WorldWideScience

Sample records for high ozone days

  1. IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong

    Dufour, G.; Eremenko, M.; Orphal, J.; Flaud, J.-M.

    2010-04-01

    IASI observations of tropospheric ozone over the Beijing, Shanghai and Hong Kong areas during one year (2008) have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe seasonal and even day-to-day variations of lower tropospheric ozone (0-6 km partial columns) on the regional scale of highly populated areas. The monthly variations of lower tropospheric ozone retrieved from IASI clearly show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed a sharp ozone maximum in late spring and early summer (May-June) followed by a summer minimum. The time periods and the intensities of the maxima and of the decreases are latitude-dependent: they are more pronounced in Hong Kong and Shanghai than in Beijing. Moreover, IASI provides the opportunity to follow the spatial variations of ozone over the surroundings of each megacity as well as its daily variability. We show here that the large lower tropospheric ozone amounts (0-6 km partial columns) observed with IASI are mainly downwind the highest populated areas in each region, thus possibly suggesting the anthropogenic origin of the large ozone amounts observed. Finally, an analysis of the mean ozone profiles over each region - for selected days with high ozone events - in association with the analysis of the meteorological situation shows that the high ozone amounts observed during winter are likely related to descents of ozone-rich air from the stratosphere, whereas in spring and summer the tropospheric ozone is likely enhanced by photochemical production in polluted areas and/or in air masses from fire plumes.

  2. On the winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in middle to high latitudes

    Sonnemann, G. R.; Hartogh, P.; Jarchow, Ch.; Grygalashvyly, M.; Berger, U.

    Long-term measurements of ozone by means of the microwave technique performed at Lindau (51.66°N, 10.13°E), Germany, revealed a winter anomaly of the night-to-day ratio (NDR) which is more clearly pronounced as the so-called tertiary nighttime ozone maximum. The domain of occurrence also differs somewhat from that of the nighttime ozone enhancement. The maximum winter-to-summer ratio amounts to a value of two to three in 70 km height. The annual variation of the NDR is modulated by oscillations of planetary time scale. 3D-calculations on the basis of the advanced GCM LIMA essentially reflect the observations but also show some typical differences which probably result from a somewhat too humid model atmosphere in middle latitudes. We analyzed the most important impacts on the middle mesospheric ozone. The strongest impacts are connected with the annual variation of water vapor and the so-called Doppler-Sonnemann effect considering the influence of the zonal wind on the chemistry due to the fact that ozone is subjected to an effective dissociation longer than molecular oxygen for an increasing solar zenith angle. Because of that the net odd oxygen production decreases faster than the formation of atomic oxygen from ozone which is involved in an odd oxygen destructing catalytic cycle. A shortening of the time of sunset by a west wind regime increases the nighttime ozone level relatively, whereas the daytime ozone is less influenced by the zonal wind in the domain considered.

  3. Surface ozone in China: present-day distribution and long-term changes

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  4. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health

    Zoë L. Fleming

    2018-02-01

    Full Text Available This study quantifies the present-day global and regional distributions (2010–2014 and trends (2000–2014 for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8; number of days with MDA8 > 70 ppb (NDGT70, SOMO35 (annual Sum of Ozone Means Over 35 ppb and two seasonally averaged metrics (3MMDA1; AVGMDA8. These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data. Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual. Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions.

  5. Global Ozone Distribution relevant to Human Health: Metrics and present day levels from the Tropospheric Ozone Assessment Report (TOAR)

    Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.

  6. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  7. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  8. Green accounts & day high schools

    Jørgensen, Michael Søgaard

    1997-01-01

    The arcticle presents the concept of green accounts and describes how it can be used in the daily work and the teaching at day high schools.......The arcticle presents the concept of green accounts and describes how it can be used in the daily work and the teaching at day high schools....

  9. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    A. Gaudel

    2018-05-01

    Full Text Available 'The Tropospheric Ozone Assessment Report' (TOAR is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited

  10. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  11. An investigation of high ozone episodes in the City of Johannesburg

    Padayachi, YR

    2014-10-01

    Full Text Available A study of ozone monitoring data in Johannesburg highlighted that the city is frequently affected by high ozone episodes. There is limited knowledge about the chemical and meteorological drivers of these high ozone episodes in Johannesburg...

  12. 3D analysis of high ozone production rates observed during the ESCOMPTE campaign

    Coll, Isabelle; Pinceloup, Stéphanie; Perros, Pascal E.; Laverdet, Gérard; Le Bras, Georges

    2005-03-01

    The development of environmental policies to reduce the ozone levels around large agglomerations requires a good understanding of the development of ozone episodes. In particular, it is necessary to know the location and photochemical activity of the plume where ozone is formed. Measurement campaigns make it possible not only to characterize the concentration fields of ozone and its precursors but also to identify the zones of strong ozone production, by means of specific measurements and kinetic calculations. The combination of the observation-based data with numerical simulations allows to better characterize photochemical pollution. This paper presents a study carried out within the ESCOMPTE program and based on the determination of ozone production rates by experimental and numerical methods: ground measurements of peroxy radicals, NO x at a rural site, airborne measurements of NO X and O 3, Eulerian modeling. The reported case is of particular interest since it corresponds to an episode with very different photochemical situations. The diurnal variations of the peroxy radical concentration are analyzed in relation to those of ozone and its precursors. Ozone production rates— P(O 3)-are studied over one particular day. The results show particularly high concentrations of RO 2+HO 2 at ground level (up to 200 pptv) under the influence of the urban and industrial plume, but also highlight very high production rates of ozone (60 to 80 ppbv h -1) a few tens of kilometers from the sources. The results show satisfactory agreement between the various approaches. Modeling provides a four-dimensional (4D) description of the plumes, in particular the relation between the ozone precursor concentrations and P(O 3) on the ground.

  13. Ozone: Good Up High, Bad Nearby

    ... are already under stress from UV radiation. This stress could have adverse consequences for human food supplies from the oceans. What is Being Done About the Depletion of “Good” Ozone? The United States, along with over 180 ...

  14. High ozone levels in the northeast of Portugal: Analysis and characterization

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A. I.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2010-03-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d'Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes at this site. Synoptic patterns anomalies and back trajectories cluster analysis were performed, for the period between 2004 and 2007, considering 76 days when ozone maximum hourly concentrations were above 200 μg m -3. The obtained atmospheric anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. A strong wind flow pattern from NE is observable in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal during summer. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, are responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants is the main contributor to the ozone levels registered at Lamas d'Olo. This is also highlighted by the correlation of the ozone time-series with the meteorological parameters analysed in the frequency domain.

  15. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Demissie, T.D.; Hibbins, R.E.; Espy, P.J. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway); Birkeland Centre for Space Science, Bergen (Norway); Kleinknecht, N.H.; Straub, C. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway)

    2013-09-01

    Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67 34' S, 68 08' W) and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72 01' S, 2 32' E) in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3-12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O{sub 3} volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure. (orig.)

  16. Investigating a high ozone episode in a rural mountain site

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  17. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  18. High-tension corona controlled ozone generator for environment protection

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  19. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Torres-JArdon, R.

    2013-05-01

    July to September. Episodes of high concentrations occurred mainly during the dry warm months. Most of the year, nocturnal ozone levels were higher than those registered in the urban area due to the PMH altitude. As a great part of the mountain terrain regularly is above the nocturnal mixing layer formed each day on the valley floor, the ozone remanent levels above this layer in the mountains are kept isolated from urban NOx emissions generated at night. An evaluation of the AOT40 indicator shows that the forest zone is under a strong risk due to ozone pollution. A preliminary analysis of several ozone events in the PNMH shows the suppression of the diel peak, suggesting that a stratospheric intrusion of ozone occurs frequently in high-elevation sites surrounding MCMA.

  20. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    2013-07-01

    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  1. MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG V006

    National Aeronautics and Space Administration — MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG (MYD08_E3). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator...

  2. Multimodel ensemble simulations of of present-day and near-future tropospheric ozone

    Stevenson, D.S.; Dentener, F.J.; van Noije, T.P.C.; Eskes, H.J.; Krol, M.C.

    2006-01-01

    Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions

  3. Multimodel ensemble simulations of present-day and near-future tropospheric ozone

    Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; Noije, van T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; Bergmann, D.J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W.J.; Derwent, R.G.; Doherty, R.M.; Drevet, J.; Eskes, H.J.; Fiore, A.M.; Gauss, M.; Hauglustaine, D.A.; Horowitz, L.W.; Isaksen, I.S.A.; Krol, M.C.; Lamarque, J.F.; Lawrence, M.G.; Montanaro, V.; Muller, J.F.; Pitari, G.; Prather, M.J.; Pyle, J.A.; Rast, S.; Rodriguez, J.M.; Sanderson, M.G.; Savage, N.H.; Shindell, D.T.; Strahan, S.E.; Sudo, K.; Szopa, S.

    2006-01-01

    Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions

  4. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses

    García-Pérez, Teresa [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Aizpuru, Aitor [Universidad del Mar, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México C.P. 70902 (Mexico); Arriaga, Sonia, E-mail: sonia@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-11-15

    Highlights: • Ozone addition permits to treat higher formaldehyde loads than ever reported. • Ozone addition acts as an indirect in situ pH regulator, minimizing the accumulation of acid byproducts. • Mineralization of formaldehyde occurs, which has never been reported. • Low ozone levels have no negative effects on biological degradation activity. • The use of hybrid processes allows overcoming biofiltration limitations. -- Abstract: A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m{sup −3} h{sup −1}. A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m{sup −3} h{sup −1}; the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH < 4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m{sup −3} h{sup −1}). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde.

  5. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  6. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  7. Global pictures of the ozone field from high altitudes from DE-I

    Keating, G. M.; Frank, L.; Craven, J.; Shapiro, M.; Young, D.; Bhartia, P.

    1982-01-01

    Detailed synoptic views of the column ozone field can be obtained by the Spin-Scan Ozone Imager (SOI) (Keating et al., 1981) aboard the Dynamics Explorer I satellite. The eccentric polar orbit with an apogee altitude of 23,000 km allows high resolution global-scale images to be obtained within 12 minutes, and allows regions to be viewed for long periods of time. At perigee, a pixel size of nadir measurements of 3 km is possible, and measurements are determined using the backscattered ultraviolet technique. A wavelength measurement of 317.5 nm is used as there are limitations in filter locations and it allows comparison with Nimbus 7 SBUV/TOMS data. Consideration of the reflectivities of this data aids in checking the SOI data reduction algorithm. SOI data show short-term (less than one day) variations in the observed ozone field, and a negative correlation (greater than 0.9) between ozone and tropopause heights. It is expected, due to this correlation, that SOI data will aid in understanding the time evolution of dynamics near the tropopause.

  8. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  9. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  10. Future heat waves and surface ozone

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  11. A high voltage DC switching power supply of corona discharge for ozone tube

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  12. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  13. Estonian total ozone climatology

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  14. [Ozone concentration distribution of urban].

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  15. Ozone trends at northern mid- and high latitudes – a European perspective

    N. R. P. Harris

    2008-05-01

    Full Text Available The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds. Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent

  16. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed

    Chang, C.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chiu, C.-Y. [Department of Cosmetic Science and Application, Lan-Yang Institute of Technology, I-Lan 261, Taiwan (China); Chang, C.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)], E-mail: cychang3@ntu.edu.tw; Chang, C.-F. [Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan (China); Chen, Y.-H. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Science, Kaohsiung City 807, Taiwan (China); Ji, D.-R.; Yu, Y.-H.; Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2009-01-15

    In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al{sub 2}O{sub 3}) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2 g L{sup -1}. The UV and Pt/{gamma}-Al{sub 2}O{sub 3} combined in HG-OZ can enhance the TOC mineralization efficiency ({eta}{sub TOC}) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest {eta}{sub TOC} of about 68%.

  17. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  18. PHOTOCHEMICAL AIR POLLUTION IN THE NORTH OF PORTUGAL: A HIGH TROPOSHERIC OZONE EPISODE

    Monteiro, A.; Carvalho, A.; Tchepel, O.; Ferreira, J.; Martins, H.; Miranda, A.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J. A.

    2009-12-01

    Very high concentrations of ozone are continuously measured at the monitoring station at Lamas d’Olo, located at the North of Portugal,. A particular high photochemical episode occurred between 11 and 13 of July 2005, registering ozone hourly maximum values above 350 µg.m-3. This ozone-rich episode is investigated in this paper, in order to identify its origin and formation. Besides the analysis of both meteorological and air quality monitoring datasets, a numerical modelling approach, based on MM5-CAMx system, was used to simulate the dispersion and transport (horizontal and vertical) of the photochemical pollutants and its precursors. A cross spectrum analysis of the meteorological and air quality time series was performed, in the frequency domain, to establish the relationships between ozone data measured at Lamas d’Olo with air quality data from neighbourhood stations and meteorological parameters. Results point out different behaviour/contribution between the analysed sites. Moreover, different contributions of the u and v wind component on the ozone concentration fluctuations were found suggesting the presence a mountain breeze circulation and a north synoptic transport. The preliminary modelling results pointed out that the vertical transport of pollutants are responsible for the measured high concentrations, combined with particular meteorological conditions, related to the planetary boundary layer (PBL) development. The pollutants transported and existent at high vertical levels are captured/trapped when the PBL height reaches its daily maximum, and extremely high ozone ground level concentrations are consequently measured.

  19. Comparison of high-latitude line-of-sight ozone column density with derived ozone fields and the effects of horizontal inhomogeneity

    W. H. Swartz

    2006-01-01

    Full Text Available Extensive ozone measurements were made during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. We compare high-latitude line-of-sight (LOS slant column ozone measurements from the NASA DC-8 to ozone simulated by forward integration of measurement-derived ozone fields constructed both with and without the assumption of horizontal homogeneity. The average bias and rms error of the simulations assuming homogeneity are relatively small (−6 and 10%, respectively in comparison to the LOS measurements. The comparison improves significantly (−2% bias; 8% rms error using forward integrations of three-dimensional proxy ozone fields reconstructed from potential vorticity-O3 correlations. The comparisons provide additional verification of the proxy fields and quantify the influence of large-scale ozone inhomogeneity. The spatial inhomogeneity of the atmosphere is a source of error in the retrieval of trace gas vertical profiles and column abundance from LOS measurements, as well as a complicating factor in intercomparisons that include LOS measurements at large solar zenith angles.

  20. Ozone gradients in a spruce forest stand in relation to wind speed and time of the day

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skärby, L.

    Ozone concentrations were measured outside and inside a 60-year-old 15-20 m tall spruce forest at a wind-exposed forest edge in southwest Sweden, at 3 and 13 m height 15 m outside the forest, and at 3 and 13 m height inside the forest 45 m from the forest edge. Measurements at 3 m were made with three replicate tubes on each site, the replicates being separated by 10 m. In addition, horizontal and vertical wind speeds were measured at 8 m height outside and inside the forest. During daytime, the concentrations inside the forest were generally slightly lower. Negative ozone concentration gradients from the open field into the forest were observed at 3 m height when the wind speed was below approximately 1.5 m s -1. At very low wind speeds, mainly occurring during the night, the ozone concentrations at 3 m height were frequently higher inside the forest than outside the forest. This may be caused by a very large aerodynamic resistance to ozone deposition, due to very small air movements inside the forest under stable conditions. It is concluded that ozone uptake by the trees is likely to be very small at night, even if stomata are not entirely closed. Results from open-top chamber experiments are also discussed.

  1. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  3. [Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].

    Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun

    2005-11-01

    The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.

  4. Effect of gaseous ozone for control of stored product pests at low and high temperature

    Hansen, Lise Stengård; Hansen, Peer; Vagn Jensen, Karl-Martin

    2013-01-01

    Gaseous ozone (O3) has shown potential for control of insects in stored grain. A previous laboratory study determined doses of ozone necessary to control freely exposed and internal stages of eleven stored product pest species at 20 C. In this study the impact of temperature on the effect of ozone...... was tested on two species of stored product pests: Sitophilus granarius and Plodia interpunctella. Insects were exposed to continuous flows of ozone in doses of approximately 33 ppm for 6 d or approximately 131 ppm for 8 d at low temperatures between 7.3 and 7.9 C and high temperatures between 29.6 and 31.......6 C, respectively. Results from the previous study conducted at 20 C were used in the data analysis. The result of the treatments was unaffected by the temperatures used in the study. Treatment with a high dose of ozone for 8 d led to full mortality in all stages of S. granarius and all stages of P...

  5. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  6. Source of high-voltage power supply for ozone generators at glow discharge

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  7. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  8. Ozone decomposition

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  9. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  10. Achieving accurate simulations of urban impacts on ozone at high resolution

    Li, J; Georgescu, M; Mahalov, A; Moustaoui, M; Hyde, P

    2014-01-01

    The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations [O 3 ] due to urbanization within cities in arid/semi-arid environments. First, a method based on a shape preserving Monotonic Cubic Interpolation (MCI) is developed and used to downscale anthropogenic emissions from the 4 km resolution 2005 National Emissions Inventory (NEI05) to the finest model resolution of 1 km. Using the rapidly expanding Phoenix metropolitan region as the area of focus, we demonstrate the proposed MCI method achieves ozone simulation results with appreciably improved correspondence to observations relative to the default interpolation method of the WRF-Chem system. Next, two additional sets of experiments are conducted, with the recommended MCI approach, to examine impacts of urbanization on ozone production: (1) the urban land cover is included (i.e., urbanization experiments) and, (2) the urban land cover is replaced with the region’s native shrubland. Impacts due to the presence of the built environment on [O 3 ] are highly heterogeneous across the metropolitan area. Increased near surface [O 3 ] due to urbanization of 10–20 ppb is predominantly a nighttime phenomenon while simulated impacts during daytime are negligible. Urbanization narrows the daily [O 3 ] range (by virtue of increasing nighttime minima), an impact largely due to the region’s urban heat island. Our results demonstrate the importance of the MCI method for accurate representation of the diurnal profile of ozone, and highlight its utility for high-resolution air quality simulations for urban areas. (letter)

  11. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  12. MATHEMATICAL MODELING OF ELECTRO TECHNOLOGICAL OZONIZATION OF EGG STORES OF POULTRY FARMS

    Voloshin A. P.

    2016-01-01

    Sanitization of eggs is an essential way to fight bacteria, fungi and other microorganisms. Hatchability of eggs and the safety of day-old chicks are dependent on the quality of eggs processing. Leading scientists of our country have proved high efficacy of ozone application for processing of hatching eggs. To obtain a positive result by this method of sanitizing hatching eggs ozone, it is necessary to create a uniform concentration of ozone around the egg store volume. Decrease in ozone conc...

  13. The Role of Electronegative Impurities in Ozone Generation by High Pressure Discharges

    Skalny, J.

    2000-01-01

    The high pressure discharges (pulsed or D C corona, barrier, gliding and the others), have been studied both experimentally and theoretically as sources of low temperature plasma for pollution control technologies. The potential of electrical discharge methods has been demonstrated for the decomposition of many types of VOC. The air or oxygen are used as a feed gas in which pollutant is diluted. The ozone production in air or oxygen in such discharges is also discussed

  14. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Kinnison, D E; Connell, P S [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  15. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  16. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  17. BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.

    Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo

    2015-04-01

    Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates

  18. Impact of Ozone Valley over the Tibetan Plateau on the South Asian High in CAM5

    Zhenkun Li

    2017-01-01

    Full Text Available Local climate effects of Tibetan Plateau Ozone Valley (OVTP were investigated by numerical simulations using Community Atmosphere Model version 5.1.1 (CAM5. After a 20-year spin-up period, two additional 10-year experiments were conducted. CAM5 was driven by monthly mean climatological ozone in control experiment (CE and OVTP in the sensitivity experiment (SE was removed from May to September. After the removal of OVTP, South Asian High (SAH becomes more robust and colder from June to August, especially in June. The reason for enhancement of SAH is that removal of OVTP increasing ozone in 200–30 hPa leads to significant enhancement of longwave and shortwave radiative heating rate in SAH region in June, and then enhancement of horizontal divergence resulting from the radiative warming leads to strengthening of SAH influenced by the Coriolis force, while the colder SAH is primarily caused by dynamic processes. Adiabatic expansion and ascending movement mainly bring about temperature decrease in SAH after OVTP removal, but the thermodynamic process related to radiative heating offsets part of the cooling response.

  19. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    U.S. Environmental Protection Agency — pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets. This dataset...

  20. From ozone depletion to biological UV damage

    Tamm, E; Thomalla, E; Koepke, P [Munich Univ. (Germany). Meteorological Inst.

    1996-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  1. From ozone depletion to biological UV damage

    Tamm, E.; Thomalla, E.; Koepke, P. [Munich Univ. (Germany). Meteorological Inst.

    1995-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  2. Ozone bleaching of South African Eucalyptus grandis kraft pulps containing high levels of hexenuronic acids

    Andrew, JE

    2013-08-01

    Full Text Available Ozone use in conjunction with chlorine dioxide during pulp bleaching offers several advantages over conventional bleaching sequences that make use of chlorine dioxide only. Despite this, in South Africa, only one mill uses ozone. The current study...

  3. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  4. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  5. LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Tiago André Fontoura de MELO

    2016-01-01

    Full Text Available Abstract The present study aims to verify the effect of ozone gas (OZY® System and high frequency electric pulse (Endox® System systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS. Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10 based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p; OZY® System, four 24-second-pulses (OZY 4p; and Endox® System (ENDOX. Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+ and negative (C- controls, respectively. LPS (O55:B55 was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019. The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals.

  6. Total ozone retrieval from satellite multichannel filter radiometer measurements

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  7. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Ozone injury to celery. [Apium graveolens

    Rich, S.

    1966-10-01

    Ozone is the principal air pollutant damaging crops in Connecticut. Ozone injury in Connecticut has been found on a number of crops including tobacco, tomatoes, potatoes, spinach, alfalfa, and cereals. This is the first report of ozone damage to celery (Apium graveolens var. dulce) in Connecticut, and perhaps in the United States. On July 7, 1966, celery plants with badly damaged older leaves were found in a commercial garden near Shelton, Connecticut. The injured leaves showed chlorotic and necrotic interveinal areas on their upper surfaces. These areas were slightly depressed. Cross sections of the lesions revealed that the palisade cells were most severely injured. Spinach and carrots growing near the celery showed typical symptoms of ozone damage. To substantiate the diagnosis, young celery plants were exposed to 0.2 ppm of ozone in a well-lighted plastic chamber for 1 to 3 hours. Five days later, these plants developed symptoms indentical to those found on celery in the field. Ozone damage appeared on many crops in southern Connecticut early in July. This injury probably occurred on June 27, when a high concentration of ozone (0.1 ppm) was present in the New Haven area.

  9. A pervasive role for biomass burning in tropical high ozone/low water structures

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannan, Thomas; Bauguitte, Stephane; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Carpenter, Lucy J.; Cohen, Mark D.; Evans, Mathew; Fernandez, Rafael P.; Kahn, Brian H.; Kinnison, Douglas E.; Hall, Samuel R.; Harris, Neil R. P.; Hornbrook, Rebecca S.; Lamarque, Jean-Francois; Le Breton, Michael; Lee, James D.; Percival, Carl; Pfister, Leonhard; Pierce, R. Bradley; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Stunder, Barbara J. B.; Thompson, Anne M.; Ullmann, Kirk; Vaughan, Adam; Weinheimer, Andrew J.

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

  10. Leveraging Mechanism Simplicity and Strategic Averaging to Identify Signals from Highly Heterogeneous Spatial and Temporal Ozone Data

    Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.

    2017-12-01

    We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.

  11. SMM mesospheric ozone measurements

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  12. Results of ozone measurements in Northern Germany: A case study

    Schmidt, Manfred

    1994-01-01

    At most of the German ozone recording stations which have records over a sufficiently long period, the results of the summer months of 1989 showed the highest values since the beginning of the measurements. One of the reasons for this phenomenon was the high duration of sunshine in that summer; for example, in Potsdam near Berlin in May 1989 the sunshine duration was the highest in May since the beginning of the records in 1893. For that reason we selected this summer for a case study. The basis for the study was mainly the ozone measuring stations of the network of Lower Saxony and the Federal Office of Environment (Umweltbundesamt). The results of these summer measurements point to intense sources of ozone, probably in form of gaseous precursors, in the Middle German industrial areas near Leipzig and Halle and in Northwestern Czechoslovakia, with coal-mining, chemical and petrochemical industries, coking plants and others. The maps of average ozone concentrations, number or days with high ozone maxima, ozone-windroses of the stations, etc., suggest that these areas could be a main source of precursors and of photochemical ozone production in summer smog episodes in Central Europe. Stations on the North Sea coast, at which early ozone measurements were made by our institute in 1973/74 are compared with similarly located stations of the Lower Saxon network in 1989 and the results show a reversal of the ozone-windroses. In 1973/74, the highest ozone concentrations were correlated with wind directions from the sea while in 1989 these concentrations were correlated with directions from the continent. In the recent years, photochemical ozone production on the continent is probably predominant, while in former years the higher ozone content of the maritime subpolar air masses has been explained by stratospheric-tropospheric exchange.

  13. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  14. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  15. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed

    Chang, Chia-Chi; Chiu, Chun-Yu; Chang, Ching-Yuan; Chang, Chiung-Fen; Chen, Yi-Hung; Ji, Dar-Ren; Tseng, Jyi-Yeong; Yu, Yue-Hwa

    2009-01-01

    In this study, a high-gravity rotating packed bed (HGRPB or HG) was used as a catalytic ozonation (Cat-OZ) reactor to decompose phenol. The operation of HGRPB system was carried out in a semi-batch apparatus which combines two major parts, namely the rotating packed bed (RPB) and photo-reactor (PR). The high rotating speed of RPB can give a high volumetric gas-liquid mass transfer coefficient with one or two orders of magnitude higher than those in the conventional packed beds. The platinum-containing catalyst (Dash 220N, Pt/γ-Al 2 O 3 ) and activated alumina (γ-Al 2 O 3 ) were packed in the RPB respectively to adsorb molecular ozone and the target pollutant of phenol on the surface to catalyze the oxidation of phenol. An ultra violet (UV) lamp (applicable wavelength λ = 200-280 nm) was installed in the PR to enhance the self-decomposition of molecular ozone in water to form high reactive radical species. Different combinations of advanced oxidation processes (AOPs) with the HGRPB for the degradation of phenol were tested. These included high-gravity OZ (HG-OZ), HG catalytic OZ (HG-Cat-OZ), HG photolysis OZ (HG-UV-OZ) and HG-Cat-OZ with UV (HG-Cat-UV-OZ). The decomposition efficiency of total organic compound (η TOC ) of HG-UV-OZ with power of UV (P UV ) of 16 W is 54% at applied dosage of ozone per volume sample m A,in = 1200 mg L -1 (reaction time t = 20 min), while that of HG-OZ without the UV irradiation is 24%. After 80 min oxidation (m A,in = 4800 mg L -1 ), the η TOC of HG-UV-OZ is as high as 94% compared to 82% of HG-OZ process. The values of η TOC for HG-Cat-OZ process with m S = 42 g are 56% and 87% at m A,in = 1200 and 4800 mg L -1 , respectively. By increasing the catalyst mass to 77 g, the η TOC for the HG-Cat-OZ process reaches 71% and 90% at m A,in = 1200 and 4800 mg L -1 , respectively. The introduction of Pt/γ-Al 2 O 3 as well as UV irradiation in the HG-OZ process can enhance the η TOC of phenol significantly, while γ-Al 2 O 3 exhibits

  16. Ozone concentration characteristics in and over a high-altitude forest

    Wooldridge, G.L.; Zeller, K.F.; Musselman, R.C. [USDA Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO (United States)

    1994-12-31

    Four years of atmospheric ozone data from a subalpine forest site at an elevation of 3180 m above mean sea level (msl) about 55 km west of Laramie, Wyoming, U.S.A., and at a 2680 msl forest-steppe ecotone site 15 km to the southeast, have been analyzed. These sites appear to be free of any urban or industrial pollutants. Data for January through June show that the amplitude of the diurnal cycle of hourly mean values is small in winter, then increases through June. The highest monthly mean concentrations occur in April or May, and decrease in June. Episodal high O{sub 3} values were measured during spring months in connection with cutoff low pressure centers aloft and probable stratospheric intrusions. Spectral analyses yield a peak at the diurnal period and broad peaks at longer periodicities, particularly during the spring season. (orig.)

  17. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water.

    Sadrnourmohamadi, Mehrnaz; Gorczyca, Beata

    2015-04-15

    This study investigates the effect of ozone as a stand-alone and coagulation aid on the removal of dissolved organic carbon (DOC) from the water with a high level of DOC (13.8 mgL(-1)) and calcium hardness (270 mgL(-1)) CaCO3. Natural water collected from the Assiniboine River (Manitoba, Canada) was used in this study. Effectiveness of ozone treatment was evaluated by measurement of DOC, DOC fractions, UV254, and trihalomethane formation potential (THMFP). Additionally, zeta potential and dissolved calcium concentration were measured to discern the mechanism of ozone reactions. Results indicated that 0.8 mg O3/mg DOC ozone stand-alone can cause up to 86% UV254 reduction and up to 27% DOC reduction. DOC fractionation results showed that ozone can change the composition of DOC in the water samples, converting the hydrophobic fractions into hydrophilic ones and resulting in the reduction of THMFP. Also, ozone caused a decrease in particle stability and dissolved calcium concentration. These simultaneous ozonation effects caused improved water flocculation and enhanced removal of DOC. This resulted in reduction of the coagulant dosage when ozone doses higher than 0.2 mg O3/mg DOC were applied prior to coagulation with ferric sulfate. Also, pre-ozonation-coagulation process achieved preferential THMFP removal for all of the ozone doses tested (0-0.8 mg O3/mg DOC), leading to a lower specific THMFP in pre-ozonated-coagulated waters than in the corresponding ozonated waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of a pilot scale high pressure plasma ozonizer for use in ...

    The plasma technique which is used for wastewater treatment is one of the most effective processes for ozone production. In this study, a laboratory scale plasma technique ozonizer designed for treating wastewater was tested under various operation conditions which included voltage (E), current frequency (f), electrical ...

  19. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  20. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  1. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats.

    Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P

    2017-05-01

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O 3 ). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O 3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O 3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O 3 . Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O 3 with responses markedly exacerbated in males. HF diet and O 3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O 3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O 3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O 3 in their adult offspring in a sex-specific manner.

  2. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  3. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  4. Effects of cold fronts on ozone in the Houston-Galveston-Brazoria Area

    Lei, R.; Talbot, R. W.; Wang, Y.; Wang, S. C.; Estes, M. J.

    2017-12-01

    A cold front may have confounding effects on ozone by bringing in contaminated air masses to an area and causing lower temperatures which likely lead to low ozone production rates. Literature reports on individual cold front events showing increasing and decreasing effects on ozone. The Houston-Galveston-Brazoria (HGB) area as the energy capital of USA suffers relatively high ozone levels. The effect of cold fronts on HGB ozone in the long-term range remains unknown. Weather Prediction Center (WPC) Surface Analysis Archive from National Oceanic and Atmospheric Administration (NOAA) which records cold fronts' positions since 2003 has been employed in this study. The results show the count of cold fronts passing the HGB area shows no clear trend but great interannual variation. Cold front appearance in summer is much less than in other seasons. In general, both mean MDA8 and background ozone during cold front days increased compared non-cold front days. This increasing effect has been enhanced during post-front days and summer season. Cluster analysis on meteorological parameters shows cold front days with high precipitation or wind speed could lower the MDA8 and background ozone but the proportion of those days are low in all cold front days. It may explain why cold fronts show increasing effects on ozone in the HGB area.

  5. Time series analysis of ozone data in Isfahan

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  6. Sarcopenia Is Negatively Related to High Gravitational Impacts Achieved From Day-to-day Physical Activity.

    Hartley, April; Gregson, Celia L; Hannam, Kimberly; Deere, Kevin C; Clark, Emma M; Tobias, Jon H

    2018-04-17

    Sarcopenia has been associated with reduced physical activity (PA). We aimed to determine if sarcopenia, and specific components of muscle size, function, and physical performance, are associated with high impacts achieved during habitual PA, as these are related to bone strength in community-dwelling older women. Participants were older women from the Cohort of Skeletal Health in Bristol and Avon. We defined sarcopenia using the EWGSOP criteria. Lower limb peak muscle power and force were assessed using Jumping Mechanography (JM). High vertical impacts were assessed by tri-axial accelerometry (at least 1.5g above gravity). Cross-sectional associations were analyzed by linear regression, adjusting for age, height and weight (or fat mass for models including appendicular lean mass index), comorbidities, smoking, alcohol, and Index of Multiple Deprivation. Our analyses included 380 participants, with mean age 76.7 (SD 3.0) years; 242 (64%) also completed JM. In age-adjusted analysis, a negative relationship was observed between severity of sarcopenia and high, but not medium or low, impacts (p = .03 for trend). Regarding components of sarcopenia underlying this relationship, multivariable analyses revealed that gait speed (β 1.47 [95% CI 1.14, 1.89], [β-1] reflects the proportionate increase in high impacts per SD increase in exposure) and peak force (1.40 [1.07, 1.84]) were independently associated with high impacts. Older women with sarcopenia experienced fewer bone-strengthening high impacts than those with presarcopenia or without sarcopenia. To increase bone strengthening activity in older women, interventions need to improve both lower limb muscle force and walking speed.

  7. 77 FR 15368 - 2012 Annual Meeting of the Ozone Transport Commission

    2012-03-15

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9647-5] 2012 Annual Meeting of the Ozone Transport Commission... Environmental Protection Agency is announcing the 2012 Annual Meeting of the Ozone Transport Commission (OTC... such as performance standards for electric generating units (EGUs) on high electric demand days, oil...

  8. 78 FR 25265 - 2013 Annual Meeting of the Ozone Transport Commission

    2013-04-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9806-5] 2013 Annual Meeting of the Ozone Transport Commission... Environmental Protection Agency is announcing the 2013 Annual Meeting of the Ozone Transport Commission (OTC... such as performance standards for electric generating units (EGUs) on high electric demand days, oil...

  9. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  10. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  11. High resolution tempo-spatial ozone prediction with SVM and LSTM

    Gao, D.; Zhang, Y.; Qu, Z.; Sadighi, K.; Coffey, E.; LIU, Q.; Hannigan, M.; Henze, D. K.; Dick, R.; Shang, L.; Lv, Q.

    2017-12-01

    To investigate and predict the exposure of ozone and other pollutants in urban areas, we utilize data from various infrastructures including EPA, NOAA and RIITS from government of Los Angeles and construct statistical models to conduct ozone concentration prediction in Los Angeles areas at finer spatial and temporal granularity. Our work involves cyber data such as traffic, roads and population data as features for prediction. Two statistical models, Support Vector Machine (SVM) and Long Short-term Memory (LSTM, deep learning method) are used for prediction. . Our experiments show that kernelized SVM gains better prediction performance when taking traffic counts, road density and population density as features, with a prediction RMSE of 7.99 ppb for all-time ozone and 6.92 ppb for peak-value ozone. With simulated NOx from Chemical Transport Model(CTM) as features, SVM generates even better prediction performance, with a prediction RMSE of 6.69ppb. We also build LSTM, which has shown great advantages at dealing with temporal sequences, to predict ozone concentration by treating ozone concentration as spatial-temporal sequences. Trained by ozone concentration measurements from the 13 EPA stations in LA area, the model achieves 4.45 ppb RMSE. Besides, we build a variant of this model which adds spatial dynamics into the model in the form of transition matrix that reveals new knowledge on pollutant transition. The forgetting gate of the trained LSTM is consistent with the delay effect of ozone concentration and the trained transition matrix shows spatial consistency with the common direction of winds in LA area.

  12. Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film.

    Wu, Chiu-Hsien; Jiang, Guo-Jhen; Chang, Kai-Wei; Deng, Zu-Yin; Li, Yu-Ning; Chen, Kuen-Lin; Jeng, Chien-Chung

    2018-01-09

    In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO) thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60-70 ppb also showed a good response. The resistance change (Δ R ) and sensitivity ( S ) were linearly dependent on the ozone concentration. The response time ( T 90-res ), recovery time ( T 90-rec ), and time constant (τ) showed first-order exponential decay with increasing ozone concentration. The resistance-time curve shows that the maximum resistance change rate (dRg/dt) is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ), and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications.

  13. Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film

    Chiu-Hsien Wu

    2018-01-01

    Full Text Available In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60–70 ppb also showed a good response. The resistance change (ΔR and sensitivity (S were linearly dependent on the ozone concentration. The response time (T90-res, recovery time (T90-rec, and time constant (τ showed first-order exponential decay with increasing ozone concentration. The resistance–time curve shows that the maximum resistance change rate (dRg/dt is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ, and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications.

  14. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  15. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  16. Climatology and trends of summer high temperature days in India ...

    patterns, there is clear change in climatological mean and coefficient of variation of HT days in a ... regions of India probably from mid 1990s. ... in extreme climate events are more sensitive to cli- ... C since mid-1990s in south, east, north.

  17. Ozone, area social conditions, and mortality in Mexico City

    O'Neill, M.S.; Loomis, Dana; Borja-Aburto, V.H.

    2004-01-01

    We investigated whether the association of daily mortality and ambient ozone differs by age and area social conditions of the region of residence using a time-series analysis. The study setting was metropolitan Mexico City, a high altitude city situated in a valley, with an estimated 20 million inhabitants, large socioeconomic gradients, and ozone levels frequently exceeding international standards. We stratified daily deaths by six census-derived socioeconomic indicators, based on characteristics of the county where decedents lived. We used Poisson regression to model the association between daily mortality and ozone levels (on the day of death and the previous day) in separate models, stratified by area socioeconomic level and age, and controlling for time trends and temperature. Ozone was positively associated with total mortality [0.65% increase per 10 ppb increment, 95% confidence interval (CI): 0.02%, 1.28%] and for mortality among those over age 65 [1.39% increase per 10 ppb increment, 95% CI: 0.51%, 2.28%]. Associations between ozone and all-age mortality did not show any consistent patterns according to socioeconomic gradients. We conclude that elderly people are at higher risk for ozone-associated mortality. Though county-level social indicators in Mexico City were not strong markers of vulnerability to ozone-associated acute mortality in this analysis, complex associations between individual and area-level factors may exist that would require additional data and further analyses to elucidate

  18. The meteorological environment of the tropospheric ozone maximum over the tropical South Atlantic

    Krishnamurti, T N; Fuelberg, H E; Bensman, E L; Sinha, M C; Oosterhof, D; Kumar, V B [Florida State University, Tallahassee, FL (United States). Department of Meteorology

    1993-01-01

    This paper examines atmospheric flow patterns over the Southern Atlantic Ocean, where a maximum of tropospheric ozone is observed just west of Southern Africa. The climatology of the South Atlantic basin is shown to favour flow off from South America and Africa converging into the area of high tropospheric ozone. This ozone is initially attributable to byproducts of biomass burning over both these continents. A case study, carried out over 6 days during October 1989, was used to determine the effect of a purely advective scheme (no photochemistry) on the distribution of ozone over the basin. The results showed a pattern in which ozone accumulated off the west coast of South Africa within 72 hours after beginning with an homogenous, zonally-symmetric distribution of ozone. 11 refs.

  19. Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    Proedrou, Elisavet; Hocke, Klemens

    2016-06-01

    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column

  20. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  1. Measurement of Ozone Production Sensor

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  2. Evaluation of an every-other-day palonosetron schedule to control emesis in multiple-day high-dose chemotherapy.

    Mirabile, Aurora; Celio, Luigi; Magni, Michele; Bonizzoni, Erminio; Gianni, Alessandro Massimo; Di Nicola, Massimo

    2014-12-01

    Efficacy of intermittent palonosetron dosing in patients undergoing multiple-day, high-dose chemotherapy (HDC) was investigated. Fifty-eight patients received palonosetron (0.25 mg intravenous [iv.]) every other day plus daily dexamethasone (8 mg iv. twice daily) dosing. The primary end point was complete control (CC; no emesis, no rescue anti-emetics, and no more than mild nausea) in the overall acute-period (until 24 h after chemotherapy completion). Acute-period CC occurred in 81% and 50% of patients receiving palonosetron and ondansetron (historical control cohort), respectively. Palonosetron (odds ratio [OR]: 4.37; p = 0.001) and a longer duration of HDC regimen (OR: 3.47; p = 0.011) independently predicted a better anti-emetic outcome. Palonosetron every other day plus daily dexamethasone is an effective anti-emetic coverage in patients undergoing HDC.

  3. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  4. The ozone backlash

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  5. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.

    2011-12-01

    As the National Ambient Air Quality (NAAQS) standard for ozone (O_{3}) is lowered, it pushes closer to policy-relevant background levels (O_{3} concentrations that would exist in the absence of North American anthropogenic emissions), making attainment more difficult with local controls. We quantify the Asian and stratospheric components of this North American background, with a primary focus on the western United States. Prior work has identified this region as a hotspot for deep stratospheric intrusions in spring. We conduct global simulations at 200 km and 50 km horizontal resolution with the GFDL AM3 model, including a stratospheric O_{3} tracer and two sensitivity simulations with anthropogenic emissions from Asia and North America turned off. The model is evaluated with a suite of in situ and satellite measurements during the NOAA CalNex campaign (May-June 2010). The model reproduces the principle features in the observed surface to near tropopause distribution of O_{3} along the California coast, including its latitudinal variation and the development of regional high-O_{3} episodes. Four deep tropopause folds are diagnosed and we find that the remnants of these stratospheric intrusions are transported to the surface of Southern California and Western U.S. Rocky Mountains, contributing 10-30 ppbv positive anomalies relative to the simulated campaign mean stratospheric component in the model surface layer. We further examine the contribution of North American background, including its stratospheric and Asian components, to the entire distribution of observed MDA8 O_{3} at 12 high-elevation CASTNet sites in the Mountain West. We find that the stratospheric O_{3} tracer constitutes 50% of the North American background, and can enhance surface maximum daily 8-hour average (MDA8) O_{3} by 20 ppb when observed surface O_{3} is in the range of 60-80 ppbv. Our analysis highlights the potential for natural sources such as deep stratospheric intrusions to contribute

  6. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  7. Production and Transport of Ozone From Boreal Forest Fires

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  8. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  9. Changes in the surface ozone after the windstorm in 2004, in the High Tatras

    Bičárová Svetlana

    2015-06-01

    Full Text Available Extreme wind event in November 2004 caused spacious destruction of slope forests in the Tatra National Park, Slovakia. Relevant changes of land cover motivated researchers to investigate damaged forest ecosystem and its response to different environmental conditions. Surface ozone (O3 is a minor but not negligible compound of the ambient air. Control strategies for the reduction of O3 precursor emissions have been applied in Europe during the last two decades. In spite of these reductions, air quality indices for O3 suggest that highland sites are more vulnerable to health and environmental risk than lowlands where mostly emissions from road transport and industry are produced. Both anthropogenic sources and biogenic precursors (BVOC from forest vegetation play a relevant role in the tropospheric photochemistry, especially at mountainous and rural locations. The parameters of air quality are measured at background station Stará Lesná in the High Tatras region since 1992 in frame of an European project EMEP. Long-term data series (1992-2013 of O3 concentrations obtained for site Stará Lesná provide specific opportunity to investigate the response of BVOC reduction on O3 variability after windstorm 2004. Evaluation of these data indicates moderate increase of annual, monthly and hourly O3 means for the period from 2005 to 2013 in comparison with the previous period 1992-2004. Temporal interpolation shows evident changes of O3 concentrations, especially ~30% increase for night hours in spring season and on the contrary ~15% decrease for daylight afternoon hours in summer season. Statistically significant changes were identified for spring months (April and May, 0-6 hours and summer months (July, 12-20 hours. Increasing O3 values in the night may be associated with the absence of BVOC for ozonolysis reaction that is one of the mechanism for O3 depletion. On the other hand, the decline of daylight O3 values in summer suggests lower O3 production

  10. Ozone health effects

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  11. The ozone monitoring instrument

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  12. Mass tracking for chemical analysis: the causes of ozone formation in southern Ontario during BAQS-Met 2007

    P. A. Makar

    2010-11-01

    Full Text Available A three-level nested regional air pollution model has been used to study the processes leading to high ozone concentrations in the southern Great Lakes region of North America. The highest resolution simulations show that complex interactions between the lake-breeze circulation and the synoptic flow lead to significant enhancements in the photochemical production and transport of ozone at the local scale. Mass tracking of individual model processes show that Lakes Erie and St. Clair frequently act as photochemical ozone production regions, with average mid-day production rates of up to 3 ppbv per hour. Enhanced ozone levels are evident over these two lakes in 23-day-average surface ozone fields. Analysis of other model fields and aircraft measurements suggests that vertical circulation enhances ozone levels at altitudes up to 1500 m over Lake St. Clair, whereas subsidence enhances ozone over Lake Erie in a shallow layer only 250 m deep. Mass tracking of model transport shows that lake-breeze surface convergence zones combined with the synoptic flow can then carry ozone and its precursors hundreds of kilometers from these source areas, in narrow, elongated features. Comparison with surface mesonet ozone observations confirm the presence, magnitude, and timing of these features, which can create local ozone enhancements on the order of 30 ppbv above the regional ozone levels. Sensitivity analyses of model-predicted ozone and HOx concentrations show that most of the region is VOC-limited, and that the secondary oxidation pathways of aromatic hydrocarbons have a key role in setting the region's ozone and HOx levels.

  13. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  14. Ozone modeling

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  15. Ozone modeling

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  16. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  17. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    Li, Wei; Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J.; Liang, Yiran; Tian, Boyuan; Liang, Xuelei; Peng, Lianmao

    2014-01-01

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected

  18. New dynamic NNORSY ozone profile climatology

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  19. Ozone Pollution

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  20. Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    H. E. Rieder

    2010-10-01

    Full Text Available In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs and high (termed EHOs total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima, and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO and chemical features (e.g. strong polar vortex ozone loss, and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  1. High performance unipolar inverters by utilizing organic field-effect transistors with ultraviolet/ozone treated polystyrene dielectric

    Huang, Wei; Yu, Xinge; Fan, Huidong; Yu, Junsheng

    2014-01-01

    High performance unipolar inverters based on a significant variation of threshold voltage (V th ) of organic field-effect transistors (OFETs), which was realized by introducing UV/ozone (UVO) treatment to polystyrene (PS) dielectric, were fabricated. A controllable V th shift of more than 10 V was obtained in the OFETs by adjusting the UVO treating time, and the unipolar inverters exhibited inverting voltage near 1/2 driving voltage and a noise margin of more than 70% of ideal value. From the analysis of scanning electron microscopy, atom force microscopy, and X-ray photoelectron spectroscopy, the dramatic controllable V th of OFETs, which played a key role in high performance unipolar inverters, was attributed to the newly generated oxygen functional groups in the PS dielectric induced by UVO treatment.

  2. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  3. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  4. Influence of a pulse duration of high-voltage supply on the efficiency of ozone synthesis in the 'needle-plane' electrode system

    Golota, V.I.; Zavada, L.M.; Karas, V.I.; Kotjukov, O.V.; Poliakov, O.V.; Pugach, S.G.

    2007-01-01

    We present the results of studies of the electrodynamic characteristics of a barrier less discharge with electrodes of the 'needle-plane' type and a high-voltage pulse of positive polarity, being applied to the edge electrode. The efficiency of ozone synthesis is determined as a function of the pulse duration and repetition rate. It is shown that the electrodynamic characteristics of the discharge and the effectiveness of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of the pulse supply

  5. Physicochemical changes in minimal ozone-treated fresh shrimp ...

    treated fresh shrimp were evaluated tandem with microbiological efficacy of treatment during iced storage of up to 10 days. Safely discharged from commercially available domestic-type ozone facility, a previously defined minimal ozone treatment ...

  6. Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.

    2002-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.

  7. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Ø. Hodnebrog

    2012-09-01

    Full Text Available The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research.

    The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements.

    Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on

  8. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends

    P. J. Young

    2018-01-01

    Full Text Available The goal of the Tropospheric Ozone Assessment Report (TOAR is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for

  9. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  10. Wastewater purification. Combined electron-beam and ozone action in the aerosol flow

    Podzorova, E.A.; Pikaev, A.K.

    1998-01-01

    Complete text of publication follows. Ozone is forming with high enough radiation chemical yield during work of electron accelerator. It is useful to use oxidizing properties of ozone with combination of ionizing radiation. The combined action of ionized radiation and ozone on aqueous solutions increases efficiency of water purification. But at the same time, this kind process of water purification is characterized by some limited stages: 1. Ozone mass transfer rate from gaseous phase (where it is formed) into liquid phase (where pollutants present); 2. Small solubility ozone in water; 3. High rate constant of radiation induced decomposition of ozone. We have proposed some optimizations for this kind of process. The most effective action of ionized radiation and radiolytic ozone on polluted water is running this process in aerosol flow. The highly developed surface of phase division is provided the maximum rate of reaction of ozone with pollutants. The volatile pollutants react with radiolytic ozone in gaseous phase in ozone creation moment. Ozonoradiolysis of real municipal wastewater in an aerosol flow was investigated on a facility with electron accelerator with electron energy E=0,3 MeV, power up to 15 kWatt, productivity 500 m 3 /day. Density of the irradiated aerosol was 0,02-0,05 g/cm 3 . It is increase low-energy electron range on 1-2 orders of magnitude as compared with liquid water and increases effective depth of uniformed irradiated layer. Because aerosol density is much higher compare with air density, it is clear, that water drops in aerosol flow absorbed main energy. The treated municipal wastewater in this facility was cleaned from organic and inorganic pollutants. COD and BOD values were reduced. Water disinfecting is achieved to sanitary standards

  11. Total ozone changes in the 1987 Antarctic ozone hole

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  12. Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China

    J. Zhang

    2008-08-01

    Full Text Available Measurements of Volatile Organic Compounds (VOC are analyzed to characterize the sources impacting the Hong Kong area. The ratios of different VOC species, m,p-xylenes-to-ethylbenzene, C6H14-to-toluene and p-xylene-to-total xylenes are used for diagnostic analyses. Photochemical age analysis shows that the sources of reactive aromatics, the most important contributor to the photochemical reactivity, do not appear to be preferentially located in downtown Hong Kong. In addition, they do not appear to be dominated by mobile emissions based on the analyses of speciated VOC data from an earlier study, but related to industrial, waterfront, and fuel-storage activities. The ratios, p-xylene-to-total xylenes and dSO2/dNOy, suggest that the anomalously high pollutant concentrations in western Hong Kong in the early morning hours of two episode days appear to have come from transport of urban-type emissions. Comparison of observed ambient ratios of selected VOC and their ratios in the speciated VOC emission inventories for Hong Kong and adjacent Pearl River Delta (PRD Region gives mixed results. The observed ratio C6H14-to-toluene is consistent with the speciated version of the VOC emission inventory. The ratios of selected alkanes are not. This may be caused by the inaccuracies in the inventory and/or the speciation method.

  13. Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors

    Kung, Chung-Wei; Chen, Hsin-Wei; Lin, Chia-Yu; Vittal, R.; Ho, Kuo-Chuan

    2012-09-01

    A thin film of Co3O4 nanosheets is electrodeposited on a flexible Ti substrate by a one-step potentiostatic method, followed by an UV-ozone treatment for 30 min. The films before and after the UV-ozone treatment are characterized with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The film is composed of Co(OH)2 before UV-ozone treatment, and of Co3O4 after the treatment. The morphologies of both films are examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The obtained films are composed of nanosheets, and there is no change in their sheet-like morphology before and after the UV-ozone treatment. When applied for a supercapacitor, the Co3O4 modified Ti electrode (Co3O4/Ti) shows a far higher capacitance than that of the Co(OH)2 modified Ti electrode. The electrodeposition time and NaOH concentration in the electrolyte are optimized. A remarkably high specific capacitance of 1033.3 F g-1 is obtained for the Co3O4 thin film at a charge-discharge current density of 2.5 A g-1. The long-term stability data shows that there is still 77% of specific capacitance remaining after 3000 repeated charge-discharge cycles. The high specific capacitance and long-term stability suggest the potential use of Co3O4/Ti for making a flexible supercapacitor.

  14. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  15. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  16. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Spatial clustering and meteorological drivers of summer ozone in Europe

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central

  18. Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond.

    Oliveira, Gislayne Alves; Carissimi, Elvis; Monje-Ramírez, Ignacio; Velasquez-Orta, Sharon B; Rodrigues, Rafael Teixeira; Ledesma, María Teresa Orta

    2018-07-01

    The removal of nutrients by Scenedesmus sp. in a high-rate algal pond, and subsequent algal separation by coagulation-flocculation or flotation with ozone to recover biomolecules, were evaluated. Cultivation of Scenedesmus sp. in wastewater resulted in complete NH 3 -H removal, plus 93% total nitrogen and 61% orthophosphate removals. Ozone-flotation obtained better water quality results than coagulation-flocculation for most parameters (NH 3 -N, NTK, nitrate and nitrite) except orthophosphate. Ozone-flotation, also produced the highest recovery of lipids, carbohydrates and proteins which were 0.32 ± 0.03, 0.33 ± 0.025 and 0.58 ± 0.014 mg/mg of biomass, respectively. In contrast, there was a low lipid extraction of 0.21 mg of lipids/mg of biomass and 0.12-0.23 mg of protein/mg of biomass in the coagulation-flocculation process. In terms of biomolecule recovery and water quality, ozone showed better results than coagulation-flocculation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ozone Layer Protection

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  20. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  1. Tropospheric Enhancement of Ozone over the UAE

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  2. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes

    Shi, Wanju; Yin, Xinyou; Struik, Paul C.; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C.; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S.V.K.

    2017-01-01

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C),

  3. College Student for a Day: A Transition Program for High School Students with Disabilities

    Novakovic, Alexandra; Ross, Denise E.

    2015-01-01

    High school students with disabilities can benefit from early exposure to campus-based accommodations and supports as they transition to college. College Student for a Day (CSFAD) is an on-campus activity-based program that introduces high school students with disabilities to supports and accommodations on a college campus. This Practice Brief…

  4. Why are models unable to reproduce multi-decadal trends in lower tropospheric baseline ozone levels?

    Hu, L.; Liu, J.; Mickley, L. J.; Strahan, S. E.; Steenrod, S.

    2017-12-01

    Assessments of tropospheric ozone radiative forcing rely on accurate model simulations. Parrish et al (2014) found that three chemistry-climate models (CCMs) overestimate present-day O3 mixing ratios and capture only 50% of the observed O3 increase over the last five decades at 12 baseline sites in the northern mid-latitudes, indicating large uncertainties in our understanding of the ozone trends and their implications for radiative forcing. Here we present comparisons of outputs from two chemical transport models (CTMs) - GEOS-Chem and the Global Modeling Initiative model - with O3 observations from the same sites and from the global ozonesonde network. Both CTMs are driven by reanalysis meteorological data (MERRA or MERRA2) and thus are expected to be different in atmospheric transport processes relative to those freely running CCMs. We test whether recent model developments leading to more active ozone chemistry affect the computed ozone sensitivity to perturbations in emissions. Preliminary results suggest these CTMs can reproduce present-day ozone levels but fail to capture the multi-decadal trend since 1980. Both models yield widespread overpredictions of free tropospheric ozone in the 1980s. Sensitivity studies in GEOS-Chem suggest that the model estimate of natural background ozone is too high. We discuss factors that contribute to the variability and trends of tropospheric ozone over the last 30 years, with a focus on intermodel differences in spatial resolution and in the representation of stratospheric chemistry, stratosphere-troposphere exchange, halogen chemistry, and biogenic VOC emissions and chemistry. We also discuss uncertainty in the historical emission inventories used in models, and how these affect the simulated ozone trends.

  5. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  6. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  7. ANALYSIS AND CHARACTERIZATION OF OZONE-RICH EPISODES IN NORTHEAST PORTUGAL

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2009-12-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d’Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes. Synoptic patterns anomalies and back trajectories cluster analysis were performed for a period of 76 days where ozone maximum concentrations were above 200 µg.m-3. This analysis was performed for the period between 2004 and 2007. The obtained anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. In addition, a strong wind flow pattern from NE is visible in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, is responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants may be the main contributor to the ozone levels registered at Lamas d’Olo. This is also highlighted by the correlation of the ozone time series with the meteorological parameters analysed in the frequency domain.

  8. Evidence for oral agmatine sulfate safety--a 95-day high dosage pilot study with rats.

    Gilad, Gad M; Gilad, Varda H

    2013-12-01

    Agmatine, decarboxylated arginine, exerts beneficial effects in various experimental disease models. Clinical trials indicate the safety and effectiveness of short-term (up to 21 days) high dose regimens of oral agmatine sulfate, but longer term studies are lacking. This pilot study undertook to assess the safety of a longer term high dosage oral agmatine sulfate in laboratory rats. Adult Wistar rats consumed 5.3 g/l agmatine sulfate in their drinking water for 95 days, a regimen estimated to result in a daily dosage of absorbed agmatine of about 100mg/kg. Animals' body weight, water consumption and blood pressure were periodically measured, and general cage behavior, fur appearance, urination and feces appearance monitored. These parameters were also determined at 20 days after treatment cessation (day 115). On days 95 and 115, animals were euthanized for gross necropsy assessment. Agmatine-treated rats showed slight, but significant reductions in body weight and blood pressure, and reduced water consumption during treatment, which recovered completely within 20 days after treatment cessation. Otherwise, no abnormal behaviors or organ pathologies were observed. These findings are first to suggest apparent safety of sub-chronic high dosage dietary agmatine sulfate in laboratory rats, thus lending further support to the therapeutic applications of agmatine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Long-term Measurements of Summer-time Ozone at the Walnut Grove Tower - Understanding Trends in the Boundary Layer

    Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2015-12-01

    The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under

  10. Ozone modelling in Eastern Austria

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  11. A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show that the opti......We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show...

  12. Sterilization of Microorganisms by Ozone and Ultrasound

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  13. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  14. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.

    Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna

    2017-11-02

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.

  15. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  16. Toward High Quality Family Day Care for Infants and Toddlers. Final Report.

    Rauch, Marian D.; Crowell, Doris C.

    Reported were the results of a project which established a cluster of family day care homes in Hawaii in which caregivers were selected, trained, and provided with supportive services and salaries. The primary objective of the program was to provide a replicable, high quality program for preschool children that would maximize social, emotional,…

  17. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  18. A model of the generation and transport of ozone in high-tension nozzle driven corona inside a novel diode

    Vijayan, T.; Patil, Jagadish G.

    2012-01-01

    The genesis and transport of ozone (O 3 ) are investigated in a novel plasma diode and described in this paper. The innovative cathode (K) of this axial symmetric diode which operated at the high voltage (φ 0 ), has a large number of sharpened nozzles located on different radial planes of its central tubular-mast and is encircled by the anode (A). The nozzles played the dual role of oxygen (O 2 ) injection as well as creation of high electric field (E) in the A-K gap, enabled the formation of a cold corona. Electrons in the corona under the influence of E moved towards anode, collided with O 2 and created the O radicals. O in turn joined the free O 2 and formed O 3 . The evolution of O 3 here is modeled in various O 2 pressure (P), electron density (n e ), and temperature (T) in terms of the major reaction modes involving e, O, O 2 , and O 3 . Typical steady state O 3 density attained so in P ∼ bar, n e ∼ 10 15 m −3 and T∼ 300 K is over 10 25 m −3 and that of O lower ∼10 20 m −3 . Both the O and O 3 densities increased with an enhanced n e of avalanche multiplications in corona. O 3 increased also with a higher P but the temporal O reversed in trend midway and reduced with P towards the steady state. A sharp decline in diode resistance with smaller A-K gap induced finite discharge current and led to the undesired heating of corona. It is shown that the O 3 density reduced with the temperature rise but O density reduced with the T rise up to 500 K and then rose modestly with the further T increase.

  19. A model of the generation and transport of ozone in high-tension nozzle driven corona inside a novel diode

    Vijayan, T.; Patil, Jagadish G.

    2012-12-01

    The genesis and transport of ozone (O3) are investigated in a novel plasma diode and described in this paper. The innovative cathode (K) of this axial symmetric diode which operated at the high voltage (ϕ0), has a large number of sharpened nozzles located on different radial planes of its central tubular-mast and is encircled by the anode (A). The nozzles played the dual role of oxygen (O2) injection as well as creation of high electric field (E) in the A-K gap, enabled the formation of a cold corona. Electrons in the corona under the influence of E moved towards anode, collided with O2 and created the O radicals. O in turn joined the free O2 and formed O3. The evolution of O3 here is modeled in various O2 pressure (P), electron density (ne), and temperature (T) in terms of the major reaction modes involving e, O, O2, and O3. Typical steady state O3 density attained so in P ˜ bar, ne ˜ 1015 m-3 and T ˜ 300 K is over 1025 m-3 and that of O lower ˜1020 m-3. Both the O and O3 densities increased with an enhanced ne of avalanche multiplications in corona. O3 increased also with a higher P but the temporal O reversed in trend midway and reduced with P towards the steady state. A sharp decline in diode resistance with smaller A-K gap induced finite discharge current and led to the undesired heating of corona. It is shown that the O3 density reduced with the temperature rise but O density reduced with the T rise up to 500 K and then rose modestly with the further T increase.

  20. Two-phase ozonation of chlorinated organics

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  1. Association of short-term exposure to ground-level ozone and respiratory outpatient clinic visits in a rural location – Sublette County, Wyoming, 2008–2011

    Pride, Kerry R., E-mail: hgp3@cdc.gov [Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA (United States); Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Peel, Jennifer L. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 (United States); Robinson, Byron F. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Busacker, Ashley [Field Support Branch, Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Grandpre, Joseph [Chronic Disease Epidemiologist, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Bisgard, Kristine M. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 600 Clifton Road, NE, E-92, Atlanta, GA 30333 (United States); Yip, Fuyuen Y. [Air Pollution and Respiratory Disease Branch, Centers for Disease Control and Prevention, 600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Murphy, Tracy D. [Wyoming Department of Health, 101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States)

    2015-02-15

    -level ozone with an increase in clinic visits for adverse respiratory-related effects in the following day (lag day 1) in Sublette County; the magnitude was strongest during the winter months; this association during the winter months in a rural location warrants further investigation. - Highlights: • We assessed elevated ground-level ozone in frontier Sublette County, Wyoming. • Ground-level ozone concentrations were moderately to highly correlated between stations. • Adverse respiratory-related clinic visits occurred year round at lag 1. • Strongest association of clinic visits was in the coldest months at lag 1.

  2. Association of short-term exposure to ground-level ozone and respiratory outpatient clinic visits in a rural location – Sublette County, Wyoming, 2008–2011

    Pride, Kerry R.; Peel, Jennifer L.; Robinson, Byron F.; Busacker, Ashley; Grandpre, Joseph; Bisgard, Kristine M.; Yip, Fuyuen Y.; Murphy, Tracy D.

    2015-01-01

    -level ozone with an increase in clinic visits for adverse respiratory-related effects in the following day (lag day 1) in Sublette County; the magnitude was strongest during the winter months; this association during the winter months in a rural location warrants further investigation. - Highlights: • We assessed elevated ground-level ozone in frontier Sublette County, Wyoming. • Ground-level ozone concentrations were moderately to highly correlated between stations. • Adverse respiratory-related clinic visits occurred year round at lag 1. • Strongest association of clinic visits was in the coldest months at lag 1

  3. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  4. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Spatial clustering and meteorological drivers of summer ozone in Europe

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-04-01

    We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested

  6. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  7. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O3). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O3 susceptibility of offspring could thus be m...

  8. Secondary maxima in ozone profiles

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  9. Observed ozone exceedances in Italy: statistical analysis and modelling in the period 2002-2015

    Falasca, Serena; Curci, Gabriele; Candeloro, Luca; Conte, Annamaria; Ippoliti, Carla

    2017-04-01

    Local ambient air quality is strongly influenced by anthropogenic emissions and meteorological conditions. The year 2015 is considered by NASA scientists as one of the hottest at the global scale since 1880. Furthermore, in Europe it was the first summer after the introduction of Euro6 regulation, the latest emission standard for passenger vehicles. The goal of this study is twofold: (1) the investigation of the impact of the heat wave occurred in the summer of 2015 on ozone levels and (2) the exploration of the weight of temperature as driver of high-level ozone events with respect to other variables. We performed a quantitative examination of the ozone seasons (May-September) for the period 2002-2015 using ozone concentration and weather data from 24 stations across Italy. The number of exceedances of limit values set by the European directive was calculated for each year, and compared with the trend of ozone concentration and temperature. Furthermore, the data were grouped in clusters of consecutive days of ozone exceedances in order to characterize the duration and the intensity of high ozone events. Finally, we developed a multivariate logistic regression model to investigate the role of a set of independent variables (meteorological, and temporal variables, altitude, number of inhabitants, vehicle emission standard) on the probability of exceedances. Results show that 2015 is one of the hottest years after 2003. During the period 2002-2015, the average number of exceedances per station of the daily maximum 8-hour average is often higher than the limit established by the European directive (25 per year). The highest number of exceedances was 65 per station, reached in 2003. The Po Valley is confirmed as a hot spot for pollution, with more frequent exceedances and a higher sensitivity to temperature, especially at urban sites. Ozone events in 2015 were fewer than recent years, but of longer duration (on average 4 days against 3 days), and with similar mean

  10. Development of an ozone high sensitive sensor working at ambient temperature

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  11. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  12. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO{sub 2} in the decomposition of high concentration ozone

    Ding, Yanhua; Zhang, Xiaolei [Shanghai Institute of Technology, Shanghai 200235 (China); Chen, Li [East China Normal University, Shanghai 200062 (China); Wang, Xiaorui [Shanghai Institute of Technology, Shanghai 200235 (China); Zhang, Na, E-mail: nzhang@sit.edu.cn [Shanghai Institute of Technology, Shanghai 200235 (China); Liu, Yufeng [Shanghai Institute of Technology, Shanghai 200235 (China); Fang, Yongzheng, E-mail: fyz1003@sina.com [Shanghai Institute of Technology, Shanghai 200235 (China)

    2017-06-15

    The catalytic decomposition of gaseous ozone (O{sub 3}) is investigated using anatase TiO{sub 2} (A-TiO{sub 2}) and Aluminum-reduced A-TiO{sub 2} (ARA-TiO{sub 2}) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO{sub 2}, the ARA-TiO{sub 2} sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy “capture” for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O{sub 3} without any light irradiation has been greatly improved from 4.8% on A-TiO{sub 2} to 100% on ARA-TiO{sub 2} under the RH=100% condition. The ozone conversion over T500/ARA-TiO{sub 2} catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m{sup 3} ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO{sub 2} possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti{sup 3+}/T{sup i4+}couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO{sub 2} in the thermal-catalytic field. - Graphical abstract: The anatase-TiO{sub 2} with various oxidation states and oxygen vacancies have been obtained by aluminum-reduction, and the decomposition efficiency of O{sub 3} has been greatly improved from 4.8% to 100% without irradiation under the RH=100% condition. - Highlights: • The decomposition of gaseous ozone over Al reduced TiO2 (ARA-TiO{sub 2}) is firstly reported. • The decomposition efficiency is up to 100% without any light irradiation on ARA-TiO{sub 2} under RH=100% condition. • The ozone conversion is maintained at 95% after a 72 h test, when C{sub inlet}=18.5 g/m{sup 3} and RH=90%.

  13. A passive sampler for atmospheric ozone

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  14. High Mortality among 30-Day Readmission after Stroke: Predictors and Etiologies of Readmission

    Amre M. Nouh

    2017-12-01

    admission to a non-neurology service was an independent predictor of 30-day readmission (p ≤ 0.01. The mortality after a within 30-day readmission after stroke was higher than index admission (36.6 vs. 13.8% p ≤ 0.001 (OR 3.6 95% CI 2.5–5.3. Among those readmitted, mortality was significantly higher for those admitted for a recurrent stroke (p = 0.006.ConclusionApproximately one-third of 30-day readmissions were infection related and one-fifth returned with recurrent stroke or TIA. Index admission to non-neurology service was an independent risk factor of 30-day readmissions. The mortality rate for 30-day readmission after stroke is more than 2.5 times greater than index admissions and highest among those readmitted for recurrent stroke. Identifying high-risk patients for readmission, ensuring appropriate level of service, and early outpatient follow-up may help reduce 30-day readmission and the high associated risk of mortality.

  15. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  16. Ozone exposure increases respiratory epithelial permeability in humans

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  17. Issues in Stratospheric Ozone Depletion.

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  18. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  19. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; hide

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of 33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  20. High Mortality among 30-Day Readmission after Stroke: Predictors and Etiologies of Readmission.

    Nouh, Amre M; McCormick, Lauren; Modak, Janhavi; Fortunato, Gilbert; Staff, Ilene

    2017-01-01

    than index admission (36.6 vs. 13.8% p  ≤ 0.001) (OR 3.6 95% CI 2.5-5.3). Among those readmitted, mortality was significantly higher for those admitted for a recurrent stroke ( p  = 0.006). Approximately one-third of 30-day readmissions were infection related and one-fifth returned with recurrent stroke or TIA. Index admission to non-neurology service was an independent risk factor of 30-day readmissions. The mortality rate for 30-day readmission after stroke is more than 2.5 times greater than index admissions and highest among those readmitted for recurrent stroke. Identifying high-risk patients for readmission, ensuring appropriate level of service, and early outpatient follow-up may help reduce 30-day readmission and the high associated risk of mortality.

  1. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  2. Ozone adsorption on carbon nanoparticles

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  3. Unraveling the sources of ground level ozone in the Intermountain Western United States using Pb isotopes

    Christensen, John N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Weiss-Penzias, Peter [University of California at Santa Cruz, Santa Cruz, CA (United States); Fine, Rebekka [University of Nevada, Reno, NV (United States); McDade, Charles E.; Trzepla, Krystyna [University of California at Davis, Crocker Nuclear Laboratory, Davis, CA (United States); Brown, Shaun T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gustin, Mae Sexauer [University of Nevada, Reno, NV (United States)

    2015-10-15

    Ozone as an atmospheric pollutant is largely produced by anthropogenic precursors and can significantly impact human and ecosystem health, and climate. The U.S. Environmental Protection Agency has recently proposed lowering the ozone standard from 75 ppbv (MDA8 = Maximum Daily 8-Hour Average) to between 65 and 70 ppbv. This will result in remote areas of the Intermountain West that includes many U.S. National Parks being out of compliance, despite a lack of significant local sources. We used Pb isotope fingerprinting and back-trajectory analysis to distinguish sources of imported ozone to Great Basin National Park in eastern Nevada. During discrete Chinese Pb events (> 1.1 ng/m{sup 3} & > 80% Asian Pb) trans-Pacific transported ozone was 5 ± 5.5 ppbv above 19 year averages for those dates. In contrast, concentrations during regional transport from the Los Angeles and Las Vegas areas were 15 ± 2 ppbv above the long-term averages, and those characterized by high-altitude transport 3 days prior to sampling were 19 ± 4 ppbv above. However, over the study period the contribution of trans-Pacific transported ozone increased at a rate of 0.8 ± 0.3 ppbv/year, suggesting that Asian inputs will exceed regional and high altitude sources by 2015–2020. All of these sources will impact regulatory compliance with a new ozone standard, given increasing global background. - Highlights: • Ozone can significantly impact human and ecosystem health and climate. • Pb isotopes and back-trajectory analysis were used to distinguish sources of O{sub 3}. • Baseline concentrations in the Western US are ~ 54 ppbv. • During discrete Asia events O{sub 3} increased by 5 ± 5.5 ppbv and during S CA events by 15 ± 2 ppbv. • Data indicate that Asian ozone inputs will exceed other sources by 2015–2020.

  4. The Antarctic ozone hole

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  5. Effect of solar radiation on surface ozone in Cairo

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  6. Rapid increases in tropospheric ozone production and export from China

    Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F.

    2015-01-01

    Rapid population growth and industrialization have driven substantial increases in Asian ozone precursor emissions over the past decade1, with highly uncertain impacts on regional and global tropospheric ozone levels. According to ozonesonde measurements2, 3, tropospheric ozone concentrations at two

  7. Climatic variability of the column ozone over the Iranian plateau

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  8. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  9. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    Nicolás, J.F., E-mail: j.nicolas@umh.es [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Crespo, J.; Yubero, E.; Soler, R. [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Carratalá, A. [Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080 Alicante (Spain); Mantilla, E. [Instituto Universitario CEAM-UMH, Parque Tecnológico, C/Charles R. Darwin 14, E-46980 Paterna (Spain)

    2014-01-01

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm{sup − 3}, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm{sup − 3}). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm{sup − 3} at the urban site and 0.9 ± 0.1 cm{sup − 3} at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm{sup − 3}, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O{sub 3} levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean

  10. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    Nicolás, J.F.; Crespo, J.; Yubero, E.; Soler, R.; Carratalá, A.; Mantilla, E.

    2014-01-01

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm − 3 , was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm − 3 ). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm − 3 at the urban site and 0.9 ± 0.1 cm − 3 at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm − 3 , than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O 3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean value. - Highlights:

  11. Availability and Price of High Quality Day Care and Female Employment

    Simonsen, Marianne

    In this paper I analyse to what degree availability and price of high quality publicly subsidised childcare affects female employment for women living in couples following maternity leave. The results show that unrestricted access to day care has a significantly positive effct on female employment.......The price effect is significantly negative: An increase in the price of child care of C=1 will decrease the female employment with 0.08% corresponding to a price elasticity of −0.17. This effect prevails during the first 12 months after childbirth....

  12. Ground-level ozone pollution and its health impacts in China

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  13. The Impact of Warm Pool El Nino Events on Antarctic Ozone

    Hurwitz, Margaret M.; Newman, P. A.; Song, In-Sun; Frith, Stacey M.

    2011-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a warming of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with ENSO neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral ENSO events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.

  14. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  15. Impact of Highly Reflective Materials on Meteorology, PM10 and Ozone in Urban Areas: A Modeling Study with WRF-CHIMERE at High Resolution over Milan (Italy

    Serena Falasca

    2018-02-01

    Full Text Available The Urban Heat Island (UHI is a well-known phenomenon concerning an increasing percentage of the world’s population due to the growth rates of metropolitan areas. Given the health and economic implications of UHIs, several mitigation techniques are being evaluated and tested. In this study, we consider the use of highly reflective materials for urban surfaces, and we carried out numerical experiments using the Weather Research and Forecasting model coupled with the CHIMERE model in order to investigate the effects of these materials on the meteorology and air quality in the urban area of Milan (Italy. Results show that an increase in albedo from 0.2 to 0.7 for urban roofs, walls and streets leads to a decrease in UHI intensity by up to 2–3 °C and of the planetary boundary layer (PBL height of about 500 m. However, the difference of PM10 and ozone between urban and surrounding areas increases by a factor of about 2, attributable to the reduction of PBL height and wind speed and to the increased reflected solar radiation that may enhance photochemical production during the daytime. Therefore, if anthropogenic emissions are held at the same levels, the potential benefit to the UHI in terms of thermal discomfort may have negative repercussions on air quality.

  16. The relationship between some meteorological parameters and the tropospheric concentrations of ozone in the urban area of Belgrade

    DRAGAN M. MARKOVIC

    2005-12-01

    Full Text Available During the period between June and December 2002, the concentrations of ozone in the air at 4 measuring sites in Belgrade were measured. The measuring periods varied from 10 days to several weeks. Themaximalmeasured daily concentrations of ozone ranged from 19 ppbv (23 December 2002 to 118 ppbv (23 June 2002. Ozone concentrations higher than, or equal to 90 ppbv were registered at threemeasuring sites. It was shown that at measuring sites characterized as urban, maximal O3 concentrations equal to, or higher than 90 ppbv occurred at high temperatures (higher than 30 oC and low wind speeds (mostly from the north. The measured ozone concentrations mostly showed characteristics usual for a daily photochemical ozone cycle, excluding the specificities influenced by the measuring site itself. Ozone transport was recorded at increased wind speeds, primarily from south-easterly directions. On the basis of he correlations between ozone concentration and the corresponding meteorological parameters, a validation of the measuring sites was performed from the aspect of their representativeness for the measurements.

  17. Elevated CO{sub 2} and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Thiec, D. Le [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere, Vandoeuvre-les-Nancy (France); Dizengremel, P. [Unite Ecophysiologie Forestiere-Lab. de Pollution Atmospherique, INRA-Centre de Recherches Forestieres, Champenoux (France)

    2001-07-01

    The effects of 700 {mu}mol mol{sup -1} CO{sub 2} and 200 nmol mol{sup -1} ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO{sub 2} increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO{sub 2} and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO{sub 2} and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO{sub 2} while under ozone, plant N acquisition is preferentially shifted towards increased root uptake. (au)

  18. Evidence for midwinter chemical ozone destruction over Antartica

    Voemel, H. [Univ. of Colorado, Boulder, CO (United States); Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M. [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (United States)

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  19. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)

  20. Cassava root scrapings for 22 to 42-day-old broilers in high-temperature environments

    Antônio Hosmylton Carvalho Ferreira

    2012-06-01

    Full Text Available The objective of this study was to analyze the effect of whole cassava root scrapings at different levels in diets for broilers in the period of 22 to 42 days of age in high-temperature environments on performance, as well as to evaluate the metabolizability of dry matter (DM, crude protein (CP and gross energy (GE and nitrogen balance. A total of 400 male Ross broilers were used for evaluation of performance and 80 birds of the same strain were used in the metabolism experiment. The design was of randomized block with five treatments and four replications. The experimental unit was represented by twenty birds on the performance evaluation and four birds were housed in metabolic cages for the metabolism evaluation. The treatments consisted of diets containing inclusion levels of cassava root scrapings (0, 50, 100, 150 and 200 g/kg, formulated to meet the nutritional requirements accordingly to each phase of the birds. Whole cassava root scrapings can be included in diets for 22 to 42 day-old broiler chickens, at a level between 118.75 and 200 k/kg, in environments of high temperatures, with positive interference on weight gain and feed conversion, without affecting the coefficient of metabolizability of dry matter, crude protein, gross energy and nitrogen balance, or carcass characteristics, such as yields of main cuts and metabolically active organs of the birds.

  1. Ozone reaction on slime mold. [Physarum polycephalum

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  2. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric

    2015-01-01

    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.

  3. Ozone-induced growth suppression in radish plants in relation to pre- and post-fumigation temperatures. [Raphanus sativus L

    Adedipe, N.O.; Ormrod, D.P.

    1974-01-01

    Two cultivars of Raphanus sativus L. (radish) were fumigated with ozone at a concentration of 25 parts per hundred million (pphm) for 3 h, before or after subjecting the plants to two growth temperature regimes. In the cultivar ''Cavalier'' ozone decreased leaf weight at the lower pre-fumigation day/night growth temperature regime of 20/15/sup 0/, but had no significant effect when the plants were either pre- or post-fumigation conditioned at the high temperatures of 30/25/sup 0/. In the cultivar ''Cherry Belle'', ozone decreased the leaf weight of only low temperature post-fumigation conditioned plants. Ozone had no significant effect on the total soluble carbohydrate concentration of ''Cherry Belle'', while it increased that of pre-fumigation conditioned ''Cavalier'' plants.

  4. A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign

    A. Colette

    2006-01-01

    Full Text Available The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 6 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h−1, with a maximum ozone production of 0.4 ppbv h−1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.

  5. A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign

    Colette, A.; Ancellet, G.; Menut, L.; Arnold, S. R.

    2006-08-01

    The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL) footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 6 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h-1, with a maximum ozone production of 0.4 ppbv h-1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.

  6. Ozone Antimicrobial Efficacy

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  7. New Copolymers Containing Charge Carriers for Organic Devices with ITO Films Treated by UV-Ozone Using High Intensity Discharge Lamp

    Emerson Roberto SANTOS

    2009-02-01

    Full Text Available For electroluminescent devices new copolymers were synthesized using a Suzuki cross-coupling reaction based on monomers (fluorine-alt-phenylene in conjugation with quinoline-alt-phenylene units. They were characterized by 1H NMR, 13C NMR and FTIR. TGA measurements indicated that the copolymers have good thermal properties and no weight loss was observed up to 250 °C. The UV-Vis spectra were characterized by absorptions from the fluorene-alt-phenylene and quinoline-alt-phenylene segments in the backbone, while their photoluminescence (PL spectra dominated by emissions from the fluorene excimer. For devices assembly ITO films were treated using a High Intensity Discharge Lamp (HPMVL without outer bulb presenting high ozone concentration than that conventional germicidal lamp. The device with ITO treated revealed significant decrease of threshold voltage (or turn-on voltage compared by untreated with I-V curves. This decrease can be related by water and carbon dioxide extracted on surface after UV-Ozone treatment revealed by DRIFT measurements.

  8. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  9. Slow electrons kill the ozone

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  10. Modelling economic losses of historic and present-day high-impact winter storms in Switzerland

    Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Brönnimann, Stefan

    2015-04-01

    Windstorms can cause significant financial damage and they rank among the most hazardous meteorological hazards in Switzerland. Risk associated with windstorms involves the combination of hazardous weather conditions, such as high wind gust speeds, and socio-economic factors, such as the distribution of assets as well as their susceptibilities to damage. A sophisticated risk assessment is important in a wide range of areas and has benefits for e.g. the insurance industry. However, a sophisticated risk assessment needs a large sample of storm events for which high-resolution, quantitative meteorological and/or loss data are available. Latter is typically an aggravating factor. For present-day windstorms in Switzerland, the data basis is generally sufficient to describe the meteorological development and wind forces as well as the associated impacts. In contrast, historic windstorms are usually described by graphical depictions of the event and/or by weather and loss reports. The information on historic weather events is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. It has primarily been the field of activity of environmental historians to study historic weather extremes and their impacts. Furthermore, the scarce availability of atmospheric datasets reaching back sufficiently in time has so far limited the analysis of historic weather events. The Twentieth Century Reanalysis (20CR) ensemble dataset, a global atmospheric reanalysis currently spanning 1871 to 2012, offers potentially a very valuable resource for the analysis of historic weather events. However, the 2°×2° latitude-longitude grid of the 20CR is too coarse to realistically represent the complex orography of Switzerland, which has considerable ramifications for the representation of smaller-scale features of the surface wind field influenced by the local orography. Using the 20CR as a starting point, this study illustrates a method to

  11. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  12. Breeding of ozone resistant rice: Relevance, approaches and challenges

    Frei, Michael

    2015-01-01

    Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. - Highlights: • Tropospheric ozone affects millions of hectares of rice land. • Ozone affects rice yield and quality. • Breeding approaches to adapt rice to high ozone are discussed. • Challenges in the breeding of ozone resistant rice are discussed. - This review summarizes the effects of tropospheric ozone on rice and outlines approaches and challenges in the breeding of adapted varieties

  13. Earth's ozone layer

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  14. The missing piece: Valuing averting behavior for children's ozone exposures

    Mansfield, Carol; Reed Johnson, F.; Van Houtven, George [Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709-2194 (United States)

    2006-08-15

    Individuals can reduce their exposure to air pollution by reducing the amount of time they spend outdoors. Reducing outdoor time is an example of an averting behavior that should be measured as part of willingness to pay (WTP) for improvements in air quality. In this paper, we estimate parents' WTP to prevent restrictions on a child's outdoor time from a stated-preference (SP) conjoint survey. We combine this WTP measure with an estimate of reductions in time spent outdoors on high-ozone days from an activity-diary study to estimate this averting behavior component of WTP for reductions in ozone pollution. (author)

  15. Observed to expected or logistic regression to identify hospitals with high or low 30-day mortality?

    Helgeland, Jon; Clench-Aas, Jocelyne; Laake, Petter; Veierød, Marit B.

    2018-01-01

    Introduction A common quality indicator for monitoring and comparing hospitals is based on death within 30 days of admission. An important use is to determine whether a hospital has higher or lower mortality than other hospitals. Thus, the ability to identify such outliers correctly is essential. Two approaches for detection are: 1) calculating the ratio of observed to expected number of deaths (OE) per hospital and 2) including all hospitals in a logistic regression (LR) comparing each hospital to a form of average over all hospitals. The aim of this study was to compare OE and LR with respect to correctly identifying 30-day mortality outliers. Modifications of the methods, i.e., variance corrected approach of OE (OE-Faris), bias corrected LR (LR-Firth), and trimmed mean variants of LR and LR-Firth were also studied. Materials and methods To study the properties of OE and LR and their variants, we performed a simulation study by generating patient data from hospitals with known outlier status (low mortality, high mortality, non-outlier). Data from simulated scenarios with varying number of hospitals, hospital volume, and mortality outlier status, were analysed by the different methods and compared by level of significance (ability to falsely claim an outlier) and power (ability to reveal an outlier). Moreover, administrative data for patients with acute myocardial infarction (AMI), stroke, and hip fracture from Norwegian hospitals for 2012–2014 were analysed. Results None of the methods achieved the nominal (test) level of significance for both low and high mortality outliers. For low mortality outliers, the levels of significance were increased four- to fivefold for OE and OE-Faris. For high mortality outliers, OE and OE-Faris, LR 25% trimmed and LR-Firth 10% and 25% trimmed maintained approximately the nominal level. The methods agreed with respect to outlier status for 94.1% of the AMI hospitals, 98.0% of the stroke, and 97.8% of the hip fracture hospitals

  16. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  17. Protective Role of Eosinophils and TNFa after Ozone Inhalation.

    Fryer, Allison D; Jacoby, David B; Wicher, Sarah A

    2017-03-01

    air for 4 hours and measured changes in cell numbers and airway responses 1 or 3 days later. They counted the numbers of eosinophils and other white blood cells (macrophages, neutrophils, and lymphocytes) in bone marrow, blood, and bronchoalveolar lung lavage fluid. The investigators also measured important physiological responses, including bronchoconstriction. Some animals were pretreated with etanercept and monoclonal anti-IL-5, which block tumor necrosis factor-a (TNFa) and IL-5, respectively. TNFa and IL-5 blockers have been used to treat patients with asthma. A key feature of the study was a technique to distinguish which white blood cells were synthesized after exposure from those that already existed, by injecting animals with bromodeoxyuridine (BrdU). BrdU is a thymidine analogue that is incorporated into the DNA of dividing cells, serving as a marker of newly produced cells. Therefore, a snapshot can be obtained of the proportion of newly synthesized (BrdU-positive) versus pre-existing (BrdU-negative) cell types. 1. Allergic and normal animals differed in the time course of bronchoconstriction and changes in cell types after ozone exposure. In normal animals, bronchoconstriction increased substantially at day 1 but decreased by day 3 after ozone exposure. In contrast, in allergic animals bronchoconstriction remained high at day 3. Ozone also increased the percentage of newly formed, BrdU2 positive eosinophils in the bone marrow and lungs of normal but not allergic animals. 2. Pretreatment with the TNFa blocker etanercept had complex effects, which differed between normal and allergic animals. In normal animals, etanercept decreased ozone-induced new synthesis of eosinophils in the bone marrow and blocked eosinophil migration to the lung; it also increased bronchoconstriction at day 3 (relative to day 1 without etanercept). In allergic animals, etanercept had no effect on any cell type in the bone marrow or lung after exposure to ozone and did not change

  18. High Fructose/High Fat Diets Mediate Changes in Protein Carbonyl Content in the Rat Brain With and Without Ozone Exposure

    The consumption of diets rich in fat or fructose have been correlated to a rise in type-2 diabetes and obesity. These diet-induced physiological changes have been shown previously to cause an increase in responsiveness to air pollutants such as ozone (03). 03 is a pervasive air p...

  19. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ozone from fireworks: Chemical processes or measurement interference?

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Tropospheric Ozone and Photochemical Smog

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  2. Alterations in wheat pollen lipidome during high day and night temperature stress.

    Narayanan, Sruthi; Prasad, P V Vara; Welti, Ruth

    2018-01-26

    Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 pollen lipid species under optimum and high day and/or night temperatures using electrospray ionization-tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct composition compared with that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The most HT-responsive lipids were extraplastidic phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidic acid, and phosphatidylserine. The unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE were negatively correlated. Higher PC:PE at HT indicated possible PE-to-PC conversion, lower PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids experiencing coordinated metabolism under HT and confirmed the HT responsiveness of extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of our previous research on wheat leaves suggests that similar lipid changes contribute to HT adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions. © 2018 John Wiley & Sons Ltd.

  3. Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China

    Han, Zhiwei; Matsuda, Kazuhide; Ueda, Hiromasa

    2005-01-01

    The impact of biogenic emission on regional ozone and emission control scenarios has been numerically studied through a series of sensitivity model simulations. A typical episode with elevated ozone over eastern China from 12 to 16 August 2001 was investigated by using a tropospheric chemistry and transport model (TCTM), driven by a non-hydrostatic mesoscale model MM5. The meteorological conditions during this period were characterized by high-pressure systems associated with low wind speeds, high temperatures and clear skies. Afternoon ozone concentrations exceeding 80 parts per billion (ppb) occurred over broad areas of eastern China. There is a generally good agreement between simulation and observation, indicating that the TCTM is able to represent major physical and chemical processes of tropospheric ozone and well reproduce the diurnal and day-to-day variability associated with synoptic conditions. The sensitivity analysis reveals a significant influence of biogenic hydrocarbons on regional ozone. Ozone levels are apparently enhanced by biogenic emission over large areas of eastern China. The largest increase up to 30 ppb in daytime average concentration is found in portions of the middle reaches of the Yangtze River, Yangtze Delta and northeast China. However, the response of ozone to biogenic emission varies spatially, showing more sensitivity in polluted areas than that in clean rural areas. The regimes limited by nitrogen oxides (NO x ) and volatile organic carbon (VOC) in eastern China are further investigated with respect to biogenic emission. Ozone shows a clear tendency to shift from VOC limitation to NO x limitation as it moves from urban and industrial areas to rural areas. Most of the rural areas in southern China tend to be NO x limited, whereas most of the northern parts of China appear to be VOC limited. By considering biogenic emission, ozone tends to become more NO x limited and less VOC limited, both in extent and intensity, over eastern

  4. Assessment of ozone impacts on vegetation in southern Africa and directions for future research

    Van Tienhoven, AM

    2005-03-01

    Full Text Available in the high ozone levels measured at the beginning of the southern African summer.17,23,24 The concentrations of ozone precursors, the complex production and removal pro- cesses, and the short lifespan of ozone, mean that ozone concentration in the atmosphere... jointoformextensiveareasofchlorosisas the leaf ages. Damage to foliage can be extensive enough to cause complete loss ofleafycropssuchaslettuceandchicory.39 Visible symptoms of ozone effects must be interpreted with caution, particularly in field studies where interactions...

  5. Effect of Pulse Width on Ozone Generation in Pulsed Streamer Discharges

    Tamaribuchi, Hiroyuki; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; タマリブチ, ヒロユキ; オウ, トエン; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 溜渕, 浩之; 王, 斗艶; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2007-01-01

    Ozone has been used in treatment of drinking water andwaste water (e.g., deodorization, decolorization, anddisinfection). Though general ozonizers based on silentdischarge or barrier discharge have been used to supplyozone at many industrial situations, there is still someproblem, such as improvements of ozone concentrationand ozone yield.In this work, ozone was generated by pulsed powerdischarge in order to improve the characteristics of ozonegeneration. High electric field with short pulse ...

  6. Characteristics of Partial Discharge and Ozone Generation for Twisted-pair of Enameled Wires under High-repetitive Impulse Voltage Application

    Kanazawa, Seiji; Enokizono, Masato; Shibakita, Toshihide; Umehara, Eiji; Toshimitsu, Jun; Ninomiya, Shinji; Taniguchi, Hideki; Abe, Yukari

    In recent years, inverter drive machines such as a hybrid vehicle and an electric vehicle are operated under high voltage pulse with high repetition rate. In this case, inverter surge is generated and affected the machine operation. Especially, the enameled wire of a motor is deteriorated due to the partial discharge (PD) and finally breakdown of the wire will occur. In order to investigate a PD on a resistant enameled wire, characteristics of PD in the twisted pair sample under bipolar repetitive impulse voltages are investigated experimentally. The relationship between the applied voltage and discharge current was measured at PD inception and extinction, and we estimated the repetitive PD inception and extinction voltages experimentally. The corresponding optical emission of the discharge was also observed by using an ICCD camera. Furthermore, ozone concentration due to the discharge was measured during the life-time test of the resistant enameled wires from a working environmental point of view.

  7. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate....... The results showed large differences in the chemical composition of the cabin air between the low and high ozone conditions. These differences were more pronounced at the low air exchange condition....

  8. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of

  9. Power consumption analysis DBD plasma ozone generator

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Arianto, F.; Susan, I. A.; Widyanto, S. A.

    2016-01-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts (paper)

  10. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures

    Diaz, M. F.; Sanchez, Y.; Gomez, M.; Hernandez, F.; Veloso, M. C.; Pereira, P. A.; Mangrich, A. S.; Andrade, J. B.

    2012-07-01

    Two ozonation procedures for sunflower oils at different applied ozone dosages were carried out. Ozone was obtained from medicinal oxygen and from air. Peroxide, acidity, and iodine indexes, along with density, viscosity and antimicrobial activity were determined. The fatty acid compositions of the samples were analyzed using GC. The content of oxygen was determined using an elemental analysis. Electronic Paramagnetic Resonance was used to measure the organic free radicals. The reactions were achieved up to peroxide index values of 658 and 675 mmolequiv kg1 using medicinal oxygen and air for 5 and 8 hours, respectively. The samples of ozonized sunflower oil did not present organic free radicals, which is a very important issue if these oils are to be used as drugs. The ozonation reaction is more rapid with medicinal oxygen (5 hours) than with air (8 hours). Ozonized sunflower oil with oxygen as an ozone source was obtained with high potential for antimicrobial activity. (Author) 34 refs.

  11. The stratospheric ozone and the ozone layer

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  12. Ground-level Ozone (Smog) Information | New England | US ...

    2017-09-05

    Ground-level ozone presents a serious air quality problem in New England. In 2008, EPA revised the ozone standard to a level of 0.075 parts per million, 8-hour average. Over the last 5 years (2006 through 2010), there have been an average of 31 days per summer when New England's air exceeded this standard.

  13. Impact of climate variability on tropospheric ozone

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  14. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  15. Adrenal-derived stress hormones modulate ozone-induced ...

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  16. Ozone therapy in periodontics.

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  17. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  18. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  19. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  20. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  1. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures

  2. Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations

    Hu, Lu; Jacob, Daniel J.; Liu, Xiong; Zhang, Yi; Zhang, Lin; Kim, Patrick S.; Sulprizio, Melissa P.; Yantosca, Robert M.

    2017-10-01

    The global budget of tropospheric ozone is governed by a complicated ensemble of coupled chemical and dynamical processes. Simulation of tropospheric ozone has been a major focus of the GEOS-Chem chemical transport model (CTM) over the past 20 years, and many developments over the years have affected the model representation of the ozone budget. Here we conduct a comprehensive evaluation of the standard version of GEOS-Chem (v10-01) with ozone observations from ozonesondes, the OMI satellite instrument, and MOZAIC-IAGOS commercial aircraft for 2012-2013. Global validation of the OMI 700-400 hPa data with ozonesondes shows that OMI maintained persistent high quality and no significant drift over the 2006-2013 period. GEOS-Chem shows no significant seasonal or latitudinal bias relative to OMI and strong correlations in all seasons on the 2° × 2.5° horizontal scale (r = 0.88-0.95), improving on previous model versions. The most pronounced model bias revealed by ozonesondes and MOZAIC-IAGOS is at high northern latitudes in winter-spring where the model is 10-20 ppbv too low. This appears to be due to insufficient stratosphere-troposphere exchange (STE). Model updates to lightning NOx, Asian anthropogenic emissions, bromine chemistry, isoprene chemistry, and meteorological fields over the past decade have overall led to gradual increase in the simulated global tropospheric ozone burden and more active ozone production and loss. From simulations with different versions of GEOS meteorological fields we find that tropospheric ozone in GEOS-Chem v10-01 has a global production rate of 4960-5530 Tg a-1, lifetime of 20.9-24.2 days, burden of 345-357 Tg, and STE of 325-492 Tg a-1. Change in the intensity of tropical deep convection between these different meteorological fields is a major factor driving differences in the ozone budget.

  3. Stratospheric ozone depletion: high arctic tundra plant species from Svalbard are not affected by enhanced UV-B after 7 years of UV-B supplementation in the field.

    Rozema, J.; Boelen, P.; Blokker, P.; Callaghan, T.V.; Solheim, B.; Zielke, M.

    2006-01-01

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996

  4. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  5. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Version 8 Nadir Profile Ozone (V8Pro) Environmental Data Record (EDR) from NDE

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of nadir profiler ozone from the Ozone Mapping and Profiling Suite (OMPS) instrument...

  6. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Version 8 Total Ozone (V8TOz) Environmental Data Record (EDR) from NDE

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of total column ozone from the Ozone Mapping and Profiling Suite (OMPS) instrument...

  7. Video-documentation: 'The Pannonic ozon project'

    Loibl, W.; Cabela, E.; Mayer, H. F.; Schmidt, M.

    1998-07-01

    Goal of the project was the production of a video film as documentation of the Pannonian Ozone Project- POP. The main part of the video describes the POP-model consisting of the modules meteorology, emissions and chemistry, developed during the POP-project. The model considers the European emission patterns of ozone precursors and the actual wind fields. It calculates ozone build up and depletion within air parcels due to emission and weather situation along trajectory routes. Actual ozone concentrations are calculated during model runs simulating the photochemical processes within air parcels moving along 4 day trajectories before reaching the Vienna region. The model computations were validated during extensive ground and aircraft-based measurements of ozone precursors and ozone concentration within the POP study area. Scenario computations were used to determine how much ozone can be reduced in north-eastern Austria by emissions control measures. The video lasts 12:20 minutes and consists of computer animations and life video scenes, presenting the ozone problem in general, the POP model and the model results. The video was produced in co-operation by the Austrian Research Center Seibersdorf - Department of Environmental Planning (ARCS) and Joanneum Research - Institute of Informationsystems (JR). ARCS was responsible for idea, concept, storyboard and text while JR was responsible for computer animation and general video production. The speaker text was written with scientific advice by the POP - project partners: Institute of Meteorology and Physics, University of Agricultural Sciences- Vienna, Environment Agency Austria - Air Quality Department, Austrian Research Center Seibersdorf- Environmental Planning Department/System Research Division. The film was produced as German and English version. (author)

  8. What day-ahead reserves are needed in electric grids with high levels of wind power?

    Mauch, Brandon; Apt, Jay; Jaramillo, Paulina; Carvalho, Pedro M S

    2013-01-01

    Day-ahead load and wind power forecasts provide useful information for operational decision making, but they are imperfect and forecast errors must be offset with operational reserves and balancing of (real time) energy. Procurement of these reserves is of great operational and financial importance in integrating large-scale wind power. We present a probabilistic method to determine net load forecast uncertainty for day-ahead wind and load forecasts. Our analysis uses data from two different electric grids in the US with similar levels of installed wind capacity but with large differences in wind and load forecast accuracy, due to geographic characteristics. We demonstrate that the day-ahead capacity requirements can be computed based on forecasts of wind and load. For 95% day-ahead reliability, this required capacity ranges from 2100 to 5700 MW for ERCOT, and 1900 to 4500 MW for MISO (with 10 GW of installed wind capacity), depending on the wind and load forecast values. We also show that for each MW of additional wind power capacity for ERCOT, 0.16–0.30 MW of dispatchable capacity will be used to compensate for wind uncertainty based on day-ahead forecasts. For MISO (with its more accurate forecasts), the requirement is 0.07–0.13 MW of dispatchable capacity for each MW of additional wind capacity. (letter)

  9. High-Power Short Pulsed Corona: Investigation of Electrical Parameters, Abatement of SO2 and Ozone Generation

    Pokryvailo, A.; Yankelevich, Y.

    2001-01-01

    Electrical performance and chemical activity of a 50 MW, 100 kV, 22ns pulsed corona was studied in simulated air-SO 2 gas mixture in a coaxial reactor. Infrared and mass spectrometers and electrochemical sensors were used for gas diagnostics; solid byproducts were identified using X-ray fluorescent spectrometry. Electrochemical methods of gas diagnostics were not sufficiently reliable in view of the cross-influence of different gases, especially in ozone presence. The removal efficiency of SO 2 decreased at lower pollutant concentration and higher frequency, while the pulse energy was kept invariant. Removal efficiency in dry mixture was 25 g/kWh; in humid air, it was several times greater, which is attributed to the influence of OH radicals. In dry SO 2 -air mixture, the removal efficiency was much higher at positive polarity. Traces of many compounds were found and identified in treated gas. The precipitation of a yellowish powder identified as sulfur was observed. This effect was not previously noted in literature. It is ascribed to direct breaking of atomic bonds of the SO 2 molecule by energetic species. PSpice-based engineering model of corona-generator system is proposed. It was found that preliminary simulation results are in fair agreement with experimental data. The simulation revealed that surprisingly small part of the energy is coupled to plasma

  10. Pyrolytic citrate synthesis and ozone annealing

    Celani, F.; Saggese, A.; Giovannella, C.; Messi, R.; Merlo, V.

    1988-01-01

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  11. Ozone mass transfer and kinetics experiments

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction

  12. High-dimensional covariance forecasting for short intra-day horizons

    Oomen, R.C.A.

    2010-01-01

    Asset return covariances at intra-day horizons are known to tend towards zero due to market microstructure effects. Thus, traders who simply scale their daily covariance forecast to match their trading horizon are likely to over-estimate the actual experienced asset dependence. In this paper, some

  13. Pollution Control Using Ozone

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  14. The pollution by ozone

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  15. Vertical ozone characteristics in urban boundary layer in Beijing.

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  16. Living Day by Day

    Kaplan, Rachel L.; Khoury, Cynthia El; Field, Emily R. S.; Mokhbat, Jacques

    2016-01-01

    We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA) described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being “sick” and feeling “normal”: Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country. PMID:28462340

  17. Living Day by Day

    Rachel L. Kaplan

    2016-05-01

    Full Text Available We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being “sick” and feeling “normal”: Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country.

  18. Ozone production in a dielectric barrier discharge with ultrasonic irradiation

    Drews, Joanna Maria; Kusano, Yukihiro; Leipold, Frank

    2011-01-01

    Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or 40 kHz. The ozone production was highly dependent on the O2 flow rate and the ......Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or 40 kHz. The ozone production was highly dependent on the O2 flow rate...

  19. Contribution of long-range transport to the ozone levels recorded in the Northeast of Portugal

    Gama, C.; Nunes, T.; Marques, M. C.; Ferreira, F.

    2009-04-01

    In the past four years (2004-2007), measurements carried out at Lamas de Olo, the only air quality monitoring background station in the Northeast of Portugal, showed high ozone concentrations (97,7±29,7 g.m-3). This remote site, located in the middle of Alvão Natural Park, in Portugal, 1086 m asl, plays a significant role on the total amount of exceedances registered in the national air quality network. The analysis of the data recorded at this monitoring station revealed an annual cycle of ozone concentrations similar to the ones observed in other background sites of the Northern Hemisphere (Monks, 2000; Vingarzan and Taylor, 2003). This common feature comprises a distinct maximum during spring (peaking during the month of April). Nevertheless it is during the summer that the hourly concentrations are higher, due to the typical atmospheric and meteorological conditions that promote photochemical pollution episodes. Photochemical pollution episodes can be related with production of ozone in a local scale or in a global scale due to the transportation of polluted air masses. For this reason analysing these events is crucial to fully understand the behaviour of ozone in the Northeast of Portugal, in order to adopt the correct long-term policies. With the purpose of studying the influence of long-range transport on the ozone levels recorded at Lamas de Olo, a cluster analysis was performed on 96-hour back trajectories air masses. Different trajectory clusters represent air masses with different source regions of atmospheric pollutants and the influence of these regions on the atmospheric composition at the arrival point (receptor) of the trajectories can therefore be assessed (EMPA, 2008). The back trajectories were simulated 4 times per day, using HYSPLIT model. A "bottom-up" cluster methodology was used to group trajectories into clusters according to their characteristics, for several time periods with similar ozone levels and/or distributions. Ozone average

  20. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 1: Overall trends and characteristics

    Xu, Wanyun; Lin, Weili; Xu, Xiaobin; Tang, Jie; Huang, Jianqing; Wu, Hao; Zhang, Xiaochun

    2016-05-01

    Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The oxidation capacity of the atmosphere, climate, human and vegetation health can be impacted by the increase of the ozone level. Therefore, long-term determination of trends of baseline ozone is highly needed information for environmental and climate change assessment. So far, studies on the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China and many other developing countries. Measurements of surface ozone were carried out at a baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt Waliguan, 36°17' N, 100°54' E, 3816 m a.s.l.) for the period of 1994 to 2013. To uncover the variation characteristics, long-term trends and influencing factors of surface ozone at this remote site in western China, a two-part study has been carried out, with this part focusing on the overall characteristics of diurnal, seasonal and long-term variations and the trends of surface ozone. To obtain reliable ozone trends, we performed the Mann-Kendall trend test and the Hilbert-Huang transform (HHT) analysis on the ozone data. Our results confirm that the mountain-valley breeze plays an important role in the diurnal cycle of surface ozone at Waliguan, resulting in higher ozone values during the night and lower ones during the day, as was previously reported. Systematic diurnal and seasonal variations were found in mountain-valley breezes at the site, which were used in defining season-dependent daytime and nighttime periods for trend calculations. Significant positive trends in surface ozone were detected for both daytime (0.24 ± 0.16 ppbv year-1) and nighttime (0.28 ± 0.17 ppbv year-1). The largest nighttime increasing rate occurred in autumn (0.29 ± 0.11 ppbv year-1), followed by spring (0.24 ± 0.12 ppbv year-1), summer (0.22 ± 0

  1. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  2. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  3. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  4. Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain).

    Carnero, Jose A Adame; Bolívar, Juan P; de la Morena, Benito A

    2010-02-01

    at El Arenosillo and Valverde stations remains very uniformed until 20:00 UTC. These levels could be due to the photochemical production in situ and also to the horizontal and vertical ozone transport at El Arenosillo from the reservoir layers in the sea and in the case of Valverde, the horizontal transport, thanks to the marine breeze. Finally, the data have been evaluated relative to the thresholds defined in the European Ozone Directive. The threshold to protect human health has been exceeded during the spring and summer months mainly at El Arenosillo and Valverde. The vegetation threshold has also been frequently exceeded, ranging from 131 days at Cartaya up to 266 days at Valverde. The results in the seasonal and daily variations demonstrate that El Arenosillo and Valverde stations show higher ozone concentrations than Cartaya and Huelva during the spring and summer months. Under meteorological conditions characterized by land-sea breeze circulation, the daytime sea breeze transports the emissions from urban and industrial sources in the SW further inland. Under this condition, the area located downwind to the NE is affected very easily by high ozone concentrations, which is the case for the Valverde station. Nevertheless, according to this circulation model, the El Arenosillo station located at the coast SE from these sources is not directly affected by their emissions. The ozone concentrations observed at El Arenosillo can be explained by the ozone residual layer over the sea, similar to other coastal sites in the Mediterranean basin. The temporal variations of the ozone concentrations have been studied at four measurement sites in the southwest of the Iberian Peninsula. The results obtained point out that industrial and urban emissions combined with specific meteorological conditions in spring and summer cause high ozone levels which exceed the recommended threshold limits and could affect the vegetation and human health in this area. This work is the first

  5. Ozone pollution: rising concentrations despite French and EU efforts

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  6. Estimation of incremental reactivities for multiple day scenarios: an application to ethane and dimethyoxymethane

    Stockwell, William R.; Geiger, Harald; Becker, Karl H.

    Single-day scenarios are used to calculate incremental reactivities by definition (Carter, J. Air Waste Management Assoc. 44 (1994) 881-899.) but even unreactive organic compounds may have a non-negligible effect on ozone concentrations if multiple-day scenarios are considered. The concentration of unreactive compounds and their products may build up over a multiple-day period and the oxidation products may be highly reactive or highly unreactive affecting the overall incremental reactivity of the organic compound. We have developed a method for calculating incremental reactivities for multiple days based on a standard scenario for polluted European conditions. This method was used to estimate maximum incremental reactivities (MIR) and maximum ozone incremental reactivities (MOIR) for ethane and dimethyoxymethane for scenarios ranging from 1 to 6 days. It was found that the incremental reactivities increased as the length of the simulation period increased. The MIR of ethane increased faster than the value for dimethyoxymethane as the scenarios became longer. The MOIRs of ethane and dimethyoxymethane increased but the change was more modest for scenarios longer than 3 days. MOIRs of both volatile organic compounds were equal within the uncertainties of their chemical mechanisms by the 5 day scenario. These results show that dimethyoxymethane has an ozone forming potential on a per mass basis that is only somewhat greater than ethane if multiple-day scenarios are considered.

  7. Ozone as an air pollutant

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  8. Shelf life characteristics of bread produced from ozonated wheat flour.

    Obadi, Mohammed; Zhu, Ke-Xue; Peng, Wei; Sulieman, Abdellatif A; Mahdi, Amer Ali; Mohammed, Khalid; Zhou, Hui-Ming

    2017-11-13

    The objective of this work was to study the effect of ozone treatment on the quality of bread and its shelf life. Flour was treated with ozone gas a rate of 5 L/min for 5, 15, 25, 35, and 45 min. Baking studies showed that bread made from flour treated with ozone for 15 min exhibited improved quality properties (in terms of specific volume, bread color, and crumb cell numbers). Exposure to ozone for shorter times did not cause obvious changes in the major volatile compounds of bread. A shelf life tests showed that ozone gas treatment influenced the extent of starch crystallinity. The relative starch crystallinity of bread made from flour treated with ozone for 15 min was lower than the control value, as were the hardness, springiness, and cohesiveness. Microscopic examination of crumb structure revealed remarkable differences between control and treated breads. Although ozone is a naturally occurring substance found in the atmosphere, ozone can also be produced synthetically. Recently, ozone has come to be regarded as a new treatment for flour. Especially in countries where the chlorination is forbidden, ozone treatment may be of a great interest if it were associated with significant and reliable changes in flour. Ozone treatment of wheat flour tends to improve bread shelf life and quality in terms of physiochemical, baking properties, X-ray diffraction data, volatile compound levels, crumb structure, and textural characteristics. Given such findings, desirable shelf life and bread qualities may be achieved when ozone is used as a flour oxidant prior to bread baking. Analyses of the effects of ozone gas on treatment of flour on bread shelf life and quality would aid the production of high quality and extend the shelf life of bread. © 2017 Wiley Periodicals, Inc.

  9. Trend prognosis of regional ozone maxima in 1994 using various meteorologic data

    Loibl, W.

    1995-06-01

    The purpose of this study was to develop and test a statistical method for the short-term forecast of ozone concentrations. Austrian ozone monitoring data from April to September 1994 are used to develop the forecast model. It builds upon a multiple linear regression model developed earlier which uses the temperature of the forecast day, and the ozone maxima of the previous day as variables. In this study temperature difference between previous and forecast day, and wind velocity of the forecast day were additionally taken into account. Furthermore wind direction dependent regression models were developed using subsamples of the data set devided into 8 wind direction classes. Different regression function parameters have to be applied for each of the 40 selected ozone monitoring sites to allow forecasting of regional ozone maxima throughout Austria. It was found that regression models with temperature difference and wind velocity as additional variables did not improve the results. Wind direction dependent regression models only slightly improved the results for some wind directions at several monitoring sites. Best forecast results in general were achieved by using the base regression model with the temperature of the forecast day and the ozone maxima of the previous day as variables. Ozone forecast maps were calculated by spatial interpolation of the forecasted ozone maxima of the monitoring sites. Forecast accuracy is within ± 10 ppb on 70-80 % of the observed days. Errors higher than ± 10 ppb occur mainly on days with ozone maxima of 80 ppb and more. (author)

  10. Trend prognosis of regional ozone maxima in 1994 using various meteorologic data: appendix

    Loibl, W.

    1995-06-01

    The purpose of this study was to develop and test a statistical method for the short-term forecast of ozone concentrations. Austrian ozone monitoring data from April to September 1994 are used to develop the forecast model. It builds upon a multiple linear regression model developed earlier which uses the temperature of the forecast day, and the ozone maxima of the previous day as variables. In this study temperature difference between previous and forecast day, and wind velocity of the forecast day were additionally taken into account. Furthermore wind direction dependent regression models were developed using subsamples of the data set devided into 8 wind direction classes. Different regression function parameters have to be applied for each of the 40 selected ozone monitoring sites to allow forecasting of regional ozone maxima throughout Austria. It was found that regression models with temperature difference and wind velocity as additional variables did not improve the results. Wind direction dependent regression models only slightly improved the results for some wind directions at several monitoring sites. Best forecast results in general were achieved by using the base regression model with the temperature of the forecast day and the ozone maxima of the previous day as variables. Ozone forecast maps were calculated by spatial interpolation of the forecasted ozone maxima of the monitoring sites. Forecast accuracy is within ± 10 ppb on 70-80 % of the observed days. Errors higher than ± 10 ppb occur mainly on days with ozone maxima of 80 ppb and more. (author)

  11. Implementation of a novel synchronous multi-site all day high-fidelity simulation.

    Abraham, Paul; Verdonk, Franck; Buleon, Clement; Tesniere, Antoine; Lilot, Marc

    2018-01-01

    Integration of simulation in educational curricula for anesthesia and intensive care residents is a hot topic. There is a great interest for simulation centers to share their experiences through multi-site synchronous simulation sessions. The present study results from an experience conducted at three sites in France (Paris, Lyon, and Caen), which involved 16 instructors and 25 residents facing the same scenario across 1 day. Synchronous simulations were performed at each site with local and shared debriefing via teleconference. This innovative approach to simulation was found to be feasible, although certain difficulties were encountered with connectivity.

  12. Ozone and climate - Effects of the excess of critical loads on birches and mountain plants; Ozon og klima - effekter av taalegrenseoverskridelser paa bjoerk og fjellplanter

    Mortensen, L M

    1996-01-01

    The conference paper relates to the environmental effects of high concentrated ozone on the biomass production in Norway. The effects on birches and mountain plants from ozone together with the interaction between ozone and carbon dioxide and their influence on vegetation are discussed

  13. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  14. Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter, Phase II

    National Aeronautics and Space Administration — Real-time, high-frequency measurements of atmospheric ozone are becoming increasingly important to understand the impact of ozone towards climate change, to monitor...

  15. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-Intensity Stochastic Cycling

    Phillip G. Bell

    2014-02-01

    Full Text Available This investigation examined the impact of Montmorency tart cherry concentrate (MC on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16 were divided into equal groups and consumed 30 mL of MC or placebo (PLA, twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, interleukin-1-beta (IL-1-β, high-sensitivity C-reactive protein (hsCRP and creatine kinase (CK were conducted. LOOH (p < 0.01, IL-6 (p < 0.05 and hsCRP (p < 0.05 responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.

  16. Photo-chemical transport modelling of tropospheric ozone: A review

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  17. Adolescent Views of Time Management: Rethinking the School Day in Junior High School

    Strom, Paris S.; Strom, Robert D.; Sindel-Arrington, Tricia

    2016-01-01

    Junior high school presents a significant increase in time demands both for study and for social relationships. The students (N = 240) in grades 7 and 8 at a junior high school anonymously completed online the Time Management Poll concerning their own use of time and the way their school managed time. The 20 items in the poll allowed them to…

  18. OZONE ABSORPTION IN RAW WATERS

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  19. Modulations of stratospheric ozone by volcanic eruptions

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  20. Ozone, greenhouse effect. Ozone, effet de serre

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  1. High-sensitivity c-reactive protein (hs-CRP) value with 90 days mortality in patients with heart failure

    Nursyamsiah; Hasan, R.

    2018-03-01

    Hospitalization in patients with chronic heart failure is associated with high rates of mortality and morbidity that during treatment and post-treatment. Despite the various therapies available today, mortality and re-hospitalization rates within 60 to 90 days post-hospitalization are still quite high. This period is known as the vulnerable phase. With the prognostic evaluation tools in patients with heart failure are expected to help identify high-risk individuals, then more rigorous monitoring and interventions can be undertaken. To determine whether hs-CRP have an impact on mortality within 90 days in hospitalized patients with heart failure, an observational cohort study was conducted in 39 patients with heart failure who were hospitalized due to worsening chronic heart failure. Patients were followed for up to 90 days after initial evaluation with the primary endpoint is death. Hs-CRP value >4.25 mg/L we found 70% was dead and hs-CRP value <4.25 mg/L only 6.9% was dead whereas the survival within 90 days. p:0.000.In conclusion, there were differences in hs-CRP values between in patients with heart failure who died and survival within 90 days.

  2. Automatic programmable air ozonizer

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  3. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.

    Mendoza-Dominguez, A; Wilkinson, J G; Yang, Y J; Russell, A G

    2000-01-01

    A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.

  4. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  5. Humbert Humbert and the Kids These Days: On Teaching "Lolita" in a High School Classroom

    Seigle, Benjamin

    2017-01-01

    In this reflective essay, an English teacher recounts failures and successes teaching Vladimir Nabokov's "Lolita". The author considers both why and how the novel might be introduced to high school students.

  6. Spatio-temporal observations of the tertiary ozone maximum

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  7. Integrated Studies of a Regional Ozone Pollution Synthetically Affected by Subtropical High and Typhoon System in the Yangtze River Delta Region, China

    Xie, M.; Shu, L.

    2017-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.

  8. Comparative study of ozonized olive oil and ozonized sunflower oil

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  9. Ozone and its projection in regard to climate change

    Melkonyan, Ani; Wagner, Patrick

    2013-03-01

    In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.

  10. [Curative effect of ozone hydrotherapy for pemphigus].

    Jiang, Fuqiong; Deng, Danqi; Li, Xiaolan; Wang, Wenfang; Xie, Hong; Wu, Yongzhuo; Luan, Chunyan; Yang, Binbin

    2018-02-28

    To determine clinical curative effects of ozone therapy for pemphigus vulgaris.
 Methods: Ozone hydrotherapy was used as an aid treatment for 32 patients with pemphigus vulgaris. The hydropathic compression of potassium permanganate solution for 34 patients with pemphigus vulgaris served as a control. The main treatment for both groups were glucocorticoids and immune inhibitors. The lesions of patients, bacterial infection, usage of antibiotics, patient's satisfaction, and clinical curative effect were evaluated in the 2 groups.
 Results: There was no significant difference in the curative effect and the average length of staying at hospital between the 2 groups (P>0.05). But rate for the usage of antibiotics was significantly reduced in the group of ozone hydrotherapy (P=0.039). The patients were more satisfied in using ozone hydrotherapy than the potassium permanganate solution after 7-day therapy (P>0.05).
 Conclusion: Ozone hydrotherapy is a safe and effective aid method for pemphigus vulgaris. It can reduce the usage of antibiotics.

  11. Eighteen days of "living high, training low" stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners

    Brugniaux, Julien V; Schmitt, Laurent; Robach, Paul

    2005-01-01

    The efficiency of "living high, training low" (LHTL) remains controversial, despite its wide utilization. This study aimed to verify whether maximal and/or submaximal aerobic performance were modified by LHTL and whether these effects persist for 15 days after returning to normoxia. Last, we trie...

  12. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  13. A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes

    Sillman, S.; Logan, J.A.; Wofsy, S.C.

    1990-01-01

    A new approach to modeling regional air chemistry is presented for application to industrialized regions such as the continental US. Rural chemistry and transport are simulated using a coarse grid, while chemistry and transport in urban and power plant plumes are represented by detailed subgrid models. Emissions from urban and power plant sources are processed in generalized plumes where chemistry and dilution proceed for 8-12 hours before mixing with air in a large resolution element. A realistic fraction of pollutants reacts under high-NO x conditions, and NO x is removed significantly before dispersal. Results from this model are compared with results from grid odels that do not distinguish plumes and with observational data defining regional ozone distributions. Grid models with coarse resolution are found to artificially disperse NO x over rural areas, therefore overestimating rural levels of both NO x and O 3 . Regional net ozone production is too high in coarse grid models, because production of O 3 is more efficient per molecule of NO x in the low-concentration regime of rural areas than in heavily polluted plumes from major emission sources. Ozone levels simulated by this model are shown to agree with observations in urban plumes and in rural regions. The model reproduces accurately average regional and peak ozone concentrations observed during a 4-day ozone episode. Computational costs for the model are reduced 25-to 100-fold as compared to fine-mesh models

  14. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  15. Addressing Ozone Layer Depletion

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  16. Ozone Therapy in Dentistry

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  17. 2001 Ozone Design Value

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  18. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  19. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  20. High dosages of sermion (30-60 mg per day) neuropsychiatric efficacy for encephalopathy monotherapy in irradiated patients

    Nyagu, A.I.; Loganovskij, K.N.; Yur'ev, K.L.; Petrova, I.V.; Bomko, M.A.

    1999-01-01

    Open randomised with parallel groups clinical trial was carried out for an assessment of neuropsychiatric efficacy of monotherapy by high dosages of Sermion (30-60 mg per day) in 57 liquidators at the age of 33-65 years irradiated by 50-900 mGy with organic mental disorders (encephalopathy) occurred following cleaning up works in the Chernobyl exclusion zone in 1986-1987. According to the obtained results Sermion 30-60 mg per day may be recommended for the treatment of patients with organic mental disorders (encephalopathy) exposed to ionising radiation

  1. Current-day matters of administration and law in the field of high-rise construction

    Voskresenskaya, Elena; Snetkov, Vitaly; Tebryaev, Alexander

    2018-03-01

    The article touches upon main reasons for high-rise construction: increase in energy consumption and limited availability of site in the big cities of Russia. Increase in energy consumption is related with construction, transportation and applying of ventilation and air conditioning systems. Nowadays, there are developed a lot of design and engineer solutions, that include autonomous systems as well as passive methods with low energy consumption rate, which are interrelated with local climate conditions. Certain architectural solutions contribute to energy consumption decrease: building orientation with respect to the cardinal directions, taking into account the prevailing cold wind directions, maximum glazing of the southern facades and minimum glazing of the northern ones, what plays a big role in hard climate conditions. Limited availability of site for construction in the big cities resulted in rapid development of the high-rise construction, which today prevails in terms of quantitative indicators of civil engineering.

  2. Photosynthesis and growth at high day temperatures in a CO2 enriched atmosphere

    Hückstädt, Arne Björn

    2013-01-01

    Increasing energy prices have led to the attempt of energy saving and are one of the main research areas in greenhouse plant production. Technical disintegration has been developed, and the greenhouse concept ‘Closed/Semi-Closed Greenhouse’ was introduced. The idea of this concept is to reduce energy consumption by cooling the greenhouse under high light intensities, and storing the heat in an underground aquifer to be regained for heating. In order to improve the efficiency of the concept th...

  3. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  4. Characteristics of atmospheric non-methane hydrocarbons during high PM 10 episodes and normal days in Foshan, China

    Guo, Songjun; Tan, Jihua; Ma, Yongliang; Yang, Fumo; Yu, Yongchan; Wang, Jiewen

    2011-08-01

    Atmospheric non-methane hydrocarbons (NMHCs) were firstly studied during high PM 10 episodes and normal days in December 2008 in Foshan, China. Ethyne, ethene, i-pentane, toluene, ethane and propane are six abundant hydrocarbons, accounting for round 80% of total NMHCs. Both diurnal variations and concentration ratios of morning (evening)/afternoon implied vehicular emission for most hydrocarbons. Correlation coefficients (R 2) of ethene, propene, i-butene, benzene, toluene and i-/n-butanes with ethyne were 0.60-0.88 (they were 0.64-0.88 during high PM 10 episode and 0.60-0.85 in normal days) except for ethene and i-butene in normal days, indicating these hydrocarbons are mainly related to vehicular emission. It suggests liquefied petroleum gas (LPG) and natural gas (NG) leakages are responsible for propane and ethane, respectively. The measured mean benzene/toluene (B/T) ratio (wt/wt) was 0.45 ± 0.29 during total sampling periods together with R 2 analysis, again indicating vehicular emission is main contributor to ambient hydrocarbons. And the lower B/T ratio (0.29 ± 0.11) during high PM 10 episodes than that (0.75 ± 0.29) in normal days is likely caused by air transport containing low B/T value (0.23) from Guangzhou as well as solvent application containing toluene in Foshan.

  5. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    trends of ozone maxima were found in Southern Switzerland. The reason for this might be that the NABEL stations in the south are not very representative of the Milan agglomeration, as the station at Lugano is located in the city and the more rural station of Magadino is not well exposed to advected air masses from the south. Finally, the meteorological correction calculated from 1992-2002 was applied to the period 1992-2003, including the unusually warm summer of 2003, with very high ozone concentrations. Even in this case, the statistical model was able to well explain these very high concentrations taking the meteorological factors into account. (author)

  6. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    maxima were found in Southern Switzerland. The reason for this might be that the NABEL stations in the south are not very representative of the Milan agglomeration, as the station at Lugano is located in the city and the more rural station of Magadino is not well exposed to advected air masses from the south. Finally, the meteorological correction calculated from 1992-2002 was applied to the period 1992-2003, including the unusually warm summer of 2003, with very high ozone concentrations. Even in this case, the statistical model was able to well explain these very high concentrations taking the meteorological factors into account. (author)

  7. On the Size of the Antarctic Ozone Hole

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  8. Ozone depletion calculations

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  9. Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation

    Gruzdev, A.N.; Elokhov, A.S.; Makarov, O.V.; Mokhov, I.I. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics)

    1993-01-01

    Surface ozone measurements were carried out at Molodezhnaya and Mirny stations in spring 1987-autumn 1988. The data show an annual variation with a summer minimum at 15 ppbv value. The striking feature of the surface ozone record is two types of day-to-day variability. One of the types is characterized by large day-to-day variations with about 10 ppbv magnitude. The likely mechanism of such variations is the vertical transport induced by cyclonic activity. The other type occurs in synoptically quiet periods (frequent in summer) when the day-to-day ozone variations are significant but not so large. The most likely mechanism of these variations is the slope katabatic wind which transports ozone from inside the Antarctic continent. The latitudinal distribution of surface ozone for this period, measured aboard an aircraft, showed a slight increase towards Vostok station. (26 refs., 3 figs.).

  10. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  11. Ozone therapy in the management and prevention of caries

    Merve Erkmen Almaz

    2015-01-01

    Full Text Available The purpose of this article was to assess the effectiveness of ozone therapy in the management and prevention of caries, reviewing clinical and in vitro studies. Ozone has proven to be effective against gram-negative and gram-positive bacteria, viruses, and fungi. In dentistry, most of the published articles are based on ozone's antimicrobial effects and the treatment of caries. Most of the clinical studies reported ozone to be a promising alternative to conventional methods for caries management. However, a few studies have shown ozone to be insufficient for preventing caries and reducing microorganisms in open occlusal carious lesions. Ozone might be a useful tool to reduce and control oral infectious microorganisms in dental plaque and dental cavity. However, the results of in vitro studies are controversial; while some researchers reported that ozone therapy had a minimal or no effect on the viability of microorganisms, others suggested ozone to be highly effective in killing both gram-positive and gram-negative oral microorganisms. Therefore, more evidence is required before ozone can be accepted as an alternative to present methods for the management and prevention of caries.

  12. Search for continuous and single day emission from ultra-high-energy sources

    Chen, Mei-Li.

    1993-01-01

    Data from the CYGNUS experiment has been used to search the northern sky for point sources of continuous ultra-high-energy gamma radiation and to examine 51 candidate sources on a daily basis to search for episodic emission. In this paper, we make use of our most recent data to update our previously published results from these searches. The data sample is approximately twice as large as the published data set for continuous emission, and contains an additional year for the daily search. The latest results, up to the time of the conference, will be presented at the meeting

  13. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  14. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  15. High Intensity Resistive and Rowing Exercise Countermeasures Do Not Prevent Orthostatic Intolerance Following 70 Days of Bed Rest

    Lee, Stuart M. C.; Stenger, Michael B.; Laurie, Steven S.; Ploutz-Snyder, Lori L.; Platts, Steven H.

    2015-01-01

    More than 60% of US astronauts participating in Mir and early International Space Station missions (greater than 5 months) were unable to complete a 10-min 80 deg head-up tilt test on landing day. This high incidence of post-spaceflight orthostatic intolerance may be related to limitations of the inflight exercise hardware that prevented high intensity training. PURPOSE: This study sought to determine if a countermeasure program that included intense lower-body resistive and rowing exercises designed to prevent cardiovascular and musculoskeletal deconditioning during 70 days of 6 deg head-down tilt bed rest (BR), a spaceflight analog, also would protect against post- BR orthostatic intolerance. METHODS: Sixteen males participated in this study and performed no exercise (Control, n=10) or performed an intense supine exercise protocol with resistive and aerobic components (Exercise, n=6). On 3 days/week, exercise subjects performed lower body resistive exercise and a 30-min continuous bout of rowing (greater than or equal to 75% max heart rate). On 3 other days/week, subjects performed only high-intensity, interval-style rowing. Orthostatic intolerance was assessed using a 15-min 80 deg head-up tilt test performed 2 days (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using a carbon monoxide rebreathing technique on BR-3 and before rising on the first recovery day (BR+0). RESULTS: Following 70 days of BR, tilt tolerance time decreased significantly in both the Control (BR-2: 15.0 +/- 0.0, BR70: 9.9 +/- 4.6 min, mean +/- SD) and Exercise (BR-2: 12.2 +/- 4.7, BR70: 4.9 +/- 1.9 min) subjects, but the decreased tilt tolerance time was not different between groups (Control: -34 +/- 31, Exercise: -56 +/- 16%). Plasma volume also decreased (Control: -0.56 +/- 0.40, Exercise: -0.48 +/- 0.33 L) from pre to post-BR, with no differences between groups (Control: -18 +/- 11%, Exerciser: -15 +/-1 0%). CONCLUSIONS: These findings confirm previous reports

  16. Centre-based day care for children younger than five years of age in high-income countries.

    van Urk, Felix C; Brown, Taylor W; Waller, Rebecca; Mayo-Wilson, Evan

    2014-09-23

    A large proportion of children younger than five years of age in high-income countries experience significant non-parental care. Centre-based day care services may influence the development of children and the economic situation of parents. To assess the effects of centre-based day care without additional interventions (e.g. psychological or medical services, parent training) on the development and well-being of children and families in high-income countries (as defined by the World Bank 2011). In April 2014, we searched CENTRAL, Ovid MEDLINE, EMBASE, PsycINFO, the Education Resources Information Center (ERIC) and eight other databases. We also searched two trials registers and the reference lists of relevant studies. We included randomised and quasi-randomised controlled trials of centre-based day care for children younger than five years of age. We excluded studies that involved co-interventions not directed toward children (e.g. parent programmes, home visits, teacher training). We included the following outcomes: child cognitive development (primary outcome), child psychosocial development, maternal and family outcomes and child long-term outcomes. Two review authors independently assessed the risk of bias and extracted data from the single included study. We contacted investigators to obtain missing information. We included in the review one trial, involving 120 families and 143 children. Risk of bias was high because of contamination between groups, as 63% of control group participants accessed day care services separate from those offered within the intervention. No evidence suggested that centre-based day care, rather than no treatment (care at home), improved or worsened children's cognitive ability (Griffiths Mental Development Scale, standardised mean difference (SMD) 0.34, 95% confidence interval (CI) -0.01 to 0.69, 127 participants, 1 study, very low-quality evidence) or psychosocial development (parental report of abnormal development, risk ratio (RR

  17. The impact of the observation nudging and nesting on the simulated meteorology and ozone concentrations from WRF-SMOKE-CMAQ during DISCOVER-AQ 2013 Texas campaign

    Choi, Y.; Li, X.; Czader, B.

    2014-12-01

    Three WRF simulations for the DISCOVER-AQ 2013 Texas campaign period (30 days in September) are performed to characterize uncertainties in the simulated meteorological and chemical conditions. These simulations differ in domain setup, and in performing observation nudging in WRF runs. There are around 7% index of agreement (IOA) gain in temperature and 9-12% boost in U-WIND and V-WIND when the observational nudging is employed in the simulation. Further performance gain from nested domains over single domain is marginal. The CMAQ simulations based on above WRF setups showed that the ozone performance slightly improved in the simulation for which objective analysis (OA) is carried out. Further IOA gain, though quite limited, is achieved with nested domains. This study shows that the high ozone episodes during the analyzed time periods were associated with the uncertainties of the simulated cold front passage, chemical boundary condition and small-scale temporal wind fields. All runs missed the observed high ozone values which reached above 150 ppb in La Porte on September 25, the only day with hourly ozone over 120 ppb. The failure is likely due to model's inability to catch small-scale wind shifts in the industrial zone, despite better wind directions in the simulations with nudging and nested domains. This study also shows that overestimated background ozone from the southerly chemical boundary is a critical source for the model's general overpredictions of the ozone concentrations from CMAQ during September of 2013. These results of this study shed a light on the necessity of (1) capturing the small-scale winds such as the onsets of bay-breeze or sea-breeze and (2) implementing more accurate chemical boundary conditions to reduce the simulated high-biased ozone concentrations. One promising remedy for (1) is implementing hourly observation nudging instead of the standard one which is done every three hours.

  18. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  19. Residential ozone and lung function in the elderly

    Braeuner, Elvira V.; Karottki, Dorina Gabriela; Frederiksen, Marie

    2016-01-01

    elderly non-smokers. Indoor ozone was measured passively in homes, while urban background outdoor ozone was monitored continuously at a fixed monitoring station located on the roof of the 20-m high university H.C. Ørsteds campus building in a park area. Lung function was measured at baseline as well...

  20. Effectiveness of chlorination and ozonation methods on pure ...

    2005-01-16

    Jan 16, 2005 ... dising agents on the metabolic activity and the viability of the micro-organisms. Ozone was found to ..... the antimicrobial action of ozone and chlorine. This strain was ... The pH of the culture medium was adjusted to 7.0 with ..... indicated that lysis of the cells can result for high concentrations or extended ...

  1. Ozone: The secret greenhouse gas

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  2. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China

    L. Shu

    2016-12-01

    Full Text Available Severe high ozone (O3 episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD region in China during 7–12 August 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. The maximum hourly concentration of O3 reached 167.1 ppb. By means of the observational analysis and the numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are comprehensively investigated. The observational analysis shows that the atmospheric subsidence dominated by the western Pacific subtropical high plays a crucial role in the formation of high-level O3. The favorable weather conditions, such as extremely high temperature, low relative humidity and weak wind speed, caused by the abnormally strong subtropical high are responsible for the trapping and the chemical production of O3 in the boundary layer. In addition, when the YRD cities are at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause worse air quality. However, when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The integrated process rate (IPR analysis incorporated in the Community Multi-scale Air Quality (CMAQ model is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF and the gas-phase chemistry (CHEM are two major contributors to O3 formation. During the episode, the contributions of VDIF and CHEM to O3 maintain the high values over the YRD region. On 10–12 August, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb h−1 in Shanghai and 19.76 ppb h−1 in

  3. Modelled surface ozone over southern africa during the cross border air pollution impact assessment project

    Zunckel, M

    2006-07-01

    Full Text Available , T.S., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., Mc Henry, J., 2001. Evaluating the performance of regional-scale photochemical modelling systems: Part II-ozone predictions. Atmospheric Environment 35, 4175e4188. Jenkins, M.J., Clemitshaw, K.... These conditions are favourable to the formation of ozone and suggest that ozone concentrations over southern Africa may be relatively high. Ozone is an important constituent in tropospheric chemistry (Jenkins and Clemitshaw, 2000). It is also associated...

  4. Nicotiana tabacum as model for ozone - plant surface reactions

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  5. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  6. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  7. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  8. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  9. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  10. Concomitant external pneumatic compression treatment with consecutive days of high intensity interval training reduces markers of proteolysis.

    Haun, Cody T; Roberts, Michael D; Romero, Matthew A; Osburn, Shelby C; Healy, James C; Moore, Angelique N; Mobley, Christopher B; Roberson, Paul A; Kephart, Wesley C; Mumford, Petey W; Goodlett, Michael D; Pascoe, David D; Martin, Jeffrey S

    2017-12-01

    To compare the effects of external pneumatic compression (EPC) and sham when used concurrently with high intensity interval training (HIIT) on performance-related outcomes and recovery-related molecular measures. Eighteen recreationally endurance-trained male participants (age: 21.6 ± 2.4 years, BMI: 25.7 ± 0.5 kg/m 2 , VO 2peak : 51.3 ± 0.9 mL/kg/min) were randomized to balanced sham and EPC treatment groups. Three consecutive days of HIIT followed by EPC/sham treatment (Days 2-4) and 3 consecutive days of recovery (Days 5-7) with EPC/sham only on Days 5-6 were employed. Venipuncture, flexibility and pressure-to-pain threshold (PPT) measurements were made throughout. Vastus lateralis muscle was biopsied at PRE (i.e., Day 1), 1-h post-EPC/sham treatment on Day 2 (POST1), and 24-h post-EPC/sham treatment on Day 7 (POST2). 6-km run time trial performance was tested at PRE and POST2. No group × time interaction was observed for flexibility, PPT, or serum measures of creatine kinase (CK), hsCRP, and 8-isoprostane. However, there was a main effect of time for serum CK (p = 0.005). Change from PRE in 6-km run times at POST2 were not significantly different between groups. Significant between-groups differences existed for change from PRE in atrogin-1 mRNA (p = 0.018) at the POST1 time point (EPC: - 19.7 ± 8.1%, sham: + 7.7 ± 5.9%) and atrogin-1 protein concentration (p = 0.013) at the POST2 time point (EPC: - 31.8 ± 7.5%, sham: + 96.0 ± 34.7%). In addition, change from PRE in poly-Ub proteins was significantly different between groups at both the POST1 (EPC: - 26.0 ± 10.3%, sham: + 34.8 ± 28.5%; p = 0.046) and POST2 (EPC: - 33.7 ± 17.2%, sham: + 21.4 ± 14.9%; p = 0.037) time points. EPC when used concurrently with HIIT and in subsequent recovery days reduces skeletal muscle markers of proteolysis.

  11. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  12. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  13. Female college students' negative feelings toward their fathers : Comparison of present feelings with recollections of their junior high school days

    石丸, 綾子; Ishimaru, Ayako

    2013-01-01

    An adolescent daughter’s relationship with her father is strained owing to her negative feelings, such as opposition, defiant attitude, and hatred, toward father. However, further details regarding these feelings and how they evolve during a daughter’s growing years have not been examined yet. In this study, a questionnaire survey was administered to female college students, asking about their negative feelings toward their fathers in the present and during their junior high school days. The ...

  14. Ozone modeling within plasmas for ozone sensor applications

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  15. O3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013

    S. J. Oltmans

    2016-10-01

    Full Text Available Abstract Instrumented aircraft measuring air composition in the Uinta Basin, Utah, during February 2012 and January-February 2013 documented dramatically different atmospheric ozone (O3 mole fractions. In 2012 O3 remained near levels of ∼40 ppb in a well-mixed 500–1000 m deep boundary layer while in 2013, O3 mole fractions >140 ppb were measured in a shallow (∼200 m boundary layer. In contrast to 2012 when mole fractions of emissions from oil and gas production such as methane (CH4, non-methane hydrocarbons (NMHCs and combustion products such as carbon dioxide (CO2 were moderately elevated, in winter 2013 very high mole fractions were observed. Snow cover in 2013 helped produce and maintain strong temperature inversions that capped a shallow cold pool layer. In 2012, O3 and CH4 and associated NMHCs mole fractions were not closely related. In 2013, O3 mole fractions were correlated with CH4 and a suite of NMHCs identifying the gas field as the primary source of the O3 precursor NMHC emissions. In 2013 there was a strong positive correlation between CH4 and CO2 suggesting combustion from oil and natural gas processing activities. The presence of O3 precursor NMHCs through the depth of the boundary layer in 2013 led to O3 production throughout the layer. In 2013, O3 mole fractions increased over the course of the week-long episodes indicating O3 photochemical production was larger than dilution and deposition rates, while CH4 mole fractions began to level off after 3 days indicative of some air being mixed out of the boundary layer. The plume of a coal-fired power plant located east of the main gas field was not an important contributor to O3 or O3 precursors in the boundary layer in 2013.

  16. Impacts from a fossil fuel power plant on ozone levels in Memphis, Tennessee

    Mueller, S.F.; Bailey, E.M.

    1998-01-01

    The Tennessee Valley Authority (TVA) Allen power plant is located on the Mississippi River in the southwest corner of Memphis, Tennessee. Allen has three coal-fired cyclone boilers with a rated capacity of 272 MW each. It is a Phase 2 plant under Title IV of the Clean Air Act and is the largest single source of NO x in the Memphis area. TVA plans to reduce Allen NOx emissions through a combination of burning low-sulfur coal (which has the benefit of reducing NO x emissions while also reducing SO 2 emissions) and installing gas re-burn technology. A modeling study using the SAI, Inc., UAM-V photochemical model was conducted to examine the potential impacts of NO x reductions on ozone levels in the Memphis area. A series of four model simulations were made in which different Allen emissions scenarios were examined. The focus period of the photochemical modeling was 11--14 July 1995 when measurements in and near Memphis indicated peak hourly ozone levels of 135--140 ppb. This analysis primarily examined computed impacts within 50 km of Memphis. Allen was computed to contribute as much as 20--30 ppb to ground ozone levels 20-50 km downwind using its NO x emission rate before Title IV compliance. After compliance it was computed to contribute only about 10--20 ppb. At the same time, maximum daily ozone reductions due to Allen NO x titration of ozone were between 30 and 60 ppb. These benefits will be reduced by 30--50% after Title IV compliance, and are expected to occur within 30 km of the plant. More model grid cells indicated dis-benefits (net ground-level ozone increases) than benefits on three of the four episode days using the Title IV compliance emission rate. Significant ozone dis-benefits were expected because of the well-documented NO titration of ozone within plumes having a high ratio of NO to volatile organic compounds

  17. Reconstruction of daily erythemal UV radiation values for the last century - The benefit of modelled ozone

    Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.

    2013-05-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  18. Effects of ozone on the pain and disability in patients with failed back surgery syndrome

    Danilo Costa Barbosa

    Full Text Available Summary Introduction: Low back pain is one of the painful disorders of higher prevalence. It has several etiologies and surgery may be indicated in the presence of neurological deficits or compression syndromes. However, in up to 40% of cases, patients develop worsening of pain and failed back surgery syndrome (FBSS, which is an important cause of chronic pain with high morbidity and disability. In the last two decades, ozone has been shown to be a new therapeutic option for FBSS due to its analgesic and anti-inflammatory properties. Objective: To evaluate the effect of ozone therapy on pain and disability in patients with failed back surgery syndrome. Method: We selected 19 patients undergoing epiduroscopy and injection of ozone. Patients were evaluated preoperatively and 21 days after the procedure, using the following instruments: Visual Analogue Scale (VAS, Brief Pain Inventory, Roland-Morris Questionnaire Disability, Oswestry Disability Index (ODI, Neuropathic Pain Symptom Inventory and Douleur Neuropathique 4. Results: The patients showed significant pain relief, but no improvement was observed in the functional scales. Conclusion: Our results suggest that epidural ozone therapy can be a treatment option in FBSS to reduce the intensity of the pain.

  19. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  20. Effects of a progesterone-based oestrous synchronization protocol in 51- to 57-day postpartum high-producing dairy cows.

    Garcia-Ispierto, I; López-Gatius, F; Bech-Sàbat, G; Yániz, J L; Angulo, E; Maris, C; Floc'h, S; Martino, A

    2010-10-01

    The aim of this study was to investigate the effect of applying a progesterone-based oestrous synchronization protocol at 51-57 days postpartum in high-producing dairy cows. The data analysed were derived from 1345 lactating cows. Cows between 51 and 57 days postpartum were assigned to the groups: control, PRID (receiving a progesterone-releasing intravaginal device for 9 days, and prostaglandin F(2α) 24 h before PRID removal) or GnRH-PRID (the same as the PRID group plus GnRH at PRID insertion). Oestrus was detected by using pedometers and confirmed by examination of the genital tract at AI. Oestrous and conception rates before days 71-77 postpartum, pregnancy loss in early pregnant cows or the cumulative conception rate registered on day 120 postpartum were considered as the dependent variables in four consecutive logistic regression analyses. Based on the odds ratios, the oestrous rate increased by a factor of 1.73 in cows showing oestrus before treatment for each unit increase in the number of previous oestruses; decreased by a factor of 0.44 in the control group with respect to the treatment groups; and by a factor of 0.61 in cows without luteal structures at treatment with respect to cows with corpora lutea. The conception rates of cows inseminated before days 71-77 postpartum remained similar across the groups, whereas the likelihood of pregnancy loss for cows becoming pregnant during this period was 0.11 times lower in the PRID group than in the control. Based on the odds ratio, the likelihood of a higher cumulative conception rate on day 120 postpartum: increased in cows showing oestrus before treatment by a factor of 1.41 for each unit increase in the number of previous oestruses, was reduced 0.56-fold in control cows compared with treated cows, and was also reduced by a factor of 0.98 for each kilogram of milk production increase recorded at treatment. In conclusion, although oestrous synchronization programmes performed in this study did not improve

  1. Ozone-depleting Substances (ODS)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  2. Air Quality Guide for Ozone

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  3. Health Effects of Ozone Pollution

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  4. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.

    Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav

    2010-10-01

    Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players.

    Garvican-Lewis, Laura A; Clark, Sally A; Polglaze, Ted; McFadden, Greg; Gore, Christopher J

    2013-12-01

    Water polo requires high aerobic power to meet the demands of match play. Live high:train low (LHTL) may enhance aerobic capacity at sea level. Before the Olympics, the Australian women's water polo team utilised LHTL in an attempt to enhance aerobic fitness. Over 6 months, 11 players completed three normobaric LHTL exposures (block 1:11 days at 3000 m; block 2+3:9 days at 2500 m, 11 days normoxia, 10 days at 2800 m). Haemoglobin mass (Hbmass) was measured through carbon monoxide-rebreathing. Before each block, the relationship between Hbmass and water polo-specific aerobic fitness was investigated using the Multistage Shuttle Swim Test (MSST). Effect size statistics were adopted with likely, highly likely and almost certainly results being >75%, >95%, >99%, respectively. A Pearson product moment correlation was used to characterise the association between pooled data of Hbmass and MSST. Hbmass (mean ± SD, pre 721 ± 66 g) likely increased after block 1 and almost certainly after block 2+3 (% change; 90% confidence limits: block 1: 3.7%; 1.3-6.2%, block 2+3: 4.5%; 3.8-5.1%) and the net effect was almost certainly higher after block 2+3 than before block 1 (pre) by 8.5%; 7.3-9.7%. There was a very large correlation between Hbmass (g/kg) and MSST score (r=0.73). LHTL exposures of <2 weeks induced approximately 4% increase in Hbmass of water polo players. Extra Hbmass may increase aerobic power, but since match performance is nuanced by many factors it is impossible to ascertain whether the increased Hbmass contributed to Australia's Bronze medal.

  6. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  7. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  8. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  9. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    X. Liu

    2003-01-01

    Full Text Available This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7 and Earth-Probe (EP TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA or Negative Ozone Anomaly (NOA if the correlation coefficient between total ozone and reflectivity is > 0.5 or -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure 200 hPa for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure > 750 hPa. Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production

  10. On the link between martian total ozone and potential vorticity

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  11. Tropospheric Ozone: a Menace for Crops and Natural Vegetation in Greece

    Costas Saitanis

    Full Text Available Based on instrumental monitoring (AOT40s and phytodetection (with Bel-W3 and KK6/5 tobacco cultivars data we evaluated ambient ozone phytotoxicity in Greece. In the greater region of Mesogia-Attica, during the summer of 2000, the year before the new airport Eleftherios Venizelos (March 2001 began operating in this region, the AOT40s (ppb*h were 16,325 over 110 days at Spata; 18,646 over 113 days at Markopoulo; 8,093 over 22 days at Artemis and 16,679 over 121 days in Athens. The Bel- W3 and KK6/5 plants were extensively injured at all places with the greatest injury occurring at Artemis. During the same summer, ozone was also monitored in three rural areas of Corinth, at the Astronomical Observatory of Krionerion, Bogdani Hill and Kiato; The highest average daily AOT40 (192 ppb*h was observed in Krionerio, and it was almost equal to that occurred in Athens (193 ppb*h. Bel-W3 and KK6/5 plants placed at 11 rural areas in Corinth showed extended injury. The following year (2001, high injury was observed on other sets of bioindicator plants exposed in a network of 28 locations throughout the greater area of Volos and Pelion Mountain. Symptoms were more severe at Mortias, Xinovrisi, Tsagarada, Makrinitsa and Chania. The AOT40 (May-July was 11,391 and 10,351 ppb*hours for 2001 and 2002 respectively. Severe ozone-like symptoms have also been observed on field-cultivated grape vines, onion and watermelon plants. Synoptically, our investigations suggest that ozone occurs in the Greek mainland at levels that are potentially phytotoxic for sensitive crop species and for sensitive natural vegetation species including forest trees.

  12. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.; Rakhimov, T. V.; Voloshin, D. G.; Chukalovsky, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-10-15

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

  13. Impacts of increasing ozone on Indian plants

    Oksanen, E.; Pandey, V.; Pandey, A.K.; Keski-Saari, S.; Kontunen-Soppela, S.; Sharma, C.

    2013-01-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region. -- Tropospheric ozone is an increasing threat to food production in India

  14. High School Girl's Adherence to 5-a-Day Serving's Fruits and Vegetables: An Application Theory of Planned Behavior

    Babak Moeini

    2014-09-01

    Full Text Available Introduction: One of the basics of healthy eating is five times consumption of fruits and vegetable a day. Given the importance of recognizing effective factors of consuming fruit and vegetable in this group, the present study aimed to investigate high school girl's adherence to five-time serving fruits and vegetables per day in Hamadan based on the theory of planned behavior application. Materials and Methods: This descriptive-analytical study was performed on 400 girl students from high schools of Hamadan recruited with a multistage cluster sampling method. Participants filled out questionnaires including demographic variables, the theory of planned behavior constructs and a fruit and vegetable consumption measure one week later. Data analysis was performed using SPSS-18 by Chi-square, Pearson correlation and Logistic regression. Results: Fruit and vegetable consumption by female students is 3.4 times daily. Among the demographic variables, family size, mother's education, father's occupation, household income, body mass index and type of school had significant associations with fruit and vegetable consumption (P<0.05. Behavioral intention predicted 35% of the variation in daily fruit and vegetable consumption. Moreover, subjective norms, perceived behavioral control and attitude were able to predict 32% of behavioral intention. Conclusion: Fruit and vegetable consumption in female students is inadequate. The theory of planned behavior may be a useful framework to design a 5-A-Day intervention for female students.

  15. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  16. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum Stored under Controlled Atmosphere and Ozone

    Anibal Concha-Meyer

    2015-01-01

    Full Text Available Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control; 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS; and ozone gas (O3 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90–95%. Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  17. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone.

    Concha-Meyer, Anibal; Eifert, Joseph D; Williams, Robert C; Marcy, Joseph E; Welbaum, Gregory E

    2015-01-01

    Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control); 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS)); and ozone gas (O3) 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90-95%). Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  18. A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area

    Žabkar, Rahela; Koračin, Darko; Rakovec, Jože

    2013-10-01

    A high ozone (O3) concentrations episode during a heat wave event in the Northeastern Mediterranean was investigated using the WRF/Chem model. To understand the major model uncertainties and errors as well as the impacts of model inputs on the model accuracy, an ensemble modelling experiment was conducted. The 51-member ensemble was designed by varying model physics parameterization options (PBL schemes with different surface layer and land-surface modules, and radiation schemes); chemical initial and boundary conditions; anthropogenic and biogenic emission inputs; and model domain setup and resolution. The main impacts of the geographical and emission characteristics of three distinct regions (suburban Mediterranean, continental urban, and continental rural) on the model accuracy and O3 predictions were investigated. In spite of the large ensemble set size, the model generally failed to simulate the extremes; however, as expected from probabilistic forecasting the ensemble spread improved results with respect to extremes compared to the reference run. Noticeable model nighttime overestimations at the Mediterranean and some urban and rural sites can be explained by too strong simulated winds, which reduce the impact of dry deposition and O3 titration in the near surface layers during the nighttime. Another possible explanation could be inaccuracies in the chemical mechanisms, which are suggested also by model insensitivity to variations in the nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. Major impact factors for underestimations of the daytime O3 maxima at the Mediterranean and some rural sites include overestimation of the PBL depths, a lack of information on forest fires, too strong surface winds, and also possible inaccuracies in biogenic emissions. This numerical experiment with the ensemble runs also provided guidance on an optimum model setup and input data.

  19. Ozone bioindicator sampling and estimation

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  20. Ozonated Olive Oils and Troubles

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  1. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; Burrows, J.P.; Denier Van Der Gon, H.A.C.

    2012-01-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors

  2. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  3. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  4. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  5. Disappearing threat to ozone

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  6. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    Matthew Furber

    2017-08-01

    Full Text Available Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR. Forty-five healthy male participants were randomly assigned one of four intervention diets: eucaloric high protein low carbohydrate (PRO-EM, hypocaloric high protein low carbohydrate (PRO-ER, eucaloric high carbohydrate (CHO-EM or hypocaloric high carbohydrate (CHO-ER. The macronutrient ratio of the high protein diet and high carbohydrate diets was 40:30:30% and 10:60:30% (PRO:CHO:FAT respectively. Energy intake for the hypocaloric diets were calculated to match resting metabolic rate. Participants visited the laboratory on 3 occasions each separated by 7 days. On each visit body composition, resting metabolic rate and a muscle biopsy from the vastus lateralis was collected. Prior to visit 1 and 2 habitual diet was consumed which was used as a control, between visit 2 and 3 the intervention diet was consumed continuously for 7-days. No group × time effect was observed, however in the PRO-ER group a significant increase in AMPK, PGC-1α, SIRT1 and SIRT3 mRNA expression was observed post diet intervention groups (p < 0.05. No change was observed in any of the transcriptional markers in the other 3 groups. Despite ∼30% reduction in calorie intake no difference in lean mass (LM loss was observed between the PRO-ER and CHO-EM groups. The results from this study suggest that a 7-day a high protein low carbohydrate hypocaloric diet increased AMPK, SIRT1 and PGC-1 α mRNA expression at rest, and also suggest that increased dietary protein may attenuate LM mass

  7. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  8. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  9. Ozone carcinogenesis in vitro and its co-carcinogenesis with radiation

    Borek, C.

    1988-01-01

    Ozone (O/sub 3/), a reactive species of oxygen, is an important natural constituent of the atmosphere. Background levels of ozone in the lower atmosphere may range up to 0.1 ppm and are modified by geographic elevation, solar radiation and climatic conditions. Since some ozone effects are radiomimetic, its actions may be enhanced in the presence of ionizing radiation from background and/or manmade sources. While stratospheric ozone spares the earth from excess solar ultraviolet (UV) radiation, high levels of ozone in the environment are toxic and present a health hazard to man. Excess environmental exposure to ozone can result from a variety of sources. Ozone is a key component in oxidant smog and in the vicinity of high electric voltage equipment when in operation. Ozone is widely used as a disinfectant for air and water, in bleaches, waxes, textiles, oils. and inorganic synthesis. Enhanced levels of ozone are found in planes flying at high altitudes. Because of the toxic nature of ozone and its potential hazard to man, its levels in the environment are subject to government regulation. The current standard is set at an hourly average of 235 μg/m/sup 3/ (0.12 ppm) not to be exceeded more than once per year. Urban areas with high levels of photochemical smog (e.g. Southern California) may experience high ambient ozone levels which can reach 0.5 ppm

  10. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-01-01

    Mesocosms representing the BAP Priority habitat ‘Calcareous Grassland’ were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30 ppb to 70 ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects. - Highlights: ► An increase in ozone accelerated timing of maximum flowering in Lotus corniculatus. ► Ozone reduced flower numbers in Campanula rotundifolia and Scabiosa columbaria. ► Reduced water availability did not protect most species from the effects of ozone. - Increased tropospheric ozone affected timing of flowering and maximum flower numbers in calcareous grassland mesocosms.

  11. High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    E. Merzlyakov

    2004-03-01

    Full Text Available Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E, Esrange (68°N, 21°E, Castle Eaton (UK (53°N, 2°W, and Obninsk (55°N, 37°E during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205, we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher zonal wave-number components increase (decrease with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from

  12. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Gene Expression in Reward-Related Brain Areas in Rats

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura L.; Kalsbeek, A.; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene

  13. Minireview: the health implications of water treatment with ozone.

    Carmichael, N G; Winder, C; Borges, S H; Backhouse, B L; Lewis, P D

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  14. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  15. Bean leaf growth response to moderate ozone levels

    Evans, L S

    1973-01-01

    The middle leaflet from the first trifoliate leaf of pinto bean plants (Phaseolus vulgaris) was subjected to various ozone levels for both 12 and 24 h to show moderate oxidant injury. Rates of leaf expansion were used as criteria to measure the effects of ozone at three leaflet positions. Growth analysis included Y-intercepts indicating growth after day 1, growth after day 3, and regression line slopes between days 1 and 7 after the beginning of the experiments. Slopes of growth rate regression lines differentiated untreated leaflets from leaflets exposed to a 0.60 ppm-h (0.05 ppm for 12 h) dose. Growth rates of plants exposed to 1.20 ppm-h (either 0.05 ppm for 24 h, or 0.10 ppm for 12 h) were distinguishable from untreated plants within three days. Basal leaf portions showed the most differential ozone response compared with lateral and tip positions.

  16. Thermoluminescence as a tool for monitoring ozone-stressed plants

    Skotnica, J.; Gilbert, M.; Weingart, I.; Wilhelm, C

    2003-05-01

    Thermoluminescence parameters are more sensitive to ozone than fluorescence parameters (F{sub 0}, F{sub M}, F{sub v}/F{sub M}). - The effect of ozone (6 h, various concentrations from 0 to 350 ppb) on barley (Hordeum vulgare L., cv. Bomi) and tomato (Lycopersicon esculentum L., cv. Yellow Cherry) leaves was investigated in parallel by thermoluminescence (TL) and fluorescence (FL) methods. Several significant changes were found in TL glow curves measured after excitation by one single turnover flash at +2 deg. C in the temperature range from 2 to 170 deg. C immediately after ozone exposure. Contrary to TL, ozone induced only negligible changes in FL parameters F{sub 0}, F{sub M} and F{sub v}/F{sub M}. Measurements done 24 h after ozone exposure showed partial recovery of ozone-induced changes. The extent of recovery was not the same in different parts of TL curves. Fluorescence parameters were not significantly changed. The results demonstrate that TL parameters are more sensitive to ozone than conventially used FL parameters F{sub 0}, F{sub M} and F{sub v}/F{sub M}. Moreover, TL measurements seem to give information not only about the PSII electron transport, but also about the extent of oxidative damage and membrane lipid peroxidation. It is concluded, that TL can be a highly informative tool for monitoring the impact of ozone on plants.

  17. Changes of Selected Hematological Parameters and Morning Rest Rate during Ten Days High Altitude Stay and Training

    Jiří Suchý

    2015-03-01

    Full Text Available Changes of Selected Hematological Parameters and Morning Rest Rate during Ten Days High Altitude Stay and Training This article describes the influence of a ten day stay and training in a high altitude area (1850 m ASL on selected blood count parameters and morning resting heart rate. Three tests were performed on a group of young cross country skiers (n = 10, age: 18.7 ± 4.8: two days before, two days after and ten days after the altitude training camp. Two day after the return, significant (p 0.05. The study in a group of young cross country skiers has shown positive effects of a tenday training camp in high altitude on blood count parameters and morning resting heart rate monitored in lowland two and ten days after the return from high altitude. Změny vybraných hematologických parametrů a ranní klidové srdeční frekvence v průběhu desetidenního tréninku a pobytu ve vyšší nadmořské výšce Článek popisuje vliv desetidenního tréninku a pobytu ve vyšší nadmořské výšce (1850 m n. m. na vybrané parametry krevního obrazu a ranní klidové srdeční frekvence. U skupiny mladých běžců na lyžích (n = 10, věk: 18,7 ± 4,8 byly realizovány celkem tři odběry krve: dva dny před soustředěním ve výšce, dva dny a deset dnů po návratu do nížiny. Dva dny po návratu byly signifikantně (p 0,05. Průměrné hodnoty ranní klidové srdeční frekvence byly během soustředění ve výšce vyšší než před odjezdem v nížině (p 0,05. Námi realizovaný výzkum u skupiny mladých běžců na lyžích prokázal pozitivní efekt desetidenního pobytu a tréninku ve vyšší nadmořské výšce (1850 m n. m. na sledované krevní parametry a ranní klidovou srdeční frekvenci v nížině po návratu.

  18. High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children.

    da Rocha Silva, Júlia Prestes; Salles, Fernanda Junqueira; Leroux, Isabelle Nogueira; da Silva Ferreira, Ana Paula Sacone; da Silva, Agnes Soares; Assunção, Nilson Antonio; Nardocci, Adelaide Cassia; Sayuri Sato, Ana Paula; Barbosa, Fernando; Cardoso, Maria Regina Alves; Olympio, Kelly Polido Kaneshiro

    2018-08-01

    A previous study observed high blood lead levels (BLL) in preschool children attending 50 day care centers (DCC) in São Paulo, Brazil. To identify whether lead levels found in both homes and DCC environments are associated with high blood lead levels. Children attending 4 DCCs, quoted here as NR, VA, PS and PF, were divided into two groups according to BLL: high exposure (HE: ≥13.9 μg/dL; 97.5 percentile of the 2013 year sample) and low exposure (LE: 600 μg/g, whereas such levels were observed in 77.1% of NR playground measurements. In VA DCC, 22% and 23% of the measurements in the building and in the playgrounds had levels higher than 600 μg/g, respectively. The percentage of high lead levels in the children's houses of the LE group was 5.9% (95% CI: 4.3-7.6%) and 13.2 (95% CI: 8.3-18.0%) in the HE group. Moreover, a significant association was found between high BLLs and lead levels found both in households and DCCs (p < 0.001). Most of the high lead measurements were found in tiles and playground equipment. Lead exposure estimated from the DCCs, where children spend about 10 h/day, can be as relevant as their household exposure. Therefore, public authorities should render efforts to provide a rigorous surveillance for lead-free painting supplies and for all objects offered to children. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  20. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  1. Physicochemical patterns of ozone absorption by wood

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  2. Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area.

    Botlaguduru, Venkata S V; Kommalapati, Raghava R; Huque, Ziaul

    2018-04-19

    The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (EPA AQS Site ID: 48-201-0024, Aldine) in the HGB area. This site located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000-2016. This pattern could be partially attributed to a reduction in underlying NO X emissions, particularly that of lowering nitrogen dioxide (NO 2 ) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOC). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), while 64% of the change in long-term MDA8 ozone post-2000 could be attributed to NO X emissions reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000-2016, and 0.155

  3. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  4. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  5. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  6. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-01-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. -- Highlights: •Three years of passive ozone sampler data over 49,000 km 2 were analyzed spatially. •Spatial and temporal ozone patterns were mapped across the Sierra Nevada, CA. •Sub-regions of consistently high, low and variable ozone exposure were identified. •The 1700–2400 m elevation band delineated a distinct break in ozone concentration. •This approach has utility for prioritizing management across vulnerable landscapes. -- A passive ozone sampler network in combination with spatial analysis techniques was used to characterize landscape-scale ozone patterns and dynamics, identifying regions of consistently high and low ozone exposure for forest management prioritization

  7. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  8. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  9. Our Shrinking Ozone Layer

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  10. Dobson ozone spectrophotometer modification.

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  11. Ozone, greenhouse effect

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  12. Revisiting Antarctic Ozone Depletion

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  13. Destruction of enzymatic activities of corn and soybean leaves exposed to ozone

    Leffler, H R; Cherry, J H

    1974-01-01

    Experiments were conducted to determine the effects of a single ozone exposure on selected enzymatic activities and chlorophyll contents of corn and soybean seedlings. Both nitrite reductase activity and chlorophyll content of the seedlings were found to be quite sensitive to ozonation and were seen to decrease as much as 50% after exposure to 80 parts per hundred million (pphm) ozone. After exposure to lower levels of ozone, less-pronounced decreases were observed. Nitrate reductase activity was reduced only after exposure to seedling leaf tissues to high concentrations of ozone. These results are discussed in relation to the concept of a two-phase response to oxidant exposure. The first phase is at the chloroplast level and is quite sensitive to the low as well as the high concentrations of ozone; the second is at the cellular level and is relatively resistant to all but the highest ozone concentrations. 27 references, 2 tables.

  14. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  15. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  16. Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain)

    Camacho, J.L. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain); Anton, M. [Granada Univ. (Spain). Dept. de Fisica Aplicada; Loyola, D. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Hernandez, E. [Madrid Univ. Complutense (Spain). Dept. Fisica de la Tierra II

    2010-07-01

    This article focuses on the comparison of the total ozone column data from three satellite instruments; Total Ozone Mapping Spectrometers (TOMS) on board the Earth Probe (EP), Ozone Monitoring Instrument (OMI) on board AURA and Global Ozone Monitoring Experiment (GOME) on board ERS/2, with ground-based measurement recorded by a well calibrated Brewer spectrophotometer located in Madrid during the period 1996-2008. A cluster classification based on solar radiation (global, direct and diffuse), cloudiness and aerosol index allow selecting hazy, cloudy, very cloudy and clear days. Thus, the differences between Brewer and satellite total ozone data for each cluster have been analyzed. The accuracy of EP-TOMS total ozone data is affected by moderate cloudiness, showing a mean absolute bias error (MABE) of 2.0%. In addition, the turbidity also has a significant influence on EP-TOMS total ozone data with a MABE {proportional_to}1.6%. Those data are in contrast with clear days with MABE {proportional_to}1.2%. The total ozone data derived from the OMI instrument show clear bias at clear and hazy days with small uncertainties ({proportional_to}0.8%). Finally, the total ozone observations obtained with the GOME instrument show a very smooth dependence with respect to clouds and turbidity, showing a robust retrieval algorithm over these conditions. (orig.)

  17. Electrical discharges of plasma ozonizer and its application

    Tirawanichakul, S.

    2007-05-01

    Full Text Available Ozone synthesis is one of the applications of near atmospheric plasma processing. An ozone generator in this research comprised two annular cylindrical-shaped electrodes. The inner electrode was made ofstainless steel covered with the dielectric glass and the outer electrode was also made of stainless steel. The electric spacing gap was 0.0075 m and length of ozonizer was 0.21 m. Oxygen gas passing through thedischarge gap between two electrodes supplied by an alternating current (AC high voltage power supply, frequency 50 Hz, ranging of 6-10 kVAC was used for producing ozone. The amount of ozone was determinedby the KI standard method. The result showed that the concentration of ozone is proportional to the AC applied voltage. For determining effect of purified oxygen feed rate of 6-10 L/min on quantity of ozone, theresults indicated that at the volumetric flow rate of 8 L/min produced the largest amount of ozone. In addition, ozone concentration at a flow rate of 8 L/min and an electrical discharge time of 3 minutes wasapproximately determined as 41, 60, 80 and 135 mg/L at 8, 9, 10 and 11 kVAC, respectively. Moreover, study of dye wastewater of Krajud mat was proposed and treated by three different methods. Firstly, dye wastewater was solely treated by a plasma ozonation. Secondly, a combination ofozonation and alum coagulation was used for dye wastewater treatment. Finally, the combined ozonation and activated carbon adsorption were used for dye wastewater treatment. The experimental results showedthat the percentage of light absorbance reduction of pink dyed wastewater for these three different methods was about 56%, 35% and 10%, respectively compared to the reference sample. In addition, For thesemethods, the percentage of BOD of treated dye wastewater could be reduced to 64%, 54% and 46% respectively, the percentage of COD could be reduced to approximately 78%, 62% and 27%, respectively, comparedto the reference sample. In conclusion, the

  18. Effects of medical ozone upon healthy equine joints: Clinical and laboratorial aspects.

    Cynthia do Prado Vendruscolo

    Full Text Available The aim of this study was to verify whether transient inflammatory reactions induced by intra-articular medicinal ozone administration affect joint components, by in vivo evaluation of inflammatory (prostaglandin E2, Substance P, Interleukin-6, Interleukine-1, Tumor Necrosis Factor, anti-inflammatory (Interleukin-10 and oxidative (superoxide dismutase activity and oxidative burst biomarkers and extracellular matrix degradation products (chondroitin sulphate and hyaluronic acid in synovial fluid.The effects of medicinal ozone were analyzed at two ozone concentrations (groups A and B, 20 and 40 μg/ml, respectively, using oxygen-injected joints as controls (group C; each group received ten treatments (15 ml gas per treatment. Physical evaluation, evaluation of lameness, ultrasonography, and synovial fluid analysis were performed.All joints presented mild and transient effusion throughout the study. Group B exhibited the highest lameness score on day 14 (P<0.05, detected by the lameness measurement system, probably because of the higher ozone concentration. All groups exhibited increased ultrasonography scores on day 14 (P < 0.05. Groups A and B exhibited increased proteins concentrations on day 21 (P<0.05. There was no change in hyaluronic acid concentration or the percentage of high-molecular weight hyaluronic acid throughout the experiment. Chondroitin sulfate concentrations decreased in group B, and did not change in group A and C, indicating that neither treatment provoked extracellular matrix catabolism. Cytokine and eicosanoid concentrations were not significantly changed.The ozonetherapy did not cause significant inflammation process or cartilage degradation, therefore, ozonetherapy is safe at both evaluated doses.

  19. Application of Resonant Converter in Ozone Generator Model

    Mochammad Facta

    2008-04-01

    Full Text Available Ozone is one of the favorable oxidant to use in home appliance and industry as disinfectant for food processing, food storage, odor abatement, groundwater remediation, and drinking water purification. The common and previous technical method for generating ozone uses a high voltage and low frequency. This kind of method has disadvantage of energy efficiency, size and weight. This paper proposed the use power electronics in the inverter resonant circuit to produce alternating current with high frequency. The basic RLC resonance circuit is used for early study to determine resonance frequency for inverter. As the result, the ozone chamber terminal voltage had been achieved for initiation by using resonance frequency.

  20. Flixweed is more competitive than winter wheat under ozone pollution: evidences from membrane lipid peroxidation, antioxidant enzymes and biomass.

    Cai-Hong Li

    Full Text Available To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.

  1. Attenuated response to repeated daily ozone exposures in asthmatic subjects

    Gong, H. Jr.; Linn, W.S. [Rancho Low Amigos Medical Center, Downey, CA (United States); McManus, M.S. [Univ. of California, Los Angeles, CA (United States)

    1997-01-01

    The development of attenuated response ({open_quotes}tolerance{close_quotes}) to daily ozone (O{sub 3}) exposures in the laboratory is well established in healthy adult volunteers. However, the capability of asthmatics to develop tolerance during multiday ozone exposures in unclear. We exposed 10 adult volunteers with mild asthma to 0.4 ppm O{sub 3} in filtered air for 3 h/d on 5 consecutive d. Two similar filtered-air exposures during the preceding week served as controls. Follow-up O{sub 3} exposures were performed 4 and 7 d after the most recent consecutive exposure. All exposures were performed in an environmental chamber at 31 {degrees}C and 35% relative humidity. The subjects performed moderate exercise (mean ventilation rate of 32 l/min) for 15 min of each half-hour. Responses were measured with spirometry and symptom evaluations before and after each exposure, and a bronchial reactivity test (methacholine challenge) was conducted after each exposure. All response measurements showed clinically and statistically significant day-to-day variation. Symptom and forced-expiratory-volume-in-1-s responses were similarly large on the 1st and 2nd O{sub 3} exposure days, after which they diminished progressively, approaching filtered air response levels by the 5th consecutive O{sub 3} day. This tolerance was partially lost 4 and 7 d later. Bronchial reactivity peaked after the first O{sub 3} exposure and remained somewhat elevated after all subsequent O{sub 3} exposures, relative to its control level following filtered-air exposures. Individual responses varied widely; more severe initial responses to O{sub 3} predicted less rapid attenuation. We concluded that asthmatics can develop tolerance to frequent high-level O{sub 3} exposures in much the same manner as normal subjects, although the process may be slower and less fully effective in asthmatics. 27 refs., 3 figs., 4 tabs.

  2. Optimization of Industrial Ozone Generation with Pulsed Power

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  3. Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method

    Kalsum M. Yusah

    2018-01-01

    Full Text Available Background Competitive interactions in biological communities can be thought of as giving rise to “assembly rules” that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an “ant mosaic”, in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. Methods To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8–60.2 m, using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. Results The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. Discussion We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time

  4. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  5. Natural zeolite reactivity towards ozone: The role of compensating cations

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  6. Massive global ozone loss predicted following regional nuclear conflict

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  7. Natural zeolite reactivity towards ozone: The role of compensating cations

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  8. Influence of future cropland expansion on regional and global tropospheric ozone

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models

  9. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  10. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers-An Observational Study.

    Zaremski, Jason L; Zeppieri, Giorgio; Jones, Deborah L; Tripp, Brady L; Bruner, Michelle; Vincent, Heather K; Horodyski, MaryBeth

    2018-04-01

    Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Cross-sectional study; Level of evidence, 3. Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury.

  11. Thirty-day outcomes of direct carotid artery stenting with cerebral protection in high-risk patients

    Veselka, J.; Cerna, D.; Zimolova, P.; Blasko, P.; Fiedler, J.; Hajek, P.; Maly, M.; Zemanek, D.; Duchonova, R.

    2007-01-01

    Implantation of a carotid artery stent after predilation is a standard approach in the endovascular treatment of carotid artery stenoses. Stenting without predilation may be an alternative approach in a certain subset of patients. The present prospective, single-center registry was designed to evaluate the feasibility and safety of direct carotid artery stenting (DCAS) in high-risk patients. Symptomatic patients with stenosis >50% and asymptomatic patients with stenosis >70% were eligible for enrolment. Criteria for high-risk patients included: need or history of open heart surgery, history of myocardial infarction, multivessel coronary artery disease, left ventricular dysfunction (ejection fraction ≤40%), severe pulmonary or renal disease, significant contralateral carotid disease, previous endarterectomy, and age ≥80 years. All procedures were performed using a filter protection device. Patients underwent complete clinical examination before and after DCAS and at 30-day follow-up. A total of 83 consecutive patients (45 males, 68±9 years, 33% symptomatic) underwent 100 procedures and 103 stents were deployed successfully. The technical success rate of stenting was 100%. Predilation of carotid stenosis was necessary in 1 (1%) procedure. Carotid-artery stenoses before and after DCAS were 80±9% and 7±9%, respectively. The median fluoroscopic time for DCAS was 7 min. The overall rate of in-hospital major adverse cerebrovascular events (death, stroke, myocardial infarction) was 5% (2 minor strokes, 3 transient attacks). There was 1 (1%) minor stroke within the 30-day follow-up. DCAS is feasible and can be performed with an acceptable risk in high-risk patients. (author)

  12. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    Ozone is a strong oxidant and when certain concentrations are reached it has adverse effects on health, vegetation and materials. With the aim of protecting human health and ecosystems, European Directive 2008/50/EC establishes target values for ozone concentrations, to be achieved from 2010 onwards. In our study area, located in southwestern Spain, ozone levels regularly exceed the human health protection threshold defined in the European Directive. Indeed, this threshold was exceeded on 92 days in 2007, despite the fact that the Directive stipulates that it should not be exceeded on more than 25 days per calendar year averaged over three years. It is urgent, therefore, to reduce the current ozone levels, but because ozone is a secondary pollutant, this reduction must necessarily involve limiting the emission of its precursors, primarily nitrogen oxides (NOx) and volatile organic compounds (VOC). During the central months of the year, southwestern Spain is under strong insolation and weak synoptic forcing, promoting the development of sea breezes and mountain-induced winds and creating re-circulations of pollutants. The complex topography of the area induces the formation of vertical layers, into which the pollutants are injected and subjected to long distance transport and compensatory subsidence. The characteristics of these highly complex flows have important effects on the pollutant dispersion. In this study two ozone pollution episodes have been selected to assess the ozone response to reductions in NOx and VOC emissions from industry and traffic. The first corresponds to a typical summer episode, with the development of breezes in an anticyclonic situation with low gradient pressure and high temperatures, while the second episode presents a configuration characteristic of spring or early summer, with a smooth westerly flow and more moderate temperatures. Air pollution studies in complex terrain require the use of high-resolution models to resolve the complex

  13. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M.

    2016-01-01

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k_o_b_s) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k_o_b_s was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R_c_t). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  14. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M., E-mail: pmalvare@unex.es

    2016-11-05

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k{sub obs}) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k{sub obs} was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R{sub ct}). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  15. Long-term trends of surface ozone and its influencing factors at the Mt. Waliguan GAW station, China - Part 1: Overall trends and characteristics

    Xu, W. Y.; Lin, W. L.; Xu, X. B.; Tang, J.; Huang, J. Q.; Wu, H.; Zhang, X. C.

    2015-11-01

    Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The level of tropospheric ozone, particularly in the surface layer, is impacted by emissions of precursors and is subjected to meteorological conditions. Due its importance, the long-term variation trend of baseline ozone is highly needed for environmental and climate change assessment. So far, studies about the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China, a country with rapid economic growth for recent decades, and many other developing countries. To uncover the long-term characteristics and trends of baseline surface ozone, concentration in western China, measurements at a global baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt. Waliguan) for the period of 1994 to 2013 were analysed in this study, using a modified Mann-Kendall test and the Hilbert-Huang Transform analysis for the trend and periodicity analysis, respectively. Results reveal higher surface ozone during the night and lower during the day at Waliguan, due to mountain-valley breezes. A seasonal maximum in summer was found, which was probably caused by enhanced stratosphere-to-troposphere exchange events and/or by tropospheric photochemistry. Analysis suggests that there is a season-diurnal cycle in the three-dimensional winds on top of Mt. Waliguan. Season-dependent daytime and nighttime ranges of 6 h were determined based on the season-diurnal cycle in the three-dimensional winds and were used to sort subsets of ozone data for trend analysis. Significant increasing trends in surface ozone were detected for both daytime (1.5-2.7 ppbv 10 a-1) and nighttime (1.3-2.9 ppbv 10 a-1). Autumn and spring revealed the largest increase rates, while summer and winter showed relatively weaker increases. The HHT spectral analysis confirmed the increasing

  16. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  17. A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City

    E. C. Wood

    2009-04-01

    Full Text Available Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, nitrogen oxide speciation and chemistry, and the radical budget, with an emphasis on a stagnant air mass observed on one afternoon. The observations compare well with the results of recent photochemical models. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz. For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3(PM1 accounted for 20%–70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g and NO3(PM1 decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  18. Ground Level Ozone Regional Background Characteristics In North-west Pacific Rim

    Chiang, C.; Fan, J.; Chang, J. S.

    2007-12-01

    Understanding the ground level ozone regional background characteristics is essential in understanding the contribution of long-range transport of pollutants from Asia Mainland to air quality in downwind areas. In order to understand this characteristic in north-west Pacific Rim, we conducted a coupled study using ozone observation from regional background stations and 3-D regional-scale chemical transport model simulations. We used O3, CO, wind speed and wind direction data from two regional background stations and ¡§other stations¡¨ over a ten year period and organized several numerical experiments to simulate one spring month in 2003 to obtain a deeper understanding. The so called ¡§other stations¡¨ had actually been named as background stations under various governmental auspices. But we found them to be often under strong influence of local pollution sources with strong diurnal or slightly longer time variations. We found that the Yonagunijima station (24.74 N, 123.02 E) and Heng-Chuen station (21.96 N,120.78 E), about a distance of 400 km apart, have almost the same ozone time series pattern. For these two stations in 2003, correlation coefficients (R2) for annual observed ozone concentration is about 0.64, in the springtime it is about 0.7, and in a one-month period at simulation days it is about 0.76. These two stations have very little small scale variations in all the variables studied. All variations are associated with large scale circulation changes. This is especially so at Yonagunijima station. Using a 3-D regional-scale chemical transport model for East Asia region including contribution from Asia continental outflow and neighboring island pollution areas we found that the Yonagunijima and HengChuen station are indeed free of pollutants from all neighboring areas keeping in mind that pollutants from Taiwan area is never far away. Ozone concentrations in these two stations are dominated by synoptic scale weather patterns, with diffused

  19. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  1. The effect of increased ozone concentrations in the air on selected aspects of rat reproduction.

    Jedlińska-Krakowska, M; Gizejewski, Z; Dietrich, G J; Jakubowski, K; Glogowski, J; Penkowski, A

    2006-01-01

    Five-month-old male rates were exposed to 0.5 ppm ozone for 50 days, 5 hours a day. A week before the completion of ozone exposure, a biological test was performed to determine the fertilization rate and the survival rate of newborns in both ozone-exposed and control animals. After 50 days, the rats were sacrificed with an overdose of halotane, and testes were collected to assess the morphology and motility of spermatozoa. Neither the morphology of spermatozoa nor motility parameters determined by the CASA (computer-assisted sperm analysis) system showed statistically significant differences between ozone-exposed and control males. The number of successful matings and the survival rate of newborns per litter within one year postpartum were also similar in both groups. However, sperm concentration was by 17% lower in ozone-exposed rats, compared with the control animals.

  2. Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3-21 June 2000

    Helmig, D.; Boulter, J.; David, D.; Birks, J.W.; Cullen, N.J.; Steffen, K. [University of Colorado, Boulder, CO (United States). Cooperative Institute for Research in Environmental Sciences; Johnson, B.J.; Oltmans, S.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory

    2002-06-01

    The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground. The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between {approx} 9.00 and 18.00 h local time with the formation of shallow mixing heights of {approx} 70-250 m above the surface. The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37-76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. An {approx} 0.1-3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime

  3. Combination of ozone and packaging treatments maintained the quality and improved the shelf life of tomato fruit

    Zainuri; Jayaputra; Sauqi, A.; Sjah, T.; Desiana, R. Y.

    2018-01-01

    Tomato is very important vegetable crop but has short shelf life. The objective of this research was to determine the effect of ozone and packaging combination treatment on the quality and the storage life of tomato fruit. There were six treatments including: control (without ozone and packaging); without ozone and packaged with polyethylene bag; without ozone and polyethylene terephtalate punnet; with ozone but without packaging; with ozone and packaged with polyethylene bag; and with ozone and polyethylene terephtalate punnet. Each treatment was made into 3 replications. Tomato samples were harvested at turning stage. Ozone treatment was applied for 60 seconds. Tomatoes were then treated with and without packaging. The fruit were then stored at room temperature for up to 12 days. The parameters for assessment were water content, color, texture, weight loss and the population of naturally contamination Escherichia coli. Each parameter was assessed on day 0, 6 and 12 of storage. The results indicated that combination of ozone and packaging treatments significantly affected the physical and biochemical changes (water content, color, texture and weight loss) of the fruit, suppressed the microbiological contamination on the fruit and maintained fruit freshness or quality after 12 days of storage. The combination of ozone and perforated polyethylene packaging treatment was the best treatment to maintain the quality and prolonged the shelf life of tomato fruit to be 12 days at room temperature.

  4. Comparative study of ozonized olive oil and ozonized sunflower oil

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  5. Dynamical contibution of Mean Potential Vorticity pseudo-observations derived from MetOp/GOME2 Ozone data into weather forecast, a Mediterranean High Precipitation Event study.

    Sbii, Siham; Zazoui, Mimoun; Semane, Noureddine

    2015-04-01

    In the absence of observations covering the upper troposphere - lower stratophere, headquarters of several disturbances, and knowing that satellites are uniquely capable of providing uniform data coverage globally, a methodology is followed [1] to convert Total Column Ozone, observed by MetOp/GOME2, into pseudo-observations of Mean Potential Vorticity (MPV). The aim is to study the dynamical impact of Ozone data in the prediction of a Mediterranean Heavy Precipitation Event observed during 28-29 September 2012 in the context of HYMEX1. This study builds on a previously described methodology [2] that generates numerical weather prediction model initial conditions from ozone data. Indeed, the assimilation of MPV in a 3D-var framework is based on a linear regression between observed Ozone and vertical integrated Ertel PV. The latter is calculated using dynamical fields from the moroccan operational limited area model ALADIN-MAROC according to [3]: δθ fp p0 -R δU δV P V = - gξaδp- g-R-(p )Cp [(δp-)2 + (δp-)2] (1) Where ξa is the vertical component of the absolute vorticity, U and V the horizontal wind components, θ the potential temperature, R gas constant, Cp specific heat at constant pressure, p the pressure, p0 a reference pressure, g the gravity and f is the Coriolis parameter. The MPV is estimated using the following expression: --1--∫ P2 M PV = P1 - P2 P P V.δp 1 (2) With P1 = 500hPa and P2 = 100hPa In the present study, the linear regression is performed over September 2012 with a correlation coefficient of 0.8265 and is described as follows: M P V = 5.314610- 2 *O3 - 13.445 (3) where O3 and MPV are given in Dobson Unit (DU) and PVU (1 PV U = 10-6 m2 K kg-1 s-1), respectively. It is found that the ozone-influenced upper-level initializing fields affect the precipitation forecast, as diagnosed by a comparison with the ECMWF model. References [1] S. Sbii, N. Semane, Y. Michel, P. Arbogast and M. Zazoui (2012). Using METOP/GOME-2 data and MSG ozone

  6. Fourteen-day high-dose esomeprazole, amoxicillin and metronidazole as third-line treatment for Helicobacter pylori infection.

    Puig, Ignasi; González-Santiago, Jesús M; Molina-Infante, Javier; Barrio, Jesús; Herranz, Maria Teresa; Algaba, Alicia; Castro, Manuel; Gisbert, Javier P; Calvet, Xavier

    2017-09-01

    The efficacy of currently recommended third-line therapies for Helicobacter pylori is suboptimal, even that of culture-guided treatments. Resistance to multiple antibiotics is the major factor related to treatment failure. The aim of this study was to evaluate the effectiveness and safety of a 14-day therapy using high-dose of amoxicillin, metronidazole and esomeprazole. Multicenter open-label study as a register in routine clinical practice in patients with two previous failures of eradication therapy. A triple therapy with esomeprazole 40 mg b.d., amoxicillin 1 g t.d.s and metronidazole 500 mg t.d.s for 2 weeks was administered as a third-line therapy after a first treatment including clarithromycin and a second treatment including a quinolone. Helicobacter pylori status was determined by either histology or 13 C-UBT both before and after treatment. A total of 68 patients were included in this study. An interim analysis showed that only three out of eight patients who had received metronidazole in previous eradication regimens were cured (37%, 95% CI 8-75); as a result, after this interim analysis only metronidazole-naïve patients were included. The ITT eradication rate in metronidazole-naive patients was 64% (95% CI 51-76). Adverse events occurred in 58% of patients, all of them mild-to-moderate. Two patients (3%) did not complete >90% of the treatment because of side effects. No severe adverse events occurred. Cure rates of this 14-day schedule using high-dose esomeprazole, amoxicillin and metronidazole as a third-line eradication regimen were suboptimal, especially in patients who had received metronidazole in previous failed eradication regimens. © 2017 John Wiley & Sons Ltd.

  7. Effect of ozone exposure on maximal airway narrowing in non-asthmatic and asthmatic subjects

    Hiltermann, T J; Stolk, J; Hiemstra, P S; Fokkens, P H; Rombout, P J; Sont, J K; Sterk, P J; Dijkman, J H

    1995-01-01

    1. Ozone is a major constituent of air pollution in the summer. Epidemiological studies have demonstrated that there is an increase in hospital admissions for respiratory diseases 1 day after peak levels of ambient ozone. This may be due to an increase in the responsiveness of the airways to

  8. Relationship between regions of anomalously low ozone content and the pressure situation

    Bekoriukov, V I; Zakharov, G R; Kukoleva, A A; Fioletov, V E [Tsentral' naia Aerologicheskaia Observatoriia, Dolgoprudny (USSR)

    1990-12-01

    Data on total ozone content measured at various stations in the Northern Hemisphere in 1977, 1985, 1986, and 1987 are examined. It is shown that short-lived regions (i.e, with a life span of a few days) with anomalously low ozone content in the Northern Hemisphere are conditioned by circulation features in these regions.

  9. Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

    Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.

    2012-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 Ian to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the "truth" and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere

  10. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  11. Ozone generation by rock fracture: Earthquake early warning?

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  12. Solar Backscatter UV (SBUV total ozone and profile algorithm

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  13. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  14. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    Shah Fahad

    Full Text Available High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT and high night temperatures (HNT under controlled conditions. Four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan prior to the high-temperature treatment. A Nothing applied Control (NAC was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT. Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.

  15. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.

    Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

  16. Health Effects of Ozone and Particle Pollution

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  17. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview.

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Śmigielski, Krzysztof

    2017-04-10

    The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.

  18. Protecting the ozone layer.

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  19. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  20. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  1. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  2. Ozone in Lombardy: Years 1998-1999

    Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.

    2003-11-01

    Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.

  3. On the theory of polar ozone holes

    Njau, E.C.

    1990-12-01

    The viable theories already proposed to explain polar ozone holes generally fall into two main categories, namely, chemical theories and dynamical theories. In both of these categories, polar stratospheric clouds (PSCs) are taken as part of the essential basis. Besides, all the dynamical theories are based upon temperature changes. Since formation of the PSCs is highly temperature-dependent, it has been concluded from recent research (e.g. see Kawahira and Hirooka) that temperature changes are a cause, not a result of ozone depletion in polar regions. On this basis, formulations are developed that represent short-term and long-term temperature variations in the polar regions due to natural processes. These variations, which are confined to a limited area around each pole, include specific oscillations with periods ranging from ∼ 2 years up to ∼ 218,597 years. Polar ozone variations are normally expected to be influenced by these temperature oscillations. It is, therefore, apparent that the generally decreasing trend observed in mean October ozone column at Halley Bay (76 deg. S, 27 deg. W) from 1956 up to 1987 is mostly caused by the decreasing phase of a combination of two natural temperature oscillations, one with a period of ∼ 70-80 years and the other with a period of ∼ 160-180 years. Contributions of other natural temperature oscillations are also mentioned and briefly discussed. (author). 35 refs, 4 figs

  4. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers—An Observational Study

    Zaremski, Jason L.; Zeppieri, Giorgio; Jones, Deborah L.; Tripp, Brady L.; Bruner, Michelle; Vincent, Heather K.; Horodyski, MaryBeth

    2018-01-01

    Background: Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Hypotheses: Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. Results: We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. Conclusion: In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury. PMID:29662911

  5. Effects of process parameters on ozone washing for denim using 3/sup 3/ factorial design

    Asim, F.; Mahmood, M.

    2017-01-01

    Denim garment is getting popular day by day. It is highly demandable because of its versatility, comfort and durability. Different techniques of denim washing increase this demand drastically. Denim washing is the process to enhance the appearance of a garment. This enhanced appearance may be the aged look, faded look, greyer cast, or any other shade setting or resin application. The two most advanced washing techniques are; ozone wash and laser wash. The effects of ozone on environment as well as on the garment are significant and cannot be neglected because number of benefits achieved such as time saving, less energy consumption, chemical, labour cost reduction, less discharge of water and chemicals. Therefore, effects of process parameters on ozone washing for denim fabric have been investigated in this research work using three level factorial design. 33 factorial design has been designed and conducted to investigate the effect of gas concentration, time and speed on the response variables namely; Shrinkage, Tensile and Tear strength of ozone washing. The influence of individual factors and their interactions has been critically examined using software Design Expert 8.0. Prior to the analysis of variance model accuracy has been examined through various residuals plots. The study of residuals plots shown that the residuals are normally distributed and significant evidence of possible outliers was not found. So the model can be used to predicted results with 95% confidence interval. The results from the experiment suggest that two out of three factors were significant, which are speed and time that influences mainly on the tear strength of the denim garment. (author)

  6. An ozone episode over the Pearl River Delta in October 2008

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  7. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  8. Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China

    Wang, Tao; Tham, Yee Jun; Xue, Likun; Li, Qinyi; Zha, Qiaozhi; Wang, Zhe; Poon, Steven C. N.; Dubé, William P.; Blake, Donald R.; Louie, Peter K. K.; Luk, Connie W. Y.; Tsui, Wilson; Brown, Steven S.

    2016-03-01

    Nitryl chloride (ClNO2) plays potentially important roles in atmospheric chemistry, but its abundance and effect are not fully understood due to the small number of ambient observations of ClNO2 to date. In late autumn 2013, ClNO2 was measured with a chemical ionization mass spectrometer (CIMS) at a mountain top (957 m above sea level) in Hong Kong. During 12 nights with continuous CIMS data, elevated mixing ratios of ClNO2 (>400 parts per trillion by volume) or its precursor N2O5 (>1000 pptv) were observed on six nights, with the highest ever reported ClNO2 (4.7 ppbv, 1 min average) and N2O5 (7.7 ppbv, 1 min average) in one case. Backward particle dispersion calculations driven by winds simulated with a mesoscale meteorological model show that the ClNO2/N2O5-laden air at the high-elevation site was due to transport of urban/industrial pollution north of the site. The highest ClNO2/N2O5 case was observed in a later period of the night and was characterized with extensively processed air and with the presence of nonoceanic chloride. A chemical box model with detailed chlorine chemistry was used to assess the possible impact of the ClNO2 in the well-processed regional plume on next day ozone, as the air mass continued to downwind locations. The results show that the ClNO2 could enhance ozone by 5-16% at the ozone peak or 11-41% daytime ozone production in the following day. This study highlights varying importance of the ClNO2 chemistry in polluted environments and the need to consider this process in photochemical models for prediction of ground-level ozone and haze.

  9. Dinosaur Day!

    Nakamura, Sandra; Baptiste, H. Prentice

    2006-01-01

    In this article, the authors describe how they capitalized on their first-grade students' love of dinosaurs by hosting a fun-filled Dinosaur Day in their classroom. On Dinosaur Day, students rotated through four dinosaur-related learning stations that integrated science content with art, language arts, math, and history in a fun and time-efficient…

  10. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    Banks, Joanne L., E-mail: jlbanks@student.unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Ross, D. Jeff, E-mail: Jeff.Ross@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia); Keough, Michael J., E-mail: mjkeough@unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Eyre, Bradley D., E-mail: bradley.eyre@scu.edu.au [Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, NSW, 2480 Australia (Australia); Macleod, Catriona K., E-mail: Catriona.Macleod@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia)

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O{sub 2} levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O{sub 2} depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: Black-Right-Pointing-Pointer Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. Black-Right-Pointing-Pointer As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. Black

  11. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    Banks, Joanne L.; Ross, D. Jeff; Keough, Michael J.; Eyre, Bradley D.; Macleod, Catriona K.

    2012-01-01

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O 2 levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O 2 depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment–water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: ► Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. ► As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. ► Flux of these metals from 3 sites was not related to total sediment metal

  12. Ozone formation in pulsed SDBD in a wide pressure range

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  13. Secondary ozone peaks in the troposphere over the Himalayas

    N. Ojha

    2017-06-01

    Full Text Available Layers with strongly enhanced ozone concentrations in the middle–upper troposphere, referred to as secondary ozone peaks (SOPs, have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC to (i investigate the processes causing SOPs, (ii explore both their frequency of occurrence and seasonality, and (iii assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV and a stratospheric ozone tracer (O3s in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days transported to the Himalayas. Analysis of a 15-year (2000–2014 EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May, while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO over the central Himalayas by up to 21 %.

  14. Significant Effect of a Pre-Exercise High-Fat Meal after a 3-Day High-Carbohydrate Diet on Endurance Performance

    Ikuma Murakami

    2012-06-01

    Full Text Available We investigated the effect of macronutrient composition of pre-exercise meals on endurance performance. Subjects consumed a high-carbohydrate diet at each meal for 3 days, followed by a high-fat meal (HFM; 1007 ± 21 kcal, 30% CHO, 55% F and 15% P or high-carbohydrate meal (HCM; 1007 ± 21 kcal, 71% CHO, 20% F and 9% P 4 h before exercise. Furthermore, just prior to the test, subjects in the HFM group ingested either maltodextrin jelly (M or a placebo jelly (P, while subjects in the HCM ingested a placebo jelly. Endurance performance was measured as running time until exhaustion at a speed between lactate threshold and the onset of blood lactate accumulation. All subjects participated in each trial, randomly assigned at weekly intervals. We observed that the time until exhaustion was significantly longer in the HFM + M (p < 0.05 than in HFM + P and HCM + P conditions. Furthermore, the total amount of fat oxidation during exercise was significantly higher in HFM + M and HFM + P than in HCM + P (p < 0.05. These results suggest that ingestion of a HFM prior to exercise is more favorable for endurance performance than HCM. In addition, HFM and maltodextrin ingestion following 3 days of carbohydrate loading enhances endurance running performance.

  15. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  16. Screening agrochemicals as potential protectants of plants against ozone phytotoxicity

    Saitanis, Costas J.; Lekkas, Dimitrios V.; Agathokleous, Evgenios; Flouri, Fotini

    2015-01-01

    We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol −1 of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants’ protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (−6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants. - Highlights: • Penconazole and hexaconazole offered some protection to plants against ozone. • Bion MX fungicide caused phytotoxic symptoms to Bel-W3 tobacco plants. • Stomatal conductance was reduced in ozone-fumigated plants. - Seven agrochemicals were assessed as potential protectants against ozone phytotoxicity – triazoles fungicides were the most effective

  17. Measurements of the potential ozone production rate in a forest

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  18. Generation of ozone foam and its application for disinfection

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  19. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.

    Ekren, Orhun; Ozkomur, Ahmet

    2016-08-01

    The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.

  20. The benefit of modeled ozone data for the reconstruction of a 99-year UV radiation time series

    Junk, J.; Feister, U.; Helbig, A.; GöRgen, K.; Rozanov, E.; KrzyśCin, J. W.; Hoffmann, L.

    2012-08-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVERtime series. Therefore, we combined ground-based measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory, Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVERfor the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVERprovide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  1. Surface ozone pollution in Poland - observations and modelling support for a two-year assessment 2012-2013

    Struzewska, Joanna; Kaminski, Jacek W.; Durka, Pawel

    2015-04-01

    The concentrations of near-surface ozone in terms of long term objectives and target values are exceeded at many monitoring sites in Poland. At the request of the Chief Inspectorate of Environmental Protection, an assessment of ozone impact on human health and ecosystems in Poland was undertaken, based on the GEM-AQ model calculations for the period 2012-2013. GEM-AQ (Kaminski et al., 2008) is a comprehensive chemical weather model where air quality processes (chemistry and aerosols) are implemented on-line in the operational weather prediction model developed at Environment Canada (Cote et al., 1998). For this project the model was run in a self-nesting mode with the target grid centered over Poland with the resolution of 5 km. The EMEP emission inventory was refined based on GIS information. Modelling results were evaluated against ozone and NO2 measurements from available monitoring stations in Poland using the DeltaTool developed in the scope of FAIRMODE. We will present exposure levels to high ozone concentrations in terms of number of days with exceeded target values as well as indices AOT40 and SOMO35. Differences between exposure diagnostics in 2012 and 2013 will be discussed.

  2. Short- and long-term effects of high milking frequency during the first 21 days of lactation on production and reproductive performance in high-lactating cows.

    Shoshani, E; Cohen, M; Doekes, J J

    2017-01-01

    We examined short- and long-term effects of high milking frequency (HMF) for the first 21 days of lactation. The study included 122 Israeli Holstein cows - 32 pregnant heifers, 40 cows in second lactation and 50 cows in >second lactation. Heifers were paired according to predicted transmitting ability and cows according to energy-corrected milk (ECM) production, age, days in milk and expected calving date. Thin cows (body condition score second lactation cows relative to their control counterparts (-0.37%); ECM production was also higher in 6× milking first and second lactation (7.6% and 5%, respectively) but not for >second lactation cows. Furthermore, HMF had long-lasting effects, expressed as significantly higher milk production through the succeeding lactation in the previous first lactation cows (10%); a tendency toward significance in the second lactation cows relative to the controls (4.7%), but a deleterious effect on the >second lactation cows, reflected by lower milk production (-5.25%) than in controls; similar patterns were found for the ECM. For the entire 305 days of lactation, fat and protein yields were higher for first and second lactation cows, whereas protein yield for >second lactation cows was lower in the 6× milking v. Given that HMF during the first 21 days of first or second lactation increases milk and ECM yields throughout the concurrent and successive lactation with no adverse effect on energy balance, mastitis, metabolic diseases or reproduction, it seems to be economically beneficial. However, caution should be paid for >second lactation cows due to absence of significant effect in the entire of the first HMF applied lactation and the deleterious effect in the succeeding lactation.

  3. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  4. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aeros