics of penetration testing and presents our conceptual model and revised taxonomy.

  2. A Flexure-Guided Piezo Drill for Penetrating the Zona Pellucida of Mammalian Oocytes.

    Science.gov (United States)

    Johnson, Wesley; Dai, Changsheng; Liu, Jun; Wang, Xian; Luu, Devin K; Zhang, Zhuoran; Ru, Changhai; Zhou, Chao; Tan, Min; Pu, Huayan; Xie, Shaorong; Peng, Yan; Luo, Jun; Sun, Yu

    2018-03-01

    Mammalian oocytes such as mouse oocytes have a highly elastic outer membrane, zona pellucida (ZP) that cannot be penetrated without significantly deforming the oocyte, even with a sharp micropipette. Piezo drill devices leverage lateral and axial vibration of the micropipette to accomplish ZP penetration with greatly reduced oocyte deformation. However, existing piezo drills all rely on a large lateral micropipette vibration amplitude ( 20 ) and a small axial vibration amplitude (0.1 ). The very large lateral vibration amplitude has been deemed to be necessary for ZP penetration although it also induces larger oocyte deformation and more oocyte damage. This paper reports on a new piezo drill device that uses a flexure guidance mechanism and a systematically designed pulse train with an appropriate base frequency. Both simulation and experimental results demonstrate that a small lateral vibration amplitude (e.g., 2 ) and an axial vibration amplitude as large as 1.2 were achieved. Besides achieving 100% effectiveness in the penetration of mouse oocytes (n = 45), the new piezo device during ZP penetration induced a small oocyte deformation of 3.4 versus larger than 10 using existing piezo drill devices.

  3. Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap

    International Nuclear Information System (INIS)

    Zou, Peng; Chen, Qixin; Yu, Yang; Xia, Qing; Kang, Chongqing

    2017-01-01

    Highlights: • How electricity markets are evolving with the changing generation mix is studied. • China 2050 High Renewable Energy Penetration Roadmap are empirically analysed. • A multi-period Nash-Cournot model is established to study the market equilibrium. • Energy storages are analysed and compared to reveal their impacts on the equilibrium. - Abstract: The power generation mix are significantly changing due to the growth of stricter energy policies. The renewables are increasingly penetrating the power systems and leading to more clean energy and lower energy prices. However, they also require much more flexibilities and ancillary services to handle their uncertainties and variabilities. Thus, the requirements for regulation and reserve services may dramatically increase while the supplies of these services, which are mainly from the traditional thermal plants, remain almost invariant. This changing situation will cause higher regulation and reserve prices and impact the profit models and revenue structures of the traditional plants. How electricity markets are actually evolving with the changing generation mix? Can enough backup power plants be given adequate economic incentives and thus remained with the increasing renewables and the decreasing energy prices and productions? Can de-carbonization be fully performed in power systems? To explicitly answer the question, this paper uses a multi-period Nash-Cournot equilibrium model to formulate the evolution of power markets incorporating different types of generators, including thermal units, hydro units, wind farms, solar stations and energy storage systems. The price changes in the co-optimized energy, regulation and reserve markets, and the profit changes of various generators are studied. And the variabilities and uncertainties of renewable generation sources are considered in dynamically determining the requirements of regulation and reserve services. Based on the China 2050 High Renewable Energy

  4. Stochastic dynamics of penetrable rods in one dimension: occupied volume and spatial order.

    Science.gov (United States)

    Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto

    2013-06-28

    The occupied volume of a penetrable hard rod (HR) system in one dimension is probed through the use of molecular dynamics simulations. In these dynamical simulations, collisions between penetrable rods are governed by a stochastic penetration algorithm (SPA), which allows for rods to either interpenetrate with a probability δ, or collide elastically otherwise. The limiting values of this parameter, δ = 0 and δ = 1, correspond to the HR and the ideal limits, respectively. At intermediate values, 0 exclusive and independent events is observed, making prediction of the occupied volume nontrivial. At high hard core volume fractions φ0, the occupied volume expression derived by Rikvold and Stell [J. Chem. Phys. 82, 1014 (1985)] for permeable systems does not accurately predict the occupied volume measured from the SPA simulations. Multi-body effects contribute significantly to the pair correlation function g2(r) and the simplification by Rikvold and Stell that g2(r) = δ in the penetrative region is observed to be inaccurate for the SPA model. We find that an integral over the penetrative region of g2(r) is the principal quantity that describes the particle overlap ratios corresponding to the observed penetration probabilities. Analytic formulas are developed to predict the occupied volume of mixed systems and agreement is observed between these theoretical predictions and the results measured from simulation.

  5. Surgical management of penetrating pelvic trauma: a case report and literature review

    Directory of Open Access Journals (Sweden)

    ZHANG Peng

    2012-12-01

    Full Text Available 【Abstract】 High-velocity penetrating pelvic injury is one of the most difficult challenges to trauma surgeons. The injury sites frequently include soft tissue, pelvis, geni-tourinary tract, vascular structures and intraabdominal viscera. We present an unusual case of a male patient suf-fering a collision at night with a deformed steel bar penetrat-ing into his right groin. Careful planning of the surgical approach is important before extracting the foreign body. The possibility of multiorgan damage to intrapelvic struc-tures such as colon, urinary bladder, vessels and nerves, frequently necessitates a multidisciplinary involvement and systematic approach. Besides, limited incision as well as modification should be considered, and debridement and perioperative antibiotics can be used to reduce the risk of serious wound infection. Key words: Pelvis; Debridement; Wounds, penetrating

  6. Chronic Disease Prevalence and Medicare Advantage Market Penetration

    Directory of Open Access Journals (Sweden)

    Steven W. Howard

    2015-10-01

    Full Text Available By March 2015, 30% of all Medicare beneficiaries were enrolled in Medicare Advantage (MA plans. Research to date has not explored the impacts of MA market penetration on individual or population health outcomes. The primary objective of this study is to examine the relationships between MA market penetration and the beneficiary’s portfolio of cardiometabolic diagnoses. This study uses 2004 to 2008 Medical Expenditure Panel Survey (MEPS Household Component data to construct an aggregate index that captures multiple diagnoses in one outcome measure (Chronic Disease Severity Index [CDSI]. The MEPS data for 8089 Medicare beneficiaries are merged with MA market penetration data from Centers for Medicare and Medicaid Services (CMS. Ordinary least squares regressions are run with SAS 9.3 to model the effects of MA market penetration on CDSI. The results suggest that each percentage increase in MA market penetration is associated with a greater than 2-point decline in CDSI (lower burden of cardiometabolic chronic disease. Spill-over effects may be driving improvements in the cardiometabolic health of beneficiary populations in counties with elevated levels of MA market penetration.

  7. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants

    NARCIS (Netherlands)

    Nielson, KK; Rogers, VC; Holt, RB; Pugh, TD; Grondzik, WA; deMeijer, RJ

    1997-01-01

    Radon movement through 12 test slabs with different cracks, pipe penetrations, cold joints, masonry blocks, sealants, and tensile stresses characterized the importance of these anomalous structural domains, Diffusive and advective radon transport were measured with steady-state air pressure

  8. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  9. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  10. Penetrating eye injury in war.

    Science.gov (United States)

    Biehl, J W; Valdez, J; Hemady, R K; Steidl, S M; Bourke, D L

    1999-11-01

    The percentage of penetrating eye injuries in war has increased significantly in this century compared with the total number of combat injuries. With the increasing use of fragmentation weapons and possibly laser weapons on the battle-field in the future, the rate of eye injuries may exceed the 13% of the total military injuries found in Operations Desert Storm/Shield. During the Iran-Iraq War (1980-1988), eye injuries revealed that retained foreign bodies and posterior segment injuries have an improved prognosis in future military ophthalmic surgery as a result of modern diagnostic and treatment modalities. Compared with the increasing penetrating eye injuries on the battlefield, advances in ophthalmic surgery are insignificant. Eye armor, such as visors that flip up and down and protect the eyes from laser injury, needs to be developed. Similar eye protection is being developed in civilian sportswear. Penetrating eye injury in the civilian sector is becoming much closer to the military model and is now comparable for several reasons.

  11. Parametric analysis of neutron streaming through major penetrations in the 0.914 m TFTR test cell floor

    International Nuclear Information System (INIS)

    Ku, L.P.; Liew, S.L.; Kolibal, J.G.

    1985-09-01

    Neutron streaming through penetrations in the 0.914 m TFTR test cell floor has two distinct features: (1) the oblique angle of incidence; and (2) the high order of anisotropy in the angular distribution for incident neutrons with energies > 10 keV. The effects of these features on the neutron streaming into the TFTR basement were studied parametrically for isolated penetrations. Variations with respect to the source energies, angular distributions, and sizes of the penetrations were made. The results form a data base from which the spatial distribution of the neutron flux in the basement due to multiple penetrations may be evaluated

  12. The impact of high penetration of wind energy on the vulnerability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    EL-Arroudi, K.; Joos, G.; McGillis, D. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper examined the impact of higher penetrations of wind energy installations on the vulnerability of power systems. Vulnerability was defined in terms of migration of system states based on the contingencies that might occur. It was noted that both the penetration levels and physical locations of wind energy installations in power systems have a strong influence on system vulnerability. A methodology was proposed to analyze the impacts of wind energy on power system vulnerability through the construction of a decision-tree classification model at the point of common coupling (PCC) bus. The aim of the model was to determine planning criteria for wind power interconnection and to ensure that design concepts are adequate and secure. The model was built by simulating a pre-specified range of system contingencies to generate patterns at the PCC bus. Actual measurements were then compared against known patterns, from which the stress levels of disturbances were estimated. Stress levels were defined in terms of the performance level measures delineated by National Electricity Reliability Council (NERC) planning standards. The methodology is a non-parametric learning technique able to produce classifiers about given problems in order to deduce information from new, unobserved cases. A case study consisting of a 4-machine system with a total generation of 2295 MW was presented where wind-based generation accounted for 450 MW. The decision-tree classifier was constructed by simulating 120 events generated by combinations of contingencies; seasonal wind patterns and different wind production levels per season. Results showed that with a knowledge of the total penetration level and location of wind power installations, it is possible to estimate the effect of wind energy on the vulnerability of a power system. 12 refs., 6 figs.

  13. Cracks on instrumentation penetrations in reactor vessel: a new challenge; Fissuration des penetrations de cuve: un nouveau defi

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-02-01

    In august 2003 NRC (nuclear regulatory commission) issued a warning concerning the deposits of boron acid that might accumulate on instrumental penetrations in the bottom of PWR vessels. These deposits were first detected on the David-Besse power plant and more recently on the unit 1 of South Texas Project (STP) during a refueling shutdown. STP contracted with the Areva company in order to perform inspections on all the 58 vessel penetrations of the unit 1 and to propose solutions. For that purpose the Areva company had to design a specific visual inspection tool that combined both ultra-sound method and Foucault current probing. The results of the inspection campaign on the unit 1 showed that only 2 penetration tubes were concerned with axial defects in their walls, that no circumferential defects were detected and that butt welds presented no cracks. The 2 incriminated penetration tubes were repaired: a section of both was replaced by an alloy-690 tube. (A.C.)

  14. Effects of egg shell quality and washing on Salmonella Infantis penetration.

    Science.gov (United States)

    Samiullah; Chousalkar, K K; Roberts, J R; Sexton, M; May, D; Kiermeier, A

    2013-07-15

    The vast majority of eggs in Australia are washed prior to packing to remove dirt and fecal material and to reduce the microbial contamination of the egg shell. The egg contents can be an ideal growth medium for microorganisms which can result in human illness if eggs are stored improperly and eaten raw or undercooked, and it is estimated that egg-related salmonellosis is costing Australia $44 million per year. Egg shell characteristics such as shell thickness, amount of cuticle present, and thickness of individual egg shell layers can affect the ease with which bacteria can penetrate the egg shell and washing could partially or completely remove the cuticle layer. The current study was conducted to investigate the effects of egg washing on cuticle cover and effects of egg shell quality and cuticle cover on Salmonella Infantis penetration of the egg shell. A higher incidence of unfavorable ultrastructural variables of the mammillary layer such as late fusion, type B bodies, type A bodies, poor cap quality, alignment, depression, erosion and cubics were recorded in Salmonella penetrated areas of egg shells. The influence of egg washing on the ability of Salmonella Infantis on the egg shell surface to enter the egg internal contents was also investigated using culture-based agar egg penetration and real-time qPCR based experiments. The results from the current study indicate that washing affected cuticle cover. There were no significant differences in Salmonella Infantis penetration of washed or unwashed eggs. Egg shell translucency may have effects on Salmonella Infantis penetration of the egg shell. The qPCR assay was more sensitive for detection of Salmonella Infantis from egg shell wash and internal contents than traditional microbiological methods. The agar egg and whole egg inoculation experiments indicated that Salmonella Infantis penetrated the egg shells. Egg washing not only can be highly effective at removing Salmonella Infantis from the egg shell surface

  15. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  16. Penetration Testing dan Analisis Kemanan Web Paud Dikmas

    OpenAIRE

    Giffari, Abizar

    2018-01-01

    Sebuah instansi atau perusahaan tentunya mempunyai data penting yang tersimpan dalam sebuah sistem database yang kuat dan aman untuk menghindari ancaman pencurian data dari pihak luar. Untuk mengukur sejauh mana tingkat keamanan yang dibuat, diperlukan sebuah metode pengetesan yang disebut Penetration Testing. Penetration Testing memungkinkan kita untuk dapat menentukan sejauh mana tingkat keamanan sistem yang di test. Penetration Testing juga memungkinkan kita menyerang sistem layaknya attac...

  17. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Pieters, W.; Arnold, F.; Stoelinga, M.I.A.

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Therefore, penetration testing has thus far been used as a qualitative research method. To enable quantitative approaches to security risk management,

  18. Analytical review of 664 cases of penetrating buttock trauma

    Directory of Open Access Journals (Sweden)

    Schulte Klaus-Martin

    2011-10-01

    Full Text Available Abstract A comprehensive review of data has not yet been provided as penetrating injury to the buttock is not a common condition accounting for 2-3% of all penetrating injuries. The aim of the study is to provide the as yet lacking analytical review of the literature on penetrating trauma to the buttock, with appraisal of characteristics, features, outcomes, and patterns of major injuries. Based on these results we will provide an algorithm. Using a set of terms we searched the databases Pub Med, EMBASE, Cochran, and CINAHL for articles published in English between 1970 and 2010. We analysed cumulative data from prospective and retrospective studies, and case reports. The literature search revealed 36 relevant articles containing data on 664 patients. There was no grade A evidence found. The injury population mostly consists of young males (95.4% with a high proportion missile injury (75.9%. Bleeding was found to be the key problem which mostly occurs from internal injury and results in shock in 10%. Overall mortality is 2.9% with significant adverse impact of visceral or vascular injury and shock (P P

  19. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  20. Lipid shell-enveloped polymeric nanoparticles with high integrity of lipid shells improve mucus penetration and interaction with cystic fibrosis-related bacterial biofilms

    DEFF Research Database (Denmark)

    Wan, Feng; Nylander, Tommy; Klodzinska, Sylvia Natalie

    2018-01-01

    , we describe facile methods to prepare Lipid@NPs with high integrity of lipid shells and demonstrate the potential of Lipid@NPs in effective mucus penetration and interaction with cystic fibrosis-related bacterial biofilms. Lipid shell-enveloped polystyrene NPs with high integrity of lipid shells (c...... mediated layer-by layer approach. Our results suggest that the integrity of the lipid envelopes is crucial for enabling the diffusion of Lipid@PSNPs into the mucus layer and promoting the interaction of Lipid@PSNPs with a bacterial biofilm....

  1. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    Science.gov (United States)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  2. A study of the penetration of projectiles into marine sediments

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1985-01-01

    The work described in this document consists of three main parts: - Application, after having reviewed calculation methods and known codes, of a dynamic plasticity model based on the upper bound-method (with dissipated energy calculations by plastic deformations). The soil model used for this calculation is the Cambridge Clay Model. - Carrying out a programme of tests with instrumented small scale penetrators in centrifuge on a consolidated clay-target. The trials are done under 50 g, with projectiles, fired with an airgun at high impact velocity (50 m/s). The penetrators' instrumentation consists of either measuring acceleration, or tip force with strain gauges. - The mounting of a small instrumented penetrator for shallow water depth experimentations, with an accelerometer, and a local cell for tip resistance. A rapid electronic data acquisition system has been developed for these experimentations. The preliminary tests are done in a large tank filled with clay. The geotechnical characteristics of the clay are perfectly controlled. The tests performed under these conditions have shown the following observations: the rapid electronic data acquisition system works perfectly and could be used as a basic component for a deep water instrumentated penetrator; the results, obtained in these particular test conditions, are in a perfect agreement with the predictions of the model developed in the frame of this contract

  3. Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.

    Science.gov (United States)

    Kwon, S R; Wertz, P W; Li, Y; Chan, D C N

    2012-02-01

    Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Quantitative Penetration Testing with Item Response Theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle Ida Antoinette

    2014-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  5. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  6. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  7. Eddy current testing with high penetration; WS-Pruefungen mit grosser Eindringtiefe

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Kroening, M. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1999-08-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [Deutsch] Das Niederfrequenz(NF)-Wirbelstrom(WS)-Verfahren wird eingesetzt, um eine grosse Eindringtiefe zu erzielen. Die erreichbare Tiefenreichweite wird u.a. durch die niedrigste Prueffrequenz bestimmt, die zusammen mit dem Wirbelstrom-Sensor realisiert werden kann. Bei Einsatz von induktiven Sensoren geht mit abnehmender Prueffrequenz der Messeffekt proportional zurueck (Induktionswirkung). Eine weitere Absenkung der Prueffrequenzen macht den Einsatz von andersartigen Sensoren notwendig, z.B. den GMR (Giant Magnetic Resistance), der eine gleichmaessige Messempfindlichkeit bis zum Gleichfeld besitzt. Das eingesetzte Mehrfrequenz-Wirbelstrom-Pruefverfahren MFEC 3 des IZFP arbeitet mit drei gleichzeitig eingespeisten Prueffrequenzen. Dabei werden zwei Varianten von WS-Sensoren eingesetzt. Beide besitzen auf der Senderseite eine induktive Wicklung in der Art einer Tastsonde. Die Empfaengerseite ist entweder ebenfalls eine induktive Wicklung oder ein magnetfeldempfindlicher Widerstand (GMR). (orig./DGE)

  8. Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation

    Science.gov (United States)

    Feijoo, Felipe A.

    In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost

  9. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  10. Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study

    NARCIS (Netherlands)

    Civolani, S.; Leis, M.; Grandi, G.; Garzo, E.; Pasqualini, E.; Musacchi, S.; Chicca, M.; Castaldelli, G.; Rossie, M.; Tjallingii, W.F.

    2011-01-01

    Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of “Candidatus Phytoplasma pyri” responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections

  11. Cryo-braking using penetrators for enhanced capabilities for the potential landing of payloads on icy solar system objects

    Science.gov (United States)

    Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.

    2018-03-01

    The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.

  12. Premium Efficiency Motors And Market Penetration Policy

    Energy Technology Data Exchange (ETDEWEB)

    Benhaddadi, Mohamed; Olivier, Guy

    2010-09-15

    This paper illustrates the induced enormous energy saving potential, permitted by using high-efficiency motors. Furthermore, the most important barriers to larger high-efficiency motors utilization are identified, and some incentives recommendations are given to overcome identified impediments. The authors consider that there is a strong case to enhance incentives policies for larger market penetration. The US Energy Policy Act and the Canadian Energy Efficient Act have lead to North American leadership on motor efficiency implementation. North America is not on the leading edge for energy saving and conservation. Motor efficiency is an exception that should be at least maintained.

  13. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  14. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    There is considerable debate about the degree to which restructured markets perform successfully in their use of capacity markets. In providing appropriate incentives for new and existing generation to meet reliability requirements, a variety of capacity market designs have developed across RTOs and ISOs in the United States and internationally. Growing levels of variable renewable energy (VRE) resources arguably create new challenges for capacity market designs, because VREs suppress energy prices while providing relatively little capacity, with these effects increase with VRE penetration. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets under consideration using variable resource requirement (VRR) demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers, including where there substantive differences in opinion. Third, we consider some of the challenges that may be specific to higher penetration levels of VRE. While the well known 'merit order' effect from VRE can be expected to suppress wholesale energy prices and revenue, this may be partly mitigated by increased capacity payments and the greater importance of AS payments for flexible capacity. The potential for greater reliance on capacity markets for generator revenues may amplify any inefficiency and costs associated with capacity price volatility and other suboptimal market design choices. Regulatory intervention to ensure adequate capacity payments and ancillary service revenue may become more prevalent under current market designs as the timescale for market signals shifts increasingly from near term (e.g., day-ahead in wholesale electricity markets) to longer term (annual intervals in capacity markets). Our review and discussion with market participants suggest substantive challenges may

  15. Prophylactic antibiotics for penetrating abdominal trauma.

    Science.gov (United States)

    Brand, Martin; Grieve, Andrew

    2013-11-18

    Penetrating abdominal trauma occurs when the peritoneal cavity is breached. Routine laparotomy for penetrating abdominal injuries began in the 1800s, with antibiotics first being used in World War II to combat septic complications associated with these injuries. This practice was marked with a reduction in sepsis-related mortality and morbidity. Whether prophylactic antibiotics are required in the prevention of infective complications following penetrating abdominal trauma is controversial, however, as no randomised placebo controlled trials have been published to date. There has also been debate about the timing of antibiotic prophylaxis. In 1972 Fullen noted a 7% to 11% post-surgical infection rate with pre-operative antibiotics, a 33% to 57% infection rate with intra-operative antibiotic administration and 30% to 70% infection rate with only post-operative antibiotic administration. Current guidelines state there is sufficient class I evidence to support the use of a single pre-operative broad spectrum antibiotic dose, with aerobic and anaerobic cover, and continuation (up to 24 hours) only in the event of a hollow viscus perforation found at exploratory laparotomy. To assess the benefits and harms of prophylactic antibiotics administered for penetrating abdominal injuries for the reduction of the incidence of septic complications, such as septicaemia, intra-abdominal abscesses and wound infections. Searches were not restricted by date, language or publication status. We searched the following electronic databases: the Cochrane Injuries Group Specialised Register, CENTRAL (The Cochrane Library 2013, issue 12 of 12), MEDLINE (OvidSP), Embase (OvidSP), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED), ISI Web of Science: Conference Proceedings Citation Index- Science (CPCI-S) and PubMed. Searches were last conducted in January 2013. All randomised controlled trials of antibiotic prophylaxis in patients with penetrating abdominal trauma versus no

  16. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  17. [Waardenburg syndrome. A heterogenic disorder with variable penetrance].

    Science.gov (United States)

    Apaydin, F; Bereketoglu, M; Turan, O; Hribar, K; Maassen, M M; Günhan, O; Zenner, H-P; Pfister, M

    2004-06-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder characterised by pigmentary anomalies of the skin, hairs, eyes and various defects of other neural crest derived tissues. It accounts for over 2% of congenital hearing impairment. At least four types are recognized on the basis of clinical and genetic criteria. Based on a screening of congenitally hearing impaired children, 12 families with WS type II were detected. Of special interest was the phenotype of these families, in particular the reduced penetrance of hearing impairment within the families. In all cases a high variability of the disease phenotype was detected and the penetrance of the clinical traits varied accordingly. Therefore, it is not possible to predict the clinical phenotype even in a single family. Based on these studies, we plan to identify the pathogenetic cause of the disease in order to perform a detailed genotype/phenotype analysis.

  18. Low resistance bakelite RPC study for high rate working capability

    International Nuclear Information System (INIS)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-01-01

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm 2 . The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs

  19. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    Science.gov (United States)

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  20. Air pollutant penetration through airflow leaks into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  1. [Special penetration needling for refractory peripheral facial paralysis].

    Science.gov (United States)

    Cao, Rongjuan; Qiu, Xiaohu; Xie, Xiaokun

    2018-03-12

    To observe the clinical effect difference between special penetration needling and conventional penetration needling for the refractory peripheral facial paralysis. A total of 97 patients with intractable facial paralysis were randomized into an observation group (49 cases and 2 dropping) and a control group (48 cases and 4 dropping). In the observation group, special penetration needling at an angle about 45° between the penetration needle and paralysis muscle bundle was used, Yangbai (GB 14) through Touwei (ST 8), Yangbai (GB 14) through Shangxing (GV 23), Sizhukong (TE 23) through Yuyao (EX-HN 4), Qianzhen (Extra) through Yingxiang (LI 20), mutual penetration between Yingxiang (LI 20) and Jiache (ST 6). Conventional penetration needling was applied in the control group, Yangbai (GB 14) through Yuyao (EX-HN 4), Cuanzhu (BL 2) through Yuyao (EX-HN 4), mutual penetration between Dicang (ST 4) and Jiache (ST 6), Qianzheng (Extra) through Dicang (ST 4), Sibai (ST 2) through Yingxiang (LI 20). Three groups of electroacupuncture (discontinuous wave, 1 Hz) with tolerance were connected respectively in the two groups, Yangbai (GB 14) and Sizhukong (TE 23), Yangbai (GB 14) and Qianzheng (Extra), Yingxiang (LI 20) and Jiache (ST 6) in the observation group, Yangbai (GB 14) and Cuanzhu (BL 2), Dicang (ST 4) and Jiache (ST 6), Qianzheng (Extra) and Sibai (ST 2) in the control group. TDP was applied in the two groups at the affected Yifeng (TE 17), Jiache (ST 6) and Qianzheng (Extra), which were around the ear. Perpendicular insertion was used at Yifeng (TE 17) at the affected side and Hegu (LI 4) at the healthy side and bilateral Zusanli (ST 36). The needles were retained for 30 min. The treatment was given for 3 courses, once a day and 10 days as a course, 5 days at the interval. House-Brackmann (H-B) facial nerve grading score was recorded before and after treatment. The clinical effects were compared. The H-B scores after treatment in the two groups were higher than

  2. A versatile electrical penetration design qualified to IEEE Std. 317-1983

    International Nuclear Information System (INIS)

    Lankenau, W.; Wetherill, T.M.

    1994-01-01

    Although worldwide demand for new construction of nuclear power stations has been on a decline, the available opportunities for the design and construction of qualified electrical penetrations continues to offer challenges, requiring a highly versatile design. Versatility is necessary in order to meet unique customer requirements within the constraints of a design basis qualified to IEEE Std. 317-1983. This paper summarizes such a versatile electrical penetration designed, built and tested to IEEE Std. 317-1983. The principal features are described including major materials of construction. Some of the design constraints such as sealing requirements, and conductor density (including numerical example) are discussed. The requirements for qualification testing of the penetration assembly to IEEE Std. 317-1983 are delineated in a general sense, and some typical test ranges for preconditioning, radiation exposure, and LOCA are provided. The paper concludes by describing ways in which this versatile design has been adapted to meet unique customer requirements in a variety of nuclear power plants

  3. Dealing with the Surgical and Medical Challenges of Penetrating Brain Injuries

    Directory of Open Access Journals (Sweden)

    Nikolaos Syrmos

    2013-01-01

    Full Text Available Peacetime has reduced the overall incidence of penetrating brain injuries (PBI, and those related to missile penetration are not common anymore at least in western countries. Nevertheless, PBI still occur, and car crashes or work accidents are their main causes. The management of such cases is characterized by many challenges, not only from a surgical and medical point of view, but also for the different and sometimes bizarre dynamics by which they present. Herein we report an unusual deep penetrating brain injury, due to a high-energy crash against a metallic rod in a construction site, with a good surgical outcome despite dramatic clinical conditions on admission. A discussion of the surgical results and functional outcome related to PBI, as found in the English medical literature, is provided. Moreover the most common postoperative complications along with the diagnostic flow charts and therapeutic options useful to prevent inappropriate treatment are highlighted.

  4. Short-Term and Medium-Term Reliability Evaluation for Power Systems With High Penetration of Wind Power

    DEFF Research Database (Denmark)

    Ding, Yi; Singh, Chanan; Goel, Lalit

    2014-01-01

    reliability evaluation techniques for power systems are well developed. These techniques are more focused on steady-state (time-independent) reliability evaluation and have been successfully applied in power system planning and expansion. In the operational phase, however, they may be too rough......The expanding share of the fluctuating and less predictable wind power generation can introduce complexities in power system reliability evaluation and management. This entails a need for the system operator to assess the system status more accurately for securing real-time balancing. The existing...... an approximation of the time-varying behavior of power systems with high penetration of wind power. This paper proposes a time-varying reliability assessment technique. Time-varying reliability models for wind farms, conventional generating units, and rapid start-up generating units are developed and represented...

  5. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian

    2013-01-01

    This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  6. Apparatus utilized for injecting fluids into earth formations penetrated by a well

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    1967-04-06

    An apparatus useful for injecting fluid into earth formations penetrated by a well consists of a tubular element which is inserted into the well. A number of axially spaced parts above the tubular element are capable of packing off chosen portions of the well casing. Flow passages in the tubular element cooperate with the packer-off, spaced parts, connecting the inside of the tubular element with the well casing. Check valves close each of the passages to fluid flow. Each check valve is sensitive to a predetermined pressure differential inside the tubular element and to the pressure on the packed-off portion of the well casing outside the tubular element, in order to control the passageway. (9 claims)

  7. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  8. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  9. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  10. Tretinoin-based formulations - influence of concentration and vehicles on skin penetration

    Directory of Open Access Journals (Sweden)

    Edileia Bagatin

    2015-03-01

    Full Text Available Tretinoin is used in the management of acne and it is part of a gold standard treatment for photoaging. It has also been reported as an agent for superficial chemical peeling in highly concentrated formulations with few considerations about skin penetration. The aim of this study was to evaluate the influence of drug concentration and vehicles currently used on skin penetration of tretinoin. In vitro permeation tests were carried out using Franz diffusion cells fitted with porcine ear skin and 10% aqueous methanol in the receptor compartment. Formulations studied, cream or hydroalcoholic dispersion, containing 0.25%, 1% and 5% of tretinoin were placed in the donor compartment for six hours. Tretinoin concentration in skin layers was measured by high performance liquid chromatography. The largest amount of tretinoin from both vehicles was detected in stratum corneum with significant differences among the three concentrations. The hydroalcoholic dispersion was the best vehicle. Significant amounts of tretinoin were found even in deep layers of epidermis. The formulation with 0.25% tretinoin showed better results when considered the amount of tretinoin on skin in terms of percentage. Finally, skin penetration of tretinoin was influenced by vehicle and concentration of this drug used in formulation.

  11. Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics

    Directory of Open Access Journals (Sweden)

    J.D. Clayton

    2016-08-01

    Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.

  12. Transactive Demand Side Management Programs in Smart Grids with High Penetration of EVs

    Directory of Open Access Journals (Sweden)

    Poria Hasanpor Divshali

    2017-10-01

    Full Text Available Due to environmental concerns, economic issues, and emerging new loads, such as electrical vehicles (EVs, the importance of demand side management (DSM programs has increased in recent years. DSM programs using a dynamic real-time pricing (RTP method can help to adaptively control the electricity consumption. However, the existing RTP methods, particularly when they consider the EVs and the power system constraints, have many limitations, such as computational complexity and the need for centralized control. Therefore, a new transactive DSM program is proposed in this paper using an imperfect competition model with high EV penetration levels. In particular, a heuristic two-stage iterative method, considering the influence of decisions made independently by customers to minimize their own costs, is developed to find the market equilibrium quickly in a distributed manner. Simulations in the IEEE 37-bus system with 1141 customers and 670 EVs are performed to demonstrate the effectiveness of the proposed method. The results show that the proposed method can better manage the EVs and elastic appliances than the existing methods in terms of power constraints and cost. Also, the proposed method can solve the optimization problem quick enough to run in real-time.

  13. Measurements of the effect of humidity on radio-aerosol penetration through ultrafine capillaries

    International Nuclear Information System (INIS)

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 microm. The ultrafine capillaries had a diameter of 250 microm. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios

  14. Feasibility of Penetrant Testing on Surface Axial-Radial Cracks of GH4169 Super Alloy Turbine Disk

    Directory of Open Access Journals (Sweden)

    QIAO Haiyan

    2016-12-01

    Full Text Available The post emulsifiable and water-washable fluorescent penetrant testing were carried out with ZL-27A and ZL67 respectively. Ultrasonic cleaning by detergent were used for 30 minutes before penetrant. The parts were immersed and drained for 60 minutes. The macroscopic and microscopic characteristics of cracks were researched using the split mirror and scanning electron microscope. The results show that the outgrowth of high temperature oxidation plugs up the forging cracks. Thus the penetrant testing is not effective in detecting this type of cracks.

  15. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  16. Medicaid HMO penetration and its mix: did increased penetration affect physician participation in urban markets?

    Science.gov (United States)

    Adams, E Kathleen; Herring, Bradley

    2008-02-01

    To use changes in Medicaid health maintenance organization (HMO) penetration across markets over time to test for effects on the extent of Medicaid participation among physicians and to test for differences in the effects of increased use of commercial versus Medicaid-dominant plans within the market. The nationally representative Community Tracking Study's Physician Survey for three periods (1996-1997, 1998-1999, and 2000-2001) on 29,866 physicians combined with Centers for Medicare and Medicaid Services (CMS) and InterStudy data. Market-level estimates of Medicaid HMO penetration are used to test for (1) any participation in Medicaid and (2) the degree to which physicians have an "open" (i.e., nonlimited) practice accepting new Medicaid patients. Models account for physician, firm, and local characteristics, Medicaid relative payment levels adjusted for geographic variation in practice costs, and market-level fixed effects. There is a positive effect of increases in commercial Medicaid HMO penetration on the odds of accepting new Medicaid patients among all physicians, and in particular, among office-based physicians. In contrast, there is no effect, positive or negative, from expanding the penetration of Medicaid-dominant HMO plans within the market. Increases in cost-adjusted Medicaid fees, relative to Medicare levels, were associated with increases in the odds of participation and of physicians having an "open" Medicaid practice. Provider characteristics that consistently lower participation among all physicians include being older, board certified, a U.S. graduate and a solo practitioner. The effects of Medicaid HMO penetration on physician participation vary by the type of plan. If states are able to attract and retain commercial plans, participation by office-based physicians is likely to increase in a way that opens existing practices to more new Medicaid patients. Other policy variables that affect participation include the presence of a federally

  17. Civilian Penetrating Gunshot Injury to the Neurocranium in Enugu.

    Science.gov (United States)

    Onyia, Ephraim Eziechina; Chikani, Mark C; Mezue, Wilfred C; Uche, Enoch O; Iloabachie, Izuchukwu; Mesi, Matthew; Ejembi, Sunday; Agunwa, Chuka

    2017-01-01

    Civilian penetrating gunshot injuries to the neurocranium are no longer uncommon in Nigeria. Such injuries are however poorly reported. They are associated with poor outcome and, at close range, are frequently fatal, especially when inflicted by high-velocity weapons. Prompt transfer to neurosurgical service and urgent intervention may improve outcome in those that are not mortally wounded. Fifty-two patients with civilian penetrating gunshot wounds seen over a 10-year period (2004-2014) at the University of Nigeria Teaching Hospital and Memfys Hospital for Neurosurgery Enugu were reviewed retrospectively, and their data were analyzed to evaluate factors that impacted on outcome. Only patients with clinical and imaging evidence of cranial gunshot injuries who reached hospital alive were included in the study. The overall mortality and Glasgow outcome score were analyzed. Fifty-two patients with isolated civilian penetrating gunshot wounds were identified (M:F = 7.7:1); mean (standard deviation) age was 32.8 (11.9) years. There was a high correlation (0.983) between the sex of the patients and the outcome. The overall mortality was 30.8%, whereas the mortality for patients with postresuscitation Glasgow coma scale (GCS) score ≤8 was 57%, as against 12.9% in those in whom postresuscitation GCS was >8; meaning that 87.1% of patients in whom postresuscitation GCS was >8 survived. Thirty-one patients (59.6%) had papillary abnormalities. Majority of patients with monohemispheric lesions survived while all those with diencephalic, transventricular, and posterior fossa involvement had 100% mortality. Admitting GCS and bullet trajectory were predictive of outcome.

  18. Systematic Multi-variable H-infinity Control Design for Primary Frequency Regulation in Stand-alone Microgrids with High Penetration of Renewable Energy Sources

    OpenAIRE

    Lam , Quang Linh; Bratcu , Antoneta Iuliana; Riu , Delphine

    2016-01-01

    International audience; In this paper, a systematic design of a robust multi-variable control structure for primary frequency regulation in microgrids with high rate of renewable source penetration is proposed. The considered microgrid represents a diesel-photovoltaic-supercapacitor hybrid power generation system operating in stand-alone mode. The proposed control structure relies on a two-level architecture: classical PI-based current tracking controllers are placed on the low control level ...

  19. The mechanism of plasma-assisted penetration of NO2- in model tissues

    Science.gov (United States)

    He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2017-11-01

    Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.

  20. [National and regional market penetration rates of generic's high dosage buprenorphine: its evolution from 2006 to 2008, using reimbursed drug database].

    Science.gov (United States)

    Boczek, Christelle; Frauger, Elisabeth; Micallef, Joëlle; Allaria-Lapierre, Véronique; Reggio, Patrick; Sciortino, Vincent

    2012-01-01

    To assess the national market penetration rate (PR) of generic high-dosage buprenorphine (HDB) in 2008 and its evolution since their marketing (2006), and making a point for each dosage and at regional level. Retrospective study over data using national and regional health reimbursement database over three years (2006-2008). In 2008, the generic HDB's national MPR was 31%. The PR for each dosage were 45% for 0.4 mg, 36% for 2 mg and 19% for 8 mg. The (PR) based on Defined Daily Dose (DDD) was 23% in 2008, 15% in 2007 and 4% in 2006. In 2008, at the regional level, disparities were observed in the adjusted penetration rate from 15% in Île de France to 39% in Champagne Ardennes Lorraine. The national PR of generic HDB has increased. There are differences in MPR in terms of dosage and area. However, this PR is still low (in 2008, 82% of the delivered drugs are generics). © 2012 Société Française de Pharmacologie et de Thérapeutique.

  1. On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    International Nuclear Information System (INIS)

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-01-01

    Upper atmosphere science is placing increased emphasis on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here we illustrate a methodology whereby the fullest potential of such ionosonde data can be realized. Data from a chain of stations close to the -165 0 magnetic meridian and separated by about 5 0 in magnetic latitude are used to study the relationships between magnetic activity, hmF2, foF2, and inferred meridional winds during 17--28 April, 1979. Hourly values are fit in latitude using Legendre polynomials, and variations from quiet-time values are displayed in latitude-U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. For instance, net depletions in foF2 occur over the entire disturbed interval down to about 25 0 --30 0 latitude, apparently due to such increased N 2 densities that the resulting enhanced plasma loss rates overcompensate and ''positive'' storm effects whereby southward winds elevate the F-layer peak to altitudes of reduced chemical loss

  2. Neutron imaging of water penetration into cracked steel reinforced concrete

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.; Lehmann, E.H.

    2010-01-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  3. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers.

    Science.gov (United States)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n = 168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz); diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  4. Effect of characteristic of sorbents on their sulfur capture capability at a fluidized bed condition

    Energy Technology Data Exchange (ETDEWEB)

    Leming Cheng; Bo Chen; Ni Liu; Zhongyang Luo; Kefa Cen [Zhejiang University, Hangzhou (China). Clean Energy and Environment Engineering Key Lab of Ministry of Education, Institute for Thermal Power Engineering

    2004-05-01

    This research was intent for finding relationships among physical and/or chemical properties of sorbents and their sulfur capture capability at a fluidized bed condition. Three limestones and two seashells were chosen as a SO{sub 2} sorbent. Characteristics of sorbents were evaluated based on atomic absorption spectrophotometer, scanning electron microscope and mercury-penetration porosimeter analyses. Their sulfur capture capabilities were measured on a fluidized bed test system at 800, 850, 900 and 950{sup o}C. Conversion of the sobents was computed and analyzed depending on the sorbents' morphology and microstructure analysis. Results showed pore size and specific surface might have large influence on sorbents' desulfurization ability in the range of 800 950{sup o}C. 14 refs., 6 figs., 4 tabs.

  5. Prevention of serious impurity penetration into water-steam circuits

    International Nuclear Information System (INIS)

    Burgmann, F.; Bursik, A.; Flunkert, F.; Nieder, R.

    1977-01-01

    In consequence of reports from several power Plants concerning heavy damages due to penetrations of impurities into the water-steam circuit, the VGB Sub-Committee 'Water Chemistry in Thermal Power Plants' has established a working group to check-up how serious impurity penetration can be avoided. The lecture describes possible danger points. Suitable technical arrangements for the avoidance of penetrations, and possibilities for monitoring will be discussed. Penetration of impurities cannot be avoided with absolute reliability, even when the recommended arrangements and usual monitoring are realized. Additional measures for the protection of water steam circuits will be suggested. (orig.) [de

  6. Influence of planar macrodefects on the anisotropy of magnetic-flux penetration in YBa 2Cu 3O 7-δ

    Science.gov (United States)

    Cuche, E.; Indenbom, M. V.; André, M.-O.; Richard, P.; Benoit, W.; Wolf, Th.

    1996-02-01

    The magnetic flux penetration in a high-quality YBa 2Cu 3O 7-δ single crystal with an external field applied perpendicular to the crystalline c axis is directly visualized by means of the magneto-optical technique. The observations show that the field penetrates preferentially along the ab planes. Scanning acoustic microscopy reveals macrodefects along ab planes which strongly affect this anisotropy of the field penetration.

  7. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  8. Customized photorefractive keratectomy to correct high ametropia after penetrating keratoplasty: A pilot study

    OpenAIRE

    De Rosa, Giuseppe; Boccia, Rosa; Santamaria, Carmine; Fabbozzi, Lorenzo; De Rosa, Luigi; Lanza, Michele

    2014-01-01

    Purpose: To evaluate preliminarily the safety and efficacy of customized photorefractive keratectomy (PRK) to correct ametropia and irregular astigmatism after penetrating keratoplasty (PK). Methods: This pilot study included five eyes of five patients with a mean spherical equivalent of −5.1 ± 1.46 D (range from −2.75 to −6.50 D). In all cases, ametropia and irregular astigmatism was corrected with topography-guided customized PRK. Ocular examinations with topographic analysis were perfor...

  9. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  10. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  11. Age-related percutaneous penetration part 1: skin factors.

    Science.gov (United States)

    Konda, S; Meier-Davis, S R; Cayme, B; Shudo, J; Maibach, H I

    2012-05-01

    Changes in the skin that occur in the elderly may put them at increased risk for altered percutaneous penetration from pharmacotherapy along with potential adverse effects. Skin factors that may have a role in age-related percutaneous penetration include blood flow, pH, skin thickness, hair and pore density, and the content and structure of proteins, glycosaminoglycans (GAGs), water, and lipids. Each factor is examined as a function of increasing age along with its potential impact on percutaneous penetration. Additionally, topical drugs that successfully overcome the barrier function of the skin can still fall victim to cutaneous metabolism, thereby producing metabolites that may have increased or decreased activity. This overview discusses the current data and highlights the importance of further studies to evaluate the impact of skin factors in age-related percutaneous penetration.

  12. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy

    2013-05-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage times once the drop has reached its maximum spread on the surface. During the initial spreading stage, we compare our experimental data to a previously developed model which incorporates imbibition into the spreading dynamics and observe reasonable agreement. We find that the maximum spread is a strong function of the moisture content in the powder bed and that the total time from impact to complete drainage is always shorter than that for dry powder. Our results indicate that there is an optimum moisture content (or saturation) which leads to the fastest penetration. We use simple scaling arguments which also identify an optimum moisture content for fastest penetration, which agrees very well with the experimental result. © 2013 Elsevier B.V.

  13. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  14. Numerical analysis of impact-penetration problems for nuclear reactor safety

    International Nuclear Information System (INIS)

    Dubois, J.J.; Chedmail, J.F.; Bianchini, J.C.

    1977-01-01

    This paper discusses the finite element and finite difference analysis of two impact penetration problems, namely a fuel cask drop on a foundation slab and a missile penetration into a reinforced concrete structure. For a realistic detailed analysis, advanced techniques were required in the following areas: reinforced concrete simulation; remeshing algorithms for penetration induced distortions; boundary condition. The fuel cask drop on a concrete slab generates complex elasto plastic waves which propagate towards the pool where tensile cracks might appear. The problem is analysed in two steps: calculation of the energy absorbed locally around the impacted area; calculation of the three dimensional wave propagation towards the pool. For the analysis of missile penetration problems, two examples are shown: a 3000 kg missile with a velocity of 132 m/s penetrates a 1.2 m thick concrete wall (PAM-GDYNS) and a 3600 kg missile with a velocity of 90 m/s (F.D. Program HEMP-ESI) penetrates a wall at a floor level. For the second case, the computed impact-penetration mechanism is

  15. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  16. Topological properties of the limited penetrable horizontal visibility graph family

    Science.gov (United States)

    Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene

    2018-05-01

    The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

  17. Penetration of flomoxef into human maxillary and mandibular bones.

    Science.gov (United States)

    Igawa, H H; Sugihara, T; Yoshida, T; Kawashima, K; Ohura, T

    1995-09-01

    Penetration of flomoxef into the maxillary and mandibular bones was assayed clinically to provide data about its usefulness for the prevention of postoperative infection after maxillofacial surgery. Twenty-one patients undergoing maxillofacial surgery at our department were given flomoxef 2 g dissolved in 20 ml of physiological saline intravenously over 3 minutes during operation, and the serum, maxillary and mandibular concentrations were measured 1, 3, and 6 hours after injection by the band culture method using Escherichia coli 7437 as the indicator strain. The mean concentrations were 53.4, 16.1, and 2.6 micrograms/ml, respectively, in the serum, 17.6, 7.8, and 1.0 micrograms/g in maxillary bone, and 16.4, 4.2, and 0.9 micrograms/g in mandibular bone. The mean bone:serum ratios at 1, 3, and 6 hours were 33.0%, 48.2%, and 36.8%, respectively, for maxillary bone, and 30.7%, 26.2%, and 35.7% for mandibular bone. When compared with previously reported data on the bone:serum ratios in jaw of various other intravenous antibiotics, our results show that penetration of flomoxef into maxillary and mandibular bone is extremely high. As all the intramaxillary and intramandibular concentrations exceed its MIC80 values against clinical isolates of bacteria frequently isolated in cases of infection in the oral and maxillofacial region, it is apparent that one intravenous shot of flomoxef 2 g allows penetration of the drug into the maxillary and mandibular bones at effective concentrations. Flomoxef is therefore potentially useful for the prevention and treatment of infections in the oral and maxillofacial region, as it has excellent penetration into the maxillary and mandibular bones.

  18. Selective Nonoperative Management of Penetrating Abdominal Solid Organ Injuries

    Science.gov (United States)

    Demetriades, Demetrios; Hadjizacharia, Pantelis; Constantinou, Costas; Brown, Carlos; Inaba, Kenji; Rhee, Peter; Salim, Ali

    2006-01-01

    .0%), including 18 cases with grade III to V injuries, were successfully managed without a laparotomy and without any abdominal complication. Overall, 28.4% of all liver, 14.9% of kidney, and 3.5% of splenic injuries were successfully managed nonoperatively. Patients with isolated solid organ injuries treated nonoperatively had a significantly shorter hospital stay than patients treated operatively, even though the former group had more severe injuries. In 3 patients with failed nonoperative management and delayed laparotomy, there were no complications. Conclusions: In the appropriate environment, selective nonoperative management of penetrating abdominal solid organ injuries has a high success rate and a low complication rate. PMID:16998371

  19. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  20. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  1. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  2. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  3. Network Penetration Testing and Research

    Science.gov (United States)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  4. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  5. Fuel penetration of intersubassembly gaps in LMFBRs: a calculational method with the SIMMER-II code

    International Nuclear Information System (INIS)

    DeVault, G.P.

    1983-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor (LMFBR) undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. A possible avenue for early fuel removal in heterogeneous core LMFBRs is the failure of duct walls in disrupted driver subassemblies followed by fuel penetration into the gaps between blanket subassemblies. The SIMMER-II code was modified to simulate flow between subassembly gaps. Calculations with the modified SIMMER-II code indicate the capabilities of the method and the potential for fuel mass reduction in the active core

  6. CNS penetration of ART in HIV-infected children

    NARCIS (Netherlands)

    van den Hof, Malon; Blokhuis, Charlotte; Cohen, Sophie; Scherpbier, Henriette J.; Wit, Ferdinand W. N. M.; Pistorius, M. C. M.; Kootstra, Neeltje A.; Teunissen, Charlotte E.; Mathot, Ron A. A.; Pajkrt, Dasja

    2018-01-01

    Background: Paediatric data on CNS penetration of antiretroviral drugs are scarce. Objectives: To evaluate CNS penetration of antiretroviral drugs in HIV-infected children and explore associations with neurocognitive function. Patients and methods: Antiretroviral drug levels were measured in paired

  7. Effects of soap-water wash on human epidermal penetration.

    Science.gov (United States)

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  8. Analysis of 178 penetrating stomach and small bowel injuries.

    Science.gov (United States)

    Salim, Ali; Teixeira, Pedro G R; Inaba, Kenji; Brown, Carlos; Browder, Timothy; Demetriades, Demetrios

    2008-03-01

    Surgical site infections (SSIs), such as wound infection, fascial dehiscence, and intraabdominal abscess, commonly occur following penetrating abdominal trauma. However, most of the literature involves penetrating colon injuries. There are few reports describing complications following penetrating stomach and small bowel injuries. Based on the hypothesis that SSIs are commonly found following penetrating stomach and small bowel trauma, a prospective observational study was performed at an academic Level I trauma center from March 1, 2004 until August 31, 2006. The subjects were patients who had sustained a penetrating injury to the stomach or small bowel. Patients were followed for the development of an SSI, defined as wound infection, fascial dehiscence, or intraabdominal abscess. A total of 178 patients were admitted with penetrating stomach or small bowel injuries over the 29-month period. There were 121 (68%) gunshot injuries and 57 (32%) stab wounds. Associated intraabdominal injuries occurred in 74% of patients. Overall, SSIs occurred in 20% of cases. Risk factors for SSI included associated duodenal or colon injury, whereas time to operating room, blood loss, and type and duration of antibiotic use were not. When associated colon injuries were excluded, SSIs occurred in 16% of patients with gastric injuries and 13% of those with small bowel injuries. SSIs commonly follow penetrating stomach and small bowel trauma. Risk factors for SSI include associated duodenal or colon injury. Delay to operating room, blood loss, and type and length of antibiotic prophylaxis were not associated with an increased risk of SSI.

  9. NRC Information Notice No. 93-25: Electrical penetration assembly degradation

    International Nuclear Information System (INIS)

    Grimes, B.K.

    1993-01-01

    In July 1987 and in October 1989, the licensee for the Trojan Nuclear Plant, the Portland and General Electric Company, reported problems with containment air leakage through its Bunker-Ramo electrical penetration assembly seals. In July and August 1991, the NRC inspected the use of containment electrical penetration assembly seals at Trojan and concluded that the licensee had not established an effective program for trending and evaluating electrical penetration assembly seal leakage. On October 28, 1991, while the plant was in a refueling outage, the licensee reported to the NRC that in the originally installed electrical penetration assemblies, the seal (polyurethane) and lubricant (Celvacen or Glycerin) materials were inappropriate for the application. The licensee concluded that these materials may cause seal degradation and that the seals may become degraded if subjected to design basis accident conditions for moisture or temperature. The licensee replaced the electrical penetration assembly seal with an environmentally qualified ethylene propylene rubber seal and added a silicone rubber backup O-ring to the outer face of each electrical penetration assembly module. The licensee subsequently replaced all the Bunker-Ramo electrical penetration assemblies with Conax assemblies

  10. Civilian penetrating gunshot injury to the neurocranium in Enugu

    Directory of Open Access Journals (Sweden)

    Ephraim Eziechina Onyia

    2017-01-01

    Full Text Available Introduction: Civilian penetrating gunshot injuries to the neurocranium are no longer uncommon in Nigeria. Such injuries are however poorly reported. They are associated with poor outcome and, at close range, are frequently fatal, especially when inflicted by high-velocity weapons. Prompt transfer to neurosurgical service and urgent intervention may improve outcome in those that are not mortally wounded. Materials and Methods: Fifty-two patients with civilian penetrating gunshot wounds seen over a 10-year period (2004–2014 at the University of Nigeria Teaching Hospital and Memfys Hospital for Neurosurgery Enugu were reviewed retrospectively, and their data were analyzed to evaluate factors that impacted on outcome. Only patients with clinical and imaging evidence of cranial gunshot injuries who reached hospital alive were included in the study. The overall mortality and Glasgow outcome score were analyzed. Results: Fifty-two patients with isolated civilian penetrating gunshot wounds were identified (M:F = 7.7:1; mean (standard deviation age was 32.8 (11.9 years. There was a high correlation (0.983 between the sex of the patients and the outcome. The overall mortality was 30.8%, whereas the mortality for patients with postresuscitation Glasgow coma scale (GCS score ≤8 was 57%, as against 12.9% in those in whom postresuscitation GCS was> 8; meaning that 87.1% of patients in whom postresuscitation GCS was> 8 survived. Thirty-one patients (59.6% had papillary abnormalities. Majority of patients with monohemispheric lesions survived while all those with diencephalic, transventricular, and posterior fossa involvement had 100% mortality. Conclusions: Admitting GCS and bullet trajectory were predictive of outcome.

  11. Penetration testing with Perl

    CERN Document Server

    Berdeaux, Douglas

    2014-01-01

    If you are an expert Perl programmer interested in penetration testing or information security, this guide is designed for you. However, it will also be helpful for you even if you have little or no Linux shell experience.

  12. The penetration of fibrous media by aerosols as a function of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1963-11-15

    This paper is concerned with the accurate experimental determination of the penetration of fibrous filter media by aerosols as a function of particle size, a topic about which previous papers give partial and conflicting data. in the present work, a heterogeneous sodium chloride aerosol was sampled before and after passing through the glass fiber filter medium by means of an electrostatic precipitator and the samples were examined under the electron microscope; the relation between particle size and penetration was derives at different gas velocities by comparison of the size distribution of the filtered and unfiltered clouds. As an extension of this work, size analyses have been made of plutonium aerosols occurring in glove boxes and enclosures during typical working operations. This information is considered in relation to the penetration of plutonium and other high density aerosol materials through filters. (auth)

  13. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    Science.gov (United States)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  14. NSR&D FY17 Report: CartaBlanca Capability Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Long, Christopher Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Duan Zhong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    Over the last several years, particle technology in the CartaBlanca code has been matured and has been successfully applied to a wide variety of physical problems. It has been shown that the particle methods, especially Los Alamos's dual domain material point method, is capable of computing many problems involves complex physics, chemistries accompanied by large material deformations, where the traditional finite element or Eulerian method encounter significant difficulties. In FY17, the CartaBlanca code has been enhanced with physical models and numerical algorithms. We started out to compute penetration and HE safety problems. Most of the year we focused on the TEPLA model improvement testing against the sweeping wave experiment by Gray et al., because it was found that pore growth and material failure are essentially important for our tasks and needed to be understood for modeling the penetration and the can experiments efficiently. We extended the TEPLA mode from the point view of ensemble phase average to include the effects of nite deformation. It is shown that the assumed pore growth model in TEPLA is actually an exact result from the theory. Alone this line, we then generalized the model to include finite deformations to consider nonlinear dynamics of large deformation. The interaction between the HE product gas and the solid metal is based on the multi-velocity formation. Our preliminary numerical results suggest good agreement between the experiment and the numerical results, pending further verification. To improve the parallel processing capabilities of the CartaBlanca code, we are actively working with the Next Generation Code (NGC) project to rewrite selected packages using C++. This work is expected to continue in the following years. This effort also makes the particle technology developed with CartaBlanca project available to other part of the laboratory. Working with the NGC project and rewriting some parts of the code also given us an

  15. Design and Rationale for an In Situ Cryogenic Deformation Capability at a Neutron Source

    International Nuclear Information System (INIS)

    Livescu, V.; Clausen, B.; Sisneros, T.; Bourke, M.A.M.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    When performed in conjunction with neutron diffraction, in situ loading offers unique insights on microstructural deformation mechanisms. This is by virtue of the penetration and phase sensitivity of neutrons. At Los Alamos National Laboratory room and high temperature (up to 1500 deg. C) polycrystalline constitutive response is modeled using finite element and self-consistent models. The models are compared to neutron diffraction measurements. In doing so the implications of slip and creep to microstructural response have been explored. Recently we have been considering low temperature phenomena. This includes changes in deformation mechanisms such as the increased predilection for twinning over slip. Since this is associated with measurable texture changes as well as microstructural strain effects, it is well suited for study using neutron diffraction. This paper outlines the design and rationale for a cryogenic loading capability that will be used on the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at the Los Alamos Neutron Science Center (LANSCE)

  16. Standard practice for liquid penetrant examination for general industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures for penetrant examination of materials. Penetrant testing is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, shrinkage, laminations, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance testing. It can be effectively used in the examination of nonporous, metallic materials, ferrous and nonferrous metals, and of nonmetallic materials such as nonporous glazed or fully densified ceramics, as well as certain nonporous plastics, and glass. 1.2 This practice also provides a reference: 1.2.1 By which a liquid penetrant examination process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications and procedures dealing with the liquid penetrant testing of parts and materials. Agreement by the customer requesting penetrant inspection is strongly rec...

  17. Evaporation and skin penetration characteristics of mosquito repellent formulations

    International Nuclear Information System (INIS)

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-01-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss

  18. a Variant of Lsd-Slam Capable of Processing High-Speed Low-Framerate Monocular Datasets

    Science.gov (United States)

    Schmid, S.; Fritsch, D.

    2017-11-01

    We develop a new variant of LSD-SLAM, called C-LSD-SLAM, which is capable of performing monocular tracking and mapping in high-speed low-framerate situations such as those of the KITTI datasets. The methods used here are robust against the influence of erronously triangulated points near the epipolar direction, which otherwise causes tracking divergence.

  19. Integrated computation model of lithium-ion battery subject to nail penetration

    International Nuclear Information System (INIS)

    Liu, Binghe; Yin, Sha; Xu, Jun

    2016-01-01

    Highlights: • A coupling model to predict battery penetration process is established. • Penetration test is designed and validates the computational model. • Governing factors of the penetration induced short-circuit is discussed. • Critical safety battery design guidance is suggested. - Abstract: The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.

  20. Generic penetration in the retail antidepressant market.

    Science.gov (United States)

    Ventimiglia, Jeffrey; Kalali, Amir H

    2010-06-01

    In this article, we explore the accelerated penetration of generic antidepressants in the United States market following the availability of generic citalopram and sertraline. Analysis suggests that overall, generic penetration into the antidepressant market has grown from approximately 41 percent in January 2004 to over 73 percent in January 2010. Similar trends are uncovered when branded and generic prescriptions are analyzed by specialty.

  1. WAPTT - Web Application Penetration Testing Tool

    Directory of Open Access Journals (Sweden)

    DURIC, Z.

    2014-02-01

    Full Text Available Web applications vulnerabilities allow attackers to perform malicious actions that range from gaining unauthorized account access to obtaining sensitive data. The number of reported web application vulnerabilities in last decade is increasing dramatically. The most of vulnerabilities result from improper input validation and sanitization. The most important of these vulnerabilities based on improper input validation and sanitization are: SQL injection (SQLI, Cross-Site Scripting (XSS and Buffer Overflow (BOF. In order to address these vulnerabilities we designed and developed the WAPTT (Web Application Penetration Testing Tool tool - web application penetration testing tool. Unlike other web application penetration testing tools, this tool is modular, and can be easily extended by end-user. In order to improve efficiency of SQLI vulnerability detection, WAPTT uses an efficient algorithm for page similarity detection. The proposed tool showed promising results as compared to six well-known web application scanners in detecting various web application vulnerabilities.

  2. Penetrating power of resonant electromagnetic induction imaging

    Directory of Open Access Journals (Sweden)

    Roberta Guilizzoni

    2016-09-01

    Full Text Available The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm−1 concealed behind them.

  3. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    Directory of Open Access Journals (Sweden)

    Daqing Zhang

    2015-01-01

    Full Text Available Blood-brain barrier (BBB is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

  4. High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications

    Science.gov (United States)

    Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad

    2012-01-01

    NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure

  5. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    Science.gov (United States)

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  6. Simple amides of oleanolic acid as effective penetration enhancers.

    Science.gov (United States)

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.

  7. Safety considerations of laser related penetration in LCTR central power stations

    International Nuclear Information System (INIS)

    Botts, T.E.; Chan, C.K.; Ullman, A.Z.

    1976-01-01

    The following topics are briefly described: (1) requirements for optical penetration performance, (2) failure sequences in LCTR optical penetrations, (3) thermal stress in optical penetrations, and (4) nonlinear optical effects

  8. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro

    DEFF Research Database (Denmark)

    Badran, M M; Kuntsche, Judith; Fahr, A

    2009-01-01

    compared with an aqueous solution. Elevated TEWL values were measured after Dermaroller treatment compared to untreated human skin with a gradual increase of the TEWL over the first hour whereas afterwards the TEWL values decreased probably caused by a reduction of the pore size with time. Skin perforation......This study focused on the in vitro evaluation of skin perforation using a new microneedle device (Dermaroller) with different needle lengths (150, 500 and 1500 microm). The influence of the microneedle treatment on the morphology of the skin surface (studied by light and scanning electron...... microscopy), on the transepidermal water loss (TEWL) and on the penetration and permeation of hydrophilic model drugs was investigated using excised human full-thickness skin. Furthermore, invasomes - highly flexible phospholipid vesicles containing terpenes and ethanol as penetration enhancer - were...

  9. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  10. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal.

    Science.gov (United States)

    Cho, Woo Kyung; Ankrum, James A; Guo, Dagang; Chester, Shawn A; Yang, Seung Yun; Kashyap, Anurag; Campbell, Georgina A; Wood, Robert J; Rijal, Ram K; Karnik, Rohit; Langer, Robert; Karp, Jeffrey M

    2012-12-26

    North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill's geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations along regions of the quill where the cross sectional diameter grows rapidly, facilitating cutting of the tissue. Barbs located near the first geometrical transition zone exhibit the most substantial impact on minimizing the force required for penetration. Barbs at the tip of the quill independently exhibit the greatest impact on tissue adhesion force and the cooperation between barbs in the 0-2 mm and 2-4 mm regions appears critical to enhance tissue adhesion force. The dual functions of barbs were reproduced with replica molded synthetic polyurethane quills. These findings should serve as the basis for the development of bio-inspired devices such as tissue adhesives or needles, trocars, and vascular tunnelers where minimizing the penetration force is important to prevent collateral damage.

  11. Importance Of Penetration Testing For Legacy Operating System

    Directory of Open Access Journals (Sweden)

    Poorvi Bhatt

    2017-12-01

    Full Text Available Penetration testing is very important technique to find vulnerabilities in commercial networks. There are various techniques for ethical hacking via penetration testing. This report explains a white hat hacker approach of penetration testing. I have performed this test on private network where three PCs are connected through LAN via switch and without firewall. This network is not connected with Internet. All the PCs have windows operating system. The attacker host has windows server 2003 with Service Pack1 second host has windows XP with Service Pack 2 and third host has windows 2000 with service pack 4.

  12. Magnetic field penetration into superconductors with sharp edges

    International Nuclear Information System (INIS)

    Zhilichev, Yuriy N.

    2003-01-01

    The magnetic field and surface currents induced within a superconductor are calculated assuming the field penetrates in it near sharp corners. Rounding the corners is used to keep the field less than a critical value. Analytical formulas for a corner radius are given for a wire of the rectangular cross-section and a cylinder in the external magnetic field. A boundary integral method is used to calculate the boundary of the Meissner domain when the external field penetrates deep into the superconductor. The effect of degree of penetration on the magnetic moment of superconducting cylinders and wires is discussed

  13. Express penetration of hydrogen on Mg(10͞13) along the close-packed-planes.

    Science.gov (United States)

    Ouyang, Liuzhang; Tang, Jiajun; Zhao, Yujun; Wang, Hui; Yao, Xiangdong; Liu, Jiangwen; Zou, Jin; Zhu, Min

    2015-06-01

    Metal atoms often locate in energetically favorite close-packed planes, leading to a relatively high penetration barrier for other atoms. Naturally, the penetration would be much easier through non-close-packed planes, i.e. high-index planes. Hydrogen penetration from surface to the bulk (or reversely) across the packed planes is the key step for hydrogen diffusion, thus influences significantly hydrogen sorption behaviors. In this paper, we report a successful synthesis of Mg films in preferential orientations with both close- and non-close-packed planes, i.e. (0001) and a mix of (0001) and (10͞13), by controlling the magnetron sputtering conditions. Experimental investigations confirmed a remarkable decrease in the hydrogen absorption temperature in the Mg (10͞13), down to 392 K from 592 K of the Mg film (0001), determined by the pressure-composition-isothermal (PCI) measurement. The ab initio calculations reveal that non-close-packed Mg(10͞13) slab is advantageous for hydrogen sorption, attributing to the tilted close-packed-planes in the Mg(10͞13) slab.

  14. Estimating residual life of alloy 600 RPV penetrations

    International Nuclear Information System (INIS)

    Hunt, E.S.; White, G.A.; Pathania, R.; Arey, M.L.; Whitaker, D.E.

    1996-01-01

    Primary water stress corrosion cracking (PWSCC) of Alloy 600 penetrations PWR in reactor pressure vessel (RPV) heads has become a significant economic concern worldwide. PWSCC of these penetrations has led to extended maintenance outages, expensive inspections and repairs, and in some cases, replacement of the entire vessel head. This paper describes methodology developed to predict the remaining life of Alloy 600 penetrations in reactor vessel heads. Predictions of remaining life are an important input to planning models used by utilities to select a strategy for responding to the PWSCC issue at the lowest life cycle cost with an acceptably low risk of leakage. The remaining life of RPV penetrations is determined using the results of inspections of penetrations and statistical methods to predict future degradation. The analysis takes into account the effects of material properties, welding residual stresses, and operating temperature on PWSCC initiation and growth. The probability of developing cracks of various depths is assessed using Monte Carlo methods which provide for uncertainties in the input assumptions. For plants which have not yet performed inspections, remaining life predictions are based on inspection results from similar plants which have performed inspections with corrections made for known differences in design details, material properties and operating conditions

  15. Frozen-thawed rhesus sperm retain normal morphology and highly progressive motility but exhibit sharply reduced efficiency in penetrating cervical mucus and hyualuronic acid gel

    Science.gov (United States)

    Tollner, Theodore L.; Dong, Qiaoxiang; VandeVoort, Catherine A.

    2011-01-01

    The preservation of the genetic diversity of captive populations of rhesus monkeys is critical to the future of biomedical research. Cryopreservation of rhesus macaque sperm is relatively simple to perform, yields high post-thaw motility, and theoretically, provides via artificial insemination (AI) a way to easily transfer genetics among colonies of animals. In the interest of optimizing semen cryopreservation methods for use with vaginal AI, we evaluated the ability of frozen-thawed rhesus sperm to penetrate periovulatory cervical mucus (CM). Motile sperm concentration of pre–freeze (“fresh”) and post-thawed (“thawed”) samples from 5 different males were normalized for both computer assisted sperm motion analysis and CM penetration experiments. Sperm samples were deposited into slide chambers containing CM or gel composed of hyaluronic acid (HA) as a surrogate for CM and numbers of sperm were recorded as they entered a video field a preset distance from the sperm suspension-CM (or HA) interface. Fresh and thawed sperm were dried on glass slides, “Pap”-stained, and assessed for changes in head dimensions and head and flagellar shape. While retaining better than 80% of fresh sperm progressive motility, thawed sperm from the same ejaculate retained on average only 18.6% of the CM penetration ability. Experiments using HA gel yielded similar results only with reduced experimental error and thus improved detection of treatment differences. Neither the percentage of abnormal forms nor head dimensions differed between fresh and thawed sperm. While findings suggests that sperm-CM interaction is a prominent factor in previous failures of vaginal AI with cryopreserved macaque sperm, neither sperm motility nor morphology appears to account for changes in the ability of cryopreserved sperm to penetrate CM. Our data points to a previously unidentified manifestation of cryodamage which may have implications for assessment of sperm function beyond the cervix and

  16. Dynamic hole closure behind a deep ocean sediment penetrator

    International Nuclear Information System (INIS)

    Dzwilewski, P.T.; Karnes, C.H.

    1982-01-01

    A freefall or boosted penetrator is one concept being considered to dispose of nuclear waste in the deep ocean seabed. For this technique to be acceptable, the sediment must be an effective barrier to the migration of radioactive nuclides, which means that the hole behind the advancing penetrator must close. One mechanism which can cause the hole to close immediately behind the penetrator is the reduction in water pressure in the wake as water tries to follow the penetrator into the sediment. An approximate solution to this complex problem is presented which analyzes the deformation of the sediment with a nonlinear, large displacement and strain, Lagrangian finite-difference computer code (STEALTH). The water was treated by Bernoulli's Principle for flow in a pipe resulting in a pressure boundary condition applied to the sediment surface along the path after passage of the penetrator. Two one-dimensional and eight two-dimensional calculations were performed with various penetrator velocities (15, 30, and 60 m/s) and sediment shear strengths. In two of the calculations, the dynamic pressure reduction was neglected to see if geostatic stresses alone would close the hole. The results of this study showed that geostatic stresses alone would not close the hole but the dynamic pressure reduction would. The largest uncertainty in the analysis was the pressure conditions in the water behind the penetrator in which frictionless, steady-state flow, in a uniform diameter pipe was assumed. A more sophisticated and realistic pressure condition has been formulated and will be implemented in the computer code in the near future

  17. Quantum shielding effects on the Gamow penetration factor for nuclear fusion reaction in quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-01-01

    The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.

  18. The influence of early radiolucent lines appearing on femoral head penetration into HXLPE cemented sockets.

    Science.gov (United States)

    Morita, Daigo; Seki, Taisuke; Higuchi, Yoshitoshi; Takegami, Yasuhiko; Amano, Takafumi; Ishiguro, Naoki

    2018-04-01

    This study investigates differences in femoral head penetration between highly cross-linked polyethylene (HXLPE) cemented sockets both with and without radiolucent lines (RLLs) in the early postoperative phase and at 5 years follow-up. There were 35 patients (37 hips), mean age of 66.8 years, who underwent total hip arthroplasty (THA) using highly HXLPE cemented sockets. They were divided into 2 groups based on postoperative the early appearance of RLLs. Femoral head penetrations on both anteroposterior- and Lauenstein-view radiographs were evaluated, and the mean polyethylene (PE) wear rate was calculated based on femoral head penetrations between 2 and 5 years. Femoral head penetrations in the proximal direction were 0.075 mm and 0.150 mm in the RLL and non-RLL groups at 1 year postoperatively ( p = 0.019). At 5 years measured penetration was 0.107 mm and 0.125 mm in the RLL and non-RLL groups, respectively ( p = 0.320). The mean PE wear rates in anteroposterior-view were 0.008 mm/year and 0.003 mm/year in the RLL and non-RLL groups ( p = 0.390) and those in Lauenstein-view were 0.010 mm/year and 0.005 mm/year, respectively ( p = 0.239). In the RLL group, the PE bedding-in was less compared with those in the non-RLL group. Additionally, the mean PE wear rate in the RLL group tended to be higher than that in the non-RLL group. The distribution of stress loading through the cement may differ according to whether early RLLs appear.

  19. The impact of HMO penetration on the rate of hospital cost inflation, 1985-1993.

    Science.gov (United States)

    Gaskin, D J; Hadley, J

    1997-01-01

    This paper provides evidence that growth in health maintenance organization (HMO) enrollment slows hospital cost inflation. During the period 1985-1993, hospitals in areas with high rates of HMO penetration and growth had a slower rate of growth in expenses (8.3%) than hospitals in low penetration areas (11.2%). From 1992-1993, HMO growth lowered the rate of hospital cost inflation by .34 to 3.40 percentage points, depending on the base-year level and the annual change in HMO penetration. Declines in Medicare Prospective Payment System (PPS) margins also lowered hospital cost inflation; over the time period, annual hospital cost inflation was reduced by .38 percentage points. The estimates imply that the cumulative effect of HMO growth on hospital costs has been a $56.2 billion reduction (in 1993 dollars).

  20. Replica scale modelling of long rod tank penetrators

    NARCIS (Netherlands)

    Diederen, A.M.; Hoeneveld, J.C.

    2001-01-01

    Experiments and simulations have been conducted using scale size tungsten alloy penetrators at ordnance velocity against an oblique plate array consisting of an inert sandwich and a base armour. The penetrators are made from 2 types of tungsten alloy with different tensile strength. Two scale sizes

  1. The Impact of IPv6 on Penetration Testing

    NARCIS (Netherlands)

    Ottow, Christiaan; van Vliet, Frank; de Boer, Pieter-Tjerk; Pras, Aiko

    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and

  2. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    Science.gov (United States)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source

  3. Conditions for plasmoid penetration across abrupt magnetic barriers

    International Nuclear Information System (INIS)

    Brenning, Nils; Hurtig, Tomas; Raadu, Michael A.

    2005-01-01

    The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from detailed experimental and computer simulation investigations of a case study, is generalized into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n e , v 0 , B perpendicular , m i , T i , and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma which is a generalization of the earlier laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere

  4. Impact of carpet construction on fluid penetration: The case of blood.

    Science.gov (United States)

    Feng, Chengcheng; Michielsen, Stephen; Attinger, Daniel

    2018-03-01

    Bloodstains and bloodstain patterns are often observed at crime scenes and their analysis through bloodstain pattern analysis (BPA) can assist in reconstructing crime scenes. However, most published work related to BPA only deals with hard, non-porous surfaces and none of the studies have carefully characterized carpets. Soft and porous carpets are often encountered at crime scenes since they are common in American homes accounting for 51% of total U.S. flooring market; this has motivated the research described herein. To assess fluid penetration into tufted carpers, a new method for determining porosity and pore size distribution in tufted carpets has been developed for bloodstains on carpet. In this study, three kinds of nylon carpet were used: a low, a medium and a high face-weight carpet. Each carpet had an antistain treatment, which was removed from half of each carpet by steam-cleaning with a pH 12 NaOH solution. This resulted in six carpet samples. Yarn twist, carpet weight, pile height, water contact angles on carpets, water contact angles on individual fibers, and fiber cross-sectional shapes were characterized. Porosity and pore size distribution were analyzed using confocal laser scanning microscopy (CLSM). Porcine blood was used as a human blood substitute at three liquid volumes (30μL, 10μL, and 2μL). Analysis showed that porous carpet construction and antistain finishing both affected penetration. The depth of blood penetration decreased with the increase of carpet face-weight but increased with increased drop height. The removal of antistain treatment increased blood penetration into the carpets and changed the pore size distribution. Effects of antistain treatment, porosity and pore size distribution of tufted carpet, and blood wicking behaviors on carpets were found to strongly affect blood penetration into the carpets. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    Science.gov (United States)

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  6. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2014-01-01

    Owing to the intermittent characteristic of solar radiation, power system reliability may be affected with high photovoltaic (PV) power penetration. To reduce large variation of PV power, additional system balancing reserve would be needed. In deregulated power systems, deployment of reserves...... and customer reliability requirements are correlated with energy and reserve prices. Therefore a new method should be developed to evaluate the impacts of PV power on customer reliability and system reserve deployment in the new environment. In this study, a method based on the pseudo-sequential Monte Carlo...... simulation technique has been proposed to evaluate the reserve deployment and customers' nodal reliability with high PV power penetration. The proposed method can effectively model the chronological aspects and stochastic characteristics of PV power and system operation with high computation efficiency...

  7. Long-term behavior of aortic intramural hematomas and penetrating ulcers.

    Science.gov (United States)

    Chou, Alan S; Ziganshin, Bulat A; Charilaou, Paris; Tranquilli, Maryann; Rizzo, John A; Elefteriades, John A

    2016-02-01

    For intramural hematoma and penetrating atherosclerotic ulcer, long-term behavior and treatment are controversial. This study evaluates the long-term behavior of intramural hematoma and penetrating atherosclerotic ulcer, including radiologic follow-up and survival analysis. Between 1995 and 2014, 108 patients (mean age, 70.8 ± 10 years; 56% female) presented with intramural hematoma or penetrating atherosclerotic ulcer to Yale-New Haven Hospital (New Haven, Conn). We reviewed the medical records, radiology, and online mortality databases. Ten of 55 patients (18%) with intramural hematoma and 17 of 53 patients (32%) with penetrating atherosclerotic ulcer had rupture state symptoms on admission, both greater than type A (8%) or type B dissection (4%) (P hematoma with follow-up imaging, 8 of 14 (57%) worsened (mean follow-up, 9.4 months) and 6 (43%) underwent late surgery. For patients with penetrating atherosclerotic ulcer with follow-up imaging, 6 of 20 (30%) worsened and underwent late surgery, and 11 (55%) showed no change (mean follow-up, 34.3 months). Overall survivals were 77%, 70%, 58%, and 33% at 1, 3, 5, and 10 years, respectively. No operative deaths occurred for patients with nonrupture state. Patients with penetrating atherosclerotic ulcer with initial surgical treatment had better long-term survival than patients treated medically (P = .037). In the intramural hematoma group, no such difference was observed (P = .10). At presentation, the incidence of early rupture of intramural hematoma and penetrating atherosclerotic ulcer was higher than for typical dissection. For branch vessels, intramural hematoma never occludes branch arteries. On imaging follow-up, patients with intramural hematoma and penetrating atherosclerotic ulcer rarely improved, with late surgery commonly needed. Better survival was observed for the initial surgical management of patients with penetrating atherosclerotic ulcer compared with initial medical management. Copyright © 2016

  8. HMO penetration and physicians' earnings.

    Science.gov (United States)

    Hadley, J; Mitchell, J M

    1999-11-01

    The goal of this study is to estimate whether cross-sectional variations in enrollment in health maintenance organizations (HMOs) affected physicians' earnings and hourly income in 1990. Using data from a nationally representative sample of 4,577 younger physicians (penetration is endogenous and used the instrumental variables approach to obtain unbiased estimates. HMO penetration had a negative and statistically significant impact on physicians earnings in 1990. A doubling of the average level of HMO penetration in the market is estimated to reduce annual earnings by 7% to 10.7%, and hourly earnings by approximately 6% to 9%. It appears that HMOs were successful in reducing physicians' annual and per hour earnings in 1990, presumably through a combination of fewer visits and lower payment rates for people covered by HMOs. Although these results cannot be generalized to all physicians, the experience of a younger cohort of physicians may still be a good indicator of the future effects of HMOs because younger physicians may be more susceptible to market forces than older and more established physicians. Moreover, these results may be somewhat conservative because they reflect market behavior in 1990, several years before the rapid growth and more aggressive market behavior of HMOs in recent years.

  9. A ten-year study of penetrating injuries of the colon.

    Science.gov (United States)

    Adesanya, Adedoyin A; Ekanem, Ekanem E

    2004-12-01

    Colon injury has been associated with a high risk of septic complications and mortality. We prospectively studied the pattern, management, outcome, and prognostic factors in patients who sustained penetrating colon injuries. Sixty patients who presented to our hospital with penetrating colon injuries over a ten-year period (1992 to 2001) were studied. Colon wounds were caused by gunshots in 55 (91.7 percent) patients and knife stabs in 5 (8.3 percent). There was a delay of more than 12 hours before laparotomy in 30 (50 percent) patients. Moderate or major fecal contamination of the peritoneal cavity occurred in 58 (96.7 percent) patients. The average penetrating abdominal trauma index score was 25.9 and 20 (33.3 percent) patients sustained Flint Grade 3 colon injury. Associated intra-abdominal injuries occurred in the small bowel (73.3 percent), liver (25 percent), stomach (23.3 percent), and mesentery (16.7 percent). Right colon wounds (35) were managed by primary repair in 24 (68.6 percent) patients and proximal diverting colostomy in 11 (31.4 percent), whereas left colon wounds (25) were managed by diverting colostomy in 22 (88.0 percent) patients and primary repair in 3 (12.0 percent) patients. Common complications included wound infection (56.7 percent), septicemia (31.7 percent), and enterocutaneous fistula (16.7 percent). The overall mortality rate was 33.3 percent and colon injury-related mortality was 21.7 percent. Presence of destructive colon injury was associated with a greater than fourfold increased incidence of death. Other significant risk factors included shock on admission, major fecal contamination, duration of operation more than four hours, penetrating abdominal trauma index score >25, and more than two postoperative complications. There was no difference in outcome between patients who had primary repair and those undergoing diverting colostomy. Colostomy closure-related morbidity was 21 percent and mortality was 5.3 percent. A more liberal

  10. Hybrid treatment of penetrating aortic ulcer

    International Nuclear Information System (INIS)

    Lara, Juan Antonio Herrero; Martins-Romeo, Daniela de Araujo; Escudero, Carlos Caparros; Falcon, Maria del Carmen Prieto; Batista, Vinicius Bianchi; Vazquez, Rosa Maria Lepe

    2015-01-01

    Penetrating atherosclerotic aortic ulcer is a rare entity with poor prognosis in the setting of acute aortic syndrome. In the literature, cases like the present one, located in the aortic arch, starting with chest pain and evolving with dysphonia, are even rarer. The present report emphasizes the role played by computed tomography in the diagnosis of penetrating atherosclerotic ulcer as well as in the differentiation of this condition from other acute aortic syndromes. Additionally, the authors describe a new therapeutic approach represented by a hybrid endovascular surgical procedure for treatment of the disease. (author)

  11. Hybrid treatment of penetrating aortic ulcer

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Juan Antonio Herrero; Martins-Romeo, Daniela de Araujo; Escudero, Carlos Caparros; Falcon, Maria del Carmen Prieto; Batista, Vinicius Bianchi, E-mail: jaherrero5@hotmail.com [Unidade de Gestao Clinica (UGC) de Diagnostico por Imagem - Hosppital Universitario Virgen Macarena, Sevilha (Spain); Vazquez, Rosa Maria Lepe [Unit of Radiodiagnosis - Hospital Nuestra Senora de la Merced, Osuna, Sevilha (Spain)

    2015-05-15

    Penetrating atherosclerotic aortic ulcer is a rare entity with poor prognosis in the setting of acute aortic syndrome. In the literature, cases like the present one, located in the aortic arch, starting with chest pain and evolving with dysphonia, are even rarer. The present report emphasizes the role played by computed tomography in the diagnosis of penetrating atherosclerotic ulcer as well as in the differentiation of this condition from other acute aortic syndromes. Additionally, the authors describe a new therapeutic approach represented by a hybrid endovascular surgical procedure for treatment of the disease. (author)

  12. High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Li; Du, Lili; Liu, Wenyuan; Liu, Zhichao [Northwest Institute of Nuclear Technology, Xi' an, Shaanxi (China); Jia, Yi; Li, Junbai [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China)

    2015-01-07

    The effect of radioactive UO{sub 2}{sup 2+} on the oxygen-transporting capability of hemoglobin-based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer-by-layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe{sub 3}O{sub 4}) were loaded in porous CaCO{sub 3} particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO{sub 2}{sup 2+}, it was found that UO{sub 2}{sup 2+} was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO{sub 2}{sup 2+} in vivo destroys the structure and oxygen-transporting capability of Hb microspheres. In view of the high adsorption capacity of UO{sub 2}{sup 2+}, the as-assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation-contaminated bodies, or from nuclear-power reactor effluent before discharge into the environment. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  14. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  15. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  16. Methane penetration in DIII-D ELMing H-mode plasmas

    International Nuclear Information System (INIS)

    West, W.P.; Lasnier, C.J.; Whyte, D.G.; Isler, R.C.; Evans, T.E.; Jackson, G.L.; Rudakov, D.; Wade, M.R.; Strachan, J.

    2003-01-01

    Carbon penetration into the core plasma during midplane and divertor methane puffing has been measured for DIII-D ELMing H-mode plasmas. The methane puffs are adjusted to a measurable signal, but global plasma parameters are only weakly affected (line average density, e > increases by E , drops by 6+ density profiles in the core measured as a function of time using charge exchange recombination spectroscopy. The methane penetration factor is defined as the difference in the core content with the puff on and puff off, divided by the carbon confinement time and the methane puffing rate. In ELMing H-mode discharges with ion ∇B drift direction into the X-point, increasing the line averaged density from 5 to 8x10 19 m -3 dropped the penetration factor from 6.6% to 4.6% for main chamber puffing. The penetration factor for divertor puffing was below the detection limit (<1%). Changing the ion ∇B drift to away from the X-point decreased the penetration factor by more than a factor of five for main chamber puffing

  17. Influence of Formulation on the Cuticular Penetration and on Spray Deposit Properties of Manganese and Zinc Foliar Fertilizers

    Directory of Open Access Journals (Sweden)

    Alvin Alexander

    2016-06-01

    Full Text Available Foliar fertilization, or the application of nutrient solutions to the foliage of plants, has become a very important tool as a supplement to traditional soil fertilization. So far, knowledge about the real mechanisms of foliar nutrient uptake is still limited. In this study different manganese (Mn and zinc (Zn carriers differing in their solubility and chemical characteristics (chelated or non-chelated, with or without the presence of a surfactant-penetrant were compared with regard to their penetration characteristics through enzymatically-isolated cuticles. The experiments were explicitly conducted under high humidity conditions in order not to penalize compounds with a higher deliquescent point. The results show that Mn penetrates more rapidly through the cuticle than Zn ions for unknown reasons. The addition of a surfactant-penetrant enhances the penetration rate in the case of Mn ions. This trend is much less pronounced for zinc ions. Formulations based on insoluble carriers, such as carbonate or oxide, only poorly penetrate through the cuticle. In order to rapidly control micronutrient deficiency problems, only fully water soluble micronutrient carriers should be used.

  18. Fast-timing Capabilities of Silicon Sensors for the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    Science.gov (United States)

    Akchurin, Nural; CMS Collaboration

    2017-11-01

    We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, 133, 211, and 285 μm thick in depletion thickness, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.

  19. Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain

    Directory of Open Access Journals (Sweden)

    Zaira Navas-Anguita

    2018-05-01

    Full Text Available The penetration of electric vehicles (EV seems to be a forthcoming reality in the transport sector worldwide, involving significant increases in electricity demand. However, many countries such as Spain have not yet set binding policy targets in this regard. When compared to a business-as-usual situation, this work evaluates the life-cycle consequences of the increased electricity demand of the Spanish road transport technology mix until 2050. This is done by combining Life Cycle Assessment and Energy Systems Modelling under three alternative scenarios based on the low, medium, or high penetration rate of EV. In all cases, EV deployment is found to involve a relatively small percentage (<4% of the final electricity demand. Wind power and waste-to-energy plants arise as the main technologies responsible for meeting the increased electricity demand associated with EV penetration. When considering a high market penetration (20 million EV by 2050, the highest annual impacts potentially caused by the additional electricity demand are 0.93 Mt CO2 eq, 0.25 kDALY, and 30.34 PJ in terms of climate change, human health, and resources, respectively. Overall, EV penetration is concluded to slightly affect the national power generation sector, whereas it could dramatically reduce the life-cycle impacts associated with conventional transport.

  20. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    Science.gov (United States)

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally