WorldWideScience

Sample records for high particle number

  1. On the motion of non-spherical particles at high Reynolds number

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...

  2. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    Azhar, Mueed; Greiner, Andreas [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Department of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Kauzlarić, David, E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg (Germany)

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  3. High pulse number thermal shock tests on tungsten with steady state particle background

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  4. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Q. T. Nguyen

    2016-09-01

    Full Text Available This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS, northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3 might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10–30 nm in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those

  5. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)

    2014-12-15

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.

  6. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.

    2014-01-01

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions

  7. Negative numbers and antimatter particles

    Tsan, Ung Chan

    2012-01-01

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter

  8. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  9. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  10. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  11. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  12. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  13. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  14. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  15. Continental anthropogenic primary particle number emissions

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  16. Continental anthropogenic primary particle number emissions

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  17. Particle creation and particle number in an expanding universe

    Parker, Leonard

    2012-01-01

    I describe the logical basis of the method that I developed in 1962 and 1963 to define a quantum operator corresponding to the observable particle number of a quantized free scalar field in a spatially-flat isotropically expanding (and/or contracting) universe. This work also showed for the first time that particles were created from the vacuum by the curved spacetime of an expanding spatially-flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe. The same process is responsible for creating the nearly scale-invariant spectrum of quantized perturbations of the inflaton scalar field during the inflationary stage of the expansion of the universe. I explain how the method that I used to obtain the observable particle number operator involved adiabatic invariance of the particle number (hence, the name adiabatic regularization) and the quantum theory of measurement of particle number in an expanding universe. I also show how I was led in a surprising way, to the discovery in 1964 that there would be no particle creation by these spatially-flat FLRW universes for free fields of any integer or half-integer spin satisfying field equations that are invariant under conformal transformations of the metric. The methods I used to define adiabatic regularization for particle number were based on generally-covariant concepts like adiabatic invariance and measurement that were fundamental and determined results that were unique to each given adiabatic order. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  18. Baryon number violation and particle collider experiments

    Klinkhamer, F.R.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1992-09-01

    Baryon number non-conservation, due to non-perturbative effects (sphalerons) in the standard model, may have been important in the early Universe. In this paper the possibility is discussed that similar effects could show up at future particle collider experiments. (author). 16 refs.; 3 figs

  19. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  20. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.

    2016-01-01

    mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind...

  1. Determination of the fundamental scale of gravity and the number of space-time dimensions from high energetic particle interactions

    Ruppert, J.; Rahmede, C.; Bleicher, M.

    2005-01-01

    Within the ADD-model, we elaborate an idea by Vacavant and Hinchliffe [J. Phys. G 27 (2001) 1839] and show quantitatively how to determine the fundamental scale of TeV-gravity and the number of compactified extra dimensions from data at LHC. We demonstrate that the ADD-model leads to strong correlations between the missing E T in gravitons at different center of mass energies. This correlation puts strong constraints on this model for extra dimensions, if probed at s=5.5 TeV and s=14 TeV at LHC

  2. Approximate particle number projection in hot nuclei

    Kosov, D.S.; Vdovin, A.I.

    1995-01-01

    Heated finite systems like, e.g., hot atomic nuclei have to be described by the canonical partition function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition function is used in the studies. As a result, some shortcomings of the theoretical description appear because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing correlations the quantum number fluctuations are introduced by some approximate methods (e.g., by the standard BCS method). The exact particle number projection is very cumbersome and an approximate number projection method for T ≠ 0 basing on the formalism of thermo field dynamics is proposed. The idea of the Lipkin-Nogami method to perform any operator as a series in the number operator powers is used. The system of equations for the coefficients of this expansion is written and the solution of the system in the next approximation after the BCS one is obtained. The method which is of the 'projection after variation' type is applied to a degenerate single j-shell model. 14 refs., 1 tab

  3. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  4. Multisite study of particle number concentrations in urban air.

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of

  5. High Reynolds Number Turbulence

    Smits, Alexander J

    2007-01-01

    The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...

  6. Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu

    Li Bingheng; Lei Yi'an; Zhang Zhenhua

    2013-01-01

    Two-quasiparticle bands and low-lying excited high-K four-, six-, and eight-quasiparticle bands in the doubly-odd 174,176 Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for 174,176 Lu are taken from the adjacent odd-A Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-A Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-K (K=|Ω 1 -Ω 2 |) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the Ω=1/2 orbital is analyzed. (authors)

  7. A finite particle number approach to physics

    Noyes, H.P.

    1984-01-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules the author constructs: the scale constants of physics (3, 10, 137, 1.7x10 38 ); 3+1 Minkowski space with a discrete metric and the algebraic bound ΔepsilonΔtau >= 1; the Einstein-deBroglie relation; algebraic 'double slit' interference; a single time momentum space scattering theory connected to laboratory experience; an approximation to 'wave functions'; 'local' phase severence and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; msub(p)/msub(e); a cosmology not in disagreement with current observations. (Auth.)

  8. Finite-particle-number approach to physics

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

  9. Finite-particle-number approach to physics

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10 38 ); 3+1 Minkowski space with a discrete metric and the algebraic bound δ is an element of δ tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations

  10. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  11. Solving for the particle-number-projected HFB wavefunction

    Jia, L.Y.

    2015-01-01

    Recently we proposed a particle-number-conserving theory for nuclear pairing (Jia, 2013) [19] through the generalized density matrix formalism. The relevant equations were solved for the case when each single-particle level has a distinct set of quantum numbers and could only pair with its time-reversed partner (BCS-type Hamiltonian). In this work we consider the more general situation when several single-particle levels could have the same set of quantum numbers and pairing among these levels is allowed (HFB-type Hamiltonian). The pair condensate wavefunction (the HFB wavefunction projected onto good particle number) is determined by the equations of motion for density matrix operators instead of the variation principle. The theory is tested in the simple two-level model with factorizable pairing interactions, and semi-realistic models with the zero-range delta interaction and the realistic Bonn-CD interaction

  12. Frozen density embedding with non-integer subsystems' particle numbers.

    Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio

    2014-03-21

    We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.

  13. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  14. Temperature-dependent particle-number projected moment of inertia

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  15. The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics

    El Naschie, M.S.

    2005-01-01

    Supersymmetry, colours and chirality are utilized to develop three minimally extended versions of the standard model. Based on these models, it is possible to predict that few new elementary particles are likely to be found experimentally at an energy scale which is very modestly above that of the electroweak. Connections to the 8064 massless states of Heterotic string theory are also discussed

  16. Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events: An Analysis From the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin).

    Khera, Amit V; Demler, Olga V; Adelman, Steven J; Collins, Heidi L; Glynn, Robert J; Ridker, Paul M; Rader, Daniel J; Mora, Samia

    2017-06-20

    Recent failures of drugs that raised high-density lipoprotein (HDL) cholesterol levels to reduce cardiovascular events in clinical trials have led to increased interest in alternative indices of HDL quality, such as cholesterol efflux capacity, and HDL quantity, such as HDL particle number. However, no studies have directly compared these metrics in a contemporary population that includes potent statin therapy and low low-density lipoprotein cholesterol. HDL cholesterol levels, apolipoprotein A-I, cholesterol efflux capacity, and HDL particle number were assessed at baseline and 12 months in a nested case-control study of the JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin), a randomized primary prevention trial that compared rosuvastatin treatment to placebo in individuals with normal low-density lipoprotein cholesterol but increased C-reactive protein levels. In total, 314 cases of incident cardiovascular disease (CVD) (myocardial infarction, unstable angina, arterial revascularization, stroke, or cardiovascular death) were compared to age- and gender-matched controls. Conditional logistic regression models adjusting for risk factors evaluated associations between HDL-related biomarkers and incident CVD. Cholesterol efflux capacity was moderately correlated with HDL cholesterol, apolipoprotein A-I, and HDL particle number (Spearman r = 0.39, 0.48, and 0.39 respectively; P capacity (OR/SD, 0.89; 95% CI, 0.72-1.10; P =0.28), HDL cholesterol (OR/SD, 0.82; 95% CI, 0.66-1.02; P =0.08), or apolipoprotein A-I (OR/SD, 0.83; 95% CI, 0.67-1.03; P =0.08). Twelve months of rosuvastatin (20 mg/day) did not change cholesterol efflux capacity (average percentage change -1.5%, 95% CI, -13.3 to +10.2; P =0.80), but increased HDL cholesterol (+7.7%), apolipoprotein A-I (+4.3%), and HDL particle number (+5.2%). On-statin cholesterol efflux capacity was inversely associated with incident CVD (OR/SD, 0.62; 95% CI, 0

  17. Nuclear fragmentation and the number of particle tracks in tissue

    Ponomarev, A. L.; Cucinotta, F. A.

    2006-01-01

    For high energy nuclei, the number of particle tracks per cell is modified by local nuclear reactions that occur, with large fluctuations expected for heavy ion tracks. Cells near the interaction site of a reaction will experience a much higher number of tracks than estimated by the average fluence. Two types of reaction products are possible and occur in coincidence; projectile fragments, which generally have smaller charge and similar velocity to that of the projectile, and target fragments, which are produced from the fragmentation of the nuclei of water atoms or other cellular constituents with low velocity. In order to understand the role of fragmentation in biological damage a new model of human tissue irradiated by heavy ions was developed. A box of the tissue is modelled with periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. The cross sections for projectile and target fragmentation products are taken from the quantum multiple scattering fragmentation code previously developed at NASA Johnson Space Center. Statistics of fragmentation pathways occurring in a cell monolayer, as well as in a small volume of 10 x 10 x 10 cells are given. A discussion on approaches to extend the model to describe spatial distributions of inactivated or other cell damage types, as well as highly organised tissues of multiple cell types, is presented. (authors)

  18. High luminosity particle colliders

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  19. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  20. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin

    2018-02-01

    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on κ-Köhler theory

  1. Particle Number Dependence of the N-body Simulations of Moon Formation

    Sasaki, Takanori; Hosono, Natsuki

    2018-04-01

    The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.

  2. An acute intake of theobromine does not change postprandial lipid metabolism, whereas a high-fat meal lowers chylomicron particle number.

    Smolders, Lotte; Mensink, Ronald P; Plat, Jogchum

    2017-04-01

    Postprandial responses predict cardiovascular disease risk. However, only a few studies have compared acute postprandial effects of a low-fat, high-carbohydrate (LF) meal with a high-fat, low-carbohydrate (HF) meal. Furthermore, theobromine has favorably affected fasting lipids, but postprandial effects are unknown. Because both fat and theobromine have been reported to increase fasting apolipoprotein A-I (apoA-I) concentrations, the main hypothesis of this randomized, double-blind crossover study was that acute consumption of an HF meal and a theobromine meal increased postprandial apoA-I concentrations, when compared with an LF meal. Theobromine was added to the LF meal. Nine healthy men completed the study. After meal intake, blood was sampled frequently for 4hours. Postprandial apoA-I concentrations were comparable after intake of the 3 meals. Apolipoprotein B48 curves, however, were significantly lower and those of triacylglycerol were significantly higher after HF as compared with LF consumption. Postprandial free fatty acid concentrations decreased less, and glucose and insulin concentrations increased less after HF meal consumption. Except for an increase in the incremental area under the curve for insulin, theobromine did not modify responses of the LF meal. These data show that acute HF and theobromine consumption does not change postprandial apoA-I concentrations. Furthermore, acute HF consumption had divergent effects on postprandial apolipoprotein B48 and triacylglycerol responses, suggesting the formation of less, but larger chylomicrons after HF intake. Finally, except for an increase in the incremental area under the curve for insulin, acute theobromine consumption did not modify the postprandial responses of the LF meal. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Symmetry mappings concomitant to particle-number-conservation-baryon-number conservation

    Davis, W.R.

    1977-01-01

    Four theorem serve to demonstrate that matter fields in space-time admit certain timelike symmetry mappings concomitant to the familiar notion of particle number conservation, which can be more fundamentally accounted for by a type of projective invariance principle. These particular symmetry mappings include a family of symmetry properties that may be admitted by Riemannian space-times. In their strongest form, the results obtained provide some insight relating to the conservation of baryon number

  4. Number and mass analysis of particles emitted by aircraft engine

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  5. Multi-particle Anderson Localisation: Induction on the Number of Particles

    Chulaevsky, Victor; Suhov, Yuri

    2009-01-01

    This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479-489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Froehlich and Spencer, Commun Math Phys 88:151-184, 1983; Froehlich et al., Commun Math Phys 101:21-46, 1985; von Dreifus and Klein, Commun Math Phys 124:285-299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245-278, 1993) and Aizenman et al. (Commun Math Phys 224:219-253, 2001) (see also references therein) which is also combined with an induction on the number of particles

  6. Baryon number violation in high energy collisions

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  7. Particle number fluctuations in the moment of inertia

    Allal, N.H.; Fellah, M.

    1991-01-01

    The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%

  8. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  9. Decreasing particle number concentrations in a warming atmosphere and implications

    F. Yu

    2012-03-01

    Full Text Available New particle formation contributes significantly to the number concentration of condensation nuclei (CN as well as cloud CN (CCN, a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends that are consistent in sign with, but are larger in magnitude than, the predicted temperature effects. The possible reasons for larger observed long-term CN reductions at remote sites are discussed. The combined effects of rising temperatures on aerosol nucleation rates and other chemical and microphysical processes may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  10. Baryon number fluctuations in quasi-particle model

    Zhao, Ameng [Southeast University Chengxian College, Department of Foundation, Nanjing (China); Luo, Xiaofeng [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zong, Hongshi [Nanjing University, Department of Physics, Nanjing (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing (China); Institute of Theoretical Physics, CAS, State Key Laboratory of Theoretical Physics, Beijing (China)

    2017-04-15

    Baryon number fluctuations are sensitive to the QCD phase transition and the QCD critical point. According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of the quark-gluon plasma. Furthermore, we compared our results with the experimental data measured by the STAR experiment at RHIC. It is found that the experimental data can be well described by the model for the colliding energies above 30 GeV and show large discrepancies at low energies. This puts a new constraint on the qQGP model and also provides a baseline for the QCD critical point search in heavy-ion collisions at low energies. (orig.)

  11. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  12. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  13. Increasing effective number of neutrinos by decaying particles

    Ichikawa, K.; Kawasaki, M.; Nakayama, K.; Senami, M. [Tokyo Univ. (Japan). Inst. for Cosmic Ray Research; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-03-15

    We present models of decaying particles to increase the effective number of neutrinos N{sub {nu}} after big bang nucleosynthesis but before the structure formation begins. We point out that our scenario not only solves the discrepancy between the constraints on N{sub {nu}} from these two epochs, but also provides a possible answer to deeper inconsistency in the estimation of the matter power spectrum amplitude at small scales, represented by {sigma}{sub 8}, between the WMAP and some small scale matter power measurements such as the Lyman-{alpha} forest and weak lensing. We consider (a) saxion decay into two axions; (b) gravitino decay into axino and axion; (c) Dirac right-handed sneutrino decay into gravitino and right-handed neutrino. (orig.)

  14. A role of valence particles number equal to 20

    Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Pradeep; Koranga, B.S.; Kumar, S.; Negi, D.

    2012-01-01

    The importance of the N p N n parametrization was first demonstrated by Casten in connection with the role of the proton-neutron interaction in the growth of deformation away from shell closures, and there have subsequently been many developments in this theme. The symbols N p and N n are number of valence particles/holes of protons and neutrons, respectively (where nucleons are counted as holes beyond the middle of a major shell). The observables which reflect collective structure in the deformed mass region for even-even nuclei such as E(2 + ), R 4/2 ≡ E(4 + )/E(2 + ) and B(E2) have behaved smoothly with N p N n

  15. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    J. Schmale

    2018-02-01

    Full Text Available Aerosol–cloud interactions (ACI constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN. Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles  > 20 nm across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring, at the alpine stations (stronger influence of polluted boundary layer air masses in summer, the rain forest (wet and dry season or Finokalia (wildfire influence in autumn. The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6 and lowest at the rain forest station ATTO (0.2–0.3. We performed closure

  16. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea.

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-12-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3-0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01-0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1-10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-01

    Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  18. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-01-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3–0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01–0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1–10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. - Highlights: • Size-dependent aerosol number was measured along the path of subway user. • Particles less than 0.4 μm were inhaled in outdoor but less so as deeper underground. • Coarse particles were inhaled significantly as users moved deeper underground. - We estimated the inhaled aerosol number concentration depending on particle size along the path of subway users.

  19. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit

    2016-01-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  20. High-energy particle diffraction

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  1. Novel results in particle physics. AIP conference proceedings number 93; particle and fields subseries No. 27

    Panvini, R.S.; Alam, M.S.; Csorna, S.E.

    1982-09-01

    Topics include free quark searches, axions, charmed particle lifetimes, a composite model of the weak interactions, e + e - interactions, neutrino and beam dump experiments, grand unified theories, proton decay, neutrino oscillations, and high energy p anti p interactions. Separate entries were made in the data base for the papers presented

  2. Particle creation and Dirac's large number hypothesis; and Reply

    Canuto, V.; Adams, P.J.; Hsieh, S.H.; Tsiang, E.; Steigman, G.

    1976-01-01

    The claim made by Steigman (Nature; 261:479 (1976)), that the creation of matter as postulated by Dirac (Proc. R. Soc.; A338:439 (1974)) is unnecessary, is here shown to be incorrect. It is stated that Steigman's claim that Dirac's large Number Hypothesis (LNH) does not require particle creation is wrong because he has assumed that which he was seeking to prove, that is that rho does not contain matter creation. Steigman's claim that Dirac's LNH leads to nonsensical results in the very early Universe is superficially correct, but this only supports Dirac's contention that the LNH may not be valid in the very early Universe. In a reply Steigman points out that in Dirac's original cosmology R approximately tsup(1/3) and using this model the results and conclusions of the present author's paper do apply but using a variation chosen by Canuto et al (T approximately t) Dirac's LNH cannot apply. Additionally it is observed that a cosmological theory which only predicts the present epoch is of questionable value. (U.K.)

  3. Exotic highly ionising particles at the LHC

    De Roeck, A; Mermod, P; Milstead, D; Sloan, T

    2012-01-01

    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they appear as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through detectors and, in the case of magnetically charged objects, the so-called induction method with which monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.

  4. Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics

    Chen, Xueshun; Wang, Zifa; Li, Jie; Chen, Huansheng; Hu, Min; Yang, Wenyi; Wang, Zhe; Ge, Baozhu; Wang, Dawei

    2017-01-01

    In this study, a three-dimensional air quality model with detailed aerosol microphysics (NAQPMS + APM) was applied to simulate the fine particle number size distribution and to explain the spatiotemporal variation of fine particle number concentrations in different size ranges over Beijing and surrounding areas in the haze season (Jan 15 to Feb 13 in 2006). Comparison between observations and the simulation indicates that the model is able to reproduce the main features of the particle number size distribution. The high number concentration of total particles, up to 26600 cm −3 in observations and 39800 cm −3 in the simulation, indicates the severity of pollution in Beijing. We find that primary particles with secondary species coating and secondary particles together control the particle number size distribution. Secondary particles dominate particle number concentration in the nucleation mode. Primary and secondary particles together determine the temporal evolution and spatial pattern of particle number concentration in the Aitken mode. Primary particles dominate particle number concentration in the accumulation mode. Over Beijing and surrounding areas, secondary particles contribute at least 80% of particle number concentration in the nucleation mode but only 10–20% in the accumulation mode. Nucleation mode particles and accumulation mode particles are anti-phased with each other. Nucleation or primary emissions alone could not explain the formation of the particle number size distribution in Beijing. Nucleation has larger effects on ultrafine particles while primary particles emissions are efficient in producing large particles in the accumulation mode. Reduction in primary particle emissions does not always lead to a decrease in the number concentration of ultrafine particles. Measures to reduce fine particle pollution in terms of particle number concentration may be different from those addressing particle mass concentration. - Highlights:

  5. High resolution study of high mass pairs and high transverse momentum particles

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  6. Fine particle number and mass concentration measurements in urban Indian households.

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  7. On the time-averaging of ultrafine particle number size spectra in vehicular plumes

    X. H. Yao

    2006-01-01

    Full Text Available Ultrafine vehicular particle (<100 nm number size distributions presented in the literature are mostly averages of long scan-time (~30 s or more spectra mainly due to the non-availability of commercial instruments that can measure particle distributions in the <10 nm to 100 nm range faster than 30 s even though individual researchers have built faster (1–2.5 s scanning instruments. With the introduction of the Engine Exhaust Particle Sizer (EEPS in 2004, high time-resolution (1 full 32-channel spectrum per second particle size distribution data become possible and allow atmospheric researchers to study the characteristics of ultrafine vehicular particles in rapidly and perhaps randomly varying high concentration environments such as roadside, on-road and tunnel. In this study, particle size distributions in these environments were found to vary as rapidly as one second frequently. This poses the question on the generality of using averages of long scan-time spectra for dynamic and/or mechanistic studies in rapidly and perhaps randomly varying high concentration environments. One-second EEPS data taken at roadside, on roads and in tunnels by a mobile platform are time-averaged to yield 5, 10, 30 and 120 s distributions to answer this question.

  8. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  9. Comment on ''Boltzmann equation and the conservation of particle number''

    Zanette, D.

    1990-09-01

    In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs

  10. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  11. On the functional form of particle number size distributions: influence of particle source and meteorological variables

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne; Gilardoni, Stefania

    2018-04-01

    Particle number size distributions (PNSDs) have been collected periodically in the urban area of Milan, Italy, during 2011 and 2012 in winter and summer months. Moreover, comparable PNSD measurements were carried out in the rural mountain site of Oga-San Colombano (2250 m a.s.l.), Italy, during February 2005 and August 2011. The aerosol data have been measured through the use of optical particle counters in the size range 0.3-25 µm, with a time resolution of 1 min. The comparison of the PNSDs collected in the two sites has been done in terms of total number concentration, showing higher numbers in Milan (often exceeding 103 cm-3 in winter season) compared to Oga-San Colombano (not greater than 2×102 cm-3), as expected. The skewness-kurtosis plane has been used in order to provide a synoptic view, and select the best distribution family describing the empirical PNSD pattern. The four-parameter Johnson system-bounded distribution (called Johnson SB or JSB) has been tested for this aim, due to its great flexibility and ability to assume different shapes. The PNSD pattern has been found to be generally invariant under site and season changes. Nevertheless, several PNSDs belonging to the Milan winter season (generally more than 30 %) clearly deviate from the standard empirical pattern. The seasonal increase in the concentration of primary aerosols due to combustion processes in winter and the influence of weather variables throughout the year, such as precipitation and wind speed, could be considered plausible explanations of PNSD dynamics.

  12. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Cayley number and conservation laws for elementary particles

    Vollendorf, F.

    1975-01-01

    It is shown that the five conservation laws of charge, hyper-charge, barion number and the two lepton numbers lead to the construction of a commutative non-associative 24 dimensional linear algebra. Each element of the algebra is an ordered set of three Cayley numbers. (orig.) [de

  14. How comparable are size-resolved particle number concentrations from different instruments?

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  15. High-PT Physics with Identified Particles

    Fries, R.; Liu, W.

    2009-11-09

    The suppression of high-P{sub T} particles in heavy ion collisions was one of the key discoveries at the Relativistic Heavy Ion Collider. This is usually parameterized by the average rate of momentum-transfer squared to this particle, {cflx q}. Here we argue that measurements of identified particles at high P{sub T} can lead to complementary information about the medium. The leading particle of a jet can change its identity through interactions with the medium. Tracing such flavor conversions could allow us to constrain the mean free path. Here we review the basic concepts of flavor conversions and discuss applications to particle ratios and elliptic flow. We make a prediction that strangeness is enhanced at high P{sub T} at RHIC energies while its elliptic flow is suppressed.

  16. Particle accelerators and lasers high energy sources

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  17. High Pressure Quick Disconnect Particle Impact Tests

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  18. Estimating particle number size distributions from multi-instrument observations with Kalman Filtering

    Viskari, T.

    2012-07-01

    Atmospheric aerosol particles have several important effects on the environment and human society. The exact impact of aerosol particles is largely determined by their particle size distributions. However, no single instrument is able to measure the whole range of the particle size distribution. Estimating a particle size distribution from multiple simultaneous measurements remains a challenge in aerosol physical research. Current methods to combine different measurements require assumptions concerning the overlapping measurement ranges and have difficulties in accounting for measurement uncertainties. In this thesis, Extended Kalman Filter (EKF) is presented as a promising method to estimate particle number size distributions from multiple simultaneous measurements. The particle number size distribution estimated by EKF includes information from prior particle number size distributions as propagated by a dynamical model and is based on the reliabilities of the applied information sources. Known physical processes and dynamically evolving error covariances constrain the estimate both over time and particle size. The method was tested with measurements from Differential Mobility Particle Sizer (DMPS), Aerodynamic Particle Sizer (APS) and nephelometer. The particle number concentration was chosen as the state of interest. The initial EKF implementation presented here includes simplifications, yet the results are positive and the estimate successfully incorporated information from the chosen instruments. For particle sizes smaller than 4 micrometers, the estimate fits the available measurements and smooths the particle number size distribution over both time and particle diameter. The estimate has difficulties with particles larger than 4 micrometers due to issues with both measurements and the dynamical model in that particle size range. The EKF implementation appears to reduce the impact of measurement noise on the estimate, but has a delayed reaction to sudden

  19. Stereological Methods for Estimation of Total Number of Particles in ...

    In certain organs, like the brain, it is important to count the number of neurons associated with a particular function or region. The count gives an estimate of the electronic units available for a specific task or are endowed with a quantum of electrical energy. Similar studies can be extended in organs like the kidney, glands ...

  20. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  1. High-temperature LDV seed particle development

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  2. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Axial asymmetry, finite particle number and the IBA

    Casten, R.F.

    1984-01-01

    Although the IBA-1 contains no solutions corresponding to a rigid triaxial shape, it does contain an effective asymmetry. This arises from zero point motion in a γ-soft potential leading to a non-zero mean or rms γ. Three aspects of this feature will be discussed: (1) The relation between IBA-1 calculations and the corresponding γ. This point is developed in the context of the Consistent Q Formalism (CQF) of the IBA. (2) The dependence of this asymmetry on boson number, N, and the exploitation of this dependence to set limits on both the relative and absolute values of N for deformed nuclei. (3) The relation between this asymmetry and the triaxiality arising from the introduction of cubic terms into the IBA Hamiltonian. Various observables will be inspected in order both to determine their sensitivity to these two structural features and to explore empirical ways of distinguishing which origin of asymmetry applies in any given nucleus. 16 references

  4. Particle correlations in high-multiplicity reactions

    Hayot, Fernand.

    1976-01-01

    A comprehensive review of the results obtained in the study of short range correlations in high-multiplicity events is presented: introduction of the fundamental short-range order hypothesis, introduction of clusters in nondiffractive events (only the production of identical, independent, and neutral clusters was considered); search for short range dynamical effects between particles coming from the decay of a same cluster by studying two-particle rapidity correlations in inclusive and semi-inclusive experiments; study of transverse momentum correlations [fr

  5. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  6. Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background

    Michael Cusack

    2013-02-01

    Full Text Available This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm−3 and the nucleation mode (246 cm−3. Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non

  7. Multi-particle correlation observables in high energy nucleus-nucleus collisions

    Stock, R.

    1981-01-01

    Global features of exclusively measured events, including number correlations and vector correlations, and hybrid analysis of measurements of one or two specific fragments like spectator nuclei, high transverse momentum particles, polarization of one particle, etc., are considered

  8. Partial Cavity Flows at High Reynolds Numbers

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  9. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    Lindesay, James V

    2002-01-01

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum

  10. Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories

    Hergert, H.; Roth, R.

    2009-01-01

    We discuss the implications of using an intrinsic Hamiltonian in theories without particle-number conservation, e.g., the Hartree-Fock-Bogoliubov approximation, where the Hamiltonian's particle-number dependence leads to discrepancies if one naively replaces the particle-number operator by its expectation value. We develop a systematic expansion that fixes this problem and leads to an a posteriori justification of the widely-used one- plus two-body form of the intrinsic kinetic energy in nuclear self-consistent field methods. The expansion's convergence properties as well as its practical applications are discussed for several sample nuclei.

  11. Fast digital processor for event selection according to particle number difference

    Basiladze, S.G.; Gus'kov, B.N.; Li Van Sun; Maksimov, A.N.; Parfenov, A.N.

    1978-01-01

    A fast digital processor for a magnetic spectrometer is described. It is used in experimental searches for charmed particles. The basic purpose of the processor is discriminating events in the difference of numbers of particles passing through two proportional chambers (PC). The processor consists of three units for detecting signals with PC, and a binary coder. The number of inputs of the processor is 32 for the first PC and 64 for the second. The difference in the number of particles discriminated is from 0 to 8. The resolution time is 180 ns. The processor is built in the CAMAC standard

  12. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  13. Nested high voltage generator/particle accelerator

    Adler, R.J.

    1992-01-01

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  14. Power Supplies for High Energy Particle Accelerators

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  15. Nuclear reactions induced by high-energy alpha particles

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  16. Number concentrations of solid particles from the spinning top aerosol generator

    Mitchell, J.P.

    1983-02-01

    A spinning top aerosol generator has been used to generate monodisperse methylene blue particles in the size range from 0.6 to 6 μm. The number concentrations of these aerosols have been determined by means of an optical particle counter and compared with the equivalent measurements obtained by filter collection and microscopy. (author)

  17. On creating macroscopically identical granular systems with different numbers of particles

    van der Meer, Devaraj; Rivas, Nicolas

    2015-11-01

    One of the fundamental differences between granular and molecular hydrodynamics is the enormous difference in the total number of constituents. The small number of particles implies that the role of fluctuations in granular dynamics is of paramount importance. To obtain more insight in these fluctuations, we investigate to what extent it is possible to create identical granular hydrodynamic states with different number of particles. A definition is given of macroscopically equivalent systems, and the dependency of the conservation equations on the particle size is studied. We show that, in certain cases, and by appropriately scaling the microscopic variables, we are able to compare systems with significantly different number of particles that present the same macroscopic phenomenology. We apply these scalings in simulations of a vertically vibrated system, namely the density inverted granular Leidenfrost state and its transition to a buoyancy-driven convective state.

  18. Superconductivity in high energy particle accelerators

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  19. Particle identification methods in High Energy Physics

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  20. High energy model for irregular absorbing particles

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  1. Determination of the critical Shields number for particle erosion in laminar flow

    Ouriemi , Malika; Aussillous , Pascale; Medale , Marc; Peysson , Yannick; Guazzelli , Élisabeth

    2007-01-01

    International audience; We present reproducible experimental measurements for the onset of grain motion in laminar flow and find a constant critical Shields number for particle erosion, i.e., c = 0.12± 0.03, over a large range of small particle Reynolds number: 1.5 10 −5 Re p 0.76. Comparison with previous studies found in the literature is provided.

  2. Irradiation of single cells with individual high-LET particles

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  3. Single-particle characterization of the High Arctic summertime aerosol

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.

  4. The acceleration of particles to high energy

    Parker, E.N.

    1976-01-01

    The common occurrence, and often spectacular consequence, of fast particles in active astrophysical bodies has attracted the attention of physicists for more than four decades. The acceleration mechanisms, whatever they may be, are remarkably efficient, converting a major fraction of the total energy into fast particles. A variety of ideas have arisen, suggesting how and why fast particles are generated in various circumstances. The principal limitation on particle acceleration theories has been the realization that the universe in not filled with a hard vacuum, but rather is pervaded everywhere by tenuous ionized gases quite able to short circuit any large-scale electric fields that occur under ordinary circumstances. A number of the early ideas on the acceleration of cosmic rays have been discarded for this reason. The basic theoretical ideas can be grouped roughly into five parts: 1. hydromagnetic fields; 2. field in reduced conductivity; 3. plasma turbulence; 4. low frequency electromagnetic waves; 5. supernova explosion. Each of these is considered in turn. (Auth.)

  5. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population

    Roeske, John C; Stinchcomb, Thomas G

    2006-01-01

    Alpha-particle emitters are currently being considered for the treatment of micrometastatic disease. Based on in vitro studies, it has been speculated that only a few alpha-particle hits to the cell nucleus are considered lethal. However, such estimates do not consider the stochastic variations in the number of alpha-particle hits, energy deposited, or in the cell survival process itself. Using a tumour control probability (TCP) model for alpha-particle emitters, we derive an estimate of the average number of hits to the cell nucleus required to provide a high probability of eradicating a tumour cell population. In simulation studies, our results demonstrate that the average number of hits required to achieve a 90% TCP for 10 4 clonogenic cells ranges from 18 to 108. Those cells that have large cell nuclei, high radiosensitivities and alpha-particle emissions occurring primarily in the nuclei tended to require more hits. As the clinical implementation of alpha-particle emitters is considered, this type of analysis may be useful in interpreting clinical results and in designing treatment strategies to achieve a favourable therapeutic outcome. (note)

  6. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  7. On the number of elementary particles in a resolution dependent fractal spacetime

    He Jihuan

    2007-01-01

    We reconsider the fundamental question regarding the number of elementary particles in a minimally extended standard model. The main conclusion is that since the dimension of E-infinity spacetime is resolution dependent, then the number of elementary particles is also resolution dependent. For D = 10 of superstrings, D = 11 of M theory and D = 12 of F theory one finds N(SM) equal to (6)(10) = 60 (6)(11) = 66 and (6)(12) = 72 particles, respectively. This is in perfect agreement with prediction made previously by Mohamed Saladin El-Naschie and Marek-Crnjac

  8. Contribution from indoor sources to particle number and mass concentrations in residential houses

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  9. Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number

    Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel

    2007-11-01

    We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.

  10. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  11. Pairing vibrational and isospin rotational states in a particle number and isospin projected generator coordinate method

    Chen, H.T.; Muether, H.; Faessler, A.

    1978-01-01

    Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)

  12. Random Number Generation for High Performance Computing

    2015-01-01

    number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons

  13. Particle number size distributions in urban air before and after volatilisation

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  14. In situ formation and spatial variability of particle number concentration in a European megacity

    Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G. J.; Petäjä, T.; Prévôt, A. S. H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S. N.

    2015-09-01

    Ambient particle number size distributions were measured in Paris, France, during summer (1-31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10-3 s-1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm-3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.

  15. High-LET charged particle radiotherapy

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  16. On quantum statistics for ensembles with a finite number of particles

    Trifonov, Evgenii D

    2011-01-01

    The well-known Bose-Einstein and Fermi-Dirac quantum distributions can be considered as stationary solutions of kinetic equations for the mean occupation numbers in an ideal gas of an arbitrary finite number of identical particles. (methodological notes)

  17. Particle physics experiments at high energy colliders

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  18. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  19. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    studies reported such high number concentration of ultrafine refractory particles under ambient conditions. Inverse modeling of emission factors of refractory particle number size distributions revealed that diesel-fed public utility Jeepneys, commonly used for public transportation, are responsible for 94% of total roadside emitted refractory particle mass. The observed results showed that the majority of urban pollution in Metro Manila is dominated by carbonaceous aerosol. This suggests that PM10 or PM2.5 metrics do not fully describe possible health related effects in this kind of urban environments. Extremely high concentrations of ultrafine particles have been and will continue to induce adverse health related effects, because of their potential toxicity. We imply that in megacities, where the major fraction of particulates originates from the transport sector, PM10 or PM2.5 mass concentration should be complemented by legislative measurements of equivalent black carbon mass concentration.

  20. Statistics of an ideal homogeneous Bose gas with a fixed number of particles

    Alekseev, Vladimir A

    2001-01-01

    The distribution function w 0 (n 0 ) of the number n 0 of particles is found for the condensate of an ideal gas of free bosons with a fixed total number N of particles. It is shown that above the critical temperature (T > T c ) this function has the usual form w 0 (n 0 ) = (1 - e μ )e μn 0 , where μ is the chemical potential in temperature units. In a narrow vicinity of the critical temperature |T/T c - 1| ≤ N -1/3 , this distribution changes and at T c acquires the form of a resonance. The width of the resonance depends on the shape of the volume occupied by the gas and it has exponential (but not the Gaussian) wings. As the temperature is lowered, the resonance maximum shifts to larger values of n 0 and its width tends to zero, which corresponds to the suppression of fluctuations. For N → ∞, this change occurs abruptly. The distribution function of the number of particles in excited states for the systems with a fixed and a variable number of particles (when only a mean number of particles is fixed) prove to be identical and have the usual form. (physical basis of quantum electronics)

  1. Penetrative convection at high Rayleigh numbers

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  2. High-Mach number, laser-driven magnetized collisionless shocks

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  3. High gradient lens for charged particle beam

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  4. Decay properties of high-lying single-particles modes

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  5. Particle number fluctuations for the van der Waals equation of state

    Vovchenko, V; Anchishkin, D V; Gorenstein, M I

    2015-01-01

    The van der Waals (VDW) equation of state describes a thermal equilibrium in system of particles, where both repulsive and attractive interactions between them are included. This equation predicts the existence of the first order liquid–gas phase transition and the critical point. The standard form of the VDW equation is given by the pressure function in a canonical ensemble (CE) with a fixed number of particles. In this paper the VDW equation is derived within the grand canonical ensemble (GCE) formulation. We argue that this procedure can be useful for new physical applications, in particular, the fluctuations of the number of particles, which are absent in the CE, can be studied in the GCE. For the VDW equation of state in the GCE the particle number fluctuations are calculated for the whole phase diagram, both outside and inside the liquid–gas mixed phase region. It is shown that the scaled variance of these fluctuations remains finite within the mixed phase and goes to infinity at the critical point. The GCE formulation of the VDW equation of state can also be an important step for its application in the statistical description of hadronic systems, where numbers of different particle species are usually not conserved. (paper)

  6. Asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble

    Pogosian, S.

    1981-01-01

    It is known that in the grand canonical ensemble (for the case of small density of particles) the fluctuations (approximately mod(Λ)sup(1/2)) in the particle number have an asymptotic normal distribution as Λ→infinity. A similar statement holds for the distribution of the particle number in a bounded domain evaluated with respect to the limiting Gibbs distribution. The author obtains an asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble, by using the asymptotic expansion of the grand canonical partition function. The coefficients of this expansion are not constants but depend on the form of the domain Λ. More precisely, they are constant up to a correction which is small (for large Λ). The author obtains an explicit form for the second term of the asymptotic expansion in the local limit theorem for the particle number, and also gets the first correction terms for the coefficients of this expansion. (Auth.)

  7. Neutrino fluxes produced by high energy solar flare particles

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  8. Effects of the particle-number projection on the isovector pairing energy

    Allal, N.H.; Fellah, M.; Oudih, M.R.; Benhamouda, N.

    2006-01-01

    The usual neutron-proton BCS wave function is simultaneously projected on both the good neutron and proton numbers using a discrete projection operator. The projected energy of the system is deduced as a limit of rapidly convergent sequence. It is numerically studied for the N=Z nuclei of which ''experimental'' pairing gaps may be deduced from the experimental odd-even mass differences. It then appears that the particle-number fluctuation effect is even more important than in the case of pairing between like-particles. (orig.)

  9. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Babu, S. Suresh; Kompalli, Sobhan Kumar; Moorthy, K. Krishna

    2016-01-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  10. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Babu, S. Suresh, E-mail: s_sureshbabu@vssc.gov.in [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Kompalli, Sobhan Kumar [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Moorthy, K. Krishna [Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  11. The High/Scope Report. Number Four.

    Silverman, Charles, Ed.

    This report provides articles on several topics related to the education of young children. In the introduction High/Scope President David P. Weikart suggests that public investment in preschool education is a wise and economically sound social policy. New studies of the long term effects of preschool are demonstrating the staying power of early…

  12. High energy particle physics in the United Kingdom

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  13. Gravitational settling of a highly concentrated system of solid spherical particles

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  14. Studies in theoretical high energy particle physics

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  15. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  16. A method for measuring particle number emissions from vehicles driving on the road.

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  17. Interpretation of quarks having fractional quantum numbers as structural quasi-particles by means of the composite model with integral quantum numbers

    Tyapkin, A.A.

    1976-01-01

    The problem is raised on the interpretation of quarks having fractional quantum numbers as structural quasi-particles. A new composite model is proposed on the basis of the fundamental triplet representation of fermions having integral quantum numbers

  18. Approximate energy correction for particle number summetry breaking in constrained Hartree-Fock plus BCS calculations

    Redon, N.; Meyer, J.; Meyer, M.

    1989-01-01

    An approximate restoration of the particle number symmetry, a la Lipkin-Nogami, is numerically investigated in the context of Constrained Hartree-Fock plus BCS calculations. Its effect is assessed in a variety of physical situations like potential energy landscapes in transitional nuclei, shape isomerism at low spin and fission barriers of actinide nuclei

  19. Effects of particle-number-projection on nuclear moment of intertia

    Rozmej, P.

    1976-01-01

    The formalism of the moment of inertia in cranking model and BCS theory has been extended for the partially particle-number-projected BCS wave functions. The ground state moments of inertia obtained by this method are a little greater than those calculated by BCS method. A smooth growth of the moments of inertia for diminishing pairing strength constant has been obtained. (author)

  20. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  1. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Very High Momentum Particle Identification Detector

    Acconcia, T.V.; Barile, F.; Barnaföldi, G.G.; Bellwied, R.; Bencedi, G.; Bencze, G.; Berenyi, D.; Boldizsar, L.; Chattopadhyay, S.; Cindolo, F.; Chinellato, D.D.; D'Ambrosio, S.; Das, D.; Das, K.; Das-Bose, L.; Dash, A.K.; De Cataldo, G.; De Pasquale, S.; Di Bari, D.; Di Mauro, A.; Futo, E.; Garcia, E.; Hamar, G.; Harton, A.; Iannone, G.; Jimenez, R.T.; Kim, D.W.; Kim, J.S.; Knospe, A.; Kovacs, L.; Levai, P.; Nappi, E.; Markert, C.; Martinengo, P.; Mayani, D.; Molnar, L.; Olah, L.; Paic, G.; Pastore, C.; Patimo, G.; Patino, M.E.; Peskov, V.; Pinsky, L.; Piuz, F.; Pochybova, S.; Sgura, I.; Sinha, T.; Song, J.; Takahashi, J.; Timmins, A.; Van Beelen, J.B.; Varga, D.; Volpe, G.; Weber, M.; Xaplanteris, L.; Yi, J.; Yoo, I.K.

    2014-01-01

    The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.

  3. Broken flavor symmetries in high energy particle phenomenology

    Antaramian, A.

    1995-01-01

    Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong

  4. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  5. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  6. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  7. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  8. Some problems of high-energy elementary particle physics

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  9. Thermodynamic identities and particle number fluctuations in weakly interacting Bose-Einstein condensates

    Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)

    1999-08-14

    We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.

  10. Constraints on the dark matter particle mass from the number of Milky Way satellites

    Polisensky, Emil; Ricotti, Massimo

    2011-01-01

    We have conducted N-body simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky Ways decreases with decreasing mass of the dark matter particle. Assuming that the number of dark matter satellites exceeds or equals the number of observed satellites of the Milky Way, we derive lower limits on the dark matter particle mass. We find with 95% confidence m s >13.3 keV for a sterile neutrino produced by the Dodelson and Widrow mechanism, m s >8.9 keV for the Shi and Fuller mechanism, m s >3.0 keV for the Higgs decay mechanism, and m WDM >2.3 keV for a thermal dark matter particle. The recent discovery of many new dark matter dominated satellites of the Milky Way in the Sloan Digital Sky Survey allows us to set lower limits comparable to constraints from the complementary methods of Lyman-α forest modeling and x-ray observations of the unresolved cosmic x-ray background and of dark matter halos from dwarf galaxy to cluster scales. Future surveys like LSST, DES, PanSTARRS, and SkyMapper have the potential to discover many more satellites and further improve constraints on the dark matter particle mass.

  11. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  12. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  13. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  14. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    A. Hirsikko

    2012-05-01

    Full Text Available South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC. The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during

  15. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  16. The Granular Blasius Problem: High inertial number granular flows

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  17. Tight coupling of particle size, number and composition in atmospheric cloud droplet activation

    D. O. Topping

    2012-04-01

    Full Text Available The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii their ability to precipitate, with implications for cloud cover and lifetime.

    Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate.

    We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions.

    Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  18. Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups

    El Naschie, M.S.

    2008-01-01

    The total sum of dimensions of a magnum exceptional Lie symmetry groups hierarchy is 4α-bar o =(4)(137+k o )≅548. Dividing this value among the various quantum fields leads to the possibility of an eight degrees of freedom Higgs field. However analyzing the same situation using sub groups of the largest exceptional Lie group leads to the conclusion that we are likely to find three Higgs particles only at the energy scale of the standard model. Consequently five of the eight degrees of freedom are unlikely to materialize as particles at this particular energy scale. This conclusion is reinforced by an entirely different approach based on grand unification analysis which excludes any grand unification using 4HD, i.e. four Higgs doublets. This leaves us with one, two and three Higgs doublets. Noting that a super symmetric standard model with two Higgs doublets gives almost perfect grand unification and that the result agrees with our exceptional Lie symmetry groups analysis, we exclude everything else. The final result is that we expect to find at least three more Higgs particles leading to a total of 66 elementary particles while at a somewhat higher energy, the expected number of 69 particles found using E-infinity theory is obtained

  19. First passage times in homogeneous nucleation: Dependence on the total number of particles

    Yvinec, Romain; Bernard, Samuel; Pujo-Menjouet, Laurent; Hingant, Erwan

    2016-01-01

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory

  20. States with a great number of quasi-particles in even lead isotopes

    Auger, G.; Manfredi, V.R.

    1975-01-01

    The even lead isotopes have been studied by means of a spectral distribution calculation in the sub-spaces defined by their number of quasi-particles. The comparison with results obtained in the thin isotopes shows that the overlap of the various sub-spaces is strongly dependent on the residual interaction used; namely, states with a great number of quasi-particles do exist in the low energy part of the spectra. The problem of spurious states implied by this method, states responsible for an over-estimation of the sub-space coupling, is treated and various corrections are proposed for the dimensions as well as for the centroids and widths of the sub-spaces [fr

  1. The Higgs--physical and number theoretical arguments for the necessity of a triple elementary particle in super symmetric spacetime

    El Naschie, M.S.

    2004-01-01

    A careful counting routine of all experimentally confirmed elementary particles plus the theoretically conjectured ones needed for a sound formulation of a mathematically consistent field theory is undertaken within a minimal N=1 super symmetric extension of the standard model of high energy physics. The number arrived at is subsequently linked to certain massless on shell representations connected to the quantized gravity interaction. Finally with the help of number theoretical arguments arising from a rigorous application of the formalism of transfinite Heterotic super string and E-infinity theory, we show that the proposed scheme would lack mathematical consistency and elegant simplicity unless we retain a postulated triplet which is logically identified as the H + , H - and H 0 Higgs particles. Connections to the 11 dimensional M theory and Harari's extended 'sub-quarks' theory is also discussed

  2. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  3. Number Size Distributions and Seasonality of Submicron Particles in Europe 2008–2009

    Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Ždímal, Vladimír; Zíková, Naděžda; Putaud, J.-P.; Marioni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Swietlicki, E.; Kristensson, E.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzig, B.; Harrison, R. M.; Beddows, D.; O´Dowd, C.; Jennings, S.G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.

    2011-01-01

    Roč. 11, - (2011), s. 5505-5538 ISSN 1680-7316 EU Projects: European Commission(XE) RII3-CT-2006-026140; European Commission(XE) 36833; European Commission(IT) Ev-K2-CNR Grant - others:AFCE(FI) 1118615 Program:FP6 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particle number * aerosol concentrations * european submicron Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.520, year: 2011

  4. International conference on production of particles with new quantum numbers: Proceedings

    1976-01-01

    This report contains papers on the following topics: mechanisms of new particle production; the total cross section for e + e/sup /minus// → hadrons and its associated spectroscopy; recent results on the new particle states below 3.7 GeV produced in e + e/sup /minus// annihilations; new results on J//psi/ and /psi/' decays from DASP; excess muons and new results in /psi/ photoproduction; probing the new particles with hadron beams; properties of prompt leptons; muon production in hadron-hadron collisions; large transverse momentum photons from high energy proton proton collisions; dimuon and trimuon production in deep inelastic muon interactions; streamer chamber search for narrow hadrons with a muon-enriched trigger; threshold effects of new particle production by high energy neutrinos and antineutrinos; the observation of neutrino induced μ/sup /minus//e + events in the Fermilab bubble chamber; search for antineutrino induced μ + e/sup /minus// events; observation of muon-neutrino reactions producing a positron and a strange particle; observation of the reaction ν/sub μ/ + p → ν/sub μ/ + p; search for muonic pairs; strange particle production in neutrino interactions; neutral currents---the structure of the coupling; evidence for parity non-conservation in the weak neutral current; observation of elastic neutrino-proton scattering; threshold and other properties of U particle production in e + e/sup /minus// annihilation; anomalous muon production in e + e/sup /minus// collisions; electron production; strongly interacting heavy lepton; and /psi/'s without charm

  5. Number of particle creation and decoherence in the nonideal dynamical Casimir effect at finite temperature

    Celeri, L.C.; Pascoal, F.; Ponte, M.A. de; Moussa, M.H.Y.

    2009-01-01

    In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation.

  6. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  7. Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites

    2010-04-12

    assuming dark matter only simulations (we do not include the effect of baryons in our simulations). We adopted values for cosmological parameters from the...ar X iv :1 00 4. 14 59 v1 [ as tr o- ph .C O ] 9 A pr 2 01 0 Constraints on the Dark Matter Particle Mass from the Number of Milky Way...simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky

  8. Decay properties of high-lying single-particles modes

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  9. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  10. Destabilization of low mode number Alfven modes in a tokamak by energetic or alpha particles

    Tsang, K.T.; Sigmar, D.J.; Whitson, J.C.

    1980-12-01

    With the inclusion of finite Larmor radius effects in the shear Alfven eigenmode equation, the continuous Alfven spectrum, which has been extensively discussed in ideal magnetohydrodynamics, is removed. Neutrally stable, discrete radial eigenmodes appear in the absence of sources of free energy and dissipation. Alpha (or energetic) particle toroidal drifts destabilize these modes, provided the particles are faster than the Alfven speed. Although the electron Landu resonance contributes to damping, a stability study of the parametric variation of the energy and the density scale length of the energetic particles shows that modes with low radial mode numbers remain unstable in most cases. Since the alpha particles are concentrated in the center of the plasma, this drift-type instability suggests anomalous helium ash diffusion. Indeed, it is shown that stochasticity of alpha orbits due to the overlapping of radially neighboring Alfven resonances is induced at low amplitudes, e/sub i//sup approx./phi/T/sub i/ greater than or equal to 0.05, implying a diffusion coefficient D/sub r//sup α/ greater than or equal to 4.4 x 10 3 cm 2 /s

  11. Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin

    Francisco, E. P.; Espath, L. F. R.; Laizet, S.; Silvestrini, J. H.

    2018-01-01

    Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds number and settling velocity on the development of the current which can freely evolve in the streamwise and spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current, the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds number is mainly affecting the size and number of vortical structures at the front of the current, and the energy budget.

  12. Small numbers are sensed directly, high numbers constructed from size and density.

    Zimmermann, Eckart

    2018-04-01

    Two theories compete to explain how we estimate the numerosity of visual object sets. The first suggests that the apparent numerosity is derived from an analysis of more low-level features like size and density of the set. The second theory suggests that numbers are sensed directly. Consistent with the latter claim is the existence of neurons in parietal cortex which are specialized for processing the numerosity of elements in the visual scene. However, recent evidence suggests that only low numbers can be sensed directly whereas the perception of high numbers is supported by the analysis of low-level features. Processing of low and high numbers, being located at different levels of the neural hierarchy should involve different receptive field sizes. Here, I tested this idea with visual adaptation. I measured the spatial spread of number adaptation for low and high numerosities. A focused adaptation spread of high numerosities suggested the involvement of early neural levels where receptive fields are comparably small and the broad spread for low numerosities was consistent with processing of number neurons which have larger receptive fields. These results provide evidence for the claim that different mechanism exist generating the perception of visual numerosity. Whereas low numbers are sensed directly as a primary visual attribute, the estimation of high numbers however likely depends on the area size over which the objects are spread. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High-energy nuclear optics of polarized particles

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  14. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  15. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  16. Mathematical Relationship Between Particle Reynolds Number and Ripple Factor using Tapi River Data, India.

    S. M. Yadav

    2011-02-01

    Full Text Available The computation of bed load allows for the fact that only part of the shear stress is used for transport of sediments and some of the shear stress is wasted in overcoming the resistance due to bed forms therefore the total shear stress developed in the open channel requires correction in the form of correction factor called ripple factor. Different methods have been followed for correcting the actual shear stress in order to compute the sediment load. Correction factors are based on particular characteristics grain size of particle. In the present paper the ripple factor has been obtained for non uniform bed material considering the various variables like discharge, hydraulic mean depth, flow velocity, bed slope, average diameter of particle etc. by collecting the field data of Tapi river for 15 years for a particular gauging station. The ripple factor is obtained using Meyer Peter and Muller formula, Einstein Formula, Kalinske’s formula, Du Boy’s formula, Shield’s formula, Bagnold’s formula, average of six formulae and multiple regression analysis. The variation of ripple factor with particle Reynolds Number is studied. The ripple factor obtained by different approaches are further analyzed using Origin software and carrying out multiple regression on the 15 years of data with more than 10 parameters, ripple factor by multiple regression has been obtained. These values are further analysed and giving statistical mean to the parameters a relationship of power form has been developed. The ripple factor increases with the increase in the value of Particle Reynolds number. The large deviation is observed in case of Kalinske’s approach when compare with other approaches

  17. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  18. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.

    2000-01-01

    A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)

  19. High energy particle collisions near black holes

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  20. Decay properties of high-lying single-particles modes

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  1. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  2. Brownian coagulation at high particle concentrations

    Trzeciak, T.M.

    2012-01-01

    The process of Brownian coagulation, whereby particles are brought together by thermal motion and grow by collisions, is one of the most fundamental processes influencing the final properties of particulate matter in a variety of technically important systems. It is of importance in colloids,

  3. Fluctuations in high-energy particle collisions

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  4. Fibre bundle varieties and the number of generations of elementary particles

    Ross, D.K.

    1985-01-01

    The idea is presented that the number of generations of elementary particles in a gauge theory characterised by a given Lie algebra is the same as the number of topologically distinct principal fibre bundles with a structure group having the same Lie algebra and R 3 -(0) as base space. Two different generations thus have a different global structure or 'twist' to their fibre bundles. It is found that at most three generations are allowed for groups with the same Lie algebra as E 6 , at most four generations for groups with the same Lie algebra as SOsub(41+2) with 1>=2, and at most n generations for groups with the same Lie algebra as SUsub(n). (author)

  5. The influence of the Kubo number on the transport of energetic particles

    Shalchi, A

    2016-01-01

    We discuss the interaction between charged energetic particles and magnetized plasmas by using analytical theory. Based on the unified nonlinear transport (UNLT) theory we compute the diffusion coefficient across a large scale magnetic field. To achieve analytical tractability we use a simple Gaussian approach to model the turbulent magnetic fields. We show that the perpendicular diffusion coefficient depends only on two parameters, namely the Kubo number and the parallel mean free path. We combine the aforementioned turbulence model with the UNLT theory and we solve the corresponding integral equation numerically to show how these two parameters control the perpendicular diffusion coefficient. Furthermore, we consider two extreme cases, namely the case of strong and suppressed pitch-angle scattering, respectively. For each case we consider small and large Kubo numbers to achieve a further simplification. All our analytical findings are compared with formulas which are known in diffusion theory. (paper)

  6. Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China

    Du, Wei; Zhao, Jian; Wang, Yuying; Zhang, Yingjie; Wang, Qingqing; Xu, Weiqi; Chen, Chen; Han, Tingting; Zhang, Fang; Li, Zhanqing; Fu, Pingqing; Li, Jie; Wang, Zifa; Sun, Yele

    2017-06-01

    Despite extensive studies into the characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing have never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation-mode particles were highly correlated (r2 = 0. 85) at the two heights, while Aitken-mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with a mobility diameter between 100 and 200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated, which were 3.2 and 3.6 nm h-1, and 2.8 × 10-2 and 2.9 × 10-2 s-1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (09:00-12:00 LT) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m, including a factor associated with new particle formation and growth events (NPEs), and two secondary factors that represent photochemical processing and regional transport. Cooking emission was found to have a large contribution to small particles and showed much higher concentration at ground level than 260 m in the evening. These results imply that investigation of NPEs at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on

  7. High energy electromagnetic particle transportation on the GPU

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  8. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Sakaguchi, T.; Ehara, K.

    2011-02-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 102 to 2 × 106 particles g-1. When the concentration of the suspension is higher than 2 × 103 particles g-1, the suspension is first diluted to about 1 × 103 particles g-1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 106 particles g-1, the concentration values determined by the T-FCM and SEM methods were 1.042 × 106 and 1.035 × 106 particles g-1, respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%.

  9. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Sakaguchi, T; Ehara, K

    2011-01-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 10 2 to 2 × 10 6 particles g −1 . When the concentration of the suspension is higher than 2 × 10 3 particles g −1 , the suspension is first diluted to about 1 × 10 3 particles g −1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 10 6 particles g −1 , the concentration values determined by the T-FCM and SEM methods were 1.042 × 10 6 and 1.035 × 10 6 particles g −1 , respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%

  10. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  11. Modelling of high-enthalpy, high-Mach number flows

    Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H

    2009-01-01

    A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)

  12. High performance stream computing for particle beam transport simulations

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  13. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  14. On-board measurement of particle numbers and their size distribution from a light-duty diesel vehicle: Influences of VSP and altitude.

    Liu, Jia; Ge, Yunshan; Wang, Xin; Hao, Lijun; Tan, Jianwei; Peng, Zihang; Zhang, Chuanzhen; Gong, Huiming; Huang, Ying

    2017-07-01

    In this study, the particle size-resolved distribution from a China-3 certificated light-duty diesel vehicle was measured by using a portable emission measurement system (PEMS). In order to examine the influences of vehicle specific power (VSP) and high-altitude operation, measurements were conducted at 8 constant speeds, which ranged from 10 to 80km/hr at 10km/hr intervals, and two different high altitudes, namely 2200 and 3200m. The results demonstrated that the numbers of particles in all size ranges decreased significantly as VSP increased when the test vehicle was running at lower speeds (vehicle resulted in increased particle number emissions at low and high driving speeds; however, particle numbers obtained at moderate speeds decreased as altitude rose. When the test vehicle was running at moderate speeds, particle numbers measured at the two altitudes were very close, except for comparatively higher number concentrations of nanoparticles measured at 2200m. Copyright © 2017. Published by Elsevier B.V.

  15. Towards a high-speed quantum random number generator

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  16. Identified particle yield associated with a high-$p_T$ trigger particle at the LHC

    Veldhoen, Misha; van Leeuwen, Marco

    Identified particle production ratios are important observables, used to constrain models of particle production in heavy-ion collisions. Measurements of the inclusive particle ratio in central heavy-ion collisions showed an increase of the baryon-to-meson ratio compared to proton-proton collisions at intermediate pT, the so-called baryon anomaly. One possible explanation of the baryon anomaly is that partons from the thermalized deconfined QCD matter hadronize in a different way compared to hadrons produced in a vacuum jet. In this work we extend on previous measurements by measuring particle ratios in the yield associated with a high-pT trigger particle. These measurements can potentially further constrain the models of particle production since they are sensitive to the difference between particles from a jet and particles that are produced in the bulk. We start by developing a particle identification method that uses both the specific energy loss of a particle and the time of flight. From there, we presen...

  17. Alpha-particle effects on high-n instabilities in tokamaks

    Rewoldt, G.

    1988-06-01

    Hot α-particles and thermalized helium ash particles in tokamaks can have significant effects on high toroidal mode number instabilities such as the trapped-electron drift mode and the kinetically calculated magnetohydrodynamic ballooning mode. In particular, the effects can be stabilizing, destabilizing, or negligible, depending on the parameters involved. In high-temperature tokamaks capable of producing significant numbers of hot α-particles, the predominant interaction of the mode with the α-particles is through resonances of various sorts. In turn, the modes can cause significant anomalous transport of the α-particles and the helium ash. Here, results of comprehensive linear eigenfrequency-eigenfunction calculations are presented for relevant realistic cases to show these effects. 24 refs., 12 figs., 6 tabs

  18. Turbulent boundary layer in high Rayleigh number convection in air.

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  19. Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months Measurements

    Krzysztof Klejnowski

    2013-01-01

    Full Text Available This work presents results from the long-term measurements of particle number carried out at an urban background station in Zabrze, Poland. Ambient particles with aerodynamic diameters of between 28 nm and 10 μm were investigated by means of a DEKATI thirteen-stage electrical low pressure impactor (ELPI. The particle number-size distribution was bimodal, whilst its density function had the local maxima in the aerodynamic diameter intervals 0.056–0.095 μm and 0.157–0.263 μm. The average particle number in winter was nearly twice as high as in summer. The greatest number concentrations in winter were those of the particles with diameters of between 0.617 and 2.41 μm, that is, the anthropogenic particles from fossil fuel combustion. Approximately 99% of the particles observed in Zabrze had aerodynamic diameters ≤1 μm—they may have originated from the combustion of biomass, liquid, and gaseous fuels in domestic stoves or in car engines. The daily variation of particle number was similar for both seasons—the highest values were observed in the morning (traffic rush hour and in the afternoon/late evening (traffic and house heating emissions. An additional maximum (0.028–0.056 μm observed in the early afternoon in summer was due to the intensive formation of new PM particles from gas precursors.

  20. Promoting Number Theory in High Schools or Birthday Problem and Number Theory

    Srinivasan, V. K.

    2010-01-01

    The author introduces the birthday problem in this article. This can amuse willing members of any birthday party. This problem can also be used as the motivational first day lecture in number theory for the gifted students in high schools or in community colleges or in undergraduate classes in colleges.

  1. A time of flight detector for high energy heavy particles

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  2. A time of flight detector for high energy heavy particles

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  3. Isovector pairing effect on the particle-number projection two-proton separation energy

    Mokhtari, Djamila; Kerrouchi, Slimane [Laboratoire de Physique Theorique, Faculte de Physique, Algiers (Algeria); Fellah, Mohamed; Allal, Nassima-Hosni [Laboratoire de Physique Theorique, Faculte de Physique, Algiers (Algeria); Centre de Recherche Nucleaire d' Alger, Comena, Algiers (Algeria)

    2009-07-01

    The two-proton separation energy is studied by performing a particle-number projection with and without inclusion of the isovector neutron-proton (np) pairing correlations. It is numerically evaluated for even-even rare-earth nuclei such that the np pairing parameter is non-zero. It is shown that the two-proton separation energy values calculated using the two approaches join, for almost all the considered elements, for the highest values of (N-Z). However, the results including the np pairing correlations are closest to the experimental data when available. Moreover, the two methods lead to the same prediction of the two-proton drip-line position, except for the Dysprosium and the Tungsten.

  4. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed

  5. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum

    Bochdansky, A.B.; Clouse, M.A.; Herndl, G.

    2016-01-01

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000?m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500?m

  6. A Critical Shock Mach Number for Particle Acceleration in the Absence of Pre-existing Cosmic Rays: M = √5

    Vink, J.; Yamazaki, R.

    2014-01-01

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M > √5. The reason is that for M ≤ √5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain.

  7. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  8. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  9. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  10. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  11. Enumeration of an extremely high particle-to-PFU ratio for Varicella-zoster virus.

    Carpenter, John E; Henderson, Ernesto P; Grose, Charles

    2009-07-01

    Varicella-zoster virus (VZV) is renowned for its low titers. Yet investigations to explore the low infectivity are hampered by the fact that the VZV particle-to-PFU ratio has never been determined with precision. Herein, we accomplish that task by applying newer imaging technology. More than 300 images were taken of VZV-infected cells on 4 different samples at high magnification. We enumerated the total number of viral particles within 25 cm(2) of the infected monolayer at 415 million. Based on these numbers, the VZV particle:PFU ratio was approximately 40,000:1 for a cell-free inoculum.

  12. High temperature oxidation kinetics of dysprosium particles

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  13. High-LET particle exposure of Skylab astronauts

    Benton, E.V.; Peterson, D.D.; Bailey, J.V.; Parnell, T.

    1977-01-01

    High-LET particle radiation was registered in nuclear track recording plastic dosimeters worn on the wrists of Skylab astronauts and located in a heavily shielded film vault. The mission-average planar flux of high-LET particles with LET >= 100 keV/micron . tissue has been determined to be 2.7 +- 0.6 particles/cm 2 . day . 2π sr and 0.34 +- 0.4 particles/cm 2 . day . 2π sr, respectively, for the nine astronauts and for the film vault. Comparison of results representative of a wide range of shielding depths reveals that the magnitude and slope of the integral LET spectrum of high-LET particles inside spacecraft are proportional to the amount of shielding. (author)

  14. [High energy particle physics at Purdue, 1990--1991

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included

  15. Failure mechanisms in high temperature gas cooled reactor fuel particles

    Soo, P.; Uneberg, G.; Sabatini, R.L.; Schweitzer, D.G.

    1979-01-01

    BISO coated UO 2 and ThO 2 particles were heated to high temperatures to determine failure mechanisms during hypothetical loss of coolant scenarios. Rapid failure begins when the oxides are reduced to liquid carbides. Several failure mechanisms are applicable, ranging from hole and crack formation in the coatings to catastrophic particle disintegration

  16. Polymer-Particle Pressure-Sensitive Paint with High Photostability

    Yu Matsuda

    2016-04-01

    Full Text Available We propose a novel fast-responding and paintable pressure-sensitive paint (PSP based on polymer particles, i.e. polymer-particle (pp-PSP. As a fast-responding PSP, polymer-ceramic (PC-PSP is widely studied. Since PC-PSP generally consists of titanium (IV oxide (TiO2 particles, a large reduction in the luminescent intensity will occur due to the photocatalytic action of TiO2. We propose the usage of polymer particles instead of TiO2 particles to prevent the reduction in the luminescent intensity. Here, we fabricate pp-PSP based on the polystyrene particle with a diameter of 1 μm, and investigate the pressure- and temperature-sensitives, the response time, and the photostability. The performances of pp-PSP are compared with those of PC-PSP, indicating the high photostability with the other characteristics comparable to PC-PSP.

  17. The development of Micromegas for high particle-flux environments

    Giomataris, Y.; Mangeot, Ph.; Rebourgeard, Ph.; Robert, J.P.

    1996-01-01

    Detectors able to operate in high rate environments, with particle flux beyond 10 14 particles/mm 2 /s, are needed for future high energy physics projects and medical radiography. A new promising technique called Micromegas has been proposed. It consists of a 2-stage parallel-plate avalanche chamber of small amplification gap (100 μm) combined with a conversion-drift space. In this paper we present results obtained with such a detector and we see that the detector combines most of the qualities required for high-rate position-sensitive particle detection, particularly it shows excellent spatial and energy resolutions. (author)

  18. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  19. Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential

    Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof

    2011-01-01

    A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.

  20. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum.

    Bochdansky, Alexander B; Clouse, Melissa A; Herndl, Gerhard J

    2016-03-04

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000 m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500 m based on surveys performed with a custom-made holographic microscope. The particle spectrum was unusual in that particles of several millimetres in length were almost 100 times more abundant than expected from the number spectrum of smaller particles, thereby meeting the definition of "dragon kings." Marine snow particles overwhelmingly contributed to the total particle volume (95-98%). Approximately 1/3 of the particles in the dragon-king size domain contained large amounts of transparent exopolymers with little ballast, which likely either make them neutrally buoyant or cause them to sink slowly. Dragon-king particles thus provide large volumes of unique microenvironments that may help to explain discrepancies in deep-sea biogeochemical budgets.

  1. Detailed SEM-EPMA investigation of high specific radioactivity particles (hot particles)

    Burin, K.; Tsacheva, Ts.; Mandjoukov, I.; Mandjoukova, B.

    1993-01-01

    Scanning electron microscope (SEM) images and electron probe microanalysis (EPMA) spectra of a group of hot particles collected in Bulgaria after the Chernobyl accident have been obtained. A technique for hot particle localization is described. The object is irradiated for two days with a β source and the resulting autoradiographs show particles location precisely. High resolution x-ray spectrum of each particle has been obtained using EPMA. The distribution of chemical elements is visualized by colour dot maps representing the regions of interest of the spectrum. It is concluded that apart from reactor fuel the investigated hot particles come from either construction materials or materials used for the covering of the damaged reactor. 7 figs., 2 ref

  2. Phase transitions in ideal and weakly interacting Bose gases with a finite number of particles confined in a box

    Wang Jianhui; Ma Yongli

    2009-01-01

    We generalize the scheme to characterize phase transitions of finite systems in a complex temperature plane and approach the classifications of phase transitions in ideal and weakly interacting Bose gases of a finite number of particles, confined in a cubic box of volume L 3 with different boundary conditions. For this finite ideal Bose system, by extending the classification parameters to all regions, we predict that the phase transition for periodic boundary conditions is of second order, while the transition in Dirichlet boundary conditions is of first order. For a weakly interacting Bose gas with periodic boundary conditions, we discuss the effects of finite particle numbers and inter-particle interactions on the nature of the phase transitions. We show that this homogenous weakly interacting Bose gas undergoes a second-order phase transition, which is in accordance with universality arguments for infinite systems. We also discuss the dependence of transition temperature on interaction strengths and particle numbers.

  3. High Reynolds number flows using liquid and gaseous helium

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  4. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  5. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  6. High energy particle accelerators as radiation Sources

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  7. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF

    M. H. Sowlat

    2016-04-01

    Full Text Available In this study, the positive matrix factorization (PMF receptor model (version 5.0 was used to identify and quantify major sources contributing to particulate matter (PM number concentrations, using PM number size distributions in the range of 13 nm to 10 µm combined with several auxiliary variables, including black carbon (BC, elemental and organic carbon (EC/OC, PM mass concentrations, gaseous pollutants, meteorological, and traffic counts data, collected for about 9 months between August 2014 and 2015 in central Los Angeles, CA. Several parameters, including particle number and volume size distribution profiles, profiles of auxiliary variables, contributions of different factors in different seasons to the total number concentrations, diurnal variations of each of the resolved factors in the cold and warm phases, weekday/weekend analysis for each of the resolved factors, and correlation between auxiliary variables and the relative contribution of each of the resolved factors, were used to identify PM sources. A six-factor solution was identified as the optimum for the aforementioned input data. The resolved factors comprised nucleation, traffic 1, traffic 2 (with a larger mode diameter than traffic 1 factor, urban background aerosol, secondary aerosol, and soil/road dust. Traffic sources (1 and 2 were the major contributor to PM number concentrations, collectively making up to above 60 % (60.8–68.4 % of the total number concentrations during the study period. Their contribution was also significantly higher in the cold phase compared to the warm phase. Nucleation was another major factor significantly contributing to the total number concentrations (an overall contribution of 17 %, ranging from 11.7 to 24 %, with a larger contribution during the warm phase than in the cold phase. The other identified factors were urban background aerosol, secondary aerosol, and soil/road dust, with relative contributions of approximately 12

  8. Studies In Theoretical High Energy Particle Physics

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  9. Parallel Monte Carlo Particle Transport and the Quality of Random Number Generators: How Good is Good Enough?

    Procassini, R J; Beck, B R

    2004-01-01

    It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results

  10. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  11. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  12. Deposition of magnetite particles from high velocity water onto isothermal tubes

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 0 to 90 0 C), pH (4 to 10 at 25 0 C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreted in terms of two steps in series for deposition: a mass transfer step followed by a deposition or inertial coasting step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number

  13. Impact of High Mathematics Education on the Number Sense

    Castronovo, Julie; Göbel, Silke M.

    2012-01-01

    In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation. While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a better anchored ENS and better mapping abilities between ENS and ANS. PMID:22558077

  14. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  15. Reducing high Reynolds number hydroacoustic noise using superhydrophobic coating

    Elboth, Thomas; Reif, Bjørn Anders Pettersson; Andreassen, Øyvind; Martell, Michael B

    2011-01-01

    The objective of this study is to assess and quantify the effect of a superhydrophobic surface coating on turbulence-generated flow noise. The study utilizes results obtained from high Reynolds-number full-scale flow noise measurements taken on a commercial seismic streamer and results from low Reynolds-number direct numerical simulations. It is shown that it is possible to significantly reduce both the frictional drag and the levels of the turbulence generated flow noise even at very high Reynolds-numbers. For instance, frequencies below 10 Hz a reduction in the flow noise level of nearly 50% was measured. These results can be attributed to a reduced level of shear stress and change in the kinematic structure of the turbulence, both of which occur in the immediate vicinity of the superhydrophobic surface.

  16. Effect of meal composition on postprandial lipid concentrations and lipoprotein particle numbers: A randomized cross-over study.

    Meena Shah

    Full Text Available It is unclear how high-protein (HP and high-monounsaturated fat (HMF meals affect postprandial blood lipids and lipoprotein particle numbers (LPN.To compare a HP versus a HMF meal on postprandial lipid and LPN responses.Twenty-four participants (age: 36.3±15.0 years; body mass index: 23.6±2.0 kg/m2; 45.8% female were fed a HP (31.9% energy from protein and a HMF (35.2% fat and 20.7% monounsaturated fat meal in a randomized cross-over trial design. Energy and carbohydrate content were the same across meals. Blood samples were drawn in the fasting state and 3 hour postprandial state, and assessed for lipids and LPN.Repeated measures analysis showed a significant (p<0.05 treatment by time interaction effect for triglycerides (TG, the primary variable, total high-density lipoprotein particles (T-HDLP and T-HDLP minus large-buoyant high-density lipoprotein 2b (T-HDLP-LB-HDL2b. HP versus HMF condition led to significantly lower TG at 120 (geometric mean: 90.1 (95% confidence interval (CI: 76.4-106.3 vs. 146.5 (124.2-172.9 mg/dL and 180 (101.4 (83.1-123.8 vs. 148.7 (121.9-181.4 mg/dL min and higher T-HDLP at 120 (mean difference: 297.3 (95% CI: 48.6-545.9 nmol/L and 180 (291.6 (15.8-567.5 nmol/L min. The difference in T-HDLP by condition was due to the significantly higher small-dense HDLP (T-HDLP-LB-HDL2b during HP versus HMF condition at 120 (mean difference: 452.6 (95% CI: 177.4-727.9 nmol/L and 180 (496.8 (263.1-730.6 nmol/L min. Area under the curve analysis showed that HP versus HMF condition led to significantly lower TG, non-HDLP, and very-low-density lipoprotein particles (VLDLP responses but significantly less favorable responses in LB-HDL2b particles, T-HDLP-LB-HDL2b, and LB-HDL2b/T-HDLP ratio.The HP meal led to lower TG, non-HDLP, and VLDLP but less favorable LB-HDL2b, small-dense HDLP, and LB-HDL2b/T-HDLP ratio responses versus a HMF meal. Further studies are needed to confirm these findings over multiple meals.

  17. Studies in theorectical high energy particles physics

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  18. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    Eisenträger, Almut

    2014-07-21

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle\\'s entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency. © 2014 AIP Publishing LLC.

  19. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  20. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  1. Surfing and drift acceleration at high mach number quasi-perpendicular shocks

    Amano, T.

    2008-01-01

    Electron acceleration in high Mach number collisionless shocks relevant to supernova remnant is discussed. By performing one- and two-dimensional particle-in-cell simulations of quasi-perpendicular shocks, we find that energetic electrons are quickly generated in the shock transition region through shock surfing and drift acceleration. The electron energization is strong enough to account for the observed injection at supernova remnant shocks. (author)

  2. High energy particle experiment for the GEOTAIL mission

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  3. Dedicated Trigger for Highly Ionising Particles at ATLAS

    Katre, Akshay; The ATLAS collaboration

    2015-01-01

    In 2012, a novel strategy was designed to detect signatures of Highly Ionising Particles (HIPs) such as magnetic monopoles, dyons or Qballs with the ATLAS trigger system. With proton-proton collisions at a centre of mass enegy of 8 TeV, the trigger was designed to have unique properties as a tracker for HIPs. It uses only the Transition Radiation Tracker (TRT) system, applying an algorithm distinct from standard tracking ones. The unique high threshold readout capability of the TRT is used at the location where HIPs in the detector are looked for. In particular the number and the fraction of TRT high threshold hits is used to distinguish HIPs from background processes. The trigger requires significantly lower energy depositions in the electro-magnetic calorimeters as a seed unlike previously used trigger algorithms for such searches. Thus the new trigger is capable of probing a large range of HIP masses and charges. We will give a description of the algorithms for this newly developed trigger for HIP searches...

  4. Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number

    Radtke, Paul K; Schimansky-Geier, Lutz; Hazel, Andrew L; Straube, Arthur V

    2017-01-01

    Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance. (paper)

  5. Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number

    Radtke, Paul K.; Hazel, Andrew L.; Straube, Arthur V.; Schimansky-Geier, Lutz

    2017-09-01

    Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance.

  6. A particle-number conserving microscopic approach to octupole deformation of normal deformed and superdeformed states in 194Pb

    Nhan Hao, T.V.; Phu Dat, D.H.; Hoang Tung, N.; Tran, H.N.

    2015-01-01

    The left–right asymmetric deformation of normal deformed (ND) and superdeformed (SD) states of 194 Pb has been investigated in the framework of the parity-symmetry projection of the highly truncated diagonalization approach (HTDA), which is suited to treat the correlations in an explicitly particle-number conserving microscopic approach. A Skyrme energy density functional using the SIII and SkM* interactions has been considered to treat the particle–hole channel, whereas a density-independent δ force has been adopted for the residual interaction. The obtained results are compared with previous approaches. The calculated octupole phonon excitation energy is found to be in good qualitative agreement with available data in the ND state. (author)

  7. Very high performance pseudo-random number generation on DAP

    Smith, K. A.; Reddaway, S. F.; Scott, D. M.

    1985-07-01

    Since the National DAP Service began at QMC in 1980, extensive use has been made of pseudo-random numbers in Monte Carlo simulation. Matrices of uniform numbers have been produced by various generators: (a) multiplicative ( x+ 1 = 13 13xn mod 2 59); (b) very long period shift register ( x4423 + x271 + 1); (c) multiple shorter period ( x127 + x7 + 1) shift registers generating several matrices per iteration. The above uniform generators can also feed a normal distribution generator that uses the Box-Muller transformation. This paper describes briefly the generators, their implementation and speed. Generator (b) has been greatly speeded-up by re-implementation, and now produces more than 100 × 10 6 high quality 16-bit numbers/s. Generator (c) is under development and will achieve even higher performance, mainly due to producing data in greater bulk. High quality numbers are expected, and performance will range from 400 to 800 × 10 6 numbers/s, depending on how the generator is used.

  8. The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions

    He, J.-H.

    2007-01-01

    It is generally accepted that there are 60 experimentally found particles. The standard model strongly predicts two more hypothetical particles, the Higgs and the graviton. This paper reveals other possible scenario for predicting 69 particles at different energy scales in 11+φ 3 fractal dimensions of a fractal M theory, where φ=(5-1)/2. A modified Newton's law is suggested to experimentally verify our predictions at extremely small quantum scales. The modified Newton's law is in harmony with Heisenberg's uncertainty principle

  9. High performance current controller for particle accelerator magnets supply

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  10. Spatial variation of particle number concentration in school microscale environments and its impact on exposure assessment.

    Salimi, Farhad; Mazaheri, Mandana; Clifford, Sam; Crilley, Leigh R; Laiman, Rusdin; Morawska, Lidia

    2013-05-21

    It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3, and, therefore, CV was corrected so that only noninstrument uncertainty was analyzed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as 1 order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial

  11. Tadpoles, anomaly cancellation and the expectation value of the number of the Higgs particles in the standard model

    El Naschie, M.S.

    2005-01-01

    We motivate the concept of infinitely large and hierarchical matrices in connection with the eight-dimensional super Riemannian tensor and the unification of all fundamental forces. Subsequently, we derive the number of particle-like states and the expectation value of the number of elementary particle content of a minimally extended standard model using the total number of tadpoles and anomaly cancellation condition:nH+29nt-nv=R(8)-N(SM)=2α-bar 0-1=273 where n H is the number of hyper multiplets, n t the number of tensor multiplets, n v the vector multiplets, R (8) is the number of independent components of Riemann's curvature tensor in eight dimensions, N(SM) is the number of elementary particles content of the standard model and α-bar 0 is the inverse fine structure constant. We can conclude that N(SM)=66. Consequently, we conjecture that five Higgs particles should be involved in the standard model

  12. Effects of the virtual particle number on the S matrix of the (phi4)/sub 1+1/ model

    Kroeger, H.; Girard, R.; Dufour, G.

    1987-01-01

    We present results of the S matrix in the (phi 4 )/sub 1 + 1/ model obtained by a nonperturbative calculation using a momentum-space discretization technique. First, we calculate the two-body S matrix in the strong-coupling regime (up to λ/sub eff/ = 3), with the restriction of taking into account only two-body virtual particle states. We find agreement with standard perturbation theory obtained by summing up the corresponding graphs to infinite order. We also estimate the effect of mass renormalization. Second, we investigate the effect of including higher virtual particle numbers in two-particle scattering in the cases λ/sub eff/ = (1/6) and λ/sub eff/ = 1. In both cases we find convergence of the S matrix with respect to increasing the virtual-particle-number cutoff

  13. High Temperature Particle Filtration Technology; TOPICAL

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  14. High-performance supercapacitors based on hierarchically porous graphite particles

    Chen, Zheng; Wen, Jing; Yan, Chunzhu; Rice, Lynn; Sohn, Hiesang; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Meiqing [School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Cai, Mei [General Motor R and D Center, Warren, MI 48090 (United States); Dunn, Bruce [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2011-07-15

    Hierarchically porous graphite particles are synthesized using a continuous, scalable aerosol approach. The unique porous graphite architecture provides the particles with high surface area, fast ion transportation, and good electronic conductivity, which endows the resulting supercapacitors with high energy and power densities. This work provides a new material platform for high-performance supercapacitors with high packing density, and is adaptable to battery electrodes, fuel-cell catalyst supports, and other applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Azimuthal asymmetry of slow particles in high energy nuclear interaction

    Sarkar, Subir; Goswami, T.D.

    2002-01-01

    An asymmetry in the angular distribution of slow particles in the azimuthal plane has been observed during high energy nuclear disintegration of photo emulsion nuclei exposed to 1.8 GeV/c k - and 20 GeV/c protons. The mechanism of disintegration is not in accordance with the cascade-evaporation model, which is based on isotropic emission of slow particles. Deviation from isotropy indicates that some of the slow particles might be emitted well before the thermal equilibrium is reached in the disintegrating system. (author)

  16. [Studies of elementary particles and high energy phenomena: [Progress report

    Cumalat, J.P.

    1989-01-01

    The scope of work under this contract is unclassified and shall consist of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles at the Fermi National Accelerator Laboratory, the Stanford Linear Accelerator Center, the Los Alamos National Laboratory, the SSC laboratory, and the University of Colorado with emphasis on photon beam experiments, electron-positron interactions, charmed particles, production of new vector bosons, advanced data acquisition systems, two photon physics, particle lifetimes, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, anomaly-free theories, gravity and instrumentation development. These topics are covered in this report

  17. High Temperature Falling Particle Receiver (2012 - 2016) - Final DOE Report

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-15

    The objective of this work was to advance falling particle receiver designs for concentrating solar power applications that will enable higher temperatures (>700 °C) and greater power-cycle efficiencies (≥50% thermal-to-electric). Modeling, design, and testing of components in Phases 1 and 2 led to the successful on-sun demonstration in Phase 3 of the world’s first continuously recirculating high-temperature 1 MWt falling particle receiver that achieved >700 °C particle outlet temperatures at mass flow rates ranging from 1 – 7 kg/s.

  18. High power density reactors based on direct cooled particle beds

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  19. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  20. Very high Mach number shocks - Theory. [in space plasmas

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  1. Numerical evaluation of high energy particle effects in magnetohydrodynamics

    White, R.B.; Wu, Y.

    1994-03-01

    The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system

  2. Nonlinear sound generation by high energy particles

    Westervelt, P.J.

    1978-01-01

    In connection with Project DUMAND, the proposal to utilize the ocean as a giant acoustic detector of neutrinos, the applicability of a recent theory of thermoacoustic arrays [Peter J. Westervelt and Richard S. Larson, J. Acoust. Soc. Am. 54, 121 (1973)] is studied. In the static case or at very low frequencies, about 10% of the coefficient of thermal expansion for water at 20 0 C can be attributed to Debye-like modes. Debye-like modes generate sound via the nonlinear mechanism responsible for the operation of the parametric acoustic array [Peter J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963)]. The contribution of the Debye-like modes to the thermal expansion coefficient and thus to the sound pressure is essentially independent of the ambient water temperature. Hence if the Debye-like modes are not fully excited as is postulated to be the case at high frequencies, then the thermal expansion coefficient will be less than the static value by an amount that causes it to vanish at about 6 0 C instead of at 4 0 C, the temperature of maximum water density. This theory is in agreement with recent measurements of the temperature dependence of sound generated by proton deposition in water [L. Sulak, et al., Proceedings of the La Jolla Workshop on Acoustic Detection of Neutrinos, 25--29 July 1977, Scripps Institute of Oceanography, U.C.L.A., San Diego, Hugh Bradner, Ed.

  3. Damage in agitated vessels of large visco-elastic particles dispersed in a highly viscous fluid.

    Bouvier, Laurent; Moreau, Anne; Line, Alain; Fatah, Nouria; Delaplace, Guillaume

    2011-01-01

    Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key

  4. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  5. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  6. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  7. Zone of influence for particle number concentrations at signalised traffic intersections

    Goel, Anju; Kumar, Prashant

    2015-12-01

    Estimation of zone of influences (ZoI) at signalised traffic intersections (TI) is important to accurately model particle number concentrations (PNCs) and their exposure to public at emission hotspot locations. However, estimates of ZoI for PNCs at different types of TIs are barely known. We carried out mobile measurements inside the car cabin with windows fully open for size-resolved PNCs in the 5-560 nm range on a 6 km long busy round route that had 10 TIs. These included four-way TIs without built-up area (TI4w-nb), four-way TIs with built-up area (TI4w-wb), three-way TIs without built-up area (TI3w-nb) and three-way TIs with built-up area (TI3w-wb). Mobile measurements were made with a fast response differential mobility spectrometer (DMS50). Driving speed and position of the car were recorded every second using a global positioning system (GPS). Positive matrix factorisation (PMF) modelling was applied on the data to quantify the contribution of PNCs released during deceleration, creep-idling, acceleration and cruising to total PNCs at the TIs. The objectives were to address the following questions: (i) how does ZoI vary at different types of TIs in stop- and go-driving conditions?, (ii) what is the effect of different driving conditions on ZoI of a TI?, (iii) how realistically can the PNC profiles be generalised within a ZoI of a TI?, and (iv) what is the share of emissions during different driving conditions towards the total PNCs at a TI? Average length of ZoI in longitudinal direction and along the road was found to be the highest (148 m; 89 to -59 m from the centre of a TI) at a TI3w-wb, followed by TI4w-nb (129 m; 79 to -42 m), TI3w-nb (86 m; 71 to -15 m) and TI4w-wb (79 m; 46 to -33 m) in stop- and go-driving conditions. During multiple stopping driving conditions when a vehicle stops at a TI more than once in a signal cycle due to oversaturation of vehicles, average length of ZoI increased by 55, 22 and 21% at TI4w-nb, TI3w-nb and TI3w-wb, respectively

  8. Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics

    El Naschie, M.S.

    2008-01-01

    We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E 8 E 8 of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings

  9. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  10. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-05-28

    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  11. High power density reactors based on direct cooled particle beds

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  12. Multistage charged particle accelerator, with high-vacuum insulation

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  13. High-resolution extraction of particle size via Fourier Ptychography

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  14. Plume structure in high-Rayleigh-number convection

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  15. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Delay in solar energetic particle onsets at high heliographic latitudes

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  17. Charged particle beam scanning using deformed high gradient insulator

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  18. Three-Dimensional Interaction of a Large Number of Dense DEP Particles on a Plane Perpendicular to an AC Electrical Field

    Chuanchuan Xie

    2017-01-01

    Full Text Available The interaction of dielectrophoresis (DEP particles in an electric field has been observed in many experiments, known as the “particle chains phenomenon”. However, the study in 3D models (spherical particles is rarely reported due to its complexity and significant computational cost. In this paper, we employed the iterative dipole moment (IDM method to study the 3D interaction of a large number of dense DEP particles randomly distributed on a plane perpendicular to a uniform alternating current (AC electric field in a bounded or unbounded space. The numerical results indicated that the particles cannot move out of the initial plane. The similar particles (either all positive or all negative DEP particles always repelled each other, and did not form a chain. The dissimilar particles (a mixture of positive and negative DEP particles always attracted each other, and formed particle chains consisting of alternately arranged positive and negative DEP particles. The particle chain patterns can be randomly multitudinous depending on the initial particle distribution, the electric properties of particles/fluid, the particle sizes and the number of particles. It is also found that the particle chain patterns can be effectively manipulated via tuning the frequency of the AC field and an almost uniform distribution of particles in a bounded plane chip can be achieved when all of the particles are similar, which may have potential applications in the particle manipulation of microfluidics.

  19. Spatial & temporal variations of PM10 and particle number concentrations in urban air.

    Johansson, Christer; Norman, Michael; Gidhagen, Lars

    2007-04-01

    The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.

  20. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  1. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos

    Verjus, Romuald; Guillou, Sylvain; Ezersky, Alexander; Angilella, Jean-Régis

    2016-12-01

    The sedimentation of a pair of rigid circular particles in a two-dimensional vertical channel containing a Newtonian fluid is investigated numerically, for terminal particle Reynolds numbers (ReT) ranging from 1 to 10, and for a confinement ratio equal to 4. While it is widely admitted that sufficiently inertial pairs should sediment by performing a regular DKT oscillation (Drafting-Kissing-Tumbling), the present analysis shows in contrast that a chaotic regime can also exist for such particles, leading to a much slower sedimentation velocity. It consists of a nearly horizontal pair, corresponding to a maximum effective blockage ratio, and performing a quasiperiodic transition to chaos while increasing the particle weight. For less inertial regimes, the classical oblique doublet structure and its complex behavior (multiple stable states and hysteresis, period-doubling cascade and chaotic attractor) are recovered, in agreement with previous work [Aidun, C. K. and Ding, E.-J., "Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state," Phys. Fluids 15, 1612 (2003)]. As a consequence of these various behaviors, the link between the terminal Reynolds number and the non-dimensional driving force is complex: it contains several branches displaying hysteresis as well as various bifurcations. For the range of Reynolds number considered here, a global bifurcation diagram is given.

  3. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Sundberg, Torbjörn; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Scholer, Manfred [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Masters, Adam [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, Ali H., E-mail: torbjorn.sundberg@gmail.com [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  4. Rare Particle Searches with the high altitude SLIM experiment

    Balestra, S; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Margiotta, A; Medinaceli, E; Nogales, J; Patrizii, L; Popa, V; Quereshi, I; Saavedra, O; Sher, G; Shahzad, M; Spurio, M; Ticona, R; Togo, V; Velarde, A; Zanini, A

    2005-01-01

    The search for rare particles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM experiment is a large array of nuclear track detectors located at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The preliminary results from the analysis of a part of the first 236 sq.m exposed for more than 3.6 y are here reported. The detector is sensitive to Intermediate Mass Magnetic Monopoles and to SQM nuggets and Q-balls, which are possible Dark Matter candidates.

  5. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    monitor particle emissions with high-resolution real-time instruments and account for the operating regime of the vehicle using time-series analysis to develop predictive number emissions models.

  6. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  7. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  8. Computation of high Reynolds number internal/external flows

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  9. Computation of high Reynolds number internal/external flows

    Cline, M.C.; Wilmoth, R.G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented

  10. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-01-01

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport

  11. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Liou, Yi-Jyun [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Cheng, Man-Ting [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erh-Jen Road, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Chemical and Materials Engineering, Cheng Shiu University, 840, Chengcing Road, Kaohsiung 83347, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, Chiayi 60036, Taiwan (China); Lai, Jim-Shoung [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. Black-Right-Pointing-Pointer Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. Black-Right-Pointing-Pointer Increasing load results in modest increases in both the total particle number concentrations and sizes. Black-Right-Pointing-Pointer The effects of semivolatile materials are strongest at idle, during which nonvolatile cores <16 nm were observed. Black-Right-Pointing-Pointer The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of biodiesel blend and load. - Abstract: Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC + DPF) under steady modes. For a given load, the total particle number concentrations (N{sub TOT}) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N{sub TOT} and mode diameters increase modestly with increasing load of above 25%. The N{sub TOT} at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N{sub TOT} post the DOC + DPF are comparable to typical ambient levels of

  12. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  13. Introduction to the spectral distribution method. Application example to the subspaces with a large number of quasi particles

    Arvieu, R.

    The assumptions and principles of the spectral distribution method are reviewed. The object of the method is to deduce information on the nuclear spectra by constructing a frequency function which has the same first few moments, as the exact frequency function, these moments being then exactly calculated. The method is applied to subspaces containing a large number of quasi particles [fr

  14. Is the Field of Numbers a Real Physical Field? On the Frequent Distribution and Masses of the Elementary Particles

    Belyakov A. V.

    2010-04-01

    Full Text Available Frequent distributions of the databases of the numerical values obtained by resolving algorithms, which describe physical and other processes, give a possibility for bonding the probability of that results the algorithms get. In the frequent distribution of the fractions of integers (rational numbers, local maxima which meet the ratios of masses of the elementary particles have been found.

  15. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization

    Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.

    2012-01-01

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source

  16. High frequency single mode traveling wave structure for particle acceleration

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  17. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  18. Landmarks in particle physics at Brookhaven National Laboratory: Brookhaven Lecture Series, Number 238

    Adair, R.K.

    1987-01-01

    Robert Adair's lecture on Landmarks in Particle Physics at Brookhaven National Laboratory (BNL) is a commemoration of the 40th Anniversary of Brookhaven National Laboratory. Adair describes ten researches in elementary particle physics at Brookhaven that had a revolutionary impact on the understanding of elementary particles. Two of the discoveries were made in 1952 and 1956 at the Cosmotron, BNL's first proton accelerator. Four were made in 1962 and 1964 at the Alternating Gradient Synchrotron, the Cosmotron's replacement. Two other discoveries in 1954 and 1956 were theoretical, and strong focusing (1952) is the only technical discovery. One discovery (1958) happened in an old barrack. Four of the discoveries were awarded the Nobel prize in Physics. Adair believes that all of the discoveries are worthy of the Nobel prize. 14 figs

  19. Analysis of the quantum numbers J(PC) of the X(3872) particle.

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-30

    We present an analysis of angular distributions and correlations of the X(3872) particle in the exclusive decay mode X(3872)-->J/psipi+ pi- with J/psi-->mu+ mu-. We use 780 pb-1 of data from pp[over ] collisions at sqrt[s]=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We derive constraints on spin, parity, and charge conjugation parity of the X(3872) particle by comparing measured angular distributions of the decay products with predictions for different J(PC) hypotheses. The assignments J(PC)=1++ and 2-+ are the only ones consistent with the data.

  20. Fully kinetic particle simulations of high pressure streamer propagation

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  1. Experimental Studies of Elementary Particle Interactions at High Energies

    Goulianos, Konstantin [Rockefeller Univ., New York, NY (United States)

    2013-07-30

    This is the final report of a program of research on "Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate

  2. Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers

    Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.

    2013-01-01

    For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei

  3. Detection systems for high energy particle producing gaseous ionization

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  4. Detection systems for high energy particle producing gaseous ionization

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  5. Number of Packages of Information which are processed in a Second by the Fundamental Particles (strings) of a Human Body

    Gholibeigian, Hassan; Gholibeigian, Ghasem; Gholibeigian, Kazem

    2016-11-01

    The fundamental particle (string) gets a package of complete information of its quantum state via inside of its sub-particle (sub-string) from dimension of information. This package is processed by sub-particle in each Planck time [Gholibeigian, APS 2015, abstract #L1.027]. On the other hand, a 70 kg human's body would have approximately 7*1027 atoms. Of that, 4.7*1027 would be hydrogen atoms. Another 1.8*1027 would be oxygen and there are 7.0*1026 carbon atoms. If we add that all up, total is 2.3*1028 protons, 1.8*1028 neutrons, and 2.3*1028 electrons. Each proton and neutron has 6 fundamental particles. So the total number of packages of information which are processed by each of us in a second becomes: I = [ 6 × (2 . 3 + 1 . 8) ×1028 + 2 . 3 ×1028 ] ×1044 = 2 . 69 ×1073 The processed information carry by fundamental particles. Based on Shanon equation, I = - S , this number can be equal to the increased entropy of each of us per second too. AmirKabir University of Technology, Tehran, Iran.

  6. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-01

    Highlights: ► The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. ► Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. ► Increasing load results in modest increases in both the total particle number concentrations and sizes. ► The effects of semivolatile materials are strongest at idle, during which nonvolatile cores TOT ) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N TOT and mode diameters increase modestly with increasing load of above 25%. The N TOT at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N TOT post the DOC + DPF are comparable to typical ambient levels of ∼10 4 cm −3 . This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the aftertreatment is highly favored.

  7. Improvement of the Stokesian Dynamics method for systems with finite number of particles

    Ichiki, K.

    2002-01-01

    An improvement of the Stokesian Dynamics method for many-particle systems is presented. A direct calculation of the hydrodynamic interaction is used rather than imposing periodic boundary conditions. The two major diculties concern the accuracy and the speed of calculations. The accuracy discussed

  8. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in

  9. Stability of large orbit, high-current particle rings

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  10. Plasma focusing and diagnosis of high energy particle beams

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  11. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Alletto, Michael

    2014-01-01

    collisions is described in detail. With this efficient algorithm it is possible to detect the interparticle collisions with computational costs which scale linearly with the number of particles present in the computational domain. The resulting methodology is validated based on a variety of test cases. The validation process starts with two turbulent channel flows at different Reynolds numbers and one turbulent pipe flow. Using this simple test cases possible error sources can be detected easily. After that, a turbulent pipe flow is simulated, where the gravity points vertical to the mean streamwise direction. The appearance of an interesting secondary flow of second kind, for which the particles are only indirectly responsible, is analyzed in detail. In order to demonstrate the applicability of the present methodology in practically relevant turbulent flow configurations, the particle-laden cold flow in a combustion chamber model and the flow in a cyclone separator are tackled. The results are discussed in detail, compared with experimental reference data and interpreted from a physical point of view. Regarding the combustion chamber model, good agreement is found with the reference experiment. Furthermore, it is shown that the present methodology is capable to reproduce in the high mass loading case the disappearance of two stagnation points present on the axis of the low mass loading configuration. Regarding the cyclone separator flow, in the core region still some differences with the reference experiment remain.

  12. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Alletto, Michael

    2014-05-16

    collisions is described in detail. With this efficient algorithm it is possible to detect the interparticle collisions with computational costs which scale linearly with the number of particles present in the computational domain. The resulting methodology is validated based on a variety of test cases. The validation process starts with two turbulent channel flows at different Reynolds numbers and one turbulent pipe flow. Using this simple test cases possible error sources can be detected easily. After that, a turbulent pipe flow is simulated, where the gravity points vertical to the mean streamwise direction. The appearance of an interesting secondary flow of second kind, for which the particles are only indirectly responsible, is analyzed in detail. In order to demonstrate the applicability of the present methodology in practically relevant turbulent flow configurations, the particle-laden cold flow in a combustion chamber model and the flow in a cyclone separator are tackled. The results are discussed in detail, compared with experimental reference data and interpreted from a physical point of view. Regarding the combustion chamber model, good agreement is found with the reference experiment. Furthermore, it is shown that the present methodology is capable to reproduce in the high mass loading case the disappearance of two stagnation points present on the axis of the low mass loading configuration. Regarding the cyclone separator flow, in the core region still some differences with the reference experiment remain.

  13. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    Oudih, M.R.; Fellah, M.; Allal, N.H.; Benhamouda, N.

    1999-01-01

    It is well established that the BCS wave-functions are neither eigen-functions of the particle-number operator nor of the angular momentum operator. In a previous paper, we have developed a particle-number projection before variation method (of FBCS type). This discrete projection method is based on the SBCS wave-function. The aim of the present contribution is to perform a subsequent angular momentum projection by means of the Peierls-Yoccoz method. The general expression of the system energy, after the double projection, is established in the case of axial symmetry. For practical calculations, an approximation method is introduced. It leads to a semi-classical form of the rotational energy. The rotational spectra have been evaluated numerically for some even-even rare-earth nuclei. The single-particle energies and eigen-states are those of a deformed Woods-Saxon mean field. The obtained results are compared on one hand, to the experimental data, and on the other hand, to the theoretical spectra evaluated by a particle-number projection after variation method (of PBCS type). For all studied nuclei, the spectra determined by the FBCS method reproduce the experimental data better than those of the PBCS method. However, even if the present method is satisfying for low angular momenta, the agreement with the experimental data is lesser for I ≥ 8, particularly for the lighter studied nuclei. (authors)

  14. Collective and single-particle states at high excitation energy

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  15. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  16. Single-particle characterization of the high-Arctic summertime aerosol

    B. Sierau

    2014-07-01

    unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.

  17. Single-particle characterization of the high-Arctic summertime aerosol

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.

  18. High-energy particles associated with solar flares

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  19. High viscosity fluid simulation using particle-based method

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  20. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  1. Laser focusing of high-energy charged-particle beams

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  2. Angular dependence of high Mach number plasma interactions

    Thomas, V.A.; Brecht, S.H.

    1987-01-01

    In this paper a 2-1/2-dimensional hybrid code is used to examine the collisionless large spatial scale (kc/ω pi ∼ 1) low-frequency (ω ∼ ω ci ) interaction initiated by a plasma shell of finite width traveling at high Alfven Mach number relative to a uniform background plasma. Particular attention is given to the angle of the relative velocity relative to the ambient magnetic field for the range of angles O < θ < π/2. An attempt is made to parameterize some of the important physics including the Alfven ion cyclotron instability, the field-aligned electromagnetic ion counter streaming instability, mixing of the plasma shell with the background ions, and structuring of the interaction region. These results are applicable to various astrophysical interactions such as bow shocks and interplanetary shocks

  3. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Frederiksen, J.T. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Dérouillat, J. [CEA, Maison de La Simulation, 91400 Saclay (France)

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  4. Energetic Particles at High Latitudes of the Heliosphere

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  5. Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors

    Tan, Choon S

    2008-01-01

    In high-stage loading high-Mach number (HLM) compressors, counter-rotating pairs of discrete vortices are shed at the trailing edge of the upstream blade row at a frequency corresponding to the downstream rotor blade passing frequency...

  6. Use of a generalized Stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow

    Israel, R.; Rosner, D. E.

    1983-01-01

    The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.

  7. Coated particle fuel for high temperature gas cooled reactors

    Verfondern, Karl; Nabielek, Heinz [Research Center Julich (FZJ), Julich (Germany); Kendall, James M. [Global Virtual L1c, Prescott (United States)

    2007-10-15

    applications at 850-900 .deg. C and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 {mu}m diameter UO{sub 2} kernel of 10% enrichment is surrounded by a 100 {mu}m thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 {mu}m thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level.

  8. Coated particle fuel for high temperature gas cooled reactors

    Verfondern, Karl; Nabielek, Heinz; Kendall, James M.

    2007-01-01

    and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 μm diameter UO 2 kernel of 10% enrichment is surrounded by a 100 μm thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 μm thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level

  9. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  10. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  11. Cryogenic Beam Screens for High-Energy Particle Accelerators

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  12. Trends in size classified particle number concentration in subtropical Brisbane, Australia, based on a 5 year study

    Mejía, J. F.; Wraith, D.; Mengersen, K.; Morawska, L.

    Particle number size distribution data in the range from 0.015 to 0.630 μm were collected over a 5-year period in the central business district (CBD) of Brisbane, Australia. Particle size distribution was summarised by total number concentration and number median diameter (NMD) as well as the number concentration of the 0.015-0.030 ( N15-30), 0.030-0.050 ( N30-50), 0.050-0.100 ( N50-100), 0.100-0.300 ( N100-300) and 0.300-0.630 ( N300-630) μm size classes. Morning (6:00-10:00) and afternoon (16:00-19:00) measurements, the former representing fresh traffic emissions (based on the local meteorological conditions) and the latter well-mixed emissions from the CBD, during weekdays were extracted and the respective monthly mean values were estimated for time series analysis. For all size fractions, average morning concentrations were about 1.5 higher than in the afternoon whereas NMD did not vary between the morning and afternoon. The trend and seasonal components were extracted through weighted linear regression models, using the monthly variance as weights. Only the morning measurements exhibited significant trends. During this time of the day, total particle number increased by 105.7% and the increase was greater for larger particles, resulting in a shift in NMD by 7.9%. Although no seasonal component was detected the evidence against it remained weak due to the limitations of the database.

  13. Charged particle tracking in high multiplicity events at RHIC

    Foley, K.J.; Love, W.A.

    1985-01-01

    It is generally accepted that the ability to track some fraction of the charged particles produced in heavy ion collisions is very desirable. At a very minimum, one must detect the occurance of multiple interactions in a single crossing. The very tight beam structure at RHIC does not favor time separation, so the location of separate vertices seems the best solution. The limits of tracking large numbers of tracks in a solid angle approaching 4π have been explored. A model detector considered is a 2.5 m radius TPC, a true 3D tracking device. In order to estimate the particle density of a function of production angle, five Hijet Au-Au central events were used to deduce the particle density distribution as a function of polar angle. An important feature of a tracking detector is the effective ''pixel'' size - the area within which two tracks cannot be resolved. In a TPC with multistep avalanche chamber readout this is approximately 3 mm x 3 mm or approx.0.1 cm 2 . Using this pixel size we have calculated the radius at which the number of particles/pixel is 0.01 and 0.1. With the exception of the region very near the beam expect these distributions aren't expected to change very much with the application of a low (approx. 0.5 tesla) magnetic field. While the actual reconstruction efficiency will depend on the fine details of the apparatus and reconstruction program, the 1% fill fraction is safe for efficiencies in the 80 to 90% region. Tracking is found to be feasible at pseudorapidities up to 3

  14. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  15. Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number

    Amati, G.; Koal, K.; Massaioli, F.; Sreenivasan, K.R.; Verzicco, R.

    2006-12-01

    The results from direct numerical simulations of turbulent Boussinesq convection are briefly presented. The flow is computed for a cylindrical cell of aspect ratio 1/2 in order to compare with the results from recent experiments. The results span eight decades of Ra from 2x10 6 to 2x10 14 and form the baseline data for a strictly Boussinesq fluid of constant Prandtl number (Pr=0.7). A conclusion is that the Nusselt number varies nearly as the 1/3 power of Ra for about four decades towards the upper end of the Ra range covered. (author)

  16. Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon

    Dominick, Doreena; Latif, Mohd Talib; Juneng, Liew; Khan, Md Firoz; Amil, Norhaniza; Mead, Mohammed Iqbal; Nadzir, Mohd Shahrul Mohd; Moi, Phang Siew; Samah, Azizan Abu; Ashfold, Matthew J.; Sturges, William T.; Harris, Neil R. P.; Robinson, Andrew D.; Pyle, John A.

    2015-09-01

    Particle mass concentrations (PM10, PM2.5 and PM1) and particle number concentration ((PNC); 0.27 μm ≤ Dp ≤ 34.00 μm) were measured in the tropical coastal environment of Bachok, Kelantan on the Malaysian Peninsula bordering the southern edge of the South China Sea. Statistical methods were applied on a three-month hourly data set (9th January to 24th March 2014) to study the influence of north-easterly winds on the patterns of particle mass and PNC size distributions. The 24-h concentrations of particle mass obtained in this study were below the standard values detailed by the Recommended Malaysian Air Quality Guideline (RMAQG), United States Environmental Protection Agency (US EPA) and European Union (EU) except for PM2.5, which recorded a 24-h average of 30 ± 18 μg m-3 and exceeded the World Health Organisation (WHO) threshold value (25 μg m-3). Principal component analysis (PCA) revealed that PNC with smaller diameter sizes (0.27-4.50 μm) showed a stronger influence, accounting for 57.6% of the variability in PNC data set. Concentrations of both particle mass and PNC increased steadily in the morning with a distinct peak observed at around 8.00 h, related to a combination of dispersion of accumulated particles overnight and local traffic. In addition to local anthropogenic, agricultural burning and forest fire activities, long-range transport also affects the study area. Hotspot and backward wind trajectory observations illustrated that the biomass burning episode (around February-March) significantly influenced PNC. Meteorological parameters influenced smaller size particles (i.e. PM1 and Dp (0.27-0.43 μm)) the most.

  17. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  18. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  19. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  20. Investigation of the two-quasiparticle bands in the doubly-odd nucleus 166Ta using a particle-number conserving cranked shell model

    Zhang, ZhenHua

    2016-07-01

    The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.

  1. Particle Physics in High School: A Diagnose Study.

    Paula Tuzón

    Full Text Available The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  2. Particle Physics in High School: A Diagnose Study.

    Tuzón, Paula; Solbes, Jordi

    2016-01-01

    The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  3. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  4. New challenges in high-energy particle radiobiology

    2014-01-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space. PMID:24198199

  5. Mass transfer in wetted-wall columns: correlations at high Reynolds numbers

    Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.

    1998-01-01

    (G)) were determined. In dimensionless form, the correlations are given by Sh(L) = 0.01613 Re-G(0.664) Re-L(0.426) Sc-L(0.5) Sh(G) = 0.00031 Re-G(1.05) Re-L(0.207) Sc-G(0.5) and are valid at gas-phase Reynolds numbers from 7500 to 18,300 and liquid-phase Reynolds numbers from 4000 to 12,000, conditions...... of industrial relevance. To our knowledge, no correlations for Sh(G) have been reported in the literature which are valid at such high Reynolds numbers. The wetted-wall column was equipped with six intermediate measuring positions for gas and two for liquid samples, giving rise to a high accuracy...... of the obtained correlations. Our data showed that Sh(L) and Sh(G) both depend on Re-G and Re-L due to changes in the interfacial area at the high Reynolds numbers employed. The presence of inert particles in the liquid-phase may influence the rate of mass transport, and experimental work was initiated to study...

  6. Gas-liquid transition in the model of particles interacting at high energy

    Bondarenko, S.; Komoshvili, K.

    2013-01-01

    An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, the Boltzmann equation is solved for a self-consistent field (Vlasov's equation) in the linear approximation for the case of a gas under external pressure and the corresponding change of the Knudsen number of the system is calculated. (orig.)

  7. The deposition of magnetite particles from high velocity water onto isothermal tubes

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 to 90 deg C), pH (4 to 10 at 25 deg C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreteω in terms of two steps in series for deposition: a mass transfer step followed by a deposition or ''inertial coasting'' step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number (10 5 ). (author)

  8. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows

    Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.

    2018-03-01

    It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.

  9. Performance of GEM detectors in high intensity particle beams

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  10. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  11. High resolution, position sensitive detector for energetic particle beams

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  12. High resolution, position sensitive detector for energetic particle beams

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  13. Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics

    AUTHOR|(INSPIRE)INSPIRE-00452332

    The present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer u...

  14. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  15. Nuclear emulsion experiments on particle production at high energies

    Otterlund, I.

    1976-08-01

    Various experimental results, including multiplicities of shower-particles and heavy prong particles, correlations between them and single particle distributions, from proton-emulsion nucleus reactions in the energy range 200-400 GeV are presented. (Auth.)

  16. On adiabatic pair potentials of highly charged colloid particles

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  17. The drag and lift of different non-spherical particles from low to high Re

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  18. Operation of the ORNL High Particle Flux Helicon Plasma Source

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  19. Operation of the ORNL High Particle Flux Helicon Plasma Source

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Γ p 10 23 m -3 s -1 , and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of ∼10 MW/m 2 . An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to ∼0.15 T. Maximum densities of 3x10 19 m -3 in He and 2.5x10 19 m -3 in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  20. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  1. A Gibbs potential expansion with a quantic system made up of a large number of particles

    Bloch, Claude; Dominicis, Cyrano de

    1959-01-01

    Starting from an expansion derived in a previous work, we study the contribution to the Gibbs potential of the two-body dynamical correlations, taking into account the statistical correlations. Such a contribution is of interest for low density systems at low temperature. In the zero density limit, it reduces to the Beth Uhlenbeck expression of the second virial coefficient. For a system of fermions in the zero temperature limit, it yields the contribution of the Brueckner reaction matrix to the ground state energy, plus, under certain conditions, additional terms of the form exp. (β |Δ|), where the Δ are the binding energies of 'bound states' of the type first discussed by L. Cooper. Finally, we study the wave function of two particles immersed in a medium (defined by its temperature and chemical potential). lt satisfies an equation generalizing the Bethe Goldstone equation for an arbitrary temperature. Reprint of a paper published in 'Nuclear Physics' 10, 1959, p. 181-196 [fr

  2. Vortex Shedding from Tapered Cylinders at high Reynolds Numbers

    Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre

    2015-01-01

    percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine......^5 (Supercritical). Results indicate that circular strakes with a diameter corresponding to 3 percent of the structures mean diameter can be used to efficiently reduce VIV in the Supercritical Reynolds number regime....

  3. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  4. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  5. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy

    Toth PP

    2012-01-01

    Full Text Available Peter P Toth1, Kamlesh M Thakker2, Ping Jiang2, Robert J Padley21University of Illinois College of Medicine, Peoria, and CGH Medical Center, Sterling, 2Abbott, Abbott Park, IL, USABackground: The purpose of this research was to compare the effects of niacin extended-release in combination with simvastatin (NER/S versus atorvastatin monotherapy on high-density lipoprotein (HDL particle number and size in patients with hyperlipidemia or dyslipidemia from the SUPREME study.Methods: This was a post hoc analysis of patients (n = 137 who completed the SUPREME study and who had lipid particle number and size measurements at both baseline and at week 12 by nuclear magnetic resonance spectroscopy. Following ≥4 weeks without lipid-modifying therapy (washout period, the patients received NER/S 1000/40 mg/day for 4 weeks followed by NER/S 2000/40 mg/day for 8 weeks, or atorvastatin 40 mg/day for 12 weeks. Median percent changes in HDL particle number and size from baseline to week 12 were compared between the NER/S and atorvastatin treatment groups using the Wilcoxon rank-sum test. Distribution of HDL particle subclasses at week 12 was compared between the treatment groups using the Cochran–Mantel–Haenszel test.Results: Treatment with NER/S resulted in a significantly greater percent reduction in small HDL particle number at week 12 compared with atorvastatin monotherapy (-1.8% versus 4.2%, P = 0.014, and a numerically greater percent increase in large HDL particle number (102.4% versus 39.2%, P = 0.078 compared with atorvastatin monotherapy. A significantly greater percent increase in HDL particle size from baseline at week 12 was observed with NER/S compared with atorvastatin (6.0% versus 1.3%, P < 0.001. NER/S treatment also resulted in a significant shift in HDL particle size from small and medium at baseline to large at week 12 (P < 0.0001.Conclusion: Treatment with NER/S resulted in larger favorable changes in number and size of HDL particle

  6. Crossover from High to Low Reynolds Number Turbulence

    Lohse, Detlef

    1994-01-01

    The Taylor-Reynolds and Reynolds number (Re lambda and Re) dependence of the dimensionless energy dissipation rate c epsilon = epsilon L / u31,rms is derived for statistically stationary isotropic turbulence, employing the results of a variable range mean field theory. Here epsilon is the energy

  7. Wrapped and unwrapped phase of radiation scattered by a discrete number of particles

    Watson, Stephen M; Ridley, Kevin D

    2007-01-01

    This paper investigates wrapped and unwrapped phase differences generated by a non-Gaussian scattering model: the two-dimensional random walk. Mean square values for these quantities are obtained for one and two scatterers, as well as the large scatterer limit when the field constitutes a circular complex Gaussian process. Numerical simulation is used to investigate the phase under more general fluctuation conditions, and reveals that the wrapped phase difference correlation converges rapidly to that result predicted for a Gaussian speckle field. Analytical results for the unwrapped phase indicate that this quantity transitions from a stationary process for one and two scatterers to a non-stationary process in the large scatterer limit. The nature of this transition is examined using numerical simulation for arbitrary scatterer number. Phase correlations are of consequence in various phase sensitive detection systems, and this paper examines both Gaussian and non-Gaussian fields

  8. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P

    2016-02-01

    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  9. High Resolution Spectrometer (HRS) particle-identification system

    Pratt, J.C.; Spencer, J.E.; Whitten, C.A.

    1977-08-01

    The functions of the particle-identification system (PIDS) designed for the High Resolution Spectrometer facility (HRS) at LAMPF are described, together with the mechanical layout, counter hardware, and associated electronics. The system was designed for easy use and to be applicable to currently proposed experiments at HRS. The several strobe signals that can be generated correspond to different event types or characteristics, and logic configuration and timing can be remotely controlled by computer. Concepts of discrete pattern recognition and multidimensional, analog pulse discrimination are used to distinguish between different event types

  10. A detector for high frequency modulation in auroral particle fluxes

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  11. Elementary particles and high energy phenomena: Progress report

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  12. Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

    Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.

    2018-03-01

    Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.

  13. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information.

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  14. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  15. High energy particle transport code NMTC/JAM

    Niita, K.; Takada, H.; Meigo, S.; Ikeda, Y.

    2001-01-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgrade version of NMTC/JAERI97. The available energy range of NMTC/JAM is, in principle, extended to 200 GeV for nucleons and mesons including the high energy nuclear reaction code JAM for the intra-nuclear cascade part. We compare the calculations by NMTC/JAM code with the experimental data of thin and thick targets for proton induced reactions up to several 10 GeV. The results of NMTC/JAM code show excellent agreement with the experimental data. From these code validation, it is concluded that NMTC/JAM is reliable in neutronics optimization study of the high intense spallation neutron utilization facility. (author)

  16. High energy behaviour of particles and unified statistics

    Chang, Y.

    1984-01-01

    Theories and experiments suggest that particles at high energy appear to possess a new statistics unifying Bose-Einstein and Fermi-Dirac statistics via the GAMMA distribution. This hypothesis can be obtained from many models, and agrees quantitatively with scaling, the multiplicty, large transverse momentum, the mass spectrum, and other data. It may be applied to scatterings at high energy, and agrees with experiments and known QED's results. The Veneziano model and other theories have implied new statistics, such as, the B distribution and the Polya distribution. They revert to the GAMMA distribution at high energy. The possible inapplicability of Pauli's exclusion principle within the unified statistics is considered and associated to the quark constituents

  17. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  18. Multiplier less high-speed squaring circuit for binary numbers

    Sethi, Kabiraj; Panda, Rutuparna

    2015-03-01

    The squaring operation is important in many applications in signal processing, cryptography etc. In general, squaring circuits reported in the literature use fast multipliers. A novel idea of a squaring circuit without using multipliers is proposed in this paper. Ancient Indian method used for squaring decimal numbers is extended here for binary numbers. The key to our success is that no multiplier is used. Instead, one squaring circuit is used. The hardware architecture of the proposed squaring circuit is presented. The design is coded in VHDL and synthesised and simulated in Xilinx ISE Design Suite 10.1 (Xilinx Inc., San Jose, CA, USA). It is implemented in Xilinx Vertex 4vls15sf363-12 device (Xilinx Inc.). The results in terms of time delay and area is compared with both modified Booth's algorithm and squaring circuit using Vedic multipliers. Our proposed squaring circuit seems to have better performance in terms of both speed and area.

  19. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities

    C. Reche

    2011-07-01

    Full Text Available In many large cities of Europe standard air quality limit values of particulate matter (PM are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols?

    This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC, aerosol number concentration (N and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe.

    The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites.

    During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of

  20. High Reynolds number oscillations of a circular cylinder

    Hirata, Miguel H.; Pereira, Luiz Antonio A.; Recicar, Jan N.; Moura, Washington H. de

    2008-01-01

    This paper concerns the numerical simulation of the flow around an oscillating circular cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant properties. For each time step of the simulation a number of discrete Lamb vortices is placed close to the body surface; the intensity of each of these is determined such as to satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of cylinder are computed using the integral formulation de...

  1. BROADENING OF BALMER LINES FOR HIGH QUANTUM NUMBER

    Armstrong, B. H.

    1963-10-15

    It is shown that the impact theory breakdown at sufficiently large distances from the line center in effect lowers the principle quantum number at which electron broadening might otherwise be assumed to dominate. Since the impact theory breaks down and effectively the impact widths decrease progressively for the line components more distant from the center, the contributions of the components to the folding integral decrease rapidly except at their own positions. (R.E.U.)

  2. New directions in elementary particle physics: p anti p from very low to very high energies

    Jacob, M.

    1979-01-01

    The review covers low energy anti pp physics including annihilation processes, the spectroscopy of baryonium states, quasinuclear states and their relation to baryonium, the spectroscopy of protonium, and access to the whole charmonium family. High energy anti pp physics is reviewed covering total cross section rise, the common shape of cross sections, real part of forward amplitude, particle production, quantum number excitation, high transverse momentum, and high mass lepton pair. Also reviewed are the search for the weak bosons, hadron physics at collider energies, and the anti pp collider program. 47 references

  3. Statistical and direct decay of high-lying single-particle excitations

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  4. High energy particle transport code NMTC/JAM

    Niita, Koji; Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro

    2001-03-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)

  5. IceCube: Particle Astrophysics with High Energy Neutrinos

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  6. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.; Ohta, M.; Utsunomiya, H.

    2013-01-01

    An update of the NACRE compilation [3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number A 6 ≲T⩽10 10 K range. Along with the ‘adopted’ rates, their low and high limits are provided. The new rates are available in electronic form as part of the Brussels Library (BRUSLIB) of nuclear data. The NACRE II rates also supersede the previous NACRE rates in the Nuclear Network Generator (NETGEN) for astrophysics. [ (http://www.astro.ulb.ac.be/databases.html)

  7. Development and testing of high performance pseudo random number generator for Monte Carlo simulation

    Chakraborty, Brahmananda

    2009-01-01

    Random number plays an important role in any Monte Carlo simulation. The accuracy of the results depends on the quality of the sequence of random numbers employed in the simulation. These include randomness of the random numbers, uniformity of their distribution, absence of correlation and long period. In a typical Monte Carlo simulation of particle transport in a nuclear reactor core, the history of a particle from its birth in a fission event until its death by an absorption or leakage event is tracked. The geometry of the core and the surrounding materials are exactly modeled in the simulation. To track a neutron history one needs random numbers for determining inter collision distance, nature of the collision, the direction of the scattered neutron etc. Neutrons are tracked in batches. In one batch approximately 2000-5000 neutrons are tracked. The statistical accuracy of the results of the simulation depends on the total number of particles (number of particles in one batch multiplied by the number of batches) tracked. The number of histories to be generated is usually large for a typical radiation transport problem. To track a very large number of histories one needs to generate a long sequence of independent random numbers. In other words the cycle length of the random number generator (RNG) should be more than the total number of random numbers required for simulating the given transport problem. The number of bits of the machine generally limits the cycle length. For a binary machine of p bits the maximum cycle length is 2 p . To achieve higher cycle length in the same machine one has to use either register arithmetic or bit manipulation technique

  8. Design of a High-Reynolds Number Recirculating Water Tunnel

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  9. Dedicated Trigger for Highly Ionising Particles at ATLAS

    Katre, Akshay; The ATLAS collaboration

    2015-01-01

    In 2012, a novel strategy was designed to detect signatures of Highly Ionising Particles (HIPs) such as magnetic monopoles, dyons or Q-balls with ATLAS. A dedicated trigger was developed and deployed for proton-proton collisions at a centre of mass energy of 8 TeV. It uses the Transition Radiation Tracker (TRT) system, applying an algorithm distinct from standard tracking ones. The high threshold (HT) readout capability of the TRT is used to distinguish HIPs from other background processes. The trigger requires significantly lower energy depositions in the electromagnetic calorimeters and is thereby capable of probing a larger range of HIP masses and charges. A description of the algorithm for this newly developed trigger is presented, along with a comparitive study of its performance during the 2012 data-taking period with respect to previous efforts.

  10. Recipients of 2013 EPS High Energy & Particle Physics Prize

    ATLAS, Experiment

    2014-01-01

    (From left) Joe Incandela, Peter Higgs, Francois Englert, Tejinder Virdee, Dave Charlton, and Peter Jenni. Higgs and Englert gave the prizes to the recipients of the 2013 European Physical Society's High Energy and Particle Physics Prize, for an outstanding contribution to high energy physics. "For the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism," the prize was awarded to the ATLAS and CMS collaborations. Spokesperson for CMS, Incandela, and Spokesperson for ATLAS, Charlton, accepted the awards on their collaborations' behalf. "For their pioneering and outstanding leadership roles in the making of the ATLAS and CMS experiments," the prize was awarded to Jenni, Virdee, and Michel Della Negra (not present). Image: ATLAS

  11. [High energy particle physics at Purdue, 1989--1990

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1990-05-01

    The theoretical and experimental high energy physics program is reviewed, including developments on particle detectors. Among the topics addressed are the following: the CLEO experiment; gamma ray astrophysics; highest-weight representations of affine Kac-Moody algebras; supersymmetric field theories; parity- violating effects and superconductivity in 2 + 1 dimensional supersymmetric QED; neutrino oscillations with applications to solar and supernova neutrinos; a search for the quark-gluon plasma using the Fermilab collider; the Solenoid Detector Collaboration at SSC; the high-resolution vertex chamber at TRISTAN; CP violation in e + e - →φ→K L K S ; deviations from Coulomb's Law; and the electric charge and equations of state of neutron stars

  12. High-energy tail distributions and resonant wave particle interaction

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  13. High-Energy Solar Particle Events in Cycle 24

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  14. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  15. Low-frequency modes with high toroidal mode numbers. A general formulation

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  16. Effects of viscoelasticity in the high Reynolds number cylinder wake

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  17. Convection in an ideal gas at high Rayleigh numbers.

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  18. Numerical simulation of high Reynolds number bubble motion

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  19. Effects of viscoelasticity in the high Reynolds number cylinder wake

    Richter, David; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2012-01-01

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  20. Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Vainio, Rami; Raukunen, Osku; Tylka, Allan J.; Dietrich, William F.; Afanasiev, Alexandr

    2017-08-01

    Aims: The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. Methods: We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfvén waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Results: Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one.

  1. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  2. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  3. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2015-01-01

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study

  4. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)

    2015-01-15

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.

  5. Coagulation–fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus

    Hozé, Nathanaël; Holcman, David

    2012-01-01

    We develop a coagulation–fragmentation model to study a system composed of a small number of stochastic objects moving in a confined domain, that can aggregate upon binding to form local clusters of arbitrary sizes. A cluster can also dissociate into two subclusters with a uniform probability. To study the statistics of clusters, we combine a Markov chain analysis with a partition number approach. Interestingly, we obtain explicit formulas for the size and the number of clusters in terms of hypergeometric functions. Finally, we apply our analysis to study the statistical physics of telomeres (ends of chromosomes) clustering in the yeast nucleus and show that the diffusion–coagulation–fragmentation process can predict the organization of telomeres. -- Highlights: ► We develop a coagulation–fragmentation model to study a system composed of a small number of stochastic particles. ► The stochastic objects are moving in a confined domain. ► We apply our analysis to study the statistical physics of telomeres (ends of chromosomes) clustering in the yeast nucleus. ► We show that the diffusion–coagulation–fragmentation process can predict the organization of telomeres in yeast.

  6. Fully integrated CMOS pixel detector for high energy particles

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  7. Comparisons of Traffic-Related Ultrafine Particle Number Concentrations Measured in Two Urban Areas by Central, Residential, and Mobile Monitoring.

    Simon, Matthew C; Hudda, Neelakshi; Naumova, Elena N; Levy, Jonathan I; Brugge, Doug; Durant, John L

    2017-11-01

    Traffic-related ultrafine particles (UFP; monitoring strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 hours of measurements at the central sites, 1,000 hours of measurements at each of 20 residential sites in the two study areas, and >120 hours of mobile measurements over the course of ~1 year in each study area. Our results show differences between the monitoring strategies: mean one-minute PNC on-roads were higher (64,000 and 32,000 particles/cm 3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm 3 ) and both were higher than at residences (14,000 and 15,000 particles/cm 3 ). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead

  8. Comparisons of traffic-related ultrafine particle number concentrations measured in two urban areas by central, residential, and mobile monitoring

    Simon, Matthew C.; Hudda, Neelakshi; Naumova, Elena N.; Levy, Jonathan I.; Brugge, Doug; Durant, John L.

    2017-11-01

    Traffic-related ultrafine particles (UFP; strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 h of measurements at the central sites, 1000 h of measurements at each of 20 residential sites in the two study areas, and >120 h of mobile measurements over the course of ∼1 year in each study area. Our results show differences between the monitoring strategies: mean 1 min PNC on-roads were higher (64,000 and 32,000 particles/cm3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm3) and both were higher than at residences (14,000 and 15,000 particles/cm3). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead to improved characterization of

  9. On the Number of Galaxies at High Redshift

    Lorenzo Zaninetti

    2015-09-01

    Full Text Available The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

  10. Deep-hole and high-lying particle states in heavy nuclei

    Gales, S.

    1985-01-01

    Our present knowledge on single-particle strength functions from one nucleon transfer reactions is reviewed. Results on deeply-bound neutron hole states in the Sn and Pb region are discussed with emphasis on the investigation of a very large excitation energy range. The first measurements on the γ-decay of deeply-bound hole states in the Sn isotopes are reported. High energy neutron and proton stripping reactions are used to study the particle response function. These reactions are particularly well suited to the study of high-spin outer subshells. For the proton states, the behaviour of the 1h 11/2 and 1i 13/2 strength distributions, as a function of deformation in the Sm region, is discussed. Strong transitions to high-lying neutron states are observed in the 112, 116, 118, 120, 122, 124 Sn and 208 Pb nuclei. The empirical systematics for both proton and neutron particle strength distributions are compared to the predictions from the quasi particle-phonon and the single-particle vibration coupling nuclear models. (orig.)

  11. Normalizations of High Taylor Reynolds Number Power Spectra

    Puga, Alejandro; Koster, Timothy; Larue, John C.

    2014-11-01

    The velocity power spectrum provides insight in how the turbulent kinetic energy is transferred from larger to smaller scales. Wind tunnel experiments are conducted where high intensity turbulence is generated by means of an active turbulence grid modeled after Makita's 1991 design (Makita, 1991) as implemented by Mydlarski and Warhaft (M&W, 1998). The goal of this study is to document the evolution of the scaling region and assess the relative collapse of several proposed normalizations over a range of Rλ from 185 to 997. As predicted by Kolmogorov (1963), an asymptotic approach of the slope (n) of the inertial subrange to - 5 / 3 with increasing Rλ is observed. There are three velocity power spectrum normalizations as presented by Kolmogorov (1963), Von Karman and Howarth (1938) and George (1992). Results show that the Von Karman and Howarth normalization does not collapse the velocity power spectrum as well as the Kolmogorov and George normalizations. The Kolmogorov normalization does a good job of collapsing the velocity power spectrum in the normalized high wavenumber range of 0 . 0002 University of California, Irvine Research Fund.

  12. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  13. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  14. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    Crawford, Henry J.; Engelage, Jon M.

    1999-01-01

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year

  15. Application of the non-extensive statistical approach to high energy particle collisions

    Bíró, Gábor; Barnaföldi, Gergely Gábor; Biró, Tamás Sándor; Ürmössy, Károly

    2017-06-01

    In high-energy collisions the number of created particles is far less than the thermodynamic limit, especially in small colliding systems (e.g. proton-proton). Therefore final-state effects and fluctuations in the one-particle energy distribution are appreciable. As a consequence the characterization of identified hadron spectra with the Boltzmann - Gibbs thermodynamical approach is insuffcient [1]. Instead particle spectra measured in high-energy collisions can be described very well with Tsallis -Pareto distributions, derived from non-extensive thermodynamics [2, 3]. Using the Tsallis q-entropy formula, a generalization of the Boltzmann - Gibbs entropy, we interpret the microscopic physics by analysing the Tsallis q and T parameters. In this paper we give a quick overview on these parameters, analyzing identified hadron spectra from recent years in a wide center-of-mass energy range. We demonstrate that the fitted Tsallis-parameters show dependency on the center-of-mass energy and particle species. Our findings are described well by a QCD inspired evolution ansatz. Based on this comprehensive study, apart from the evolution, both mesonic and barionic components found to be non-extensive (q > 1), beside the mass ordered hierarchy observed in parameter T.

  16. Configuration of particle drain for the high energy charged particles in the magnetic dipole field

    Amirkhanov, I.V.; Zhidkov, E.P.; Ignatov, V.V.; Il'ina, A.N.; Il'in, V.D.; Kuznetsov, S.N.; Yushkov, B.Yu.

    1987-01-01

    The boundary of particle leakage from the magnetic dipole trap depending on the value of adiabatic parameter is investigated. By trajectory computation a generalized analytical expression is determined for the shape of particle drain by x ≤ 1. It is shown that generally accepted adiabatic loss cone is a particular case of x → 0

  17. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China

    Liu, Shang; Hu, Min; Wu, Zhijun; Wehner, Birgit; Wiedensohler, Alfred; Cheng, Yafang

    Continuous measurements of aerosol number size distribution in the range of 3 nm-10 μm were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22°37'N, 113°35'E, 6 m above sea level), in the south suburb of Guangzhou City (22°37'N, 113°35'E, 6 m above sea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 μm). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm -3), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h -1 and the formation rates ranged from 0.5 to 5.2 cm -3 s -1, both of them were in the range of typical observed formation rates (0.01-10 cm -3 s -1) and typical particle growth rates (1-20 nm h -1). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass.

  18. Very high momentum particle identification in ALICE at the LHC

    Agocs, A; Barnafoldi, G G; Boldizsar, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Fodor, Z; Futo, E; Garcia, E; Hamar, G; Harris, J W; Levai, P; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Ortiz, A; Paic, G; Perini, D; Perrino, D; Peskov, V; Piuz, F; Smirnov, N; Varga, D; Volpe, G

    2010-01-01

    We propose to construct and install a limited acceptance detector to identify hadrons (pions, K, p) up to 30 GeV/c on a track-by-track basis in space available in ALICE. Details and PID performance simulation results will be presented for two possible options, including a high transverse momentum (pT) trigger for this detector. The first option is a RICH design with a C4F10 gas UV-photon radiator, UV-mirror, quartz window and pad-readout. This design requires additional tracking detectors to enable high pT triggering. A second option is a combination of three detectors: a RICH with CF4 gas both as a UV-photon radiator and as a gas amplification medium (a windowless approach); and a threshold Cherenkov detector (C4F10) with a quartz window and pad readout. The response for minimum ionizing particles (MIP) and UV-photons in these detectors can be well separated. With an additional tracking detector this design will also provide high pT triggering. The simulation includes UV-photon production due to CF4 scintill...

  19. High-Dimensional Adaptive Particle Swarm Optimization on Heterogeneous Systems

    Wachowiak, M P; Sarlo, B B; Foster, A E Lambe

    2014-01-01

    Much work has recently been reported in parallel GPU-based particle swarm optimization (PSO). Motivated by the encouraging results of these investigations, while also recognizing the limitations of GPU-based methods for big problems using a large amount of data, this paper explores the efficacy of employing other types of parallel hardware for PSO. Most commodity systems feature a variety of architectures whose high-performance capabilities can be exploited. In this paper, high-dimensional problems and those that employ a large amount of external data are explored within the context of heterogeneous systems. Large problems are decomposed into constituent components, and analyses are undertaken of which components would benefit from multi-core or GPU parallelism. The current study therefore provides another demonstration that ''supercomputing on a budget'' is possible when subtasks of large problems are run on hardware most suited to these tasks. Experimental results show that large speedups can be achieved on high dimensional, data-intensive problems. Cost functions must first be analysed for parallelization opportunities, and assigned hardware based on the particular task

  20. Limiting technologies for particle beams and high energy physics

    Panofsky, W.K.H.

    1985-07-01

    Since 1930 the energy of accelerators had grown by an order of magnitude roughly every 7 years. Like all exponential growths, be they human population, the size of computers, or anything else, this eventually will have to come to an end. When will this happen to the growth of the energy of particle accelerators and colliders. Fortunately, as the energy of accelerators has grown the cost per unit energy has decreased almost as fast as has the increase in energy. The result is that while the energy has increased so dramatically the cost per new installation has increased only by roughly an order of magnitude since the 1930's (corrected for inflation), while the number of accelerators operating at the frontier of the field has shrunk. As is shown in the by now familiar Livingston chart this dramatic decrease in cost has been achieved largely by a succession of new technologies, in addition to the more moderate gains in efficiency due to improved design, economies of scale, etc. We are therefore facing two questions: (1) Is there good reason scientifically to maintain the exponential growth, and (2) Are there new technologies in sight which promise continued decreases in unit costs. The answer to the first question is definitely yes; the answer to the second question is maybe

  1. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    Choi, J. H.; Choi, B. C.; Lee, S. M.; Chung, Suk-Ho; Jung, K. S.; Jeong, W. L.; Choi, S. K.; Park, S. K.

    2015-01-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  2. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    Choi, J. H.

    2015-05-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  3. Search for highly interacting fractionally charged particles at PEP

    Wlodzimierz, G.

    1982-01-01

    Fractionally charged, highly interacting particles produced in e + e - annihilation at 20 GeV c.m. energy have been search for. The experiment was performed at the positron electron storage ring (PEP) at the Stanford Linear Accelerator Center (SLAC). The search used in the innermost part of the two-arm Free Quark Search (FQS) detector. This part was called the Thin Front End (TFE) and it covered 1/3 of the full solid angle. Each of its arms consisted of five multiwire proportional chambers (MWPC's), used for tracking and dE/dx measurement, and three hodoscopes of 0.16 cm thick Pilot F scintillator. The total thickness of the five MWPC's and the beam pipe was 0.007 hadronic collision lengths (lambda/sub c/). No candidates for fractionally charged particles were found. Upper limits on R/sub q anti q/ = sigma(e + e - →q anti q)/sigma(e + e - →μμ) are between: (1) 0.7% to 7% for quark interaction lengths (lambda/sub q/) equal to lambda/sub c/ and between 3% and 33% for lambda/sub q/ = 100lambda/sub c/ for Q = 1/3e quark charge and for quark masses up to 13 GeV/c 2 ; (2) 2% to 38% for lambda/sub q/ - lambda/sub c/ and from 7% to 160% for lambda/sub q/ = 100lambda/sub c/ for Q = 2/3e quark charge and for masses up to 8 GeV/c 2 . In the inclusive production channel the upper limits on R/sub q/ = sigma(e + e - →qqX)/sigma(e + e - →μμ) are for charge 1/3e only. R/sub q/ varies from 2% to 11% for lambda/sub q/ = lambda/sub c/ and from 3% to 16% for lambda/sub q/ = 100lambda/sub c/ and for quark masses up to 6.5 GeV/c 2 . These are the first limits on the production of fractionally charged particles with lambda/sub q/ = 100lambda/sub c/

  4. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  5. Radiation safety aspects of high energy particle accelerators

    Subbaiah, K.V.

    2007-01-01

    High-energy accelerators are widely used for various applications in industry, medicine and research. These accelerators are capable of accelerating both ions and electrons over a wide range of energy and subsequently are made to impinge on the target materials. Apart from generating intended reactions in the target, these projectiles can also generate highly penetrating radiations such as gamma rays and neutrons. Over exposure to these radiations will cause deleterious effects on the living beings. Various steps taken to protect workers and general public from these harmful radiations is called radiation safety. The primary objective in establishing permissible values for occupational workers is to keep the radiation worker well below a level at which adverse effects are likely to be observed during one's life time. Another objective is to minimize the incidence of genetic effects for the population as a whole. Today's presentation on radiation safety of accelerators will touch up on the following sub-topics: Types of particle accelerators and their applications; AERB directives on dose limits; Radiation Source term of accelerators; Shielding Design-Use of Transmission curves and Tenth Value layers; Challenges for accelerator health physicists

  6. Graphical User Interface for High Energy Multi-Particle Transport, Phase II

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  7. Graphical User Interface for High Energy Multi-Particle Transport, Phase I

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  8. Energetics and dynamics of droplet evaporation in high temperature intermediate Reynolds number flows

    Renksizbulut, M.

    Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.

  9. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    Kim, J.-H.; Nishihara, M.; Adamovich, I.V.; Samimy, M.; Gorbatov, S.V.; Pliavaka, F.V.

    2010-01-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow

  10. High-LET particle dosimetry in the ASTP-Biostack III: Zea mays experiment

    Peterson, D.D.; Benton, E.V.; Tran, M.; Yang, T.; Freeling, M.; Craise, L.; Tobias, C.A.

    1977-01-01

    High-LET particle hits in embryos of Zea mays (corn) seeds, flown as part of the ASTP-Biostack III, were determined via plastic nuclear track detectors. Based on etched particle-tracks measurements, 41 embryos were hit in seed layer 1 which contained 80 seeds, and 49 hits occurred in layer 2 which contained 79 seeds. The mean LET value and range of atomic numbers of recorded hits is, respectively, 210 +- 57 keV/μm and 9 approximately less than Z approximately less than 26. Detailed analysis of one particular seed showing marked growth anomalies revealed two hits in the central region of the embryo. These two hits had LET values in the region of 100 to 150 keV/μm, and Z less than approximately 20. (author)

  11. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  12. Particles colliders at the Large High Energy Laboratories

    Aguilar, M.

    1996-01-01

    In this work we present an elementary introduction to particle accelerators, a basic guide of existing colliders and a description of the large european laboratories devoted to Elementary Particle Physics. This work is a large, corrected and updated version of an article published in: Ciencia-Tecnologia-Medio Ambiente Annual report 1996 Edition el Pais (Author)

  13. Inelastic two composite particle systems scattering at high energy

    Zhang Yushun.

    1986-11-01

    In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs

  14. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji

    1998-01-01

    In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  15. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  16. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  17. A portable high-quality random number generator for lattice field theory simulations

    Luescher, M.

    1993-09-01

    The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE-754 standard for single precision floating point arithmetic. (orig.)

  18. Correlations between high momentum particles in proton-proton collisions at high energies

    Bobbink, G.J.

    1981-01-01

    This thesis describes an experiment performed at the CERN Intersecting Storage Rings. The experiment studies the reaction p+p→h 1 +h 2 +X at two centre-of-mass energies, √s=44.7 GeV and √s=62.3 GeV. Two of the outgoing particles (h 1 and h 2 ) are detected in opposite c.m.s. hemispheres at small polar angles with respect to the direction of two incident protons. The remaining particles produced (X) are not detected. The hadrons hsub(i) are identified mesons (π + , π - , K + , K - ) or baryons (p, Λ) with relatively large longitudinal psub(L) and small transverse momentum psub(T). The aim of the experiment is twofold. The first aim is to study whether the momentum distributions of the fast particles hsub(i) are correlated and thereby to constrain the possible interaction mechanisms responsible for the production of high psub(L), low psub(T) particles. The second aim is to establish to what extent the production of pions and kaons in inclusive proton-proton collisions (e.g. p+p→π+X, X=all other particles) resembles the production of pions and kaons in diffractive proton-proton collisions (e.g. p+p→p+π+X, in which the final-state proton has a momentum close to its maximum possible value). (Auth.)

  19. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number

  20. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  1. High $p_T$ particle correlations in pp collisions at LHC/ALICE

    Mao, Yaxian

    2011-01-01

    Two-particle correlation triggered by high-\\pt{} particles allows us to study hard scattering phenomena when full jet reconstruction is challenging. An analysis of the first ALICE pp data where charged and neutral particles isolated or not are used as trigger particles is presented. The two-particle correlation between the trigger ($t$) and the associate ($a$) particles is studied as a function of the imbalance parameter \\xe=-$\\vec{p}_{T_{a}} \\cdot \\vec{p}_{T_{t}}/\\mid \\vec{p}_{T_{t}}\\mid ^{2}$ and interpreted in terms of jet fragmentation function.

  2. Elementary particles. 2

    Ranft, G.; Ranft, J.

    1977-01-01

    In this part the subject is covered under the following headings, methods for producing high-energy particles; interaction of high-energy particles with matter; methods for the detection of high-energy particles; symmetry properties and conservation laws; quantum number and selection rules; theorem of scattering behaviour at asymptotically high energies; statistical methods in elementary particle physics; interaction of high-energy particles with nuclei; relations of high-energy physics to other branches of science and its response to engineering. Intended as information on high-energy physics for graduate students and research workers familiar with the fundamentals of classical and quantum physics

  3. High energy particle detectors utilizing cryogenic charge storage

    Coon, D; Engels, E Jr; Plants, D; Shepard, P F; Yang, Y [Pittsburgh Univ., PA (USA); Sopira, M; Papania, R [Westinghouse Research and Development Labs., Monroeville, PA (USA)

    1984-09-15

    The mechanism of cryogenic charge storage as a method of particle detection is reviewed. A description of a simple multielement strip detector operated in this mode is given, and partial results on its operating characteristics presented.

  4. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    Lee, You-Jin; Schade, Nicholas B.; Sun, Li; Fan, Jonathan A.; Bae, Doo Ri; Mariscal, Marcelo M.; Lee, Gaehang; Capasso, Federico; Sacanna, Stefano; Manoharan, Vinothan N.; Yi, Gi-Ra

    2013-01-01

    isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even

  5. Shutter designed to block high-energy particle beams

    Donnadille, B.

    1976-01-01

    A description is given of a shutter designed for temporarily closing off an opening formed in the wall of an irradiation room for the passage of a particle beam. A cylindrical metal block can rotate about its axis and occupy two stable positions which are 180 0 from one another. A cylindrical cage closed at its two ends by two circular plates is equipped respectively with eccentric holes for the passage of the particle beam. The block is provided with a longitudinal passage through which there can pass the particle beam and a blind hole or ''pit'' disposed symmetrically to the longitudinal passage and which can block the particle beam according to the positioning of the block by respect with the eccentric holes

  6. High viscosity fluid simulation using particle-based method

    Chang, Yuanzhang; Bao, Kai; Zhu, Jian; Wu, Enhua

    2011-01-01

    the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn

  7. Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre

    Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.

    2018-01-01

    The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.

  8. High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1

  9. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  10. Nature of Atmospheric Aerosols over the Desert Areas in the Asian Continent: Chemical State and Number Concentration of Particles Measured at Dunhuang, China

    Iwasaka, Y.; Shi, G.-Y.; Shen, Z.; Kim, Y. S.; Trochkine, D.; Matsuki, A.; Zhang, D.; Shibata, T.; Nagatani, M.; Nakata, H.

    2003-01-01

    Measurements of aerosol were made in August and October 2001, and January 2002, at Dunhuang, China (40 o 00'N, 94 o 30'E), to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had a noticeable peak in size range of super micron in not only the boundary mixing layer but also the free troposphere. Thickness of the boundary mixing layer, from distributions of particle concentration, was about 4 km in summer (17 August 2001), about2.5 km in fall (17 October 2001), and about 3 km in winter (11 January 2002), which suggest active mixing of particles near the boundary in summer. Number-size distribution of particle showed a noticeable peak in the super micron particles size range in the mixing boundary layer: 0.4-2 particles cm -3 at diameter>1.2 μm in summer, 0.05-4 particles cm -3 at diameter >1.2 μm in fall, and 0.1-5 particles cm -3 at diameter>1.2 μm in winter. In winter strong inversion of atmospheric temperature was found in the height range from the boundary to about 3 km and vertical distribution of particle concentration well corresponded with the temperature distribution. Chemical elements of individual aerosols, which were collected in the boundary layer atmosphere at Dunhuang (18 October 2001) were analyzed with an electron microscope equipped with EDX. Those single particle analysis suggested that most of the particles with supermicron size were soil particles, and those particles had little sulfate on its surface. This is a very important different point,comparing with the chemical state of soil particles, which were transported from the desert area of China to Japan, and showed frequently the existence of sulfate on the particle surface. Therefore, it is strongly suggested that dust particles can be chemically modified during their long-range transport from desert areas to Japan

  11. Radiation Build-Up Of High Energy Gamma In Shielding Of High Atomic Number

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to observe effect of radiation build-up factor (b) in iron (Fe) and lead (Pb) for high energy gamma shielding from exp.137 Cs (E gamma : 662 keV) and exp.60 Co (E gamma : 1332 keV) sources has been carried out. Research was conducted bt counting of radiation intensity behind shielding with its thickness vary from 1 to 5 times of half value thickness (HVT). NaI (TI) detector which connected to multi channel analyzer (MCA) was used for the counting. Calculation result show that all of b value are near to 1 (b∼1) both for Fe and Pb. Without inserting b in calculation, from the experiment it was obtained HVT value of Fe for high gamma radiation of 662 and 1332 keV were : (12,94 n 0,03) mm and (17,33 n 0,01) mm with their deviation standards were 0,2% and 0,06% respectively. Value of HVT for Pb with the same energy were : (6,31 n 0,03) mm and (11,86 n 0,03) mm with their deviation standars were : 0,48% and 0,25% respectively. HVL concept could be applied directly to estimate shielding thickness of high atomic number of high energy gamma radiation, without inserting correction of radiation build-up factor

  12. PREFACE: The EPS High Energy Particle Physics Conference

    Barlow, Roger

    2008-03-01

    HEPP2007, the EPS High Energy Particle Physics Conference, was held in Manchester from July 19-26 2007. It brought together 580 delegates across the whole subject: from string theorists to detector technologists, from young postgraduate students to senior professors. Geographically they came from the UK, from the rest of Europe, from North America, and from the rest of the world. It covered the whole spectrum of the subject, not only accelerator-based experiments but also its astrophysical and cosmological aspects. The parallel and plenary talks can be found in these proceedings. A key feature of the conference, as always, was the award of the prizes: this year the EPS prize was awarded to Makoto Kobayashi and Toshihide Maskawa for their explanation of CP violation with a 6 quark model—Kobayashi came to accept it in person. The Gribov medal went to Niklas Beisert, the outreach prize to Richard Jacobsson and Charles Timmermans and the Young Physicist prizer to I Furic, G Gomez-Ceballos and S Menzemer. Parallel sessions were held in Manchester University, and plenary talks were held in the Bridgewater Hall in Manchester Town centre, a magnificent modern venue whose positive and co-operative staff enabled the conference to make the most of the impressive surroundings. We were able to put the hall to its proper purpose one evening with a concert by the Fairey Band—one of the distinctive brass bands who form part of the rich musical tradition of the North of England, and came as something new and different to many of the delegates. The conference ran smoothly and successfully, thanks largely to hard work by the local organising committee who devoted a lot of time to planning, producing ideas, and anticipating potential problems. Many of them were not from Manchester itself but from other universities and laboratories in the North of England, so their dedication was especially appreciated. The EPS committee also played a major part, by the selection of plenary

  13. Identification of high-energetic particles by transition radiation

    Struczinski, W.

    1986-01-01

    This thesis gives a comprehensive survey on the application of the transition radiation for the particle identification. After a short historical review on the prediction and the detection of the transition radiation its theoretical foundations are more precisely explained. They form the foundations for the construction of an optimal transition radiation detector the principal construction of which is described. The next chapter shows some experiments by which the main predictions of the transition-radiation theory are confirmed. Then the construction and operation of two transition-radiation detectors are described which were applied at the ISR respectively SPS in the CERN in Geneva in complex experiments. The detector applied at the ISR served for the e ± identification. With two lithium radiators which were followed by xenon-filled proportional chambers an e/π separation of ≅ 10 -2 could be reached. The transition-radiation detector applied in the SPS was integrated into the European Hybrid Spectrometer. It served for the identification of high-energetic pions (> or approx. 90 GeV) against kaons and protons. With twenty units of carbon-fiber radiators which were followed by xenon-filled proportional chambers a π/K, p separation of better than 1:20 for momenta above 100 GeV could be reached. The cluster-counting method is then presented. Finally, a survey on the contemporary status in the development of transition-radiation detectors for the e/π separation is given. It is shown that by an about half a meter long detector the radiators of which consist of carbon fibers an e/π separation in the order of magnitude of ≅ 10 -2 can be reached. (orig./HSI) [de

  14. Study on Sumbawa gold ore liberation using rod mill: effect of rod-number and rotational speed on particle size distribution

    Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.

    2018-01-01

    Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.

  15. Lattice Design in High-energy Particle Accelerators

    Holzer, B.J.

    2014-01-01

    This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.

  16. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  17. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  18. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  19. A practical guide to modern high energy particle accelerators

    Holmes, S.D.

    1987-10-01

    The purpose of these lectures is to convey an understanding of how particle accelerators work and why they look the way they do. The approach taken is physically intuitive rather than mathematically rigorous. The emphasis is on the description of proton circular accelerators and colliders. Linear accelerators are mentioned only in passing as sources of protons for higher energy rings. Electron accelerators/storage rings and antiproton sources are discussed only by way of brief descriptions of the features which distinguish them from proton accelerators. The basics of how generic accelerators work are discussed, focusing on descriptions of what sets the overall scale, single particle dynamics and stability, and descriptions of the phase space of the particle beam, the information thus presented is then used to go through the exercise of designing a Superconducting Super Collider

  20. Particle production in high energy nucleus-nucleus collisions

    Stock, R.

    1985-05-01

    Recent data on the production of pions and strange particles at the Bevalac and Synchrophasotron accelerators are reviewed, covering pion spectra and multiplicity distributions, Λ, K + and K - yields and spectra, and Λ polarization. Emphasis is placed on recent progress in determining the equation of state of compressed fireball nuclear matter from the observed pion yield in central collisions. Further, the information derived from apparent spectral temperatures is critically examined, along with a discussion of thermal and chemical equilibrium attainment in the reactions, as revealed by particle spectra and yields. (orig.)

  1. Preparation of Highly Dispersed Copper Particles in Zeolite

    Tanabe, Shuji; Matsumoto, Hiroshige

    1986-01-01

    Temperature programmed reduction and desorption techniques have been used to investigate the reduction process of CuY. The reduction of Cu^2+ ions in zeolite with H_2 occurs via a two-step mechanism in which Cu^+ is first formed and then reduced to metal. In the first step of reduction NH_3 was used as the reducing agent instead of H_2. Cu particles in the reduced CuY with NH_3 pretreatment were uniformly dispersed compared with those of CuY without one. The average particle size of Cu metal ...

  2. A novel robust and efficient algorithm for charge particle tracking in high background flux

    Fanelli, C; Cisbani, E; Dotto, A Del

    2015-01-01

    The high luminosity that will be reached in the new generation of High Energy Particle and Nuclear physics experiments implies large high background rate and large tracker occupancy, representing therefore a new challenge for particle tracking algorithms. For instance, at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to 10 39 cm -2 s -1 . To this scope, Gaseous Electron Multiplier (GEM) based trackers are under development for a new spectrometer that will operate at these high rates in the Hall A of JLab. Within this context, we developed a new tracking algorithm, based on a multistep approach: (i) all hardware - time and charge - information are exploited to minimize the number of hits to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient association of the hits measured by the GEM detector; (iii) the measurements of the associated hits are further improved in resolution through the application of Kalman filter and Rauch- Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the promising first results. (paper)

  3. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  4. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  5. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China

    N. Kivekäs

    2009-08-01

    Full Text Available Particle number size distributions in size range 12–570 nm were measured continuously at Mount Waliguan, a remote mountain-top station in inland China. The station is located at the altitude of 3816 m a.s.l., and some 600–1200 m above the surrounding area. The measurement period lasted from September 2005 to May 2007. The measurements were verified with independent CPC measurements at the same site. The average particle concentration in ambient conditions was 2030 cm−3, which is higher than the values measured at similar altitude in other regions of the world. On average, the Aitken mode contributed to roughly half of the particle number concentration. The concentrations were found to be higher during the summer than during the winter. The diurnal variation was also investigated and a clear pattern was found for the nucleation mode during all seasons, so that the nucleation mode particle concentration increased in the afternoon. The same pattern was visible in the Aitken mode during the summer, whereas the accumulation mode did not show any level of diurnal pattern during any season. Excluding the nucleation mode, the average day-time particle concentrations were not significantly higher than those measured at night-time, indicating no systematic pattern of change between planetary boundary layer conditions and free troposphere conditions. In air masses coming from east, the number concentration of particles was higher than in other air masses, which indicates that the air mass might be affected anthropogenic pollution east of the station. Also other factors, such as active new-particle formation, keep aerosol number concentrations high in the area.

  6. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Keskinen, J; Hautanen, J; Laitinen, A [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  7. On the theory of high-velocity particles

    Gordeyev, G.V.

    1979-01-01

    The equations of mechanics and electrodynamics are presented in a form which is covariant for Galileo transformations in Euclidean space. The author shows that Galileo transformations in the Euclidean space are valid for particles with velocities approaching that of light. (author)

  8. Plasma-surface interactions under high heat and particle fluxes

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  9. Damping mechanisms of high-lying single-particle states in 91Nb

    Molen, H. K. T. van der; Berg, A. M. van den; Harakeh, M. N.; Hunyadi, M.; Kalantar-Nayestanaki, N.; Akimune, H.; Daito, I.; Fujimura, H.; Ihara, F.; Inomata, T.; Ishibashi, K.; Yoshida, H.; Yosoi, M.; Fujita, Y.; Fujiwara, M.; Jaenecke, J.; O'Donnell, T. W.; Laurent, H.; Lhenry, I.; Rodin, V. A.

    2007-01-01

    Decay by proton emission from high-lying states in 91 Nb, populated in the 90 Zr(α,t) reaction at E α =180 MeV, has been investigated. Decay to the ground state and semidirect decay to the low-lying (2 + ,5 - , and 3 - ) phonon states in 90 Zr were observed. It was found that these phonon states play an important role in the damping process of the single-particle states. An optical-model coupled-channel approach was used successfully to describe the direct and semidirect parts of the decay

  10. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  11. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri

    2016-01-01

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  12. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)

    2016-07-15

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  13. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  14. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D.; Laskowitz, D.T.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  15. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D. [Loma Linda Univ., CA (United States). Medical Center; Vazquez, M. [Brookhaven National Lab., Upton, NY (United States); Laskowitz, D.T. [Duke Univ., Durham, NC (United States). Medical Center

    2002-12-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  16. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  17. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  18. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  19. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    Guo Zhanhu; Park, Sung; Wei Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B; Young, David P; Hahn, H Thomas

    2007-01-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions

  20. Experimental studies on particle deposition by thermophoresis and inertial impaction from particulate high temperature gas flow

    Kim, S.S.; Kim, Y.J.

    1987-01-01

    In view of fouling and erosion of gas turbine blade, heat exchanger and pipelines, increasing attention has been paid to particle deposition (transport) in high temperature flow systems. This is also necessary to develop a cleaning or filtration devices. Using 'real time' laser-light reflectivity and scanning electron microscope technique, we quantitatively treat particle size effect and the interaction between Brownian diffusion, thermoporesis (particle drift down a temperature gradient), and inertial impaction of particles (0.2 to 30 μm in diameter) in laminar hot combustion gas-particles flow (ca. 1565 K)

  1. Relevance of axionlike particles for very-high-energy astrophysics

    De Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-01-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band--namely, above 100 GeV--as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e + e - pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10 -10 eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  2. Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition

    Ono, A., E-mail: ono.ayako@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan); Kimura, N.; Kamide, H.; Tobita, A. [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan)

    2011-11-15

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2 Multiplication-Sign 10{sup 7}. Moreover, a short-elbow is adopted in the hot leg pipe in order to achieve compact plant layout and to reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation source which is caused by the pressure fluctuation in the pipe. The pressure fluctuation in the pipe is closely related with the velocity fluctuation. As the first step of clarification of the FIV mechanism, it is important to grasp the mechanism of flow fluctuation in the elbow. In this study, water experiments with two types of elbows with different curvature ratios were conducted in order to investigate the interaction between flow separation and the secondary flow due to the elbow curvature. The experiments were conducted with the short-elbow and the long-elbow under Re = 1.8 Multiplication-Sign 10{sup 5} and 5.4 Multiplication-Sign 10{sup 5} conditions. The velocity fields in the elbows were measured using a high-speed Particle Image Velocimetry (PIV). The time-series of axial velocity fields and the cross-section velocity fields obtained by the high-speed PIV measurements revealed the unsteady and complex flow structure in the elbow. The flow separation always occurred in the short-elbow while the flow separation occurred intermittently in the long-elbow case. The circumferential secondary flows in clockwise and counterclockwise directions flowed forward downstream of reattachment point alternately in both elbows.

  3. Hard scattering contribution to particle production in high energy heavy-ion collisions

    Pareek, Pooja; Mishra, Aditya Nath; Sahoo, Pragati; Sahoo, Raghunath

    2014-01-01

    Global observables like the multiplicity of produced charged particles and transverse energy, are the key observables used to characterize the properties of the matter created in heavy-ion collisions. In order to study the dependence of the charged particle density on colliding system, center of mass energy and collision centrality, there have been measurements starting few GeV to TeV energies at LHC. There is a need to understand the particle production contribution coming from the QCD hard processes, which scale with number of binary nucleon-nucleon collisions, N coll and soft processes scaling with number of participant nucleons, N part

  4. Aerosol nucleation induced by a high energy particle beam

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  5. Scattering of high-energy α particles on 12C

    Ahmad, I.

    1977-04-01

    Glauber multiple scattering theory is applied to analyse the elastic and inelastic scattering of 1.37 GeV α particles on 12 C. An approach which treats the N-α amplitude at the incident nucleon kinetic energy equal to the α-kinetic energy per particle as the basic interaction is adopted. Using the gaussian model for 4 He to obtain the N-α amplitude in terms of the NN amplitude, it is found that, in general, the experimental data are qualitatively explained. However, large discrepancies in terms of the magnitude of the cross-sections in the small angle region and the positions of the minima in the angular distribution at larger angles are generally present. Effects of the two-body correlations in the projectile as well as in the target are also investigated

  6. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  7. Particle In Cell Codes on Highly Parallel Architectures

    Tableman, Adam

    2014-10-01

    We describe strategies and examples of Particle-In-Cell Codes running on Nvidia GPU and Intel Phi architectures. This includes basic implementations in skeletons codes and full-scale development versions (encompassing 1D, 2D, and 3D codes) in Osiris. Both the similarities and differences between Intel's and Nvidia's hardware will be examined. Work supported by grants NSF ACI 1339893, DOE DE SC 000849, DOE DE SC 0008316, DOE DE NA 0001833, and DOE DE FC02 04ER 54780.

  8. Emission of complex particles from highly excited nuclei

    Gadioli, E.

    1984-01-01

    A great deal of work has been made to investigated experimentally and predict theoretically the continuous spectra of composite particles produced in reactions induced by nucleons with energy ranging from a few to several ten MeV. Some recent results in the field are summarized. In particular the exciton coalescence-pickup model and the exciton knock-on model, in the case of alpha emission, are reviewed and discussed

  9. Dynamic chaos phenomenon and coherent radiation accompanying high energy particle motion through crystals

    Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.

    1991-01-01

    A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)

  10. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-03-03

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

  11. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-01-01

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B)

  12. Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements

    T. Viskari

    2012-12-01

    Full Text Available Extended Kalman Filter (EKF is used to estimate particle size distributions from observations. The focus here is on the practical application of EKF to simultaneously merge information from different types of experimental instruments. Every 10 min, the prior state estimate is updated with size-segregating measurements from Differential Mobility Particle Sizer (DMPS and Aerodynamic Particle Sizer (APS as well as integrating measurements from a nephelometer. Error covariances are approximate in our EKF implementation. The observation operator assumes a constant particle density and refractive index. The state estimates are compared to particle size distributions that are a composite of DMPS and APS measurements. The impact of each instrument on the size distribution estimate is studied. Kalman Filtering of DMPS and APS yielded a temporally consistent state estimate. This state estimate is continuous over the overlapping size range of DMPS and APS. Inclusion of the integrating measurements further reduces the effect of measurement noise. Even with the present approximations, EKF is shown to be a very promising method to estimate particle size distribution with observations from different types of instruments.

  13. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-01-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave

  14. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  15. High-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels

    Chao Liu

    2017-03-01

    Full Text Available Microfluidic techniques are effective tools for precise manipulation of particles and cells, whose enrichment and separation is crucial for a wide range of applications in biology, medicine, and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and label-free particle manipulation. The particle migration can be engineered to realize the controllable focusing and separation of particles based on a difference in size. The widespread use of inertial and viscoelastic microfluidics depends on the understanding of hydrodynamic effects on particle motion. This review will summarize the progress in the fundamental mechanisms and key applications of inertial and viscoelastic particle manipulation.

  16. Fused-core particle technology in high-performance liquid chromatography: An overview

    Joseph J. Kirkland

    2013-10-01

    Full Text Available The advent of superficially porous particles (SPPs for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-μm particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size. Keywords: Superficially porous particles, Fused-core particles, Core–shell particles, Peptides, Proteins, Drug separations

  17. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose

  18. Numerical simulations on a high-temperature particle moving in coolant

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  19. Effects of rocket jet on stability and control at high Mach numbers

    Fetterman, David E , Jr

    1958-01-01

    Paper presents the results of an investigation to determine the jet-interference effects which may occur at high jet static-pressure ratios and high Mach numbers. Tests were made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.86.

  20. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.