WorldWideScience

Sample records for high passive damping

  1. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  2. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...

  3. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  4. A composite passive damping method of the LLCL-filter based grid-tied inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Huang, Min; Sun, Yunjie

    2012-01-01

    This paper investigates the maximum and the minimum gain of the proportional resonant based grid current controller for a grid-tied inverter with a passive damped high-order power filter. It is found that the choice of the controller gain is limited to the local maximum amplitude determined by Q......-factor around the characteristic frequency of the filter and grid impedance. To obtain the Q-factor of a high-order system, an equivalent circuit analysis method is proposed and illustrated through several classical passive damped LCL- and LLCL-filters. It is shown that both the RC parallel damper...... that is in parallel with the capacitor of the LCL-filter or with the Lf-Cf resonant circuit of the LLCL-filter, and the RL series damper in series with the grid-side inductor have their own application limits. Thus, a composite passive damped LLCL-filter for the grid-tied inverter is proposed, which can effectively...

  5. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    Science.gov (United States)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  6. Principles of TRIP Steel Optimization for Passive Damping Applications

    Science.gov (United States)

    Fraley, George Jay

    Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as fracture-initiation sites, and highly dimpled fracture surfaces confirmed for all failed specimens that ductile fracture mechanisms contribute to failure under ULCF conditions. For specimens failing in 10-11 cycles large protrusions aligned along the transverse direction were found, indicating that intergranular fracture may also be playing a role in ULCF failures for this alloy. To explore lower cost alternatives to fully-austenitic TRIP steels for passive-damping devices, austenite precipitation and its effect on uniaxial-tension mechanical properties in martensitic steels was investigated. Isothermal dilatometry

  7. Study on the development of passive MR damper with displacement-dependent damping characteristics

    International Nuclear Information System (INIS)

    Murakami, Takahiro; Sakai, Michiya; Nakano, Masami

    2010-01-01

    In this paper, we propose a new concept of a magneto-rheological (MR) fluid damper, which is a passive MR fluid damper. The passive MR damper has no electrical devices, such as a sensor, power supply and controller, and hence, it has an advantage in reliability and cost compared with semi-active MR dampers. Moreover, the proposed MR damper can be designed to have a variable damping force in response to its displacement. In this paper, the dynamic performance of the passive MR damper is experimentally demonstrated. The prototype of the proposed damper has been manufactured in order to verify the dynamic performance. The displacement excitation test result of the damper demonstrates that the damping characteristics depend on its displacement amplitude, that is, the damper behaves as a linear viscous damper under small vibrations and develops much higher damping performance under large vibrations. (author)

  8. Passive secondary magnetic damping for superconducting Maglev vehicles

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.; Sturgess, K.

    1976-01-01

    We analyze a passive magnetic damping scheme for the secondary suspension of a superconducting Maglev vehicle. The unsprung levitation or linear synchronous motor magnets are coupled electromagnetically to short-circuited aluminum damper coils mounted on the underside of the sprung mass. Relative motion between the magnets and the passenger compartment causes a time-dependent flux linkage which induces dissipative currents in the coils. Analysis for the typical Canadian Maglev vehicle design shows that a damping factor of 1 sec/sup -1/ can be obtained with a total coil mass of approximately 100 kg, for a secondary/primary suspension stiffness ratio of 0.2. This scheme appears to offer a design alternative to conventional frictional or hydraulic dampers

  9. A hybrid damping method for LLCL-filter based grid-tied inverter with a digital filter and an RC parallel passive damper

    DEFF Research Database (Denmark)

    Wu, Weimin; Lin, Zhe; Sun, Yunjie

    2013-01-01

    Grid-tied inverters have been widely used to inject the renewable energies into the distributed power generation systems. However, a large variation of the grid impedance challenges the stability of the high-order power filter based grid-tied inverter. Many passive and active damping methods have...... been proposed to overcome this issue. Recently, a composite passive damping method for a high-order power filter based grid-tied inverter with an RC parallel damper and an RL series damper was presented to eliminate this problem, but at the cost of more material and power losses. In this paper...

  10. Improved Passive-Damped LCL Filter to Enhance Stability in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper proposes an improved passive-damped LCL filter to be used as interface between the grid-connected voltage-source converters and the utility grid. The proposed filter replaces the LCL filter capacitor with a traditional C-type filter with the resonant circuit tuned in such a way...... passive-damped LCL filter. To verify the benefits of the proposed filter, a comparison with the conventional filter is made in terms of losses and ratings when both the filters are designed under the same condition....... that switching harmonics due to pulse width modulation are to be cancelled. Since the tuned circuit of the C-type filter suppresses the switching harmonics more effectively, the total inductance of the filter can be reduced. Additionally, the rating of the damping resistor is lower, compared with conventional...

  11. Unimodal optimal passive electromechanical damping of elastic structures

    International Nuclear Information System (INIS)

    Ben Mekki, O; Bourquin, F; Merliot, E; Maceri, F

    2013-01-01

    In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed. (paper)

  12. Passivity-Based Stability Analysis and Damping Injection for Multiparalleled VSCs with LCL Filters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2017-01-01

    is decomposed into a passive filter output admittance in series with an active admittance which is dependent on the current controller and the time delay. The frequency-domain passivity theory is then applied to the active admittance for system stability analysis. It reveals that the stability region...... of the single-loop grid current control is not only dependent on the time delay, but affected also by the resonance frequency of the converter-side filter inductor and filter capacitor. Further on, the damping injection based on the discrete derivative controller is proposed to enhance the passivity...

  13. Optimal Design of Complex Passive-Damping Systems for Vibration Control of Large Structures: An Energy-to-Peak Approach

    Directory of Open Access Journals (Sweden)

    Francisco Palacios-Quiñonero

    2014-01-01

    Full Text Available We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.

  14. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    International Nuclear Information System (INIS)

    Bachmann, F; Delpero, T; Ermanni, P; De Oliveira, R; Sigg, A; Michaud, V; Schnyder, V; Jaehne, R; Bergamini, A

    2012-01-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty. (paper)

  15. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    Science.gov (United States)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  16. Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jeon, Jin Young

    2009-01-01

    This paper presents a new acoustic radiation optimization method for a vibrating panel-like structure with a passive piezoelectric shunt damping system in order to minimize well-radiating modes generated from the panel. The optimization method is based on an idea of using the p-version finite element method(p-version FEM), the boundary element method(BEM), and the particle swarm optimization algorithm(PSOA). Optimum embossment design for the vibrating panel using the PSOA is first investigated in order to minimize noise radiation over a frequency range of interest. The optimum embossment design works as a kind of stiffener so that well-radiating natural modes are shifted up with some degrees. The optimized panel, however, may still require additional damping for attenuating the peak acoustic amplitudes. A passive shunt damping system is thus employed to additionally damp the well-radiating modes from the optimized panel. To numerically evaluate the acoustic multiple-mode damping capability by a shunt damping system, the integrated p-version FEM/BEM for the panel with the shunt damping system is modeled and developed by MATLAB. Using the PSOA, the optimization technique for the optimal multiple-mode shunt damper is investigated in order to achieve the optimum damping performance for the well-radiating modes simultaneously. Also, the acoustic damping performance of the shunt damping circuit in the acoustic environment is demonstrated numerically and experimentally with respect to the realistically sized panel. The simulated result shows a good agreement with that of the experimental result

  17. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  18. Some Passive Damping Sources on Flooring Systems besides the TMD

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2010-01-01

    Impulsive loads and walking loads can generate problematic structural vibrations in flooring-systems. Measures that may be taken to mitigate the problem would often be to consider the implementation of a tuned mass damper or even more advanced vibration control technologies; this in order to add...... damping to the structure. Basically also passive humans on a floor act as a damping source, but it also turns out from doing system identification tests with a floor strip that a quite simple set-up installed on the floor (cheap and readily at hand) might do a good job in terms of reducing vertical floor...... vibrations for some floors. The paper describes the tests with the floor strip, and the results, in terms of dynamic floor behaviour, are compared with what would be expected had the floor instead been equipped with a tuned mass damper....

  19. Comparative evaluation of passive damping topologies for parallel grid-connected converters with LCL filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    that with grid-side current feedback the stability may be improved in parallel operation while for converter-side feedback, the stability of the current controller is always decreased compared with the single converter case. The proposed stability analysis and experimental tests demonstrates the theoretical......In this paper a comprehensive analysis of three passive damping methods is done under parallel operation of multiple current controlled voltage source converters. One could argue that a well damped LCL filter with no peaking in the output impedance and stable designed controllers will turn...

  20. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  1. Efficient approximate eigensolution for structures equipped with a passive damping device

    Czech Academy of Sciences Publication Activity Database

    Hračov, Stanislav

    2018-01-01

    Roč. 144, č. 5 (2018), č. článku 06018002. ISSN 0733-9445 R&D Projects: GA ČR(CZ) GA15-01035S; GA ČR(CZ) GC17-26353J Institutional support: RVO:68378297 Keywords : nonclassical damping * eigensolution * perturbation method * passive damper Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 2.021, year: 2016 https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0002017

  2. Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Science.gov (United States)

    Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan

    2017-12-01

    Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.

  3. Interconnection and Damping Assignment Passivity-Based Control for Port-Hamiltonian mechanical systems with only position measurements

    NARCIS (Netherlands)

    Dirksz, D. A.; Scherpen, J. M. A.; Ortega, R.

    2008-01-01

    A dynamic extension for position feedback of port-Hamiltonian mechanical systems is studied. First we look at the consequences for the matching equations when applying Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Then we look at the possibilities of asymptotically

  4. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  5. Controllable outrigger damping system for high rise building with MR dampers

    Science.gov (United States)

    Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing

    2010-04-01

    A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.

  6. High-performance feedback-type active damping of LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    a generalized impedance-based model of grid current control with feedback-type active damping. Then, a controller design method based on the z-domain root contours and frequency-domain passivity theorem is proposed. It not only allows a co-design of the grid current controller and damping controller......Active damping of LCL-filter resonance based on single-state feedback control is widely used with voltage source converters. Its robustness against grid impedance variation has always been a major concern with its controller design. To deal with this issue, this paper begins by developing......, but ensures also a robust stabilization against the grid parameters variations. For illustration, the approach is applied to design three single-state feedback-damping schemes, and their damping robustness are compared under both inductive and resonant grid impedances. Experimental results validate...

  7. Modelling and Vibration Control of Beams with Partially Debonded Active Constrained Layer Damping Patch

    Science.gov (United States)

    SUN, D.; TONG, L.

    2002-05-01

    A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.

  8. Generalized stability regions of current control for LCL-filtered grid-connected converters without passive or active damping

    DEFF Research Database (Denmark)

    Tang, Yi; Yoon, Changwoo; Zhu, Rongwu

    2015-01-01

    This paper investigates the stability regions of current control for LCL-filtered grid-connected converters, where no active or passive damping is required to stabilize the closed-loop control system. It is already identified in the literature that if the LCL resonance frequency is placed within 1....../6 to 1/2 of the system sampling frequency, the grid current control can be directly used without damping. If the resonance frequency is smaller than 1/6 of the sampling frequency, the converter current control should then be adopted. This paper further extends the analysis to the cases where...... the resonance frequency could be larger than 1/2 of the sampling frequency, and derives the complete stability regions for both grid and converter current control. Interestingly, it is found that for any given LCL-filter design, there will always be one stable current control design without any damping, which...

  9. Active damping based on decoupled collocated control

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.

    2002-01-01

    High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration

  10. High damping Fe-Mn martensitic alloys for engineering applications

    International Nuclear Information System (INIS)

    Baik, S.-H.

    2000-01-01

    Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloy. Also, the alloy has advantages of good mechanical properties and is more economical than any other known damping alloys (a quarter the cost of non-ferrous damping alloy). Thus, the high damping Fe-17%Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity (SDC, 30%) and mechanical property (T.S. 700 MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit of several such applications. (orig.)

  11. Active and passive damping based on piezoelectric elements -controllability issues-

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.

    2001-01-01

    Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient

  12. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  13. The Microstructural Basis of Damping in High Damping Alloys

    Science.gov (United States)

    1989-09-01

    This transformation is diffusionless and is characterized by the cooperative movement of atoms in a given section of crystal. Removal of the stress...martensites. The cooperative movement of atoms causes large internal friction and high damping. The temperature range in which this transformation can

  14. Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL......-filter is introduced. Based on this active damping method, a design procedure for the controller is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  15. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  16. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  17. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    Science.gov (United States)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  18. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

    Science.gov (United States)

    Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

    2013-06-01

    This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

  19. Stability analysis and active damping for LLCL-filter based grid-connected inverters

    DEFF Research Database (Denmark)

    Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  20. Techniques for the design of highly damped structures

    International Nuclear Information System (INIS)

    Nelson, F.C.

    1975-01-01

    This paper discusses several techniques for the design of highly damped structures, techniques which have proven successful for large scale, low frequency steel and concrete structures which are typical of nuclear power reactors and their components. The ability to augment structural damping can be useful in increasing the seismic withstandability of structures. Seismic excitation is broadband in its frequency content and will excite many strutural resonances. Broadband damping will limit these resonant responses and thereby reduce the seismic load on structures and their components. This paper discusses three techniques: the design of structural joints and interfaces to promote damping; the use of layers of viscoelastic material; and the employment of damping links. The emphasis is on explaining the ways in which these techniques work and in describing the ways in which they have been used. (Auth.)

  1. Damping Methods for Resonances Caused by LCL-Filter-Based Current-Controlled Grid-Tied Power Inverters

    DEFF Research Database (Denmark)

    Wu, Weimin; Liu, Yuan; He, Yuanbin

    2017-01-01

    Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads...... innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability...

  2. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  3. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  4. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  5. Proceedings of Damping Volume 1 of 3

    Science.gov (United States)

    1993-06-01

    paper. This work will present a passive piezoelectric damping implementation on ASTREX, a large space structure. The motivation behind this research is...Presented at Damping 󈨡 San Francisco, CA February 24-26, 1993 Motivation "• Accurate design of precision structures "* Computer modelling - Design...14) (KI f(0)/Fl,.) FRom equations (3) and (6), Young’s modulus of rubber specimen is written as; L Ea-K (15) A E - EJ(I+ PS4 ) (16) NONRESONANT TEST

  6. The modelisation of constrained damping layer treatments using the finite element method: spatial model and viscoelastic behaviour

    OpenAIRE

    Rui Moreira; José Dias Rodrigues

    2002-01-01

    Surface and integrated damping treatments with viscoelastic layers play an important position among the passive damping treatments for light and flexible structures under vibration. Application simplicity, low cost, reduced structural modification and reduced additional mass, along with an inherent high efficiency, are the main reasons of it successful usage.However, the design process of these treatments is not simple and requires a reliable tool for adequate designing and analysis.The finit...

  7. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  8. Eddy damping effect of additional conductors in superconducting levitation systems

    Science.gov (United States)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  9. Damping at high homologous temperature in pure Cd, In, Pb, and Sn

    International Nuclear Information System (INIS)

    Cook, L.S.; Lakes, R.S.

    1995-01-01

    Typically, if a material possesses the stiffness necessary to be considered a structural material, its damping is low. Conversely, materials with high damping usually do not possess the stiffness necessary to be considered a structural material. Candidate materials for the high stiffness-low damping phase exist in abundance, whereas candidate materials for the moderate stiffness-high damping phase remain to be identified. One possible class of candidate materials for the moderate stiffness-high damping phase is metals at high homologous temperatures. Shear moduli of the specimens at 100 Hz are as follows: 4.1 GPa for indium, 5.7 GPa for lead, 15.7 GPa for tin, and 20.7 GPa for cadmium. Considering the behavior typical of metals, one may think of In and Pb as relatively compliant, while Sn and Cd could be called moderately stiff. The results are of some technological interest in view of the utility of materials with moderately high stiffness and damping. The combination of moderate stiffness and reasonably high loss tangent makes Cd the most promising metal tested with respect to technological applications. The shear modulus of Cd was highest of the metals tested (and very near that of aluminum (G = 27 GPa), which exhibits a loss tangent of about 0.001 at room temperature). The loss tangent of Cd at audio-frequencies was as high or higher than that of the other metals. In addition, frequency dependence of loss tangent was not as large as that observed in the other metals. No clear pattern relating damping to melting point emerged. An understanding in terms of viscoelastic mechanisms is not forthcoming at this time. Among the metal studied, cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range, combined with a moderate stiffness, G = 20.7 GPa

  10. A Review of Passive Filters for Grid-Connected Voltage Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    LCL filter is the common interface between the Pulse Width Modulated Voltage Source Converter (PWM VSC) and the utility grid due to high harmonic attenuation capability and reduced size of the passive elements. The present paper investigates the most promising passive damping methods for the LCL...... topology but also propose an overview of high order filters capable to offer even more attenuation than the LCL filter at a reduced size. This is the case of more recently introduced LCL topology with tuned traps. However, it is shown that by decreasing the size of the passive elements the robustness...

  11. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  12. Frequency and temperature dependence of high damping elastomers

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1993-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping

  13. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...

  14. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  15. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  16. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    Science.gov (United States)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  17. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  18. Quasi-normal frequencies: Semi-analytic results for highly damped modes

    International Nuclear Information System (INIS)

    Skakala, Jozef; Visser, Matt

    2011-01-01

    Black hole highly-damped quasi-normal frequencies (QNFs) are very often of the form ω n = (offset) + in (gap). We have investigated the genericity of this phenomenon for the Schwarzschild-deSitter (SdS) black hole by considering a model potential that is piecewise Eckart (piecewise Poschl-Teller), and developing an analytic 'quantization condition' for the highly-damped quasi-normal frequencies. We find that the ω n = (offset) + in (gap) behaviour is common but not universal, with the controlling feature being whether or not the ratio of the surface gravities is a rational number. We furthermore observed that the relation between rational ratios of surface gravities and periodicity of QNFs is very generic, and also occurs within different analytic approaches applied to various types of black hole spacetimes. These observations are of direct relevance to any physical situation where highly-damped quasi-normal modes are important.

  19. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  20. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  1. Analysis of Simplifications Applied in Vibration Damping Modelling for a Passive Car Shock Absorber

    Directory of Open Access Journals (Sweden)

    Łukasz Konieczny

    2016-01-01

    Full Text Available The paper presents results of research on hydraulic automotive shock absorbers. The considerations provided in the paper indicate certain flaws and simplifications resulting from the fact that damping characteristics are assumed as the function of input velocity only, which is the case of simulation studies. An important aspect taken into account when determining parameters of damping performed by car shock absorbers at a testing station is the permissible range of characteristics of a shock absorber of the same type. The aim of this study was to determine the damping characteristics entailing the stroke value. The stroke and rotary velocities were selected in a manner enabling that, for different combinations, the same maximum linear velocity can be obtained. Thus the influence of excitation parameters, such as the stroke value, on force versus displacement and force versus velocity diagrams was determined. The 3D characteristics presented as the damping surface in the stoke and the linear velocity function were determined. An analysis of the results addressed in the paper highlights the impact of such factors on the profile of closed loop graphs of damping forces and point-type damping characteristics.

  2. Virtual RC Damping of LCL-Filtered Voltage Source Converters with Extended Selective Harmonic Compensation

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Active damping and harmonic compensation are two common challenges faced by LCL-filtered voltage source converters. To manage them holistically, this paper begins by proposing a virtual RC damper in parallel with the passive filter capacitor. The virtual damper is actively inserted by feeding back...... the passive capacitor current through a high-pass filter, which indirectly, furnishes two superior features. They are the mitigation of phase lag experienced by a conventional damper and the avoidance of instability caused by the negative resistance inserted unintentionally. Moreover, with the virtual RC...

  3. Enhanced damping for bridge cables using a self-sensing MR damper

    Science.gov (United States)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  4. Highly Damping Hard Coatings for Protection of Titanium Blades

    National Research Council Canada - National Science Library

    Movchan, Boris A; Ustinov, Anatolii I

    2005-01-01

    Sn-Cr-MgO system is used as an example to show the basic capability to produce by EBPVD protective metal-ceramic coatings with a high adhesion strength, high values of hardness and damping capacity...

  5. Vibration damping with negative capacitance shunts: theory and experiment

    International Nuclear Information System (INIS)

    De Marneffe, B; Preumont, A

    2008-01-01

    This paper analyzes in detail the enhancement of piezoelectric stack transducers by means of the well known 'negative' capacitive shunting. The stability is thoroughly studied: starting from the electrical admittance curve of the transducer, a method is introduced that quantifies the stability margins of the shunted structure. Two different implementations (series vs parallel) are investigated, and the lack of robustness of the parallel one is demonstrated. Next, this technique is experimentally applied on a truss structure. Its performances are compared with those of passive shunt circuits and with those of an active control law, the so-called Integral Force Feedback or IFF. As expected, the damping introduced by the negative capacitance shunt is larger than the damping obtained with the passive shunts; it remains, however, one order of magnitude smaller than that obtained with the IFF

  6. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    International Nuclear Information System (INIS)

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-01-01

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process

  7. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  8. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  9. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  10. Damping analysis of cylindrical composite structures with enhanced viscoelastic properties

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Vanwalleghem, Joachim

    2018-01-01

    is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross...... section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate...... in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure....

  11. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  12. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  13. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  14. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  15. Effects of high-frequency damping on iterative convergence of implicit viscous solver

    Science.gov (United States)

    Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko

    2017-11-01

    This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.

  16. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    Science.gov (United States)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  17. LCL-Filter Design for Robust Active Damping in Grid-Connected Converters

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    in the grid inductance may compromise system stability, and this problem is more severe for parallel converters. This situation, typical of rural areas with solar and wind resources, calls for robust LCL-filter design. This paper proposes a design procedure with remarkable results under severe grid inductance......Grid-connected converters employ LCL-filters, instead of simple inductors, because they allow lower inductances while reducing cost and size. Active damping, without dissipative elements, is preferred to passive damping for solving the associated stability problems. However, large variations...

  18. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  19. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  20. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    Science.gov (United States)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  1. Integration of Shape Memory Alloys into Low-Damped Rotor-Bearing Systems

    DEFF Research Database (Denmark)

    Enemark, Søren

    2015-01-01

    to use passive adaptive control through smart materials. Shape Memory Alloys (SMAs) are interesting candidates in that relation, because of their highly temperature sensitive stiffness and mechanical hysteresis, which can be used for damping purposes. The thesis focuses on three main aspects related...... and identifiability, and to call attention to the inherent uncertainties of model predictions. The second aspect concerns design and modelling of machine elements made from SMAs. Different actuation principles of SMAs are covered, and pseudoelastic elements in pre-tension are found to have the most promising...

  2. A passive eddy current damper for vibration suppression of a force sensor

    International Nuclear Information System (INIS)

    Chen Weihai; Jiang Jun; Liu Jingmeng; Bai Shaoping; Chen Wenjie

    2013-01-01

    High performance force sensors often encounter the problem of vibrations during the process of calibration and measurement. To address this problem, this paper presents a novel passive eddy current damper (ECD) for vibration suppression. The conceived ECD utilizes eight tubular permanent magnets, arranged in Halbach array, and a conductive copper rod to generate damping. The ECD does not require an external power supply or any other electronic devices. In this paper, an accurate, analytical model for calculating the magnetic field distribution and damping coefficient is developed. The dynamics of the system is obtained by applying an energy method and an equivalent pseudo-rigid-body model. Moreover, finite element simulations are conducted to optimize the design. Experiments are carried out to validate the effectiveness of the design. The results indicate that the proposed ECD has a damping coefficient of 4.3 N s m −1 , which can provide a sufficient damping force to quickly suppress the sensor's vibration within 0.1 s. (paper)

  3. Accurate calibration of RL shunts for piezoelectric vibration damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2016-01-01

    Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominantvibration modes of a flexible structure and their efficiency relies on precise calibration of the shuntcomponents. In the present paper improved calibration accuracy is attained by an extension...

  4. Optimization of SMA layers in composite structures to enhance damping

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  5. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  6. New technological development of passive and active vibration control: analysis and test

    Science.gov (United States)

    Matsuzaki, Yuji; Ikeda, Tadashige; Boller, Christian

    2005-04-01

    We present a brief summary of new technical developments of passive and active vibration controls which we have performed for the last several years partly as an international collaborative R&D project on Smart Materials and Structural Systems sponsored by the Japanese Ministry of Economy, Trade and Industry. In connection with the passive damping control, shape memory alloys (SMAs) were used as damping elements. To examine the effect of damping enhancement, beams with SMA films bonded onto them or SMA wires embedded into them were made, and free damped oscillations were measured. The damping coefficient increased by more than 100% compared with the beams without SMAs. Thermodynamic behaviors of an SMA wire and film were also investigated experimentally and numerically. In active vibration control, a new concept of smart material systems was proposed. That is a partially magnetized alloy, which is stiff and strong enough as a structural element and responds sufficiently quickly as an actuator due to an electromagnetic force. A simplified experiment and numerical simulation were performed and the results showed the feasibility of the proposed smart material system using the electromagnetic force.

  7. Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers

    Science.gov (United States)

    Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.

    2010-09-01

    In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.

  8. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao [Mie Univ. (Japan)

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  9. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  10. Passivity Enhancement of Grid-Tied Converter by Series LC-Filtered Active Damper

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    attention. Also, parasitic capacitance of the grid transmission line brings new challenge for the application of an active damper, which has not been discussed before. In order to fill these gaps, this paper first analyzes the stability of a grid-tied converter with the help of passivity. Based......Series LC-filtered active damper can be used to stabilize the grid-tied voltage source converter in a non-ideal grid. The operation principle of the active damper is to mimic a damping resistance at the resonance frequencies. However, the selection of the damping resistance has not received much...... on the passivity-based-stability analysis, a damping resistance selection method is proposed. Then, an admittance shaping method is developed to ensure the system stability in the presence of parasitic capacitance of the transmission line. Finally, experimental results are provided to show the validity...

  11. Damping mechanisms of high-lying single-particle states in 91Nb

    International Nuclear Information System (INIS)

    Molen, H. K. T. van der; Berg, A. M. van den; Harakeh, M. N.; Hunyadi, M.; Kalantar-Nayestanaki, N.; Akimune, H.; Daito, I.; Fujimura, H.; Ihara, F.; Inomata, T.; Ishibashi, K.; Yoshida, H.; Yosoi, M.; Fujita, Y.; Fujiwara, M.; Jaenecke, J.; O'Donnell, T. W.; Laurent, H.; Lhenry, I.; Rodin, V. A.

    2007-01-01

    Decay by proton emission from high-lying states in 91 Nb, populated in the 90 Zr(α,t) reaction at E α =180 MeV, has been investigated. Decay to the ground state and semidirect decay to the low-lying (2 + ,5 - , and 3 - ) phonon states in 90 Zr were observed. It was found that these phonon states play an important role in the damping process of the single-particle states. An optical-model coupled-channel approach was used successfully to describe the direct and semidirect parts of the decay

  12. Damping in Timber Structures

    OpenAIRE

    Labonnote, Nathalie

    2012-01-01

    Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...

  13. Robustness analysis of active damping methods for an inverter connected to the grid with an LCL-filter

    DEFF Research Database (Denmark)

    Ricchiuto, D.; Liserre, M.; Kerekes, Tamas

    2011-01-01

    Grid-connected converters usually employ an LCL-filter to reduce PWM harmonics. To avoid the wellknown stability problems it is requested to use either passive or active damping methods. Active damping methods avoid losses and preserve the filter effectiveness but they are more sensitive...... to parameters variation. In this paper the robustness of active damping methods is investigated considering those using only the same state variable (grid-side or converter-side current) normally used for current control (filter-based) or those methods using more state-variables (multiloop). Simulation...

  14. Robust Design of LCL-Filters for Active Damping in Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Grid converters require a simple inductor or an LCL-filter to limit the current ripples. The LCL-filter is nowadays the preferred solution as it allows lower inductance values. In order to solve the stability concerns, active damping is preferred to passive damping since it does not use dissipative...... elements. However, large variations in the grid inductance and resonances arising from parallel converters may still compromise the system stability. This calls for a robust design of LCL-filters with active damping. This paper proposes a design flow with little iteration for two well-known methods, namely...... lead-lag network and current capacitor feedback. The proposed formulas for the resonance frequency, grid and converter inductance ratio, and capacitance of the LCL-filter allow calculating all the LCL-filter parameters. An estimation for the achieved Total Harmonic Distortion (THD) of the grid current...

  15. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  16. Analysis of suspension with variable stiffness and variable damping force for automotive applications

    Directory of Open Access Journals (Sweden)

    Lalitkumar Maikulal Jugulkar

    2016-05-01

    Full Text Available Passive shock absorbers are designed for standard load condition. These give better vibration isolation performance only for the standard load condition. However, if the sprung mass is lesser than the standard mass, comfort and road holding ability is affected. It is demonstrated that sprung mass acceleration increases by 50%, when the vehicle mass varies by 100 kg. In order to obtain consistent damping performance from the shock absorber, it is essential to vary its stiffness and damping properties. In this article, a variable stiffness system is presented, which comprises of two helical springs and a variable fluid damper. Fluid damper intensity is changed in four discrete levels to achieve variable stiffness of the prototype. Numerical simulations have been performed with MATLAB Simscape and Simulink which have been with experimentation on a prototype. Furthermore, the numerical model of the prototype is used in design of real size shock absorber with variable stiffness and damping. Numerical simulation results on the real size model indicate that the peak acceleration will improve by 15% in comparison to the conventional passive solution, without significant deterioration of road holding ability. Arrangement of sensors and actuators for incorporating the system in a vehicle suspension has also been discussed.

  17. Re-Active Passive devices for control of noise transmission through a panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  18. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    International Nuclear Information System (INIS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-01-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m −1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP. (paper)

  19. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  20. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    Science.gov (United States)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  1. A hybrid active filter for damping of harmonic resonance in industrial power systems

    OpenAIRE

    Fujita, Hideaki; Yamasaki, Takahiro; Akagi, Hirofumi

    1998-01-01

    This paper proposes a hybrid active filter for damping of harmonic resonance in industrial power systems. The hybrid filter consists of a small-rated active filter and a 5th tuned passive filter. The active filter is characterized by detecting the 5th harmonic current flowing into the passive filter. It is controlled in such a way as to behave as a negative or positive resistor by adjusting a feedback gain from a negative to positive value, and vice versa. The negative resistor presented by t...

  2. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    International Nuclear Information System (INIS)

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.

    2011-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution (∼100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  3. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    International Nuclear Information System (INIS)

    Perfetto, S; Rohlfing, J; Infante, F; Mayer, D; Herold, S

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency. (paper)

  4. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    Science.gov (United States)

    Perfetto, S.; Rohlfing, J.; Infante, F.; Mayer, D.; Herold, S.

    2016-09-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency.

  5. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  6. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  7. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  8. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    Science.gov (United States)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  9. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  10. Studies on Horizontal Axis Wind Turbine with Passive Teetered Brake & Damper Mechanism

    OpenAIRE

    SHIMIZU, Yukimaru; KAMADA, Yasunari; MAEDA, Takao

    1998-01-01

    In order to improve the reliability of megawatt wind turbines, the passive teetered brake & damper mechanism is applied. Its two unique effects, as its name implies, are braking and damping. The passive brake & damper mechanism is useful for variable speed control of the large wind turbine. It is comprised of teetering and feathering mechanisms. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, at the same time, a feathering mechani...

  11. Resonance Damping Techniques for Grid-Connected Voltage Source Converters with LCL filters – A Review

    DEFF Research Database (Denmark)

    Zhang, Chi; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    LCL filters play an important role in grid-connected converters when trying to reduce switching-frequency ripple currents injected into the grid. Besides, their small size and low cost make them attractive for many practical applications. However, the LCL filter is a third-order system, which...... presents a resonance peak frequency. Oscillation will occur in the control loop in high frequency ranges, especially in current loop in double-loops controlled converters. In order to solve this, many strategies have been proposed to damp resonance, including passive and active methods. This paper makes...

  12. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)

    2012-10-15

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.

  13. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    International Nuclear Information System (INIS)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian

    2012-01-01

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics

  14. General oscillation damping analysis of the L-C filter circuit in the high-power rectifying power supply

    International Nuclear Information System (INIS)

    Xu Weihua; Chen Yonghao; Wu Junshuan; Kuang Guangli

    1998-06-01

    Rectifier circuit is the most popular converter. For the ripple demand of high-power load, the L-C filter with invert 'L' type has been used universally. Due to the influence of the second-order link, damped oscillation will occur with proper condition while the circuit state is changed. The ideal cascade damping condition and the parallel one can be obtained easily. Generally, the damping condition of the step response of the L-C filter circuit is induced, and the discussion is given

  15. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    Science.gov (United States)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  16. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  17. Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification

    Science.gov (United States)

    Yigit, Ufuk; Cigeroglu, Ender; Budak, Erhan

    2017-09-01

    Chatter is a self-excited type of vibration that develops during machining due to process-structure dynamic interactions resulting in modulated chip thickness. Chatter is an important problem as it results in poor surface quality, reduced productivity and tool life. The stability of a cutting process is strongly influenced by the frequency response function (FRF) at the cutting point. In this study, the effect of piezoelectric shunt damping on chatter vibrations in a boring process is studied. In piezoelectric shunt damping method, an electrical impedance is connected to a piezoelectric transducer which is bonded on cutting tool. Electrical impedance of the circuit consisting of piezoceramic transducer and passive shunt is tuned to the desired natural frequency of the cutting tool in order to maximize damping. The optimum damping is achieved in analytical and finite element models (FEM) by using a genetic algorithm focusing on the real part of the tool point FRF rather than the amplitude. Later, a practical boring bar is considered where the optimum circuit parameters are obtained by the FEM. Afterwards, the effect of the optimized piezoelectric shunt damping on the dynamic rigidity and absolute stability limit of the cutting process are investigated experimentally by modal analysis and cutting tests. It is both theoretically and experimentally shown that application of piezoelectric shunt damping results in a significant increase in the absolute stability limit in boring operations.

  18. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  19. DAMPE

    CERN Multimedia

    Chen, D

    The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.

  20. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.

    2004-01-01

    Nonlinear passivity-based control (PBC) algorithms for power converters have proved to be an interesting alternative to other, mostly linear, control techniques. The control objective is usually achieved through an energy reshaping process and by injecting damping to modify the dissipation structure

  1. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    Science.gov (United States)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  2. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  3. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  4. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  5. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    Vibrations, if undamped, might be annoying or even dangerous. Most often some kind of damping mechanism is applied in order to limit the vibration level. Vibration insulators, for instance of rubber material, have favorable damping characteristics but lack the structural stiffness often needed...... in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...

  6. High resolution upgrade of the ATF damping ring BPM system

    International Nuclear Information System (INIS)

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.

    2008-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented

  7. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  8. Vibration isolation and damping in high precision equipment

    Science.gov (United States)

    Bukkems, B.; Ruijl, T.; Simons, J.

    2017-06-01

    All systems located in a laboratory environment or factory are subject to disturbances. These disturbances can either come from the surroundings, e.g. floor-induced vibrations, or from the system itself, e.g. stage-induced vibrations. In many cases it is needed to minimize the effect of these disturbances. This can either be done by isolating the system from its disturbance source or by applying damping to the system. In this paper we present various cases in which we have effectively reduced the impact of disturbances on the system's performance, either by improving its isolation system, by minimizing the impact of stage reaction forces, or by designing polymer damping into the system.

  9. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  10. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  11. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  12. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    Science.gov (United States)

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao

    2015-10-01

    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  14. Overview on methods for formulating explicit damping matrices for non-classically damped structures

    International Nuclear Information System (INIS)

    Xu, J.

    1998-04-01

    In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature

  15. Passivity-Based Control by Series/Parallel Damping of Single-Phase PWM Voltage Source Converter

    NARCIS (Netherlands)

    del Puerto Flores, Dunstano; Scherpen, Jacqueline; Liserre, Marco; de Vries, Martijn M. J.; Kransse, Marco J.; Monopoli, Vito Giuseppe

    This paper describes a detailed design procedure for passivity-based controllers developed using the Brayton-Moser (BM) framework. Several passivity-based feedback designs are presented for the voltage-source converter, specifically for the H-bridge converter, since nowadays it is one of the

  16. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    Science.gov (United States)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  17. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  18. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  19. Modeling of Passive Constrained Layer Damping as Applied to a Gun Tube

    Directory of Open Access Journals (Sweden)

    Margaret Z. Kiehl

    2001-01-01

    Full Text Available We study the damping effects of a cantilever beam system consisting of a gun tube wrapped with a constrained viscoelastic polymer on terrain induced vibrations. A time domain solution to the forced motion of this system is developed using the GHM (Golla-Hughes-McTavish method to incorporate the viscoelastic properties of the polymer. An impulse load is applied at the free end and the tip deflection of the cantilevered beam system is determined. The resulting GHM equations are then solved in MATLAB by transformation to the state-space domain.

  20. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  1. The damped wave equation with unbounded damping

    Science.gov (United States)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  2. Frequency Dependence of Damping and Compliance in Loudspeaker Suspensions

    DEFF Research Database (Denmark)

    Thorborg, Knud; Tinggaard, Carsten; Agerkvist, Finn T.

    2010-01-01

    ]. It is an empirical model mathematically describing the effects of visco-elasticity in loudspeaker suspensions. The evaluation is to a high degree based on test loudspeakers with rubber surrounds with a high content of plasticizer combining high compliance and high damping. This is very effective to reduce rim...... resonances, but less used in high quality loudspeakers today – where “Low Loss Rubber Surround” is currently seen as a marketing feature, as it is expected to have positive impact on sound quality. The plasticized type of surround shows significant creep, followed by compliance and damping increasing towards...... - with the additives normally used to adjust stiffness and damping - neither frequency dependency of compliance nor creep are significant problems. Despite this, experience shows that frequency dependent mechanical damping nevertheless might be present. In this paper some modifications to the LOG-model are proposed...

  3. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer

    International Nuclear Information System (INIS)

    Ma, S.G.; Liaw, P.K.; Gao, M.C.; Qiao, J.W.; Wang, Z.H.; Zhang, Y.

    2014-01-01

    Highlights: • The Al content is related with structural relaxation and damping capability. • Dynamic modulus is insensitive to the frequency especially for storage modulus. • Several internal-friction peaks are observed in the Al-free or Al-lean alloys. • The damping behavior is proposed to be strongly relied on the level of ordering. - Abstract: For the first time, the damping behavior of high-entropy alloys was studied using the dynamic-mechanical analyzer, over a continuous heating temperature from room temperature to 773 K, at a given frequency range from 1 to 16 Hz in model alloys Al x CoCrFeNi (x = 0, 0.25, 0.5, 0.75, and 1). The experimental results reveal that the Al-rich alloys have a much smaller elastic storage-modulus amplitude over the temperature and thus a larger resistance to structural relaxation, while the Al-free and Al-lean alloys exhibit a much higher loss tangent and thus a much higher damping capability. Overall the elastic storage modulus decreases while the loss tangent increases with increasing the temperature, but little dependence was observed for the frequency. Several visible internal-friction peaks were presented in the face-centered cubic alloys, whose positions and heights are independent of the frequency. The damping capability of these alloys can be comparable to or even overwhelm the conventional Fe–Al alloys. The damping behavior above was proposed to be agreeable with the level of ordering (η) of alloys characterized by two proposed parameters (the relative-entropy effect, Ω, and the atomic-size difference, δ)

  4. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  5. Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes

    DEFF Research Database (Denmark)

    Holst, G; Høst, A; Doekes, G

    2016-01-01

    was identified based on technical inspection and bedroom dampness on parents' self-report. Classroom and bedroom dust was analysed for seven microbial components. Skin-prick-testing determined atopic sensitisation. Lung function was expressed as z-scores for forced expiratory volume in one second (zFEV1...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0...... (ETS) decreased zFEV1 (β-coef. -0.22; 95%CI -0.42- -0.02) and zFEV1 /zFVC-ratio (β-coef. -0.26; 95%CI -0.44 - -0.07) and increased upper airway symptoms (OR1.66; 95%CI 1.03-2.66). In conclusion, dampness in classrooms may have adverse respiratory health effects in pupils, but microbial agents...

  6. Finite element analysis of high modal dynamic responses of a composite floor subjected to human motion under passive live load

    Directory of Open Access Journals (Sweden)

    Arash Behnia

    Full Text Available Light weight and long span composite floors are common place in modern construction. A critical consequence of this application is undesired vibration which may cause excessive discomfort to occupants. This work investigates the composite floor vibration behavior of an existing building based on a comprehensive study of high modal dynamic responses, the range of which has been absent in previous studies and major analytical templates, of different panels under the influence of loads induced by human motion. The resulting fundamental natural frequency and vibration modes are first validated with respect to experimental and numerical evidences from literature. Departing from close correlation established in comparison, this study explores in detail the effects of intensity of passive live load as additional stationary mass due to crowd jumping as well as considering human structure interaction. From observation, a new approach in the simulation of passive live load through the consideration of human structure interaction and human body characteristics is proposed. It is concluded that higher vibration modes are essential to determine the minimum required modes and mass participation ratio in the case of vertical vibration. The results indicate the need to consider 30 modes of vibration to obtain all possible important excitations and thereby making third harmonic of load frequency available to excite the critical modes. In addition, presence of different intensities of passive live load on the composite floor showed completely different behavior in each particular panel associated with load location of panel and passive live load intensity. Furthermore, implementing human body characteristics in simulation causes an obvious increase in modal damping and hence better practicality and economical presentation can be achieved in structural dynamic behavior.

  7. Design guidelines for passive instability suppression - Task-11 report[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.; Buhl, T.

    2006-12-15

    In these guidelines for passive instability suppression, eight relevant topics within aeroelastic stability of turbines are considered for the parameter variations: 1. Effect of airfoil aerodynamics: The airfoil aerodynamics given by the profile coefficients for aerodynamic lift, drag, and moment are shown to have a direct effect on aerodynamic damping of blade vibrations. A redesign of the airfoils can improve the power performance of the rotor without loss of aerodynamic damping. 2. Effect of flap/edgewise frequency coincidence: The natural frequencies of the first flapwise and first edgewise blade bending modes become closer as the blades become more slender. This 1-1 resonance may lead to a coupling flap- and edgewise blade vibrations which increases the edgewise blade mode damping. 3. Effect of flap/edgewise whirling coupling: The aerodynamic damping of blade vibrations close to the rotor plane are generally lower than the aerodynamic damping of vibrations out of the rotor plane. A structural coupling between the flapwise and edgewise whirling modes can increase the overall aerodynamic damping by adding more out of plane blade motion to the edgewise whirling modes. 4. Effect of torsional blade stiffness: A low torsional blade stiffness may lead to flutter where the first torsional blade mode couples to a flapwise bending mode in a flutter instability through the aerodynamic forces. 5. Can whirl flutter happen on a wind turbine? Whirl flutter is an aeroelastic instability similar to blade flutter. Whirl flutter can occur on turbines with very low natural frequencies of the tilt and yaw modes (about 5 % of their original values). 6. Edgewise/torsion coupling for large flapwise deflections: The large flapwise deflection of modern slender blades lead to a geometric coupling of edgewise bending and torsion. The aeroelastic damping of the blade modes are affected by a flapwise prebend of the blade. 7. Effect of yaw error on damping from wake: The wake behind the

  8. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Lorzadeh, Iman; Askarian Abyaneh, Hossein; Savaghebi, Mehdi

    2016-01-01

    Inductive-capacitive-inductive (LCL)-type line filters are widely used in grid-connected voltage source inverters (VSIs), since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L......-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid...... passive (resistive) resonance damping solutions, due to their additional power losses, active damping (AD) techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF) AD has...

  9. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  10. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  11. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  12. Dynamic characteristics of a novel damped outrigger system

    Science.gov (United States)

    Tan, Ping; Fang, Chuangjie; Zhou, Fulin

    2014-06-01

    This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.

  13. Use of segmented constrained layer damping treatment for improved helicopter aeromechanical stability

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu

    2000-08-01

    The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.

  14. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  15. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  16. Kinetics of passivation of a nickel-base alloy in high temperature water

    International Nuclear Information System (INIS)

    Machet, A.; Galtayries, A.; Zanna, S.; Marcus, P.; Jolivet, P.; Scott, P.; Foucault, M.; Combrade, P.

    2004-01-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr 2 O 3 ) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr 2 O 3 oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  17. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  18. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  19. Hybrid damper with stroke amplification for damping of offshore wind turbines

    DEFF Research Database (Denmark)

    Brodersen, Mark L.; Høgsberg, Jan

    2016-01-01

    tower. The proposed hybrid damper consists of a passive viscous dashpot placed in series with a load cell and an active actuator. By integrated force feedback control of the actuator motion, the associated displacement amplitude over the viscous damper can be increased compared with the passive viscous......The magnitude of tower vibrations of offshore wind turbines is a key design driver for the feasibility of the monopilesupport structure. A novel control concept for the damping of these tower vibrations is proposed, where viscous-type hybrid dampers are installed at the bottom of the wind turbine...... case, hereby significantly increasing the feasibility of viscous dampers acting at the bottom of the wind turbine tower. To avoid drift in the actuator displacement, a filtered time integration of the measured force signal is introduced. Numerical examples demonstrate that the filtered time integration...

  20. Sub-synchronous resonance damping using high penetration PV plant

    Science.gov (United States)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  1. Highly Accurate Derivatives for LCL-Filtered Grid Converter with Capacitor Voltage Active Damping

    DEFF Research Database (Denmark)

    Xin, Zhen; Loh, Poh Chiang; Wang, Xiongfei

    2016-01-01

    The middle capacitor voltage of an LCL-filter, if fed back for synchronization, can be used for active damping. An extra sensor for measuring the capacitor current is then avoided. Relating the capacitor voltage to existing popular damping techniques designed with capacitor current feedback would...... are then proposed, based on either second-order or non-ideal generalized integrator. Performances of these derivatives have been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately. Experimental results presented have verified...

  2. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  3. Instability and damping of one-dimensional high-amplitude Langmuir waves

    International Nuclear Information System (INIS)

    Buchel'nikova, N.S.; Matochkin, E.P.

    1981-01-01

    Numerical experiments (methods ''of particles in cells'') on investigation of instability and damping of one-dimensional Langmuir waves in the region Esub(0)sup(2)/8πnT>m/M>(ksub(0)rsub(d))sup(2) ksub(0) is wave vector, M- ion mass, m-electron mass, v=√T/M, vsub(ph)=Wsub(0)/ksub(0), Wsub(0)-proper plasma frequency) are performed. Numerical experiments have been conducted in a wide range of initial parameters of the wave: E 0 2 /8πnT approximately 4x10 2 -10 -2 , vsub(ph)/vsub(T) approximately 3-160, M/m=10 2 , in some cases M/m=10 3 . It is shown that the basic processes are modulation instability with a modulation length less than the wave length, wave conversion at density inhomogeneity and electron capture by the wave or its harmonics. Depending on initial wave parameters the predominant role is played by this or that process. In the range of linear waves Esub(0)sup(2)/8πnT ksub(0)rsub(d) - to the collapse. In the range of 4x10sup(-2)/(ksub(0)rsub(d)sup(2)>Esub(0)sup(2)/8πnT>10sup(-3)/(ksub(0)rsub(d))sup(2) all the three processes play a comparable role. In the range of strong damping Esub(0)sup(2)/8πnT>4x10sup(-2)/(h ksub(0)rsub(d))sup(2) the main part is played by the wave electron capture resulting in damping considerably exceeding the Lamdau damping [ru

  4. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  5. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  6. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  7. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others

    2016-09-21

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  8. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  9. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  10. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  11. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  12. Controllable damping of high-Q violin modes in fused silica suspension fibers

    Science.gov (United States)

    Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  13. Grid-Connected Control Strategy of Five-level Inverter Based on Passive E-L Model

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-10-01

    Full Text Available At present, the research on five-level inverters mainly involves the modulation algorithm and topology, and few articles study the five-level inverter from the control strategy. In this paper, the nonlinear passivity-based control (PBC method is proposed for single-phase uninterruptible power supply inverters. The proposed PBC method is based on an energy shaping and damping injection idea, which is performed to regulate the energy flow of an inverter to a desired level and to assure global asymptotic stability, respectively. Furthermore, this paper presents a control algorithm based on the theory of passivity that gives an inverter in a photovoltaic system additional functions: power factor correction, harmonic currents compensation, and the ability to stabilize the system under varying injection damping. Finally, the effectiveness of the PBC method in terms of both stability and harmonic distortion is verified by the simulation and experiments under resistive and inductive loads.

  14. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  15. Quantization of the damped harmonic oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Fresneda, R., E-mail: fresneda@gmail.co [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2011-04-11

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: We prove the local equivalence of two damped harmonic oscillator models. We find different high energy behaviors between the two models. Based on the local equivalence, we make a simple construction of the coherent states.

  16. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  17. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  18. Controllable damping of high-Q violin modes in fused silica suspension fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Tokmakov, K V, E-mail: dmitriev@hbar.phys.msu.r, E-mail: mitr@hbar.phys.msu.r [Present address: Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-01-21

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10{sup 8}. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  19. Controllable damping of high-Q violin modes in fused silica suspension fibers

    International Nuclear Information System (INIS)

    Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P; Tokmakov, K V

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10 8 . They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  20. High order mode damping in a pill box cavity

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.; Rimmer, R.

    1991-04-01

    We have substantially damped the higher order modes (HOM's) in a pill box cavity with attached beam pipe, while reducing the Q of the principal mode by less that 10%. This was accomplished by cutting slots in the cavity end wall at a radius at which the magnetic field of the lowest frequency HOM's is large. The slots couple energy from the cavity into waveguides which are below cut off for the principal mode, but which propagate energy at the HOM frequencies. Three slots 120 degrees apart couple HOM energy to three waveguides. We are concerned primarily with accelerating and deflecting modes: i.e. the TM mnp modes of order m=0 and m=1. For the strongest damping, only three m=0 and m=1 modes were detectable. These were the principal TM 010 mode, the TM 011 longitudinal mode, and the TM 110 deflecting mode. In addition the HOM Q's and the reduction of Q for the principal mode were determined by computer calculation. The principal mode Q for an actual rf cavity could not be measured because the bolted joints used in the construction of the cavity were not sufficiently good to support Q's above 6000. The measured Q of the first longitudinal mode was 31 and of the first transverse mode 37. Our maximum damping was limited by how well we could terminated the waveguides, and indeed, the computer calculations for the TM 011 and TM 110 modes give values in the range we measured. 2 refs., 2 figs

  1. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  2. Robust Rudder Roll Damping Control

    DEFF Research Database (Denmark)

    Yang, C.

    The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H-infinity...... theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4...

  3. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  4. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  5. Quantization of the damped harmonic oscillator revisited

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Gitman, D.M.

    2011-01-01

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: → We prove the local equivalence of two damped harmonic oscillator models. → We find different high energy behaviors between the two models. → Based on the local equivalence, we make a simple construction of the coherent states.

  6. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  7. Qualification of high damping seismic isolation bearings for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Gluekler, E.L.; Chen, W.P.; Kelly, J.M.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) seismic isolation system consists of high damping steel-laminated elastomeric bearings. This type of bearing is used worldwide to isolate buildings and large critical components. A comprehensive testing program has been developed to qualify the use of this system for the ALMR. The program includes material characterization tests, various scale bearing tests, full-size bearing tests, shake table tests, and long-term aging tests. The main tasks and objectives of this program are described in the paper. Additionally, a detailed assessment of completed ALMR bearing test results will be provided. This assessment will be mainly based on half-scale bearing tests performed at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley and at the Energy Technology Engineering Center (ETEC). These tests were funded by the U.S. Department of Energy (DOE). Both static and dynamic tests were performed. Bearings with two types of end connections were tested: dowelled and bolted. The parameters examined will include the vertical, horizontal stiffness and damping of the bearings under different loading conditions up to failure. This will determine the available margins in the bearings above the design vertical load and horizontal displacement. Additionally, the self-centering capability of the bearings after an earthquake will be addressed. On the basis of these findings, recommendations can be made if necessary, to improve current manufacturing procedures, quality control, and procurement specifications. (author)

  8. Grid-Current-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2016-01-01

    This paper investigates active damping of LCL-filter resonance in a grid-connected voltage-source converter with only grid-current feedback control. Basic analysis in the s-domain shows that the proposed damping technique with a negative high-pass filter along its damping path is equivalent...... of phase-lag, in turn, helps to shrink the region of nonminimum-phase behavior caused by negative virtual resistance inserted unintentionally by most digitally implemented active damping techniques. The presented high-pass-filtered active damping technique with a single grid-current feedback loop is thus...

  9. Quality assurance during fabrication of high-damping rubber isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Way, D.; Greaves, W.C. [Base Isolation Consultants, Inc., San Francisco, CA (United States)

    1995-12-01

    Successful implementation of a high-damping rubber (HDR) base isolation project requires the application of Quality Assurance/Quality Control (QA/QC) methodology through all phases of the bearing fabrication process. HDR base isolation bearings must be fabricated with uniform physical characteristics while being produced in large quantities. To satisfy this requirement, manufacturing processes must be controlled. Prototype tests that include dynamic testing of small samples of rubber are necessary. Stringent full scale bearing testing must be carried out prior to beginning production, during which manufacturing is strictly regulated by small rubber sample and production bearing testing. All such activities should be supervised and continuously inspected by independent and experienced QA/QC personnel.

  10. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  11. Impact of Damping Uncertainty on SEA Model Response Variance

    Science.gov (United States)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  12. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  13. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  14. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    Science.gov (United States)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential

  15. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    Science.gov (United States)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  16. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Gelda, Dhruv, E-mail: gelda2@illinois.edu; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Sinha, Sanjiv [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Micro and Nanotechnology Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-04-28

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1–100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ∼100 GHz.

  17. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  18. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  19. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  20. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  1. A study on the damping capacity of BaTiO3-reinforced Al-matrix ...

    Indian Academy of Sciences (India)

    the results showed that the damping capacity of Al-matrix composites can increase greatly [3–5]. Therefore, reinforcing. Al alloy matrix with higher damping particles could be an efficient way to obtain Al-matrix composites with both high strength and high damping capacity. Ferroelectric and piezoelectric ceramics can exhibit ...

  2. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  3. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  4. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2015-06-01

    The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance.

  5. Dampness in buildings and health. Building characteristics as predictors for dampness in 8681 Swedish dwellings

    DEFF Research Database (Denmark)

    Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan

    2002-01-01

    Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....

  6. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  7. Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes

    International Nuclear Information System (INIS)

    Vasques, C M A

    2012-01-01

    Modal control and spatial filtering technologies for mitigation of vibration and/or structural acoustics radiation may be achieved through the use of distributed modal piezoelectric transducers with properly shaped electrodes. This approach filters out undesirable and uncontrollable modes over the bandwidth of interest in order to increase the robustness and stability of the controlled structural system, and may also yield higher values of the generalized modal electromechanical coupling coefficient, which is an important design parameter for achieving efficient passive shunt damping design. In this paper the improvements in passive shunt damping performance when using modal piezoelectric transducers with shaped electrodes are investigated for a two-layered resonant-shunted piezo-elastic smart beam structure. An electromechanical one-dimensional equivalent single-layer Euler–Bernoulli analytical model of two-layered smart piezo-elastic beams with arbitrary spatially shaped electrodes is established for modal and uniform electrode designs. The model is verified and validated by comparison with a one-dimensional discrete-layer (layerwise) finite element model, the damping performance of the shunted smart beam with shaped electrodes is investigated and assessed in terms of the generalized electromechanical coupling coefficient and frequency responses obtained when considering uniform and modally shaped electrodes and the underlying improved performance and advantages are assessed and discussed. (paper)

  8. Approximation of the modal damping coefficients equivalent to material damping by harmonic excitation with ASKA

    International Nuclear Information System (INIS)

    Edme, R.

    1983-01-01

    If a dynamic response analysis (harmonic excitation) is carried out with the modal method, the modal damping coefficients must be approximated to match the structural damping. The program ASKA-Damping, which also supplies an error assessment of the approximation, was developed for this purpose. The modal method and the direct method are applied to a test example and their results compared. It is suggested that the ASKA manufacturers extend the spectral earthquake response analysis to take these modal damping coefficients into account so that the results become less conservative. (orig.) [de

  9. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    International Nuclear Information System (INIS)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe

    2008-01-01

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  10. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)

    2008-07-15

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  11. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  12. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  13. Metallic materials for mechanical damping capacity applications

    Science.gov (United States)

    Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.

    2016-08-01

    Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.

  14. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    Directory of Open Access Journals (Sweden)

    Iman Lorzadeh

    2016-08-01

    Full Text Available Inductive-capacitive-inductive (LCL-type line filters are widely used in grid-connected voltage source inverters (VSIs, since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid passive (resistive resonance damping solutions, due to their additional power losses, active damping (AD techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF AD has attracted considerable attention due to its effective damping performance and simple implementation. This paper thus presents a state-of-the-art review of resonance and stability characteristics of CCF-based AD approaches for a digitally-controlled LCL filter-based grid-connected inverter taking into account the effect of computation and pulse width modulation (PWM delays along with a detailed analysis on proper design and implementation.

  15. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  16. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  17. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  18. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  19. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  20. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  1. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  2. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark’s Method with Netwon-Raphson Iteration Revisited

    Directory of Open Access Journals (Sweden)

    Markou A.A.

    2018-03-01

    Full Text Available Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark’s time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  3. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  4. Variation of structural damping with response amplitude in piping systems

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    From tests conducted over the last several years, it has become apparent that structural damping is not a single number applicable to all piping systems, but is highly dependent on piping system parameters such as supports, response amplitude, and insulation. As a result, there is considerable scatter in the available data. Furthermore, the relationships between the parameters and damping are often highly complex, interrelated, and difficult to predict. From tests of piping supported by various typical methods, two basic types of energy dissipation in the supports can be observed. The first is friction such as between spring hangers and their housings or in the internal mechanisms of constant force hangers. The second is impacting such as occurs in snubbers, rigid struts, and rod hangers. Overall, these effects lead to a wide variety of possibilities that can occur at low vibration levels and can change with only a slight perturbation of vibration amplitude. This can account for much of the scatter in the data at low strain levels. Thus damping is almost impossible to predict at low amplitudes, and extrapolation of this type data to higher amplitudes is cautioned. However, once strain levels rise above 100 to 200 micro in/in, the damping trend becomes easier to characterize. From the 100 to 200 micro in/in to 800 to 1000 micro in/in range the damping is fairly constant and is induced primarily by the supports. At the upper end of this range a threshold is reached in which damping increases with increasing strain amplitude. Data in the high strain (plastic range) is sparse since the test usually renders the pipe unsuitable for further use. 15 refs

  5. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wen-Ping, Gu; Huan-Tao, Duan; Jin-Yu, Ni; Yue, Hao; Jin-Cheng, Zhang; Qian, Feng; Xiao-Hua, Ma

    2009-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current I Dsat , maximal transconductance g m , and the positive shift of threshold voltage V TH at high drain-source voltage V DS . The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with V DS = 20 V and V GS = 0 V applied to the device for 10 4 sec, the SiN passivation decreases the stress-induced degradation of I Dsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of I Dsat , which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  8. Study of damping characteristics of fibre reinforced composite aerospace structure

    International Nuclear Information System (INIS)

    Khan, M.Z.; Saleh, S.; Munir, A.

    2006-01-01

    Composite materials are used in a variety of high demanding structural applications. Apart from their other preferable properties, they have high-energy dissipation characteristics, which is important aspect when we repeatedly wiggle the system back and forth. It is important to have thorough understanding of material damping behavior; in general materials damping tends to be complex nonlinear function of vibration amplitude, frequency of loading and material formulation. There are number of mathematical models available in literature to obtain hysteresis curves. One approach for identifying damping characteristics used mechanical hysteresis curves. In present work, a phenomenon was observed during testing of fibre reinforced composite beam of an aerospace structure, that for increase load in structure, the path of Force vs. Displacement curve is different than the path of unloading. A plot is generated which indicate the hysteresis loop representing the steady state dynamic behavior of material. The area enclosed by such curves is proportional to energy dissipation per cycle. However, the specific shape of the curve also has important implications for characterizing the specific functional form of the damping. Therefore, it is important to develop methods for accurately accounting for such effects. The current work explores the damping characteristics both theoretically and experimentally. (author)

  9. Optimal Passive Dynamics for Physical Interaction: Catching a Mass

    Directory of Open Access Journals (Sweden)

    Kevin Kemper

    2013-05-01

    Full Text Available For manipulation tasks in uncertain environments, intentionally designed series impedance in mechanical systems can provide significant benefits that cannot be achieved in software. Traditionally, the design of actuated systems revolves around sizing torques, speeds, and control strategies without considering the system’s passive dynamics. However, the passive dynamics of the mechanical system, including inertia, stiffness, and damping along with other parameters such as torque and stroke limits often impose performance limitations that cannot be overcome with software control. In this paper, we develop relationships between an actuator’s passive dynamics and the resulting performance for the purpose of better understanding how to tune the passive dynamics for catching an unexpected object. We use a mathematically optimal controller subject to force limitations to stop the incoming object without breaking contact and bouncing. The use of an optimal controller is important so that our results directly reflect the physical system’s performance. We analytically calculate the maximum velocity that can be caught by a realistic actuator with limitations such as force and stroke limits. The results show that in order to maximize the velocity of an object that can be caught without exceeding the actuator’s torque and stroke limits, a soft spring along with a strong damper will be desired.

  10. Modelling of Dampers and Damping in Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess

    2006-01-01

    and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...

  11. First Results from the DAMPE Mission

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    DAMPE (DArk Matter Particle Explorer) is a satellite mission of the Chinese Academy of Sciences (CAS) dedicated to high energy cosmic ray detections. Since its successful launch on December 17th, 2015 a large amount of cosmic ray data has been collected. With relatively large acceptance, DAMPE is designed to detect electrons (and positrons) up to 10 TeV with unprecedented energy resolution to search for new features in the cosmic ray electron plus positron (CRE) spectrum. It will also study cosmic ray nuclei up to 100 TeV with good precision, which will bring new input to the study of their still unknown origin and their propagation through the Galaxy. In this talk, the DAMPE mission will be introduced, together with some details of the construction and on-ground calibration of the detector subsystems. The in-orbit detector commissioning, calibration and operation will be described. First data analysis results, including the recently published CRE spectrum from 25 GeV to 4.6 TeV based on the data collected i...

  12. Laboratory piping system vibration tests to determine parametric effects on damping in the seismic frequency range

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    A pipe damping research program is being conducted for the United States Nuclear Regulatory Commission at the Idaho National Engineering Laboratory to establish more realistic, best-estimate damping values for use in dynamic structural analyses of piping systems. As part of this program, tests were conducted on a 5-in. (128 mm ID) laboratory piping system to determine the effects of pressure, support configuration, insulation and response amplitude on damping. The tests were designed to produce a wide range of damping values, from very low damping in lightly excited uninsulated systems with few supports, to higher damping under conditions of either/or insulation, high level excitation, and various support arrangements. The effect of pressure at representative seismic levels was considered to be minimal. The supports influence damping at all excitation levels; damping was highest when a mechanical snubber was present in the system. The addition of insulation produced a large increase in damping for the hydraulic shaker excitation tests, but there was no comparable increase for the snapback excitation tests. Once a response amplitude of approximately one-half yield stress was reached, overall damping increased to relatively high levels (>10% of critical)

  13. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  14. Impact of Cyber Attacks on High Voltage DC Transmission Damping Control

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2018-04-01

    Full Text Available Hybrid AC/HVDC (AC-HVDC grids have evolved to become huge cyber-physical systems that are vulnerable to cyber attacks because of the wide attack surface and increasing dependence on intelligent electronic devices, computing resources and communication networks. This paper, for the first time, studies the impact of cyber attacks on HVDC transmission oscillation damping control.Three kinds of cyber attack models are considered: timing attack, replay attack and false data injection attack. Followed by a brief introduction of the HVDC model and conventional oscillation damping control method, the design of three attack models is described in the paper. These attacks are tested on a modified IEEE New England 39-Bus AC-HVDC system. Simulation results have shown that all three kinds of attacks are capable of driving the AC-HVDC system into large oscillations or even unstable conditions.

  15. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

    Science.gov (United States)

    Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

    2016-09-01

    The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

  16. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  17. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  18. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  19. DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    JAGADEESH PASUPULETI

    2006-06-01

    Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.

  20. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  1. Validation of Analytical Damping Ratio by Fatigue Stress Limit

    Science.gov (United States)

    Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul

    2018-03-01

    The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.

  2. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  3. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  4. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  5. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  6. Bulk viscous corrections to screening and damping in QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qianqian [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Dumitru, Adrian [Department of Natural Sciences, Baruch College, CUNY,17 Lexington Avenue, New York, NY 10010 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY 10016 (United States); Guo, Yun [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Strickland, Michael [Department of Physics, Kent State University,206B Smith Hall, Kent, OH 44240 (United States)

    2017-01-27

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  7. Bulk viscous corrections to screening and damping in QCD at high temperatures

    International Nuclear Information System (INIS)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun; Strickland, Michael

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  8. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  9. ITER like lower hybrid passive active multi-junction antenna manufacturing and tests

    International Nuclear Information System (INIS)

    Guilhem, D.; Samaille, F.; Bertrand, B.; Lipa, M.; Achard, J.; Agarici, G.; Argouarch, A.; Armitano, A.; Bej, Z.; Berger-By, G.; Bouquey, F.; Brun, C.; Chantant, M.; Corbel, E.; Delmas, E.; Delpech, L.; Doceul, L.; Ekedahl, A.; Faisse, F.; Fejoz, P.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Hoang, T.; Houry, M.; Joubert, P.; Lambert, R.; Lombard, G.; Madeleine, S.; Magne, R.; Marfisi, L.; Martinez, A.; Missirlian, M.; Mollard, P.; Poli, S.; Portafaix, C.; Preynas, M.; Prou, M.; Raulin, D.; Saille, A.; Soler, B.; Thouvenin, D.; Verger, J. M.; Volpe, D.; Vulliez, K.; Zago, B.

    2011-01-01

    A new concept of multijunction-type antenna has been developed, the Passive Active Multijunction, which improves the cooling of the waveguides and the damping of the neutron energy (for ITER) compared to Full Active Multijunction. Due to the complexity of the structures, prototypes of the mode converters and of the Passive-Active-Multijunction launcher were fabricated and tested, in order to validate the different manufacturing processes and the manufacturer's capability to face this challenging project. This paper describes the manufacturing process, the tests of the various prototypes and the construction of the final Passive-Active-Multijunction launcher, which entered into operation in October 2009. It has been commissioned and is fully operational on the Tore-Supra tokamak, since design objectives were reached in March 2010: 2.75 MW - 78 s, power density of 25 MW/m 2 in active waveguides, steady-state apparent surface temperatures ≤ 350 degrees C; 10 cm long distance coupling. (authors)

  10. Identification of Damping from Structural Vibrations

    DEFF Research Database (Denmark)

    Bajric, Anela

    Reliable predictions of the dynamic loads and the lifetime of structures are influenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from first principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identification of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The first part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...

  11. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  12. Nonlinear damping based semi-active building isolation system

    Science.gov (United States)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  13. Two-dimensional unwrapped phase inversion with damping and a Gaussian filter

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2014-01-01

    Phase wrapping is one of main causes of the local minima problem in waveform inversion. However, the unwrapping process for 2D phase maps that includes singular points (residues) is complicated and does not guarantee unique solutions. We employ an exponential damping to eliminate the residues in the 2D phase maps, which makes the 2D phase unwrapping process easy and produce a unique solution. A recursive inversion process using the damped unwrapped phase provides an opportunity to invert for smooth background updates first, and higher resolution updates later as we reduce the damping. We also apply a Gaussian filter to the gradient to mitigate the edge artifacts resulting from the narrow shape of the sensitivity kernels at high damping. Numerical examples demonstrate that our unwrapped phase inversion with damping and a Gaussian filter produces good convergent results even for a 3Hz single frequency of Marmousi dataset and with a starting model far from the true model.

  14. Friction-stir processing of a high-damping Mn-Cu alloy used for marine propellers

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, S.P.; Edwards, D.P.; Majumdar, A. [Defence Science and Technology Organisation, Melbourne (Australia); Moutsos, S. [Centre for Advanced Materials Technology, Monash Univ. (Australia); Mahoney, M.W. [Rockwell Scientific, Thousand Oaks (United States)

    2003-07-01

    Mn-Cu alloys are used for specialised applications, such as marine propellers, where high noise-damping characteristics are required. These alloys tend to have more severe shrinkage porosity than conventional propeller alloys, and the corrosion resistance (including stress-corrosion and corrosion-fatigue resistance) of the alloys is not as high as desirable. Friction-stir processing (FSP) trials on one such alloy (tradename Sonoston) have shown that near-surface porosity can be eliminated and that the coarse, as-cast microstructure can be significantly refined. The corrosion resistance of processed material is substantially improved provided a heat treatment to relieve residual stress is carried out after FSP. (orig.)

  15. Simplified analytical methods and experimental correlations of damping in piping during dynamic high-level inelastic response

    International Nuclear Information System (INIS)

    Severud, L.K.

    1987-01-01

    Simplified methods for predicting equivalent viscous damping are used to assess damping contributions due to piping inelastic plastic hinge action and support snubbers. These increments are compared to experimental findings from shake and snap-back tests of several pipe systems. Good correlations were found confirming the usefulness of the simplified methods

  16. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  17. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  18. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  19. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  20. Determination of aerodynamic damping of twin cables in wet conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Eriksen, Mads Beedholm; Mattiello, E.; Georgakis, Christos T.

    2013-01-01

    Moderate amplitude cable vibrations continue to be reported on the cable-stayed Øresund Bridge, despite the presence of helical fillets and dampers. The vibrations are particularly notable in wet conditions, which would suggest a form of rain-wind induced vibrations (RWIV). A statistical...... of the bridge cables. For the wet tests, the twin cable surfaces were treated in order to obtain uniform upper and lower water rivulets. The interaction between water rivulets, surface properties and the flow was found to govern the activation of the RWIV mechanism. The resulting aerodynamic damping from wet...

  1. Simulations of Bunch Precompression at High Currents in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Minty, M.G.; Chao, A.W.

    2011-01-01

    In the Stanford Linear Collider (SLC) each beam, after leaving a damping ring, is compressed in the Ring-to-Linac (RTL) transfer line before entering the linear accelerator. At a bunch population of 4.0 x 10 10 particles, due to the limited energy acceptance of the RTL, approximately 15% of the beam has normally been lost. During the 1996 run, however, to eliminate this loss the bunch was partially precompressed in the damping ring, just before extraction; the beam loss in the RTL was reduced to almost zero. The operation and performance of precompression are presented by Minty et al. (1999). Also given is an analysis which, however, does not include the effects of the longitudinal wakefield on the beam dynamics. In this report we extend that analysis to include these effects.

  2. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  3. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  4. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  5. A review of damping of two-phase flows

    International Nuclear Information System (INIS)

    Hara, Fumio

    1993-01-01

    Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms

  6. A lattice with larger momentum compaction for the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Raubenheimer, Tor O.; Woodley, Mark; Wu, Juhao

    2004-01-01

    Previous lattice designs for the Next Linear Collider Main Damping Rings [1] have met the specifications for equilibrium emittance, damping rate and dynamic aperture. Concerns about the effects of the damping wiggler on the beam dynamics [2] led to the aim of reducing the total length of the wiggler to a minimum consistent with the required damping rate, so high-field dipoles were used to provide a significant energy loss in the arcs. However, recent work has shown that the wiggler effects may not be as bad as previously feared. Furthermore, other studies have suggested the need for an increased momentum compaction (by roughly a factor of four) to raise the thresholds of various collective effects. We have therefore developed a new lattice design in which we increase the momentum compaction by reducing the field strength in the arc dipoles, compensating the loss in damping rate by increasing the length of the wiggler. The new lattice again meets the specifications for emittance, damping rate and dynamic aperture, while having the benefit of significantly higher thresholds for a number of instabilities

  7. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    Science.gov (United States)

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design

  8. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  9. Innovative Facet Passivation for High-Brightness Laser Diodes

    Science.gov (United States)

    2016-02-05

    processing will prevent oxidation of the front facet, the leading contaminant from the ambient. By keeping the MBE growth temperatures between 400 and 500 ...suitably adjusted Al mole fraction and growth recipes . Specifically, MBE-AlGaAs passivation can apply to slab pumped lasers (e.g. 808 nm), fiber...li ty OHMIC CONTACTS PASSIVATION LAYER 400 OC 500 OC THERMAL “ SWEET SPOT ” POLYCRYTALLINE / LATTICE MIS-MATCHED PASSIVATION OHMIC CONTACT DEGRADATION

  10. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  11. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  12. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  13. Damping Estimation of Friction Systems in Random Vibrations

    DEFF Research Database (Denmark)

    Friis, Tobias; Katsanos, Evangelos; Amador, Sandro

    Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...

  14. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  15. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  16. A Portable Passive Physiotherapeutic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dasheek Naidu

    2012-10-01

    Full Text Available The public healthcare system in South Africa is in need of urgent attention in no small part because there has been an escalation in the number of stroke victims which could be due to the increase in hypertension in this urbanizing society. There is a growing need for physiotherapists and occupational therapists in the country, which is further hindered by the division between urban and rural areas. A possible solution is a portable passive physiotherapeutic exoskeleton device. The exoskeleton device has been formulated to encapsulate methodologies that enable the anthropomorphic integration between a biological and mechatronic limb. A physiotherapeutic mechanism was designed to be portable and adjustable, without limiting the spherical motion and workspace of the human arm. The exoskeleton was designed to be portable in the sense that it could be transported geographically. It is a complete device allowing for motion in the shoulder, elbow, wrist and hand joints. The inverse kinematics was solved iteratively via the Damped Least Squares (DLS method. The electronic and computer system allowed for professional personnel to either change an individual joint or a combination of joints angles via the kinematic models. A ramp PI controller was established to provide a smooth response to simulate the passive therapy motion.

  17. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  18. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going...... from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...... structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads...

  19. A passive method to stabilize an airborne vehicle

    Directory of Open Access Journals (Sweden)

    Timo Sailaranta

    2014-06-01

    Full Text Available A method of augmenting an airborne vehicle for short-period dynamics and stability by passive means is presented in this study. A trajectory-phase disturbance rejection capability is achieved for an unguided fin-stabilized vehicle by flexible mounting of the fins to the vehicle body. The deflecting fins lag the body oscillation such that the harmonic oscillation can be quickly dampened. The amount of fin deflection may be chosen by a hinge-line location; among other things, the vehicle damping behaviour is largely determined by this choice. Linear theory is applied and 6-DOF simulations are carried out to demonstrate the approach suitability for the task.

  20. Recommendation for the Feasibility of more Compact LC Damping Rings

    CERN Document Server

    Pivi, M.T.F.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.

    2010-01-01

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design

  1. Recommendation for the Feasibility of more Compact LC Damping Rings

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.

    2010-01-01

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 (1) and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.

  2. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  3. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien

    2016-01-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  4. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu

    2016-06-21

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  5. Magnon damping in two-dimensional Heisenberg ferromagnetic system

    International Nuclear Information System (INIS)

    Cheng, T.-M.; Li Lin; Ze Xianyu

    2006-01-01

    A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed

  6. Direct FEM-computation of load carrying capacity of highly loaded passive components; Direkte FEM - Berechnung der Tragfaehigkeit hochbeanspruchter passiver Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Staat, M; Heitzer, M [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1998-11-01

    Detailed, inelastic FEM analyses yield accurate information about the stresses and deformations in passive components. The local loading conditions, however, cannot be directly compared with a limit load in terms of structural mechanics. Concentration on the load carrying capacity is an approach simplifying the analysis. Based on the plasticity theory, limit and shakedown analyses calculate the load carrying capacities directly and exactly. The paper explains the implementation of the limit and shakedown data sets in a general FEM program and the direct calculation of the load carrying capacities of passive components. The concepts used are explained with respect to common structural analysis. Examples assuming high local stresses illustrate the application of FEM-based limit and shakedown analyses. The calculated interaction diagrams present a good insight into the applicable operational loads of individual passive components. The load carrying analysis also opens up a structure mechanics-based approach to assessing the load-to-collapse of cracked components made of highly ductile fracture-resistant material. (orig./CB) [Deutsch] Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung laesst sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragfaehigkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizitaetstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspielsaetze in ein allgemeines FEM Programm vorgestellt, mit der die Tragfaehigkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die uebliche Strukturanalyse erlaeutert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und

  7. Development of Composite Materials with High Passive Damping Properties

    National Research Council Canada - National Science Library

    Crocker, Malcolm J

    2006-01-01

    .... However their fatigue, vibration and acoustic properties are known less. This is a problem since such composite materials tend to be more brittle than metals because of the possibility of delamination and fiber breakage...

  8. Simulation and Analysis of Passive Rolling Compensation of High Sea Salvage System

    Directory of Open Access Journals (Sweden)

    Lin Liqun

    2017-01-01

    Full Text Available Method and device of a flexible interception and salvage system was introduced in this paper. In order to study the effect of wave motion on salvage operation, we proposed a passive wave compensation scheme that utilizes a combination of variable-pitch cylinders and accumulators, and established the mathematical vibration model of the rolling motion of the salvage compensation system. With the relationships between the stiffness coefficient and the accumulator parametric of passive compensated gas-liquid system, we determined the effective compensation stiffness range through Mathematica simulation analysis. The relationship between the roll displacement of the salvage arm and the initial volume Vo of the accumulator has been analysed. The results show that the accumulatorVo in a certain range has a great influence on the passive compensation. However, when the volume is greater than 20m3, the compensation effect is weakened, and tend to a certain value, irrespective of the passive system accumulator volume capacity, it does not achieve full compensation. The results have important guidance on the design and optimization of rolling passive compensation of the practical high sea salvage system.

  9. Evaluation of radiation damping using 3-D finite element models

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1983-01-01

    The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)

  10. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    Hobson, D.E.; Dolding, M.

    1989-01-01

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  11. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  12. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  13. A Novel Dual–Parallelogram Passive Rocking Vibration Isolator: A Theoretical Investigation and Experiment

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2017-04-01

    Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.

  14. An Empirical Method for Particle Damping Design

    Directory of Open Access Journals (Sweden)

    Zhi Wei Xu

    2004-01-01

    Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.

  15. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  16. Experimental relationship between damping and stability of sine-Gordon solitons in Josephson junctions

    DEFF Research Database (Denmark)

    Davidson, A.; Pedersen, Niels Falsig; Dueholm, B.

    1985-01-01

    We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions.......We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions....

  17. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  18. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  19. Process Damping and Cutting Tool Geometry in Machining

    International Nuclear Information System (INIS)

    Taylor, C M; Sims, N D; Turner, S

    2011-01-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  20. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  1. Damping Identification of Bridges Under Nonstationary Ambient Vibration

    Directory of Open Access Journals (Sweden)

    Sunjoong Kim

    2017-12-01

    Full Text Available This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (OMA based on a stationary white noise assumption for input signals. However, most bridges are generally subjected to nonstationary excitations while in service, and this violation of the basic assumption can lead to uncertainties in damping identification. To deal with nonstationarity, an amplitude-modulating function was calculated from measured responses to eliminate global trends caused by nonstationary input. A natural excitation technique (NExT-eigensystem realization algorithm (ERA was applied to estimate the damping ratio for a stationarized process. To improve the accuracy of OMA-based damping estimates, a comparative analysis was performed between an extracted stationary process and nonstationary data to assess the effect of eliminating nonstationarity. The mean value and standard deviation of the damping ratio for the first vertical mode decreased after signal stationarization. Keywords: Damping, Operational modal analysis, Traffic-induced vibration, Nonstationary, Signal stationarization, Amplitude-modulating, Bridge, Cable-stayed, Suspension

  2. Damping-off in forest nurseries

    Science.gov (United States)

    Carl Hartley

    1921-01-01

    Damping-off is the commonest English name for a symptomatic group of diseases affecting great numbers of plant species of widely separated phylogenetic groups. It is commonly used for any disease which results in the rapid decay of young succulent seedlings or soft cuttings. Young shoots from underground rootstocks may also be damped-off before they break through the...

  3. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  4. Offline software for the DAMPE experiment

    Science.gov (United States)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  5. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  6. Design of an rf quadrupole for Landau damping

    Science.gov (United States)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  7. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    International Nuclear Information System (INIS)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10 18 W/cm 2 ) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed

  8. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  9. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  10. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    Toyomasu, Takanori

    1991-12-01

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  11. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer

    Directory of Open Access Journals (Sweden)

    Jitka eFucikova

    2015-08-01

    Full Text Available It is now clear that human neoplasms form, progress and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (reactivation of tumor-targeting immune response. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as „immunogenic cell death (ICD. Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as „damage-associated molecular patterns (DAMPs, may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.

  12. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  13. Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.

  14. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  15. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  16. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables

    International Nuclear Information System (INIS)

    Yan, T H; Li, Q; Xu, C; Pu, H Y; Chen, X D

    2010-01-01

    The design, realization and control technologies of a high-performance hybrid microvibration isolator for ultra-high-precision high-speed moving X/Y tables are presented in this paper—the novel isolator with integrated passive–active high level of damping. The passive damping was implemented using air-springs in both vertical and horizontal directions, with parallel linear motors in two directions to realize the active damping and the positioning functions. It is an actual hybrid isolation system because its air-spring can also be controlled through the pneumatic loop. The isolation servo system also has fast positioning capability via the feedforward compensation for the moving tables. Compared with the conventional filtered reference type control algorithms that rely on the assumption for the adaptive filter and the controlled system, in which the disturbance is estimated from the residual signal, the feedforward compensation here shows high effectiveness of vibration isolation and high-precision positioning performance for its platform. The performance of feedforward compensation has been enhanced via an efficient state estimation adaptive algorithm, the fast Kalman filter. Finally, experimental demonstration has been shown for the prototype system and the results have verified the effectiveness of the proposed isolator system design and the adaptive control algorithm for substantially enhanced damping of the platform system with the moving X/Y tables

  17. Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.

    Science.gov (United States)

    Unwin, A P; Hine, P J; Ward, I M; Fujita, M; Tanaka, E; Gusev, A A

    2018-02-06

    The development of new materials with reduced noise and vibration levels is an active area of research due to concerns in various aspects of environmental noise pollution and its effects on health. Excessive vibrations also reduce the service live of the structures and limit the fields of their utilization. In oscillations, the viscoelastic moduli of a material are complex and it is their loss part - the product of the stiffness part and loss tangent - that is commonly viewed as a figure of merit in noise and vibration damping applications. The stiffness modulus and loss tangent are usually mutually exclusive properties so it is a technological challenge to develop materials that simultaneously combine high stiffness and high loss. Here we achieve this rare balance of properties by filling a solid polymer matrix with rigid inorganic spheres coated by a sub-micron layer of a viscoelastic material with a high level of internal friction. We demonstrate that this combination can be experimentally realised and that the analytically predicted behaviour is closely reproduced, thereby escaping the often termed 'Ashby' limit for mechanical stiffness/damping trade-off and offering a new route for manufacturing advanced composite structures with markedly reduced noise and vibration levels.

  18. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  19. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  20. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  1. Size effect related to damping caused by water submersion

    International Nuclear Information System (INIS)

    Dong, R.G.

    1981-01-01

    An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping

  2. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  3. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  4. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  5. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  6. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  7. Structural dynamic analysis with generalized damping models analysis

    CERN Document Server

    Adhikari , Sondipon

    2013-01-01

    Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book

  8. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  9. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  10. Perceptual studies of violin body damping and vibrato.

    Science.gov (United States)

    Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J

    2010-01-01

    This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value.

  11. Ultra-low magnetic damping in metallic and half-metallic systems

    Science.gov (United States)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  12. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  13. Design of an rf quadrupole for Landau damping

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-08-01

    Full Text Available The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  14. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  15. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  16. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    International Nuclear Information System (INIS)

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-01-01

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  17. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  18. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  19. Collisional damping of Langmuir waves in the collisionless limit

    International Nuclear Information System (INIS)

    Auerbach, S.P.

    1977-01-01

    Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not

  20. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    /FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests....

  1. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  2. An experimental study of damping characteristics with emphasis on insulation for nuclear power plant piping system (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, M.; Hayashi, T.; Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1981-01-01

    To clarify the damping characteristics and mechanism in nuclear power plant piping systems, the study group was established and conducted to study SDREP (Seismic Damping Ratio Evaluation Program). As the Phase II of this study, vibration tests were conducted to investigate factors which might contribute to damping characteristics of piping systems. These tests are composed of the next three model tests: 1) The component damping characteristics test of thermal insulator 2) The simplified piping model test 3) The scale model test. In these tests, we studied damping characteristics with emphasis on thermal insulator (mainly calcium silicate insulator). The acceleartion level of pipings is the same as that of the actual seismic response. The excitation was by sinusoidal sweep method using the shaking table and by free vibration method using snapback. (orig./RW)

  3. Design for a practical, low-emittance damping ring

    International Nuclear Information System (INIS)

    Krejcik, P.

    1988-01-01

    The luminosity requirements for future high-energy linear colliders calls for very low emittances in the two beams. These low emittances can be achieved with damping rings, but, in order to reach the design goal of a factor 10 improvement over present day machines, great care must be taken in their design. This paper emphasizes the need to address simultaneously all of the factors which limit the operational emittance in the ring. Particularly since in standard designs there is a conflict between different design parameters which makes it difficult to extrapolate such designs to very low emittances. The approach chosen here is to resolve such conflicts by separating their design solutions. Wigglers are used predominantly in zero-dispersion regions to achieve the desired damping rate, whereas in the arcs high dispersion insertions are made in regions of zero curvature to allow for easier chromaticity control

  4. Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project

    DEFF Research Database (Denmark)

    Chaviaropoulos, P.K.; Politis, E.S.; Lekou, D.J.

    2006-01-01

    A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping......: tailoring of laminate damping anisotropy, damping layers and damped polymer matrices. Additional objectives of the project were the development of the missing critical analytical technologies enabling the explicit modelling of composite structural damping and a novel ‘composite blade design capacity......’ enabling the direct prediction of aeroelastic stability and fatigue life; the development and characterization of damped composite materials; and the evaluation of new technology via the design and fabrication of damped prototype blades and their full-scale laboratory testing. After 4 years of work a 19 m...

  5. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  6. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  8. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  9. INEL/USNRC pipe damping experiments and studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-08-01

    Since the previous paper on this subject presented at the 8th SMiRT Conference, the Idaho National Engineering Laboratory (INEL) has conducted further research on piping system damping for the United States Nuclear Regulatory Commission (USNRC). These efforts have included vibration tests on two laboratory piping systems at response frequencies up to 100 Hz, and damping data calculations from both of these two systems and from a third laboratory piping system test series. In addition, a statistical analysis was performed on piping system damping data from tests representative of seismic and hydrodynamic events of greater than minimal excitation. The results of this program will be used to assist regulators in establishing suitable damping values for use in dynamic analyses of nuclear piping systems, and in revising USNRC Regulatory Guide (RG) 1.61

  10. High-mobility germanium p-MOSFETs by using HCl and (NH4)2S surface passivation

    International Nuclear Information System (INIS)

    Xue Bai-Qing; Wang Sheng-Kai; Han Le; Chang Hu-Dong; Sun Bing; Zhao Wei; Liu Hong-Gang

    2013-01-01

    To achieve a high-quality high-κ/Ge interfaces for high hole mobility Ge p-MOSFET applications, a simple chemical cleaning and surface passivation scheme is introduced, and Ge p-MOSFETs with effective channel hole mobility up to 665 cm 2 /V·s are demonstrated on a Ge (111) substrate. Moreover, a physical model is proposed to explain the dipole layer formation at the metal—oxide—semiconductor (MOS) interface by analyzing the electrical characteristics of HCl- and (NH 4 ) 2 S-passivated samples. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. A statistical characterization method for damping material properties and its application to structural-acoustic system design

    International Nuclear Information System (INIS)

    Jung, Byung C.; Lee, Doo Ho; Youn, Byeng D.; Lee, Soo Bum

    2011-01-01

    The performance of surface damping treatments may vary once the surface is exposed to a wide range of temperatures, because the performance of viscoelastic damping material is highly dependent on operational temperature. In addition, experimental data for dynamic responses of viscoelastic material are inherently random, which makes it difficult to design a robust damping layout. In this paper a statistical modeling procedure with a statistical calibration method is suggested for the variability characterization of viscoelastic damping material in constrained-layer damping structures. First, the viscoelastic material property is decomposed into two sources: (I) a random complex modulus due to operational temperature variability, and (II) experimental/model errors in the complex modulus. Next, the variability in the damping material property is obtained using the statistical calibration method by solving an unconstrained optimization problem with a likelihood function metric. Two case studies are considered to show the influence of the material variability on the acoustic performances in the structural-acoustic systems. It is shown that the variability of the damping material is propagated to that of the acoustic performances in the systems. Finally, robust and reliable damping layout designs of the two case studies are obtained through the reliability-based design optimization (RBDO) amidst severe variability in operational temperature and the damping material

  12. Significance of non-classical damping in seismic qualification of equipment and piping

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhinav, E-mail: agupta1@ncsu.edu; Bose, Mrinal K.

    2017-06-15

    Highlights: • Damping in coupled building-piping or building-equipment systems is nonlclassical. • Significance of nonclassical damping is illustrated. • Classical damping assumption can over predict or under predict response. • Significance of nonclassical damping increases for very light secondary systems. • Composite modal damping is another form of classical damping. - Abstract: This paper presents a discussion on the significance of non-classical damping in coupled primary-secondary systems such as building-equipment or building-piping. Closed-form expressions are used to illustrate that the effect of non-classical damping is significant in systems with tuned or nearly tuned uncoupled modes when the mass-interaction is sufficiently small. Further, simple primary-secondary systems are used to illustrate that composite modal damping is another form of classical damping for which the transformed damping matrix, obtained after pre- and post-multiplication of the damping matrix with the modal matrix, contains only diagonal terms. Both the composite and the classical damping give almost identical results that can be much different from the corresponding results for non-classical damping. Finally, it is shown that consideration of classical damping (ignoring the off-diagonal terms) can give excessively conservative results in nearly tuned primary-secondary systems. For perfectly tuned primary-secondary systems, however, classical damping can give responses that are much lower than what they should be.

  13. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Science.gov (United States)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  14. Passive temperature compensation in hydraulic dashpot used for the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India)

    2015-11-15

    Highlights: • Passive temperature compensation in hydraulic dashpot has been studied numerically as well as experimentally. • Temperature compensation is achieved by reducing the clearances in the hydraulic dashpot at elevated temperature to compensate for the viscosity reduction. • Temperature compensation effects due to difference in thermal expansion of common engineering materials and use of bimetallic strips have been analyzed. • Design of a novel passive temperature compensating hydraulic dashpot is presented, which can be used for wide range of temperature variations. - Abstract: Passive temperature compensating hydraulic dashpot has been studied numerically as well as experimentally in this paper. Study is focused on reducing the clearances of the hydraulic dashpot at elevated temperature which intern compensates for the reduction in viscosity of damping oil and the dashpot gives uniform performance for wide range of temperature variation. Temperature compensation effects are mainly due to difference in the thermal expansion of materials. Different combinations of materials are used to reduce the dashpot clearances at elevated temperature. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical analysis. Fluid-structure analysis has been carried-out to study the thermal expansion and pressure generated in the hydraulic dashpot. Multiphysics study with solid mechanics, laminar flow and moving mesh interfaces has been carried-out. Thermal expansion results of study-1 (solid mechanics) are further extended in to study-2 (laminar flow and moving mesh) and dashpot pressure is estimated. These results show that bimetallic strip improves the dashpot performance at 55 °C but do not fully compensate beyond that and less severe impacts occurs. Specific combinations of design and materials have been presented in this paper for obtaining maximum temperature compensation. A novel passive temperature compensating hydraulic dashpot

  15. Passive temperature compensation in hydraulic dashpot used for the shut-off rod drive mechanism of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Narendra K.; Badodkar, Deepak N.

    2015-01-01

    Highlights: • Passive temperature compensation in hydraulic dashpot has been studied numerically as well as experimentally. • Temperature compensation is achieved by reducing the clearances in the hydraulic dashpot at elevated temperature to compensate for the viscosity reduction. • Temperature compensation effects due to difference in thermal expansion of common engineering materials and use of bimetallic strips have been analyzed. • Design of a novel passive temperature compensating hydraulic dashpot is presented, which can be used for wide range of temperature variations. - Abstract: Passive temperature compensating hydraulic dashpot has been studied numerically as well as experimentally in this paper. Study is focused on reducing the clearances of the hydraulic dashpot at elevated temperature which intern compensates for the reduction in viscosity of damping oil and the dashpot gives uniform performance for wide range of temperature variation. Temperature compensation effects are mainly due to difference in the thermal expansion of materials. Different combinations of materials are used to reduce the dashpot clearances at elevated temperature. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical analysis. Fluid-structure analysis has been carried-out to study the thermal expansion and pressure generated in the hydraulic dashpot. Multiphysics study with solid mechanics, laminar flow and moving mesh interfaces has been carried-out. Thermal expansion results of study-1 (solid mechanics) are further extended in to study-2 (laminar flow and moving mesh) and dashpot pressure is estimated. These results show that bimetallic strip improves the dashpot performance at 55 °C but do not fully compensate beyond that and less severe impacts occurs. Specific combinations of design and materials have been presented in this paper for obtaining maximum temperature compensation. A novel passive temperature compensating hydraulic dashpot

  16. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain

    2016-09-01

    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  17. Analytical Solution and Physics of a Propellant Damping Device

    Science.gov (United States)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.

  18. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger

    2010-03-31

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze-film damping on resonators in the freemolecule regime. The generality of the approach is demonstrated in its capability of simulating resonators of any shape and with any accommodation coefficient. The approach is validated using both the analytical results of the free-space damping and the experimental data of the squeeze-film damping on a clamped-clamped plate resonator oscillating at its first flexure mode. The effect of oscillation modes on the quality factor of the resonator has also been studied and semi-analytical approximate models for the squeeze-film damping with diffuse collisions have been developed.

  19. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  20. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.

    1985-01-01

    The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping

  1. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    Science.gov (United States)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  2. Active damping of LLCL-filter resonance based on LC-trap voltage and capacitor current feedback

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    . In this paper, different feedback coefficients like the proportional, derivative, integral, high pass and low pass feedback coefficients of the filter capacitor current and the LC-trap circuit voltage are investigated for damping the filter resonance. Active damping methods are analyzed by using the concept...

  3. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  4. Application of small panel damping measurements to larger walls

    Science.gov (United States)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  5. Resummation and the gluon damping rate in hot QCD

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1990-08-01

    At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs

  6. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I; Bol, Alfredo

    2006-01-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  7. High speed atmospheric pressure ALD for industrial scale solar cell passivation

    NARCIS (Netherlands)

    Vermang, B.; Rothschild, A.; Racz, A.; John, J.; Poortmans, J.; Mertens, R.; Poodt, P.; Tiba, M.V.; Roozeboom, F.

    2010-01-01

    A next generation material for surface passivation is atomic layer deposition (ALD) Al2O3. However, conventional time-resolved ALD is limited by its low deposition rate. Therefore, an experimental high-deposition-rate prototype ALD reactor based on the spatially-separated ALD principle has been

  8. Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Yakai Xu

    2017-01-01

    Full Text Available Dynamic stiffness and damping of the headstock, which is a critical component of precision horizontal machining center, are two main factors that influence machining accuracy and surface finish quality. Constrained Layer Damping (CLD structure is proved to be effective in raising damping capacity for the thin plate and shell structures. In this paper, one kind of high damping material is utilized on the headstock to improve damping capacity. The dynamic characteristic of the hybrid headstock is investigated analytically and experimentally. The results demonstrate that the resonant response amplitudes of the headstock with damping material can decrease significantly compared to original cast structure. To obtain the optimal configuration of damping material, a topology optimization method based on the Evolutionary Structural Optimization (ESO is implemented. Modal Strain Energy (MSE method is employed to analyze the damping and to derive the sensitivity of the modal loss factor. The optimization results indicate that the added weight of damping material decreases by 50%; meanwhile the first two orders of modal loss factor decrease by less than 23.5% compared to the original structure.

  9. Onset of chaos in Josephson junctions with intermediate damping

    International Nuclear Information System (INIS)

    Yao, X.; Wu, J.Z.; Ting, C.S.

    1990-01-01

    By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed

  10. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  11. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, Toshio; Kobayashi, Hiroe; Aida, Shigekazu; Wada, Hidetoshi

    1984-01-01

    The damping ratio is one of the most important parameters in seismic analysis of piping systems in a nuclear power plant. Thermal insulation is considered contributing to the damping characteristics of piping systems. At the 6th SMiRT and 1983 ASME PVP conferences, the damping effect and damping estimating formula were presented as a result of regression analysis using the component test data for 2,4 and 8B diameter piping and the proof model test for 1,2 and 4B piping system. In this study, in order to clarify the damping characteristics of a larger diameter piping than 8B,the component test of 12 and 20B diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers, it was found that the damping ratio of anactual piping system with thermal insulation is at minimum 1% for all size diameter piping. (author)

  12. Suggestions for new transverse oscillations damping systems in large synchrotrons and colliders

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Melnikov, V.A.

    1994-01-01

    Due to the high requirements on beam quality, modern synchrotrons and colliders require special systems for transverse oscillation damping (TDS). New system for the correction of injection errors and multibunch instabilities is proposed. The special beam monitor on the basis of the axial-slotted lines is developed for the transverse beam velocity measuring. The special nonlinear regime of damping is suggested to decrease the operating time of TDS. 2 refs., 4 figs., 2 tabs

  13. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  14. Robinson's radiation damping sum rule: Reaffirmation and extension

    International Nuclear Information System (INIS)

    Mane, S.R.

    2011-01-01

    Robinson's radiation damping sum rule is one of the classic theorems of accelerator physics. Recently Orlov has claimed to find serious flaws in Robinson's proof of his sum rule. In view of the importance of the subject, I have independently examined the derivation of the Robinson radiation damping sum rule. Orlov's criticisms are without merit: I work through Robinson's derivation and demonstrate that Orlov's criticisms violate well-established mathematical theorems and are hence not valid. I also show that Robinson's derivation, and his damping sum rule, is valid in a larger domain than that treated by Robinson himself: Robinson derived his sum rule under the approximation of a small damping rate, but I show that Robinson's sum rule applies to arbitrary damping rates. I also display more concise derivations of the sum rule using matrix differential equations. I also show that Robinson's sum rule is valid in the vicinity of a parametric resonance.

  15. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement.

    Science.gov (United States)

    Insola, Angelo; Padua, Luca; Mazzone, Paolo; Valeriani, Massimiliano

    2015-12-01

    To investigate the effect of pure passive movement on both cortical and subcortical somatosensory evoked potentials (SEPs). Median nerve SEPs were recorded in 8 patients suffering from Parkinson's disease (PD) and two patients with essential tremor. PD patients underwent electrode implantation in the subthalamic (STN) nucleus (3 patients) and pedunculopontine (PPTg) nucleus (5 patients), while 2 patients with essential tremor were implanted in the ventral intermediate nucleus (VIM) of the thalamus. In anesthetized patients, SEPs were recorded at rest and during a passive movement of the thumb of the stimulated wrist from the intracranial electrode contacts and from the scalp. Also the high-frequency oscillations (HFOs) were analyzed. Amplitudes of both deep and scalp components were decreased during passive movement, but the reduction was higher at cortical than subcortical level. Also the HFOs were reduced by movement. The different amount of the movement-related decrease suggests that the cortical SEP gating is not only the result of a subcortical somatosensory volley attenuation, but a further mechanism acting at cortical level should be considered. Our results are important for understanding the physiological mechanism of the sensory-motor interaction during passive movement. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    Science.gov (United States)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  17. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  18. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  19. Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics

    Science.gov (United States)

    Aubuchon, Vanessa V.; Owens, D. Bruce

    2016-01-01

    Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.

  20. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  1. Respiratory Diseases in University Students Associated with Exposure to Residential Dampness or Mold

    Directory of Open Access Journals (Sweden)

    Mathieu Lanthier-Veilleux

    2016-11-01

    Full Text Available University students are frequently exposed to residential dampness or mold (i.e., visible mold, mold odor, dampness, or water leaks, a well-known contributor to asthma, allergic rhinitis, and respiratory infections. This study aims to: (a describe the prevalence of these respiratory diseases among university students; and (b examine the independent contribution of residential dampness or mold to these diseases. An online survey was conducted in March 2014 among the 26,676 students registered at the Université de Sherbrooke (Quebec, Canada. Validated questions and scores were used to assess self-reported respiratory diseases (i.e., asthma-like symptoms, allergic rhinitis, and respiratory infections, residential dampness or mold, and covariates (e.g., student characteristics. Using logistic regressions, the crude and adjusted odd ratios between residential dampness or mold and self-reported respiratory diseases were examined. Results from the participating students (n = 2097; response rate: 8.1% showed high prevalence of allergic rhinitis (32.6%; 95% CI: 30.6–34.7, asthma-like symptoms (24.0%; 95% CI: 22.1–25.8 and respiratory infections (19.4%; 95% CI: 17.7–21.2. After adjustment, exposure to residential dampness or mold was associated with allergic rhinitis (OR: 1.25; 95% CI: 1.01–1.55 and asthma-like symptoms (OR: 1.70; 95% CI: 1.37–2.11, but not with respiratory infections (OR: 1.07; 95% CI: 0.85–1.36. Among symptomatic students, this exposure was also associated with uncontrolled and burdensome respiratory symptoms (p < 0.01. University students report a high prevalence of allergic rhinitis, asthma-like symptoms and respiratory infections. A common indoor hazard, residential dampness or mold, may play a role in increasing atopic respiratory diseases and their suboptimal control in young adults. These results emphasize the importance for public health organizations to tackle poor housing conditions, especially amongst university

  2. Spider-silk-like shape memory polymer fiber for vibration damping

    International Nuclear Information System (INIS)

    Yang, Qianxi; Li, Guoqiang

    2014-01-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2–0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276–289 MJ m −3 versus 160 MJ m −3 ), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10–0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures. (paper)

  3. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    Science.gov (United States)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  4. The Frequency and Damping of Soil-Structure Systems with Embedded Foundation

    International Nuclear Information System (INIS)

    Ghannad, M. Ali; Rahmani, Mohammad T.; Jahankhah, Hossein

    2008-01-01

    The effect of foundation embedment on fundamental period and damping of buildings has been the title of several researches in three past decades. A review of the literature reveals some discrepancies between proposed formulations for dynamic characteristics of soil-embedded foundation-structure systems that raise the necessity of more investigation on this issue. Here, first a set of approximate polynomial equations for soil impedances, based on numerical data calculated from well known cone models, are presented. Then a simplified approach is suggested to calculate period and damping of the whole system considering soil medium as a viscoelastic half space. The procedure includes both material and radiation damping while frequency dependency of soil impedance functions is not ignored. Results show that soil-structure interaction can highly affect dynamic properties of system. Finally the results are compared with one of the commonly referred researches

  5. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  6. Transverse wakefield of waveguide damped structures and beam dynamics

    International Nuclear Information System (INIS)

    Lin, X.

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield

  7. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  8. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  9. System Reduction and Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2007-01-01

    An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... of the damped modes of the structure. The idea is to represent the damped mode as a linear combination of the modes that occur in two distinctly different situations representing extreme conditions: the mode shape of the structure without the damper(s), and the mode shape of the structure, when the damper...

  10. High damping properties of magnetic particles doped rubber composites at wide frequency

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye, E-mail: schtiany@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Liu, Yaqing, E-mail: lyq@nuc.edu.cn [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); He, Minhong; Zhao, Guizhe; Sun, Youyi [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China)

    2013-05-15

    Highlights: ► A new kind of permanent magnetic rubber was prepared. ► The microstructure and magnetic properties were investigated. ► The mechanical and damping properties were discussed. ► The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical and magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.

  11. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  12. Beam-based alignment at the KEK-ATF damping ring

    International Nuclear Information System (INIS)

    Woodley, Mark D.; Nelson, Janice; Ross, Marc; Turner, James; Wolski, A.; Kubo, Kiyoshi

    2004-01-01

    The damping rings of a future linear collider will have demanding alignment and stability requirements in order to achieve the low vertical emittance necessary for high luminosity. The Accelerator Test Facility (ATF) at KEK has successfully demonstrated the vertical emittance below 5 pm that is specified for the GLC/NLC Main Damping Rings. One contribution to this accomplishment has been the use of Beam Based Alignment (BBA) techniques. The mode of operation of the ATF presents particular challenges for BBA, and we describe here how we have deduced the offsets of the BPMs with respect to the quadrupoles. We also discuss a technique that allows for direct measurements of the beam-to-quad offsets

  13. Effects of Active Sting Damping on Common Research Model Data Quality

    Science.gov (United States)

    Acheson, Michael J.; Balakrishna, S.

    2011-01-01

    Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.

  14. Feasibility study of hydrogenated amorphous alloys as high-damping materials

    International Nuclear Information System (INIS)

    Mizubayashi, H.; Ishikawa, Y.; Tanimoto, H.

    2004-01-01

    The hydrogen internal friction peak (HIFP) and the tensile strength, σ f , in amorphous (denoted by 'a') Zr 60-y Cu 30 Al 10 Si y (y=0, 1) and a-Zr 40 Cu 50-x Al 10 Si x (x=0, 1) alloys are investigated as a function of the hydrogen concentration, C H . The drastic increase in the peak temperature, T p , of the HIFP due to the Si addition by 1 at.% is found for the a-Zr 40 Cu 49 Al 10 Si 1 , where the decrease in 1/τ 0 (τ 0 denotes the pre-exponential factor of the relaxation time for the HIFP) from 1.5x10 12 s -1 to 3.0x10 10 s -1 is observed. On the other hand, the increase in T p due to the Si addition by 1 at.% is much smaller for a-Zr 59 Cu 30 Al 10 Si 1 , where 1/τ 0 for the HIFP in a-Zr 60 Cu 30 Al 10 is already as low as that for a- Zr 40 Cu 49 Al 10 Si 1 . For the HIFP with the peak height, Q p -1 , beyond 1x10 -2 , Q p -1 in the as-charged state decreases after heating to about 380 K because of the hydrogen induced structural relaxation (HISR). The HIFP with Q p -1 below 1x10 -2 is rather stable against the HISR. It is suggested that the highly anisotropic local strain around a hydrogen atom is responsible for the very high Q p -1 and the HISR. For the high-strength and high-damping performance, σ f is higher than 1.5 GPa and Q p -1 after the HISR is slightly lower than 1x10 -2 for the present Zr-Cu-Al-(Si) a-alloys

  15. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger; Cheung, Howard; Gang, Hong; Ye, Wenjing

    2010-01-01

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze

  16. Complex modes and frequencies in damped structural vibrations

    DEFF Research Database (Denmark)

    Krenk, Steen

    2004-01-01

    It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic forces....... The corresponding theory of complex modal analysis of continuous systems is developed and illustrated in relation to optimal damping and impulse response of cables and beams with discrete dampers....

  17. Structural damage identification using damping: a compendium of uses and features

    Science.gov (United States)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions

  18. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    International Nuclear Information System (INIS)

    Nelson, T.A.

    1982-01-01

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants

  19. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Victora, R. H., E-mail: victora@umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-02-16

    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  20. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  1. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  2. LEVERAGING TREATMENT OF SALT ATTACK AND RISING DAMP IN HERITAGE BUILDINGS IN PENANG, MALAYSIA

    Directory of Open Access Journals (Sweden)

    Haris Fadzilah Abdul Rahman

    2010-06-01

    Full Text Available Of the common building defects that occur in heritage buildings in Penang, Malaysia, salt attack and rising damp are considered the most challenging, particularly for building conservation. The problem of salt attack is closely associated with rising damp. Moisture from the rising damp makes the building’s existing salts soluble, or ground water that contains salt finds its way through the building wall. This moisture then evaporates on or just below the wall’s surface, leaving salt residue behind. High salt concentrations in masonry walls cause extensive fretting and crumbling of the lower parts of walls. These formations gradually contribute to building dilapidation and reduce the building’s aesthetic value. Sodium chloride and calcium sulphate are commonly found in masonry walls, apart from other forms of salts. The sources of these salts may be natural or manmade. This paper is based on research into the problems of salt attack and rising damp in heritage masonry buildings in Penang, Malaysia. Based on a case study of five buildings in Penang, the research findings showed that these buildings faced several common building defects, including salt attack and rising damp. Treatment guidelines for salt attack and rising damp are proposed within the Malaysian context of architectural heritage and climatic conditions.

  3. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  4. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  5. Fiscal 2000 pioneering research on the research on high-sensitivity passive measurement/analysis technologies; 2000 nendo kokando passive keisoku bunseki gijutsu no chosa sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above-named research was brought over from the preceding fiscal year. Needs for passive measurement were investigated, and it was found that what are named below were interested in passive measurement. Wanting passive measurement technology were the analysis of organic matters on semiconductor wafers, analysis of dangerous substances in wastes, measurement of substances in the life space causing allergy to chemical substances, measurement of constituents of gas emitted by organisms for example through expiration, measurement for automatic sorting of plastic wastes, 2-dimensional spectrometry for medical treatment of organisms, and so forth. In the survey of seeds, various novel technologies were investigated in the fields of optical systems, sensors, and signal processing. The outcomes of the survey indicated that high-sensitivity measurement and analysis of spectral images, measurement and analysis of trace quantities in he fields of medical treatment, environmental matters, and semiconductors would be feasible by the use of newly developed technologies involving the interference array type 2-dimensional modulation/demodulation device, 2-dimensional high-sensitivity infrared sensor, high-sensitivity systematization technology, mixed signal separation technology capable of suppressing noise and background light, and technology for increasing processing speeds. (NEDO)

  6. DAMPE: A gamma and cosmic ray observatory in space

    Science.gov (United States)

    D'Urso, D.; Dampe Collaboration

    2017-05-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  7. The electron damping ring for the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Davies-White, W.; Hutton, A.; Harvey, A.

    1987-10-01

    A second damping ring to store and damp two electron bunches for the SLC project was constructed in 1985 and brought into operation early in 1986. Although generally similar to the damping ring (now used for positrons) constructed earlier, there are a number of design improvements and changes. The dipole magnetic field was raised to 2.1 T to improve damping. Sextupole fields were provided by separate permanent magnets, rather than being incorporated in the dipoles. The vacuum chambers, including the beam position monitors, were re-designed for lower longitudinal impedance. A new kicker was developed by Fermilab to handle the two electron bunches. Improvements were made to the dc septum magnet design. Several of the features are described in detail elsewhere. Where possible, the improvements were incorporated in an upgrade of the earlier damping ring

  8. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2008-01-01

    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  9. Eddy current damping for magnetic levitation: downscaling from macro- to micro-levitation

    International Nuclear Information System (INIS)

    Elbuken, C; Khamesee, M B; Yavuz, M

    2006-01-01

    Magnetic levitation of miniaturized objects is investigated in this paper. A magnetic levitation setup is built to implement one-dimensional magnetic levitation motion. It was observed that as the levitated object becomes smaller, magnetic levitation suffers more from undesired vibrations. As a solution, eddy current damping is offered and implemented successfully by placing conductive plates close to the levitated object. An analytical expression for damping coefficient is derived. Experimentally, it is shown that eddy current damping can reduce the RMS positioning error to the level of more than one third of its original value for a 0.386 g object levitated in an air-gap region of 290 mm. The proposed system has the potential to be used for micro-manipulation purposes in a high motion range of 39.8 mm

  10. Eddy current damping for magnetic levitation: downscaling from macro- to micro-levitation

    Energy Technology Data Exchange (ETDEWEB)

    Elbuken, C; Khamesee, M B; Yavuz, M [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario (Canada)

    2006-09-21

    Magnetic levitation of miniaturized objects is investigated in this paper. A magnetic levitation setup is built to implement one-dimensional magnetic levitation motion. It was observed that as the levitated object becomes smaller, magnetic levitation suffers more from undesired vibrations. As a solution, eddy current damping is offered and implemented successfully by placing conductive plates close to the levitated object. An analytical expression for damping coefficient is derived. Experimentally, it is shown that eddy current damping can reduce the RMS positioning error to the level of more than one third of its original value for a 0.386 g object levitated in an air-gap region of 290 mm. The proposed system has the potential to be used for micro-manipulation purposes in a high motion range of 39.8 mm.

  11. Ultra-low damping in lift-off structured yttrium iron garnet thin films

    Science.gov (United States)

    Krysztofik, A.; Coy, L. E.; Kuświk, P.; Załeski, K.; Głowiński, H.; Dubowik, J.

    2017-11-01

    We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5 ×10-4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.

  12. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  13. Evaluation of damping loss factor of flat laminates by sound transmission

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-06-01

    A novel approach to investigate and evaluate the damping loss factor of a planar multilayered structure is presented. A statistical analysis reveals the connection between the damping properties of the structure and the transmission of sound through the thickness of its laterally infinite counterpart. The obtained expression for the panel loss factor involves all the derivatives of the transmission and reflection coefficients of the layered structure with respect each layer damping. The properties of the fluid for which the sound transmission is evaluated are chosen to fulfil the hypotheses on the basis of the statistical formulation. A transfer matrix approach is used to compute the required transmission and reflection coefficients, making it possible to deal with structures having arbitrary stratifications of different layers and also granting high efficiency in a wide frequency range. Comparison with alternative formulations and measurements demonstrates the effectiveness of the proposed methodology.

  14. High-efficiency passive full wave rectification for electromagnetic harvesters

    Science.gov (United States)

    Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2014-10-01

    We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.

  15. Multi-damping earthquake design spectra-compatible motion histories

    International Nuclear Information System (INIS)

    Choi, Dong-Ho; Lee, Sang-Hoon

    2003-01-01

    Two iterative methods of developing time histories compatible with multi-damping spectra are presented. The common method of forcing agreement among design and calculated spectral values at several frequencies and multiple damping values may give poor, even meaningless results. The two simple iterative techniques presented here use acceleration impulse functions for 'correcting' the time histories. In the first method the correction is calculated separately for each frequency and damping value and the maximum corresponding coefficient is used to correct the time history for the iteration. In the second method the solution is further improved by introducing a scale factor at each iteration. The effectiveness of the proposed techniques is illustrated by a comparison of a set of six multi-damping design spectra with spectral responses of a time history

  16. Thermodynamic Damping in Porous Materials with Spherical Cavities

    Directory of Open Access Journals (Sweden)

    Sofia D. Panteliou

    1997-01-01

    Full Text Available When a material is subjected to an alternating stress field, there are temperature fluctuations throughout its volume due to the thermoelastic effect. The resulting irreversible heat conduction leads to entropy production that in turn is the cause of thermoelastic damping. An analytical investigation of the entropy produced during a vibration cycle due to the reciprocity of temperature rise and strain yielded the change of the material damping factor as a function of the porosity of the material. A homogeneous, isotropic, elastic bar of cylindrical shape is considered with uniformly distributed spherical cavities under alternating uniform axial stress. The analytical calculation of the dynamic characteristics of the porous structure yielded the damping factor of the bar and the material damping factor. Exsperimental results on porous metals are in good correlation with an analysis.

  17. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  18. Radiation damping in focusing-dominated systems

    International Nuclear Information System (INIS)

    Huang, Zhirong; Chen, Pisin; Ruth, R.D.

    1995-01-01

    A quasi-classical method is developed to calculate the radiation damping of a relativistic particle in a straight, continuous focusing system. In one limiting case where the pitch angle of the particle θ p is much larger than the radiation opening angle 1/γ, the radiation power spectrum is similar to synchrotron radiation and the relative damping rate of the transverse action is proportional to the relative energy loss rate. In the other limiting case where θ p much-lt 1/γ, the radiation is dipole in nature and the relative damping rate of the transverse action is energy-independent and is much faster than the relative energy rate. Quantum excitation to the transverse action is absent in this focusing channel. These results can be extended to bent systems provided that the focusing field dominates over the bending field

  19. On small vibrations of a damped Stieltjes string

    Directory of Open Access Journals (Sweden)

    Olga Boyko

    2015-01-01

    Full Text Available Inverse problem of recovering masses, coefficients of damping and lengths of the intervals between the masses using two spectra of boundary value problems and the total length of the Stieltjes string (an elastic thread bearing point masses is considered. For the case of point-wise damping at the first counting from the right end mass the problem of recovering the masses, the damping coefficient and the lengths of the subintervals by one spectrum and the total length of the string is solved.

  20. Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films

    Directory of Open Access Journals (Sweden)

    Derang Cao

    2017-11-01

    Full Text Available A series of FeGa, FeGaN and FeGaB films with varied oblique angles were deposited by sputtering method on silicon substrates, respectively. The microstructure, soft magnetism, microwave properties, and damping factor for the films were investigated. The FeGa films showed a poor high frequency magnetic property due to the large stress itself. The grain size of FeGa films was reduced by the additional N element, while the structure of FeGa films was changed from the polycrystalline to amorphous phase by the involved B element. As a result, N content can effectively improve the magnetic softness of FeGa film, but their high frequency magnetic properties were still poor both when the N2/Ar flow rate ratio is 2% and 5% during the deposition. The additional B content significantly led to the excellent magnetic softness and the self-biased ferromagnetic resonance frequency of 1.83 GHz for FeGaB film. The dampings of FeGa films were adjusted by the additional N and B contents from 0.218 to 0.139 and 0.023, respectively. The combination of these properties for FeGa films are helpful for the development of magnetostrictive microwave devices.

  1. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  2. Damping of Coherent oscillations

    CERN Document Server

    Vos, L

    1996-01-01

    Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.

  3. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  4. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  5. Resonant-inductor-voltage feedback active damping based control for grid-connected inverters with LLCL-filters

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2014-01-01

    damping method with an extra feedback provides a high rejection of the resonance so that the dynamic is improved. In this paper, taking a Proportional-Resonant (PR) together with a harmonic compensator (HC), resonant-inductor-voltage-feedback active damping is applied on an LLCL-filter based three...... of the proposed method is investigated in simulation and by experimental results....

  6. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  7. Special class of nonlinear damping models in flexible space structures

    Science.gov (United States)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  8. Damping and non-linearity of a levitating magnet in rotation above a superconductor

    International Nuclear Information System (INIS)

    Druge, J; Jean, C; Laurent, O; Méasson, M-A; Favero, I

    2014-01-01

    We study the dissipation of moving magnets in levitation above a superconductor. The rotation motion is analyzed using optical tracking techniques. It displays a remarkable regularity together with long damping time up to several hours. The magnetic contribution to the damping is investigated in detail by comparing 14 distinct magnetic configurations and points towards amplitude-dependent dissipation mechanisms. The non-linear dynamics of the mechanical rotation motion is also revealed and described with an effective Duffing model. The magnetic mechanical damping is consistent with measured hysteretic cycles M(H) that are discussed within a modified critical state model. The obtained picture of the coupling of levitating magnets to their environment sheds light on their potential as ultra-low dissipation mechanical oscillators for high precision physics. (paper)

  9. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  10. Influence of the Gilbert damping constant on the flux rise time of write head fields

    International Nuclear Information System (INIS)

    Ertl, Othmar; Schrefl, Thomas; Suess, Dieter; Schabes, Manfred E.

    2005-01-01

    Magnetic recording at fast data rates requires write heads with rapid rise times of the magnetic flux during the write process. We present three-dimensional (3D) micromagnetic finite element calculations of an entire ring head including 3D coil geometry during the writing of magnetic bits in granular media. The simulations demonstrate how input current profiles translate into magnetization processes in the head and which in turn generate the write head field. The flux rise time significantly depends on the Gilbert damping constant of the head material. Low damping causes incoherent magnetization processes, leading to long rise times and low head fields. High damping leads to coherent reversal of the magnetization in the head. As a consequence, the gap region can be quickly saturated which causes high head fields with short rise times

  11. CORONAL DENSITY STRUCTURE AND ITS ROLE IN WAVE DAMPING IN LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); De Moortel, I.; Kiddie, G., E-mail: p.cargill@imperial.ac.uk [School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland KY16 9SS (United Kingdom)

    2016-05-20

    It has long been established that gradients in the Alfvén speed, and in particular the plasma density, are an essential part of the damping of waves in the magnetically closed solar corona by mechanisms such as resonant absorption and phase mixing. While models of wave damping often assume a fixed density gradient, in this paper the self-consistency of such calculations is assessed by examining the temporal evolution of the coronal density. It is shown conceptually that for some coronal structures, density gradients can evolve in a way that the wave-damping processes are inhibited. For the case of phase mixing we argue that (a) wave heating cannot sustain the assumed density structure and (b) inclusion of feedback of the heating on the density gradient can lead to a highly structured density, although on long timescales. In addition, transport coefficients well in excess of classical are required to maintain the observed coronal density. Hence, the heating of closed coronal structures by global oscillations may face problems arising from the assumption of a fixed density gradient, and the rapid damping of oscillations may have to be accompanied by a separate (non-wave-based) heating mechanism to sustain the required density structuring.

  12. Inviscid limit of stochastic damped 2D Navier–Stokes equations

    International Nuclear Information System (INIS)

    Bessaih, Hakima; Ferrario, Benedetta

    2014-01-01

    We consider the inviscid limit of the stochastic damped 2D Navier–Stokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier–Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The rates are computed with respect to a limit measure of the unique invariant measure of the stochastic damped Navier–Stokes equations. (paper)

  13. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    Science.gov (United States)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  14. Equivalent viscous damping procedure for multi-material systems

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail

  15. Exploring damping characteristics of composite tower of cable ...

    Indian Academy of Sciences (India)

    SHEHATA E ABDEL RAHEEM

    the seismic design [1–7] by dividing the cable-stayed bridge into several ..... damping characteristics is represented by a simple model to study the effect of ...... lent modal damping of short-span bridges subjected to strong motion. J. Bridge ...

  16. A Squeeze-film Damping Model for the Circular Torsion Micro-resonators

    Science.gov (United States)

    Yang, Fan; Li, Pu

    2017-07-01

    In recent years, MEMS devices are widely used in many industries. The prediction of squeeze-film damping is very important for the research of high quality factor resonators. In the past, there have been many analytical models predicting the squeeze-film damping of the torsion micro-resonators. However, for the circular torsion micro-plate, the works over it is very rare. The only model presented by Xia et al[7] using the method of eigenfunction expansions. In this paper, The Bessel series solution is used to solve the Reynolds equation under the assumption of the incompressible gas of the gap, the pressure distribution of the gas between two micro-plates is obtained. Then the analytical expression for the damping constant of the device is derived. The result of the present model matches very well with the finite element method (FEM) solutions and the result of Xia’s model, so the present models’ accuracy is able to be validated.

  17. Fluid Damping Variation of a Slender Rod in Axial Flow Field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study proposed an analytic damping model considering the axial flow condition. In addition, the specific damping values with respect to the flow speeds are calculated. The flow induced damping is beneficial to fuel integrity in that impact energy due to severe accidents such as earthquake dissipates rapidly. A nuclear fuel bundle is composed of many slender fuel rods which contain fission material. The slender rod is typical structure in the fuel, therefore fluid damping estimation on the rod should be an important clue leading to fuel bundle damping identification. Severe accidents could cause fuel assembly vibration in the core, but large motion could be damped out rapidly when a strong damping mechanism is involved. This paper suggested a mathematical model of the slender structure. The physical meaning of the model is described, and the simulation results with the model are also provided. Actual damping due to the fluid is nonlinear, therefore further works are required to explain the detail behavior with the nonlinearity. The model validation test is on-going in KEPCO Nuclear Fuel, but it is believed that performance of the model is well correlated to the published work.

  18. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-09-10

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  19. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    International Nuclear Information System (INIS)

    Montes-Solís, María; Arregui, Iñigo

    2017-01-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  20. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  1. Performance analysis of conventional PSS and fuzzy controller for damping power system oscillations

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro; Cabrera Tobar, Ana; Ghorbani, Hamidreza; Ying, Shaoqing

    2014-01-01

    Electro-mechanical oscillations are produced, in the machines of an interconnected power network, followed by a disturbance or due to high power transfer through weak tie lines. These oscillations should be damped as quickly as possible to ensure the reliable and stable operation of the network. To damp these oscillations different controllers, based on local or wide area signals, have been the subject of many papers. This paper presents the analysis of the performance of Conventional Power S...

  2. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  3. The Role of Damage-Associated Molecular Patterns (DAMPs in Human Diseases; Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine

    Directory of Open Access Journals (Sweden)

    Walter G. Land

    2015-05-01

    Full Text Available This article is the second part of a review that addresses the role of damage-associated molecular patterns (DAMPs in human diseases by presenting examples of traumatic (systemic inflammatory response syndrome, cardiovascular (myocardial infarction, metabolic (type 2 diabetes mellitus, neurodegenerative (Alzheimer’s disease, malignant and infectious diseases. Various DAMPs are involved in the pathogenesis of all these diseases as they activate innate immune machineries including the unfolded protein response and inflammasomes. These subsequently promote sterile autoinflammation accompanied, at least in part, by subsequent adaptive autoimmune processes. This review article discusses the future role of DAMPs in routine practical medicine by highlighting the possibility of harnessing and deploying DAMPs either as biomarkers for the appropriate diagnosis and prognosis of diseases, as therapeutics in the treatment of tumours or as vaccine adjuncts for the prophylaxis of infections. In addition, this article examines the potential for developing strategies aimed at mitigating DAMPs-mediated hyperinflammatory responses, such as those seen in systemic inflammatory response syndrome associated with multiple organ failure.

  4. Manufacturing process and tests of a Lower Hybrid Passive-Active Multijunction launcher for long pulse experiments on Tore-Supra

    International Nuclear Information System (INIS)

    Guilhem, D.; Samaille, F.; Bertrand, B.; Lipa, M.; Achard, J.; Agarici, G.; Argouarch, A.; Armitano, A.; Belo, J.H.; Bej, Z.; Berger-By, G.; Bouquey, F.; Brun, C.; Chantant, M.; Corbel, E.; Delmas, E.; Delpech, L.; Doceul, L.; Ekedahl, A.; Faisse, F.

    2011-01-01

    A new concept of multijunction-type antenna has been developed, the Passive-Active Multijunction, which improves the cooling of the waveguides and the damping of the neutron energy (for ITER) compared to Full Active Multijunction. Due to the complexity of the structures, prototypes of the mode converters and of the Passive-Active-Multijunction launcher were fabricated and tested, in order to validate the different manufacturing processes and the manufacturer's capability to face this challenging project. This paper describes the manufacturing process, the tests of the various prototypes and the construction of the final Passive-Active-Multijunction launcher, which entered into operation in October 2009. It has been commissioned and is fully operational on the Tore-Supra tokamak, since design objectives were reached in March 2010: 2.75 MW - 78 s, power density of 25 MW/m 2 in active waveguides, steady-state apparent surface temperatures <350 deg. C; 10 cm long distance coupling.

  5. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  6. Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior.

    Science.gov (United States)

    Wu, Ching-Zong; Chen, Shih-Chung; Shih, Yung-Hsun; Hung, Jing-Ming; Lin, Chia-Cheng; Lin, Li-Hsiang; Ou, Keng-Liang

    2011-10-01

    This research investigated the high-temperature microstructure, mechanical properties, and damping behavior of Fe-9 Al-30 Mn-1C-5 Co (wt.%) alloy by means of electron microscopy, experimental model analysis, and hardness and tensile testing. Subsequent microstructural transformation occurred when the alloy under consideration was subjected to heat treatment in the temperature range of 1000-1150 °C: γ → (γ+κ). The κ-phase carbides had an ordered L'1(2)-type structure with lattice parameter a = 0.385 nm. The maximum yield strength (σ(y)), hardness, elongation, and damping coefficient of this alloy are 645 MPa, Hv 292, ~54%, and 178.5 × 10(-4), respectively. These features could be useful in further understanding the relationship between the biocompatibility and the wear and corrosion resistance of the alloy, so as to allow the development of a promising biomedical material. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  8. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  9. On-orbit Status and Light Attenuation Behavior of the DAMPE-PSD

    Science.gov (United States)

    Li, Y.; Zhang, Y. P.; Zhang, Y. J.; Sun, Z. Y.; Yu, Y. H.; Dong, T. K.; Ma, P. X.; Wang, Y. P.; Yuan, Q.

    2017-11-01

    The DArk Matter Particle Explorer (DAMPE) is a high-resolution multi-purpose space-borne device for detecting the high-energy cosmic-rays like e±, γ-rays, protons, and heavy-ions, which was launched on 2015 December 17th. The Plastic Scintillator Detector (PSD) is the top-most sub-detector of DAMPE. The PSD is designed to measure the charge of incident high-energy particles, and to serve as a veto detector for discriminating γ-rays from the charged particles. In this paper, the on-orbit status of the PSD after launching in terms of high voltage (HV) and temperature stabilities is presented. The temperature and the HV variations of the PSD are less than 1°C and 0.5%, respectively. By using the on-orbit data, the attenuation lengths of PSD bars are obtained according to an empirical formula. A preliminary charge spectrum reconstructed from the X-layer of the PSD is obtained.

  10. Weakly damped modes in star clusters and galaxies

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  11. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  12. An algorithm to resolve γ-rays from charged cosmic rays with DAMPE

    Science.gov (United States)

    Xu, Zun-Lei; Duan, Kai-Kai; Shen, Zhao-Qiang; Lei, Shi-Jun; Dong, Tie-Kuang; Gargano, Fabio; Garrappa, Simone; Guo, Dong-Ya; Jiang, Wei; Li, Xiang; Liang, Yun-Feng; Mazziotta, Mario Nicola; Munoz Salinas, Maria Fernanda; Su, Meng; Vagelli, Valerio; Yuan, Qiang; Yue, Chuan; Zang, Jing-Jing; Zhang, Ya-Peng; Zhang, Yun-Long; Zimmer, Stephan

    2018-03-01

    The DArk Matter Particle Explorer (DAMPE), also known as Wukong in China, which was launched on 2015 December 17, is a new high energy cosmic ray and γ-ray satellite-borne observatory. One of the main scientific goals of DAMPE is to observe GeV-TeV high energy γ-rays with accurate energy, angular and time resolution, to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays, it is challenging to identify γ-rays with sufficiently high efficiency, minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations, using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at ∼ 10GeV amounts to less than 1% of the selected sample. Finally, we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.

  13. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The NRC and EG and G Idaho are engaged in programs to evaluate piping-system damping, in order to provide realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping-system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping-system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects are included, and both short-and long-range goals of the program are outlined

  14. Landau damping due to tune spreads in betatron amplitude and momentum

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tran, P.; Weng, W.T.

    1989-01-01

    Due to the large space charge transverse impedance in a low energy synchrotron, the coherent tune shift causes the Landau damping to be ineffective in damping the transverse coherent motion. We analyze the effect of Landau damping that is caused by the tune spreads of the betatron amplitude (space charge and/or octupole) and momentum. We find that the Landau damping becomes more significant in our two dimensional analysis. 5 refs

  15. Electric-stress reliability and current collapse of different thickness SiNx passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Ling, Yang; Gui-Zhou, Hu; Yue, Hao; Xiao-Hua, Ma; Si, Quan; Li-Yuan, Yang; Shou-Gao, Jiang

    2010-01-01

    This paper investigates the impact of electrical degradation and current collapse on different thickness SiN x passivated AlGaN/GaN high electron mobility transistors. It finds that higher thickness SiN x passivation can significantly improve the high-electric-field reliability of a device. The degradation mechanism of the SiN x passivation layer under ON-state stress has also been discussed in detail. Under the ON-state stress, the strong electric-field led to degradation of SiN x passivation located in the gate-drain region. As the thickness of SiN x passivation increases, the density of the surface state will be increased to some extent. Meanwhile, it is found that the high NH 3 flow in the plasma enhanced chemical vapour deposition process could reduce the surface state and suppress the current collapse. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

    DEFF Research Database (Denmark)

    Yao, Wei; Jiang, L.; Fang, Jiakun

    2013-01-01

    This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided....

  17. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  18. Electronic Contributions to the Phonon Damping in Metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rune

    1968-07-15

    An imaginary part of the dielectric matrix is derived based on a first order perturbation expansion of the valence electron states in a local potential model of the crystal. The results are used to estimate the electronic contributions to the phonon damping in aluminum and lead. The corrections which have been obtained are of the same order of magnitude at small phonon momenta as the damping earlier calculated for the free electrons. However, the discrepancies between the theoretical and experimental results still remain. The major contribution to damping seems to originate in anharmonic effects, even at 80 deg K.

  19. A Cable-Passive Damper System for Sway and Skew Motion Control of a Crane Spreader

    Directory of Open Access Journals (Sweden)

    La Duc Viet

    2015-01-01

    Full Text Available While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.

  20. Reduction of inward momentum flux by damped eigenmodes

    International Nuclear Information System (INIS)

    Terry, P. W.; Baver, D. A.; Hatch, D. R.

    2009-01-01

    The inward momentum flux driven by the off-diagonal pressure gradient in a fluid model for ion temperature gradient turbulence with large Richardson number is significantly reduced by the excitation of stable eigenmodes. This is accomplished primarily through the amplitude autocorrelation of the damped eigenmode, which, in the flux, directly counteracts the quasilinear contribution of the unstable eigenmode. Stable eigenmode cross correlations also contribute to the flux, but the symmetry of conjugate pairing of growing and damped eigenmodes leads to significant cancellations between cross correlation terms. Conjugate symmetry is a property of unstable wavenumbers but applies to the whole of the saturated state because damped eigenmodes in the unstable range prevent the spread of energy outside that range. The heat and momentum fluxes are nearly isomorphous when expressed in terms of the eigenmode correlations. Due to this similarity of form, the thermodynamic constraint, which keeps the heat flux outward even when significantly reduced by the damped eigenmode, results in a momentum flux that remains inward, even though it is also reduced by the damped eigenmode. The isomorphism is not perfect. When the contribution of stable eigenmode cross correlations to the flux do not cancel, the momentum flux can reverse sign and become outward.

  1. Recent development of the passive vibration control method

    Science.gov (United States)

    Ishida, Yukio

    2012-05-01

    This paper introduces new passive vibration suppression methods developed recently in our laboratory. First, two methods used to suppress steady-state resonances are explained. One is the improvement of the efficiency of a ball balancer. A simple method to eliminate the influence of friction of balls and to improve its efficiency is introduced. The other is an effective method that utilizes the discontinuous spring characteristics. Secondly, a method to eliminate unstable ranges in rotor systems is explained. Unstable ranges in an asymmetrical shaft, and in a hollow rotor partially filled with liquid, are eliminated by the discontinuous spring characteristics. Thirdly, a method to suppress self-excited oscillations is explained. Self-excited oscillations due to internal damping and rubbing are discussed. Finally, the methods of using a pendulum or roller type absorbers to suppress torsional vibrations are explained.

  2. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  3. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  4. Magnetically tuned mass dampers for optimal vibration damping of large structures

    International Nuclear Information System (INIS)

    Bourquin, Frederic; Siegert, Dominique; Caruso, Giovanni; Peigney, Michael

    2014-01-01

    This paper deals with the theoretical and experimental analysis of magnetically tuned mass dampers, applied to the vibration damping of large structures of civil engineering interest. Two devices are analysed, for which both the frequency tuning ratio and the damping coefficient can be easily and finely calibrated. They are applied for the damping of the vibrations along two natural modes of a mock-up of a bridge under construction. An original analysis, based on the Maxwell receding image method, is developed for estimating the drag force arising inside the damping devices. It also takes into account self-inductance effects, yielding a complex nonlinear dependence of the drag force on the velocity. The analysis highlights the range of velocities for which the drag force can be assumed of viscous type, and shows its dependence on the involved geometrical parameters of the dampers. The model outcomes are then compared to the corresponding experimental calibration curves. A dynamic model of the controlled structure equipped with the two damping devices is presented, and used for the development of original optimization expressions and for determining the corresponding maximum achievable damping. Finally, several experimental results are presented, concerning both the free and harmonically forced vibration damping of the bridge mock-up, and compared to the corresponding theoretical predictions. The experimental results reveal that the maximum theoretical damping performance can be achieved, when both the tuning frequencies and damping coefficients of each device are finely calibrated according to the optimization expressions. (paper)

  5. Temporal Damping Effect of the Yucca Mountain Fractured Saturated Rock on Transient Infiltration Pulses

    International Nuclear Information System (INIS)

    K. Zhang; Y.S. Wu; L. Pan

    2006-01-01

    Performance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Paintbrush Group (PTn unit) at Yucca Mountain, because of its highly porous nature, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain. The model is first run to steady state and calibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary

  6. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The present NRC guidelines for structural damping to be used in the dynamic stress analyses of nuclear power plant piping systems are generally considered to be overly conservative. As a result, plant designers have in many instances used a considerable number of seismic supports to keep stresses calculated by large scale piping computer codes below the allowable limits. In response to this problem, the NRC and EG and G Idaho are engaged in programs to evaluate piping system damping, in order to provide more realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects is included, and both short and long range goals of the program are outlined

  7. The calculated longitudinal impedance of the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1988-05-01

    A high level of current dependent bunch lengthening has been observed in the north damping ring of the Stanford Linear Collider (SLC), indicating that the ring's impedance is very inductive. This level of bunch lengthening will limit the performance of the SLC. In order to study the problem of bunch lengthening in the damping ring and the possibility of reducing their inductance we compute, in this report, the longitudinal impedance of the damping ring vacuum chamber. More specifically we find the response function of the ring to a short gaussian bunch. This function will later be used as a driving term in the longitudinal equation of motion. We also identify the important inductive elements of the vacuum chamber and estimate their contribution to the total ring inductance. This information will be useful in assessing the effect of vacuum chamber modifications. 7 refs. , 8 figs., 1 tab

  8. Energy dependence of the emittance of damping ring beams

    International Nuclear Information System (INIS)

    Stiening, R.

    1985-01-01

    The energy at which the SLC damping rings are operated was chosen to be 1.21 GeV. At the time that that specification was made, the repetition rate of the SLC was expected to be 180 Hz. It is now anticipated that the repetition rate during the initial year of operation of the SLC will be 120 Hz. The following curves which show the output emittance of the damping rings as a function of input emittance and energy suggest that there is a range of energies over which the rings can be operated without changing the SLC luminosity. It should be noted that in the era of polarized beams, the damping ring energy will be fixed at the design value on account of the spin precession required in the LTR and RTL transport lines. The SLC design output emittance of the damping rings is 3 x 10 -5 radian-meters. Because of space charge disruption and quantum emission downstream of the damping rings, much lower values than the design value may not have a large beneficial effect on the luminosity. 3 figures

  9. Techniques for active passivation

    Science.gov (United States)

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  10. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  11. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  12. Design of Weighted Wide Area Damping Controller (WWADC Based PSS for Damping Inter-Area Low Frequency Oscillations

    Directory of Open Access Journals (Sweden)

    Saleh M. Bamasak

    2017-09-01

    Full Text Available Wide Area Measurement System (WAMS can extend and effectively improve the power system stabilizers (PSS capability in damping the inter-area low frequency oscillations in interconnected bulk power systems. This paper proposes the implementation of Weighted Wide Area Damping Controller (WWADC in which weighted factors are introduced for each remote feedback signals. Modal analysis approach is implemented for the purpose of identifying the optimal location as well as the input signals’ optimal combination of WWADC. Based on the linearized model, Differential Evolution (DE algorithm is applied to search for optimal controller parameters and optimal weighted factors. The successful application of the proposed approach is achieved in two power networks; the two-area 4-machine system and the IEEE-39 bus 10-machine system. The analysis of the eigenvalue and non-linear time domain simulations indicate that damping the inter-area oscillations and improving the system stability irrespective of the severity and the location of the disturbances can be effectively achieved by WADC

  13. Passive and Active Monitoring on a High Performance Research Network

    International Nuclear Information System (INIS)

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  14. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  15. Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

    OpenAIRE

    M. Salehi; A. A. Motie Birjandi; F. Namdari

    2015-01-01

    Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...

  16. Thiol-ene/methacrylate systems for mechanical damping

    Science.gov (United States)

    McNair, Olivia; Senyurt, Askim; Wei, Huanyu; Gould, Trent; Piland, Scott; Hoyle, Charles; Savin, Daniel

    2010-03-01

    Ternary thiol-ene-methacrylate (TEMA) networks as materials for mechanical energy damping are unique to the sports world. Using a photoinitiation process, TEMA systems are formed via an initial thiol-ene step-growth mechanism along with traditional radical polymerization of acrylate and ene monomers. Final networks have two-part morphologies: acrylate homopolymer sectors imbedded in a multi-component mesh. Several (TEMA) systems have been synthesized and analyzed via thermal and mechanical probing. Initial studies on these ternary systems have shown excellent properties compared to traditional ethylene vinyl alcohol (EVA) copolymers. For example, PEMA networks exhibit glass transition temperatures 33 K higher than EVA, resulting in improved damping at room temperature. This research will help develop relationships between tan delta, glass transition and their effects on mechanical energy damping for ternary (TEMA) systems.

  17. Comparison of active and passive methods for radon exhalation from a high-exposure building material

    International Nuclear Information System (INIS)

    Abbasi, A.; Mirekhtiary, F.

    2013-01-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 x 35.0 m area x 32.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of 226 Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg -1 . The radon exhalation rate from the calculation of the 226 Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m -2 h -1 . The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m -3 with a mean of 625 Bq m -3 . Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22% higher than the passive method. (authors)

  18. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  19. Mooring Line Damping Estimation for a Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Dongsheng Qiao

    2014-01-01

    Full Text Available The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT. Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  20. Mooring line damping estimation for a floating wind turbine.

    Science.gov (United States)

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  1. Contribution to the damping identification: experimental and numerical approaches

    International Nuclear Information System (INIS)

    Crambuer, R.

    2013-01-01

    Since earthquakes are a natural threat in France, it seems reasonable to construct buildings capable of resisting them. Since 1955, A.S. 55 recommendations regulations have taken into account this risk in all new constructions. The rules were created following an earthquake in Orleansville (Algeria) on 9. September 1954 and since then they have been modified in the aftermath of several significant earthquakes. As it stands now, the law requires that measurements of energy dissipation be carried out during the earthquakes in an effective manner. However, at present it is a great challenge to determine this, especially where reinforced concrete structures are concerned. The reason for this is the many different causes of energy dissipation which can be material, such as steel yielding, cracking of the concrete or deterioration of the interface between the Steel/concrete interface or environmental, such as the interactions with neighbouring structures or radiative damping. These dissipations typically creep into the essential pattern of the structures as a uniform, slight damping, and which is heavily quantify such as modal or Rayleigh damping. The challenge is therefore to ascertain how to carry out damping in a way that relies more on the laws of physics themselves. This study aims at bringing some clarifications to this problem. In order to achieve this, two objectives were targeted during the case study: the first consisted in experimentally qualifying and quantifying the sources of damping in concrete, the second aims at developing a method which model both the overall behaviour and the damping in a realistic way with low computational costs. A series of reverse 3-point bending tests were carried out to determine and quantify the mechanisms responsible for damping. This approach was innovative in that the tests were carried out on not only sound beams, but also on pre-damaged beams. When processing the results of these experiments, we focused on the overall

  2. A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase Grid-Tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; He, Yuanbin; Tang, Tianhao

    2013-01-01

    A higher order passive power filter (LLCL filter) for the grid-tied inverter is becoming attractive for industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. However, similar to the conventional LCL filter, the grid-tied inverter is facing...

  3. Quantum theory of damped harmonic oscillator | Antia | Global ...

    African Journals Online (AJOL)

    The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle ...

  4. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  5. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  6. Bunch lengthening in the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1990-02-01

    A high level of current dependent bunch lengthening has been observed on the North damping ring of the Stanford Linear Collider (SLC). At currents of 3 x 10 10 this behavior does not appear to degrade the machine's performance significantly. However, at the higher currents that are envisioned for the future one fears that its performance could be greatly degraded due to the phenomenon of bunch lengthening. This was the motivation for the work described in this paper. In this paper we calculate the longitudinal impedance of the damping ring vacuum chamber. More specifically, in this paper we find the response function of the ring to a short Gaussian bunch, which we call the Green function wake. In addition, we try to estimate the relative importance of the different vacuum chamber objects, in order to see how we might reduce the ring impedance. This paper also describes bunch length measurements performed on the North damping ring. We use the Green function wake, discussed above, to compute the bunch lengthening. Then we compare these results with those obtained from the measurements. In addition, we calculate the current dependence of the tune distribution

  7. Variable stiffness and damping MR isolator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

    2009-02-01

    This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

  8. Passive containment system

    International Nuclear Information System (INIS)

    Kleimola, F.W.

    1977-01-01

    Disclosed is a containment system that provides complete protection entirely by passive means for the loss of coolant accident in a nuclear power plant and wherein all stored energy released in the coolant blowdown is contained and absorbed while the nuclear fuel is prevented from over-heating by a high containment back-pressure and a reactor vessel refill system. The primary containment vessel is restored to a high sub-atmospheric pressure within a few minutes after accident initiation and the decay heat is safely transferred to the environment while radiolytic hydrogen is contained by passive means. 20 claims, 14 figures

  9. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  10. Calculated dependence of FePt damping on external field magnitude and direction

    Directory of Open Access Journals (Sweden)

    N. A. Natekar

    2017-05-01

    Full Text Available Near the Curie temperature (Tc, magnetic parameters including magnetization, anisotropy, and damping depend strongly on both temperature and length scale. This manifestation of renormalization theory is most readily seen in the case of magnetization where the magnitude of the atomic spin is largely unaffected by temperature, but the bulk magnetization vanishes at Tc. It has been previously argued that the Landau-Lifshitz-Gilbert damping parameter alpha exhibits a similar effect owing to its dependence on both atomic effects and magnon-magnon scattering, the latter having a strong length dependence. Here, we calculate, using an anisotropic exchange description of L10 FePt (Tc = 705 K, the damping (and other magnetic properties dependence on temperature for FePt at length scales around 1.0 nm as appropriate for high temperature micromagnetic simulation. While the damping reduces as the applied field along the easy direction increases, it tends to increase as the field direction is changed to in-plane. The renormalized parameters are also calculated for higher and lower Tc (770K and 630K by invoking the linear relationship between the exchange stiffness parameter and Curie temperature. This corresponds to doped and/or non-stoichiometric FePt and allows better understanding of the effects of varying anisotropy to exchange ratio.

  11. Effective damping for SSR analysis of parallel turbine-generators

    International Nuclear Information System (INIS)

    Agrawal, B.L.; Farmer, R.G.

    1988-01-01

    Damping is a dominant parameter in studies to determine SSR problem severity and countermeasure requirements. To reach valid conclusions for multi-unit plants, it is essential that the net effective damping of unequally loaded units be known. For the Palo Verde Nuclear Generating Station, extensive testing and analysis have been performed to verify and develop an accurate means of determining the effective damping of unequally loaded units in parallel. This has led to a unique and simple algorithm which correlates well with two other analytic techniques

  12. Technical - Economic Research for Passive Buildings

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  13. Comparing Sources of Damping of Cross-Wind Motion

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Mørch, Christian; Andersen, Lars

    2009-01-01

    practise plays a key role in this. The questions are: does more damping exist and is one of the sources of damping the main contributor allowing for site-independent guidelines. The aim of this paper is to address these issues. It is demonstrated that tower dampers are important in order to tackle...

  14. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Mesquita, Thiago J.; Chauveau, Eric; Mantel, Marc; Nogueira, Ricardo P.

    2013-01-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  15. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Thiago J., E-mail: thiago.mesquita@ugitech.com [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Chauveau, Eric; Mantel, Marc [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Nogueira, Ricardo P. [LEPMI UMR 5279 CNRS – Grenoble INP–Université de Savoie–Université Joseph Fourier BP 75, 38402 St Martin d’Hères (France)

    2013-04-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  16. Natural vibration frequency and damping of slender structures founded on monopiles

    DEFF Research Database (Denmark)

    Zania, Varvara

    2014-01-01

    of the modified SSI eigenfrequency and damping is presented, which accounts for the cross coupling stiffness and damping terms of the soil–pile system and is applicable but not restrictive to OWTs. A parametric study was performed to illustrate the sensitivity of the eigenfrequency and damping on the foundation...

  17. Damped time advance methods for particles and EM fields

    International Nuclear Information System (INIS)

    Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.

    1990-01-01

    Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method

  18. Dynamics of vibration isolation system with rubber-cord-pneumatic spring with damping throttle

    Science.gov (United States)

    Burian, Yu A.; Silkov, M. V.

    2017-06-01

    The study refers to the important area of applied mechanics; it is the theory of vibration isolation of vibroactive facilities. The design and the issues of mathematical modeling of pneumatic spring perspective design made on the basis of rubber-cord shell with additional volume connected with its primary volume by means of throttle passageway are considered in the text. Damping at the overflow of air through the hole limits the amplitude of oscillation at resonance. But in contrast to conventional systems with viscous damping it does not increase transmission ratio at high frequencies. The mathematical model of suspension allowing selecting options to reduce the power transmission ratio on the foundation, especially in the high frequency range is obtained

  19. DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION

    International Nuclear Information System (INIS)

    Smith, K. W.; Terry, P. W.

    2011-01-01

    The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  20. Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.

    Directory of Open Access Journals (Sweden)

    Elijah E W Van Houten

    Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.