WorldWideScience

Sample records for high oxidation resistance

  1. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  2. High temperature oxidation resistance in titanium–niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tegner, B.E. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Zhu, L. [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Siemers, C. [Technische Universitat Braunschweig, Institut fur Werkstoffe, Langer Kamp 8, 38106 Braunschweig (Germany); Saksl, K. [Slovak Academy of Sciences, Institute of Materials Research, Watsonova 47, 04353 Kosice (Slovakia); Ackland, G.J., E-mail: gjackland@ed.ac.uk [School of Physics, SUPA and CSEC, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2015-09-15

    Highlights: • The conventional explanation for oxidation resistance is disproven, an alternative presented. • A generic analytic diffusion model for oxidation resistance is presented. • We develop a class of oxidation resistant niobium–titanium alloys. • Calculation, microscopy, spectroscopy and diffraction analysis of the alloys. • The theory is verified in oxidation tests. - Abstract: Titanium alloys are ideally suited for use as lightweight structural materials, but their use at high temperature is severely restricted by oxidation. Niobium is known to confer oxidation-resistance, and here we disprove the normal explanation, that Nb{sup 5+} ions trap oxygen vacancies. Using density functional theory calculation, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) we show that Nb is insoluble in TiO{sub 2}. In fact, the Ti–Nb surface has three-layer structure: the oxide itself, an additional Nb-depleted zone below the oxide and a deeper sublayer of enhanced Nb. Microfocussed X-ray diffraction also demonstrates recrystallization in the Nb-depleted zone. We interpret this using a dynamical model: slow Nb-diffusion leads to the build up of a Nb-rich sublayer, which in turn blocks oxygen diffusion. Nb effects contrast with vanadium, where faster diffusion prevents the build up of equivalent structures.

  3. Oxidation resistant iron and nickel alloys for high temperature use

    Science.gov (United States)

    Hill, V. L.; Misra, S. K.; Wheaton, H. L.

    1970-01-01

    Iron-base and nickel-base alloys exhibit good oxidation resistance and improved ductility with addition of small amounts of yttrium, tantalum /or hafnium/, and thorium. They can be used in applications above the operating temperatures of the superalloys, if high strength materials are not required.

  4. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  5. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition.

    Science.gov (United States)

    Binder, Andrew J; Toops, Todd J; Unocic, Raymond R; Parks, James E; Dai, Sheng

    2015-11-02

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improve oxidation resistance at high temperature by nanocrystalline surface layer.

    Science.gov (United States)

    Xia, Z X; Zhang, C; Huang, X F; Liu, W B; Yang, Z G

    2015-08-13

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  7. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    Science.gov (United States)

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  8. Effect of Yttrium on High Temperature Oxidation Resistance of a Directionally Solidified Superalloy

    Institute of Scientific and Technical Information of China (English)

    宋立国; 李树索; 郑运荣; 韩雅芳

    2004-01-01

    The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.

  9. Effect of nano-size nickel particles on wear resistance and high temperature oxidation resistance of ultrafine ceramic coating

    Institute of Scientific and Technical Information of China (English)

    古一; 夏长清; 李佳; 吴安如

    2004-01-01

    In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The decreases from 1. 1 to 0. 6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.

  10. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress

    NARCIS (Netherlands)

    Handtke, S.; Schroeter, R.; Jurgen, B.; Methling, K.; Schluter, R.; Albrecht, D.; Hijum, S.A.F.T. van; Bongaerts, J.; Maurer, K.H.; Lalk, M.; Schweder, T.; Hecker, M.; Voigt, B.

    2014-01-01

    Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen

  11. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    Science.gov (United States)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  12. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  13. Effect of Nb Doping on High Temperature Oxidation Resistance of Ti-Al Alloyed Coatings

    Directory of Open Access Journals (Sweden)

    DAI Jing-jie

    2017-02-01

    Full Text Available Ti-Al alloyed coatings with different Nb doping contents were fabricated on TC4 titanium alloy by laser surface alloying to improve high temperature oxidation resistance of the alloy. Structures and high temperature oxidation behaviors of the alloyed coatings were analyzed and tested by X-ray diffraction (XRD, scanning electron microscope (SEM, energy dispersive spectrometer (EDS and box-type resistance furnace. The results show that the alloyed coatings consist of TiAl and Ti3Al, and no niobium compound are formed in Ti-Al-Nb alloyed coatings. The alloyed coatings are uniform and exhibit excellent metallurgical bonding with the substrates. A large amount of surface cracks and a few penetrating cracks are formed in Ti-Al alloyed coating without Nb doping, while no obvious cracks are formed in Ti-Al alloyed coating with Nb doping. The oxidation mass gains of all the alloyed coatings were significantly lower than those of the substrate. The alloyed coatings with Nb doping exhibit more excellent high temperature oxidation resistance due to the beneficial machanism of Nb doping. The mechanism of Nb doping on improving high temperature oxidation resistance of Ti-Al alloyed coatings includes reducing the defect concentration of TiO2, refining oxide grains and promoting the formation of Al2O3.

  14. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters

    Science.gov (United States)

    Kim, A.-Young; Kim, Min Kyu; Hudaya, Chairul; Park, Ji Hun; Byun, Dongjin; Lim, Jong Choo; Lee, Joong Kee

    2016-02-01

    Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films (~20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications.Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films

  15. High oxidation resistance of hot pressed silicon nitride containing yttria and lanthania

    Energy Technology Data Exchange (ETDEWEB)

    Monteverde, F.; Bellosi, A. [Consiglio Nazionale delle Ricerche, Faenza (Italy). Lab. di Ricerche Tecnologiche per la Ceramica

    1997-12-31

    Oxidation tests were carried out on Si{sub 3}N{sub 4}-La{sub 2}O{sub 3}-Y{sub 2}O{sub 3} hot pressed materials at temperature from 1200 C to 1500 C. Microstructural and phenomenological features are discussed. The excellent oxidation resistance, particularly up to 1450 C, was related to the high refractoriness of the grain boundary phases in this additive system. (orig.) 11 refs.

  16. Biochemical basis of the high resistance to oxidative stress in Dictyostelium discoideum

    Indian Academy of Sciences (India)

    Bandhana Katoch; Rasheedunnisa Begum

    2003-09-01

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Programmed cell death or apoptosis is a physiological mechanism of cell death, that probably evolved with multicellularity, and is indispensable for normal growth and development. Dictyostelium discoideum, an eukaryotic developmental model, shows both unicellular and multicellular forms in its life cycle and exhibits apparent caspase-independent programmed cell death, and also shows high resistance to oxidative stress. An attempt has been made to investigate the biochemical basis for high resistance of D. discoideum cell death induced by different oxidants. Dose-dependent induction of cell death by exogenous addition of hydrogen peroxide (H2O2), in situ generation of H2O2 by hydroxylamine, and nitric oxide (NO) generation by sodium nitroprusside treatment in D. discoideum were studied. The AD50 doses (concentration of the oxidants cusing 50% of the cells to die) after 24 h of treatment were found to be 0.45 mM, 4 mM and 1 mM, respectively. Studies on enzymatic antioxidant status of D. discoideum when subjected to oxidative stress, NO and nutrient stress reveal that superoxide dismutase and catalase were unchanged; a significant induction of glutathione peroxidase was observed. Interestingly, oxidative stress-induced lipid membrane peroxidative damage could not be detected. The results shed light on the biochemical basis for the observed high resistance to oxidative stress in D. discoideum.

  17. Preparation and Properties of High Hardness and Oxidation Resisting Coating Using Electric Arc Spray

    Institute of Scientific and Technical Information of China (English)

    LIZhuo-xin; CUILi; WANGJiang-ping; TANGChun-tian

    2004-01-01

    A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness, bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.

  18. Preparation and Properties of High Hardness and Oxidation Resisting Coating Using Electric Arc Spray

    Institute of Scientific and Technical Information of China (English)

    LI Zhuo-xin; CUI Li; WANG Jiang-ping; TANG Chun-tian

    2004-01-01

    A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness,bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.

  19. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  20. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  1. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  2. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    Science.gov (United States)

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfOx/ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  3. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Science.gov (United States)

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring.

  4. Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Haitao; ZHAO Qi; YU Huashun; ZHANG Zhenya; CUI Hongwei; MIN Guanghui

    2009-01-01

    Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr2O3, ar-Al2O3, SiO2 and Fe(Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200℃ Its oxidation weight gain rate is only 0.081 g/(m2·h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.

  5. Laser beam joining of non-oxidic ceramics for ultra high temperature resistant joints

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, W.; Knorr, J.; Wolf, R.; Reinecke, A.M.; Rasper, R. [Univ. of Technology Dresden (Germany)

    2004-07-01

    The excellent technical properties of silicon carbide (SiC) and silicon nitride (Si{sub 3}N{sub 4}) ceramics, such as resistance to extreme temperatures, oxidation, mechanical wear, aggressive chemical substances and radioactive radiation and also its high thermal conductivity and good temperature-shock resistance, make these ceramics ideally suited for use in the field of nuclear technology. However, their practical use has been limited so far because of the unavailability of effective joining techniques for these ceramics, especially for high temperature applications. A new joining technology (CERALINK {sup registered}) has been developed in a network project which allowed high temperature resistant and vacuum-tight joining of SiC or Si{sub 3}N{sub 4} ceramics. A power laser is used as heat source, which makes it possible to join ceramic components in free atmosphere in combination with a pure oxidic braze filler. As no furnace is necessary, there are no limitations on the component dimensions by the furnace-geometry. During the joining process, the heated area can be limited to the seam area so that this technology can also be used to encapsulate materials with a low melting point. The seam has a high mechanical strength, it is resistant to a wide range of chemicals and radiation and it is also vacuum-tight. The temperature resistance can be varied by variation of the braze filler composition - usually between 1,400 C and >1,600 C. Beside the optimum filler it is also important to select the suitable laser wavelength. The paper will demonstrate the influence of different wave lengths, i. e. various laser types, on the seam quality. Examples are chosen to illustrate the strengths and limitations of the new technology.

  6. A superficial coating to improve oxidation and decarburization resistance of bearing steel at high temperature

    Science.gov (United States)

    Wang, Xiaojing; Wei, Lianqi; Zhou, Xun; Zhang, Xiaomeng; Ye, Shufeng; Chen, Yunfa

    2012-03-01

    The coating material consisted of aqueous slurry of dolomite, bauxite and silicon carbide mixture. Such a coating material when applied superficially on the steel surface not only enhances oxidation resistance but also helps in inhibiting the decarburization even up to 1250 °C. Metalloscope, XRD and TG-DTA thermal analysis revealed that the formation of a newly densified coating comprised of spinels and the reducing atmosphere formed by the oxidation of SiC improved the resistance of oxidation and decarburization.

  7. Effect of La2O3 on High-Temperature Oxidation Resistance of Electrospark Deposited Ni-BASED Coatings

    Science.gov (United States)

    Gao, Yuxin; Yi, Jian; Fang, Zhigang; Cheng, Hu

    2014-08-01

    The oxidation tests of electrospark deposited Ni-based coatings without and with 2.5 wt.% La2O3 were conducted at 960°C in air for 100 h. The oxidation kinetic of the coatings was studied by testing the weight gain. The phase structures and morphologies of the oxidized coatings were investigated by XRD and SEM. The experimental results show that the coatings with 2.5 wt.% La2O3 exhibits excellent high-temperature oxidation resistance including low oxidation rate and improved spallation resistance, due to the formation of a denser and more adherent oxide scale compared with that without La2O3. The effects of La2O3 on the oxidation resistance include the following two aspects: First, refinement of the coating grains promotes the selective oxidation of Cr, leading to the formation of protective chromia scale in a short time, and second, refinement of the oxide grains enhances the high-temperature creep rate, resulting in decrease of inner stress and improvement of spallation resistance of the oxide layer.

  8. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.

    Science.gov (United States)

    Li, Wanli; Hu, Dawei; Li, Lingying; Li, Cai-Fu; Jiu, Jinting; Chen, Chuantong; Ishina, Toshiyuki; Sugahara, Tohru; Suganuma, Katsuaki

    2017-07-26

    Printable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates. The resulting Cu-Ag alloy electrode has high conductivity (3.4 μΩ·cm) and ultrahigh oxidation resistance even up to 180 °C in an air atmosphere; this approach shows huge potential and is a tempting prospect for the fabrication of highly reliable and cost-effective printed electronic devices.

  9. Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy

    Directory of Open Access Journals (Sweden)

    Wang Haitao

    2009-05-01

    Full Text Available Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ìC for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = axb (a>0, 0oxidation resistance were studied further by analyses using X-ray diffraction (XRD and scanning electron microscope (SEM. It is found that the composite scale compounds of Cr2O3, メ-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200 ìC. When the composite scale lacks メ-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties.

  10. Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suhas [Hewlett Packard Labs, Palo Alto, CA (United States); Davila, Noraica [Hewlett Packard Labs, Palo Alto, CA (United States); Wang, Ziwen [Stanford Univ., CA (United States); Huang, Xiaopeng [Hewlett Packard Labs, Palo Alto, CA (United States); Strachan, John Paul [Hewlett Packard Labs, Palo Alto, CA (United States); Vine, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); David Kilcoyne, A. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nishi, Yoshio [Stanford Univ., CA (United States); Stanley Williams, R. [Hewlett Packard Labs, Palo Alto, CA (United States)

    2016-11-24

    Here we analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (< 3 μW) and energy (< 200 fJ per bit per μm2), low read-power (∼nW), and high endurance ( > millions of cycles). To understand their physico-chemical operating mechanisms, we performed in operando synchrotron X-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). Lastly, these results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.

  11. High temperature oxidation resistance of rare earth chromite coated Fe-20Cr and Fe-20Cr-4Al alloys

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2007-09-01

    Full Text Available Doped lanthanum chromite has been used in solid oxide fuel cell (SOFC interconnects. The high costs involved in obtaining dense lanthanum chromite have increased efforts to find suitable metallic materials for interconnects. In this context, the oxidation behavior of lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys at SOFC operation temperature was studied. Isothermal oxidation tests were carried out at 1000 °C for 20, 50 and 200 hours. Cyclic oxidation tests were also carried out and each oxidation cycle consisted of 7 hours at 1000/°C followed by cooling to room temperature. The oxidation measurements and the results of SEM/EDS as well as XRD analyses indicated that lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys were significantly more resistant to oxidation compared with the uncoated alloys.

  12. Method of making bearing materials. [self-lubricating, oxidation resistant composites for high temperature applications

    Science.gov (United States)

    Sliney, H. E. (Inventor)

    1979-01-01

    A method is described for making a composite material which provides low friction surfaces for materials in rolling or sliding contact. The composite material which is self-lubricating and oxidation resistant up to and in excess of about 930 C is comprised of a metal component which lends strength and elasticity to the structure and a fluorine salt component which provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  13. Difference in high-temperature oxidation resistance of amorphous Zr-Si-N and W-Si-N films with a high Si content

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, P. [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic)]. E-mail: zemanp@kfy.zcu.cz; Musil, J. [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic)

    2006-09-30

    The high-temperature oxidation resistance of amorphous Zr-Si-N and W-Si-N films with a high Si content ({>=}20 at.%) deposited by reactive dc magnetron sputtering at different partial pressures of nitrogen was systematically investigated by means of a symmetrical high-resolution thermogravimetry in a flowing air up to an annealing temperature of 1300 deg. C (a temperature limit for Si(1 0 0) substrate). Additional analyses including X-ray diffraction (XRD), light optical microscopy (LOM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness measurement were carried out as well. The obtained results showed (i) an excellent high-temperature oxidation resistance of the Zr-Si-N films up to 1300 deg. C, (ii) a considerably lower oxidation resistance of the W-Si-N films. The W-Si-N films are completely oxidized at 800 deg. C with a subsequent volatilization of unstable WO {sub x} oxides. On the other hand, the Zr-Si-N films are oxidized only very slightly on the surface, where a stable oxide barrier layer preventing further inward oxygen diffusion is formed. The thickness of the oxide layer is only about of 3% of the total film thickness. The phase composition, thermal stability of individual phases and amorphous structure were found to be key factors to achieve a high oxidation resistance.

  14. Effect of Cerium on Microstructures and High Temperature Oxidation Resistance of An Nb-Si System In-Situ Composite

    Institute of Scientific and Technical Information of China (English)

    Liu Aiqin; Sun Lu; Li Shusuo; Han Yafang

    2007-01-01

    Nb-16Si-24Ti-6Cr-6Al-2Hf-xCe (x=0, 0.05, 0.1, 0.25, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting. The microstructure and the effect of rare earth element cerium on 1250 ℃ oxidation resistance of the composites were investigated with scanning electron microscopy (SEM) and X-ray energy disperse spectrum (EDS), as well as X-ray diffraction (XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was improved by adding a proper amount of cerium (Ce). The effect of Ce was considered as the concurrent of the following three factors: first, the oxide of Ce formed in the interface reduced the internal oxidation rate; second, the lath shaped oxide containing Ce increased the cracking resistance and reduced the expansion of the oxide scale; and third, the decrease of the silicide volume fraction on account of Ce addition reduces the power of the sample resisting oxy gen penetration.

  15. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  16. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  17. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  18. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    Science.gov (United States)

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (Pacid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  19. Improved oxidation resistance of ferritic steels with LSM coating for high temperature electrochemical applications

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    The effect of single layer La0.85Sr0.15MnO3−δ (LSM) coatings on high temperature oxidation behaviour of four commercial chromia-forming steels, Crofer 22 APU, Crofer 22 H, E-Brite and AL 29-4C, is studied. The samples were oxidized for 140–1000 h at 1123 K in flowing simulated ambient air (air + 1......% H2O) and oxygen and corrosion kinetics monitored by mass increase of the materials over time. The oxide scale microstructure and chemical composition are investigated by scanning electron microscopy/energy-dispersive spectroscopy. The kinetic data obey a parabolic rate law. The results show...... that the LSM coating acts as an oxygen transport barrier that can significantly reduce the corrosion rate....

  20. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  1. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Science.gov (United States)

    Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  2. High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel

    Science.gov (United States)

    Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.

    2009-03-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  3. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.

    Science.gov (United States)

    Kurtz, Steven M; Mazzucco, Dan; Rimnac, Clare M; Schroeder, Dave

    2006-01-01

    Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE.

  4. Develop Hydrophilic Conductive Coating Technology with High Oxidation Resistance for Non-Flow-Through PEM Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes to develop oxidation resistant, electrically conductive, hydrophilic coatings in PEM fuel cells and in PEM electrolyzers. The use of hydrophilic...

  5. HIGHLY MICROBIAL RESISTANT GRAPHEME OXIDE NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND ITS ANTIBACTERIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vijaylaxmee Mishra

    2014-09-01

    Full Text Available The present work deigned to prepare graphene oxide nanoparticles and their antimicrobial activity has been evaluated. Graphene oxide is a singal layer of carbon arranged in a hexagonal pattern the basal planes and the edges of graphene oxide nanoparticles contain functional exogenous groups such as hydroxyl, carbonyl and epoxy group, which not only expand the interlayer distance but also make the atomic thick layer hydrophilic. Most important application in area related to transparent conductive film, composite materials, solar energy and biomedical application. Present work based on Hummer’s method which is most common used for preparing graphene oxide. The result graphene oxide was characterized by UV-Vis Spectra and SEM. The graphene oxide nanoparticles absorption peak was occurred at 289nm in UV-Vis spectra. SEM analysis showed the average particles size of 50-60nm corresponding to Hummer’s method respectively. Its antbacterial activity tested against gram negative and gram positive bacterial (Bacillus subtilis, Enterobacter aerogenes, and Staphylococcus epidermis strain. Graphene oxide nanoparticles of Hummer’s method showed the best inhibitory effect against Staphylococcus epidermis in comparison to other bacterial strain.

  6. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance

    Directory of Open Access Journals (Sweden)

    El Mesallamy Hala O

    2010-06-01

    Full Text Available Abstract Background High intake of dietary fructose is accused of being responsible for the development of the insulin resistance (IR syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Methods Oral glucose tolerance tests (OGTT were carried out, homeostasis model assessment of insulin resistance (HOMA was calculated, homocysteine (Hcy, lipid concentrations and markers of oxidative stress were measured in male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose diet (HFD, and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p. route for 35 days. Results Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy, lower total antioxidant capacity (TAC, lower paraoxonase (PON activity, and higher nitric oxide metabolites (NOx concentration, when compared to rats fed on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, triglycerides (TGs by 22.5%, total cholesterol (T-Chol by 11%, and low density lipoprotein cholesterol (LDL-C by 21.4%. Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed HHcy in the current dosage and duration. Conclusion Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS, and that taurine has a protective role against

  7. Resistance switching of electrodeposited cuprous oxide

    Science.gov (United States)

    Yazdanparast, Sanaz

    In this work, the resistance switching behavior of electrodeposited cuprous oxide (Cu2O) thin films in Au/Cu2O/top electrode (Pt, Au-Pd, Al) cells was studied. After an initial FORMING process, the fabricated cells show reversible switching between a low resistance state (16.6 O) and a high resistance state (0.4 x 106 O). Changing the resistance states in cuprous oxide films depends on the magnitude of the applied voltage which corresponds to unipolar resistance switching behavior of this material. The endurance and retention tests indicate a potential application of the fabricated cells for nonvolatile resistance switching random access memory (RRAM). The results suggest formation and rupture of one or several nanoscale copper filaments as the resistance switching mechanism in the cuprous oxide films. At high electric voltage in the as-deposited state of Au/Cu 2O/Au-Pd cell structure, the conduction behavior follows Poole-Frenkel emission. Various parameters, such as the compliance current, the cuprous oxide microstructure, the cuprous oxide thickness, top electrode area, and top electrode material, affect the resistance switching characteristics. The required FORMING voltage is higher for Au/Cu2O/Al cell compared with the Au/Cu2O/Pt which is related to the Schottky behavior of Al contact with Cu2O. Cu2O nanowires in Au-Pt/ Cu 2O/Au-Pt cell also show resistance switching behavior, indicating scalable potential of this cell for usage as RRAM. After an initial FORMING process under an electric field of 3 x 106 V/m, the Cu2O nanowire is switched to the LRS. During the FORMING process physical damages are observed in the cell, which may be caused by Joule heating and gas evolution.

  8. Oxidized LDL and Fructosamine Associated with Severity of Coronary Artery Atherosclerosis in Insulin Resistant Pigs Fed a High Fat/High NaCl Diet.

    Directory of Open Access Journals (Sweden)

    Timothy C Nichols

    Full Text Available Insulin-resistant subjects develop more severe and diffuse coronary artery atherosclerosis than insulin-sensitive controls but the mechanisms that mediate this atherosclerosis phenotype are unknown.To determine the metabolic parameters that associate with the severity of coronary atherosclerosis in insulin resistant pigs fed a high fat/high NaCl diet.The primary endpoint was severity of coronary atherosclerosis in adult pigs (Sus scrofa, n = 37 fed a high fat diet that also contained high NaCl (56% above recommended levels for 1 year.Twenty pigs developed severe and diffuse distal coronary artery atherosclerosis (i.e., severe = intimal area as a percent medial area > 200% in at least 2 coronary artery cross sections and diffuse distal = intimal area as a percent medial area ≥ 150% over 3 sections separated by 2 cm in the distal half of the coronary artery. The other 17 pigs had substantially less coronary artery atherosclerosis. All 37 pigs had blood pressure in a range that would be considered hypertensive in humans and developed elevations in total and LDL and HDL cholesterol, weight gain, increased backfat, and increased insulin resistance (Bergman Si without overt diabetes. Insulin resistance was not associated with atherosclerosis severity. Five additional pigs fed regular pig chow also developed increased insulin resistance but essentially no change in the other variables and little to no detectible coronary atherosclerosis. Most importantly, the 20 high fat/high NaCl diet-fed pigs with severe and diffuse distal coronary artery atherosclerosis had substantially greater increases (p< 0.05 in oxidized LDL (oxLDL and fructosamine consistent with increased protein glycation.In pigs fed a high fat/high NaCl diet, glycated proteins are induced in the absence of overt diabetes and this degree of increase is associated with the development of severe and diffuse distal coronary artery atherosclerosis.

  9. Oxidized LDL and Fructosamine Associated with Severity of Coronary Artery Atherosclerosis in Insulin Resistant Pigs Fed a High Fat/High NaCl Diet.

    Science.gov (United States)

    Nichols, Timothy C; Merricks, Elizabeth P; Bellinger, Dwight A; Raymer, Robin A; Yu, Jing; Lam, Diana; Koch, Gary G; Busby, Walker H; Clemmons, David R

    2015-01-01

    Insulin-resistant subjects develop more severe and diffuse coronary artery atherosclerosis than insulin-sensitive controls but the mechanisms that mediate this atherosclerosis phenotype are unknown. To determine the metabolic parameters that associate with the severity of coronary atherosclerosis in insulin resistant pigs fed a high fat/high NaCl diet. The primary endpoint was severity of coronary atherosclerosis in adult pigs (Sus scrofa, n = 37) fed a high fat diet that also contained high NaCl (56% above recommended levels) for 1 year. Twenty pigs developed severe and diffuse distal coronary artery atherosclerosis (i.e., severe = intimal area as a percent medial area > 200% in at least 2 coronary artery cross sections and diffuse distal = intimal area as a percent medial area ≥ 150% over 3 sections separated by 2 cm in the distal half of the coronary artery). The other 17 pigs had substantially less coronary artery atherosclerosis. All 37 pigs had blood pressure in a range that would be considered hypertensive in humans and developed elevations in total and LDL and HDL cholesterol, weight gain, increased backfat, and increased insulin resistance (Bergman Si) without overt diabetes. Insulin resistance was not associated with atherosclerosis severity. Five additional pigs fed regular pig chow also developed increased insulin resistance but essentially no change in the other variables and little to no detectible coronary atherosclerosis. Most importantly, the 20 high fat/high NaCl diet-fed pigs with severe and diffuse distal coronary artery atherosclerosis had substantially greater increases (p< 0.05) in oxidized LDL (oxLDL) and fructosamine consistent with increased protein glycation. In pigs fed a high fat/high NaCl diet, glycated proteins are induced in the absence of overt diabetes and this degree of increase is associated with the development of severe and diffuse distal coronary artery atherosclerosis.

  10. Improvement of high temperature oxidation resistance of γTiAl alloys by slurry coatings

    OpenAIRE

    Musallam, Nicolás Fashho

    2014-01-01

    This research document aims to deepen the understanding of slurry coatings as an effective barrier against the oxidation of promising Titanium-aluminide intermetallic alloys. For that purpose, the research is carried out with a Titanium- Aluminum alloy substrate {(Ti 45Al 2Nb 2Mn + 0.8%vol TiB2){ which was manufactured by means of two different techniques: Hot Isostatic Pressing (HIP) and Centrifugal Casting (CC). Additionally, two different slurry coatings have been applied...

  11. Oxidation Resistance of Alloys from Nb-Si-Cr System for High Temperature Applications

    Science.gov (United States)

    2013-01-02

    Journal of Alloys and Compounds Vol.476, 257-262, 2009 (doi:10.1016/j.jallcom...net/MSF.638-642.2351) 5. "Oxidation behavior of Nb-20M0-15Si-5B-20Ti Alloy in Air from 700 to 1300°C" Benedict Portillo and S.K. Varma Journal of Alloys and Compounds Vol...Additions" Alma Vasquez and S.K. Varma Journal of Alloys and Compounds Vol.509, 7027-7033, 2011 (doi: 10.1016/j.jallcom.2011.02.174) 11. "Effect

  12. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  13. Electron Transport Layer-Free Inverted Organic Solar Cells Fabricated with Highly Transparent Low-Resistance Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Electrode

    Science.gov (United States)

    Kim, Jun Ho; Kwon, Sung-Nam; Na, Seok-In; Kim, Sun-Kyung; Yoo, Young-Zo; Im, Hyeong-Seop; Seong, Tae-Yeon

    2017-04-01

    Inverted organic solar cells (OSCs) have been fabricated with conventional Sn-doped indium oxide (ITO) and amorphous indium gallium zinc oxide (a-IGZO)/Ag/a-IGZO (39 nm/19 nm/39 nm) (a-IAI) electrodes and their electrical characteristics characterized. The ITO and optimized a-IAI electrodes showed high transmittance of 96% and 88% at 500 nm, respectively. The carrier concentration and sheet resistance of the ITO and a-IAI films were 8.46 × 1020 cm-3 and 7.96 × 1021 cm-3 and 14.18 Ω/sq and 4.24 Ω/sq, respectively. Electron transport layer (ETL)-free OSCs with the a-IAI electrode exhibited power conversion efficiency (PCE) of 2.66%, similar to that of ZnO ETL-based OSCs with ITO electrode (3.27%). However, the ETL-free OSCs with the a-IAI electrode showed much higher PCE than the ETL-free OSCs with the ITO electrode (0.84%). Ultraviolet photoelectron spectroscopy results showed that the work function of the a-IAI electrode was 4.15 eV. This improved performance was attributed to the various roles of the a-IAI electrode, e.g., as an effective ETL and a hole blocking layer.

  14. Wear-Resistant Alloy for Protection of Contact Surfaces of Working Aircraft Engine Blades from Oxidation at High Temperatures

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2014-07-01

    Full Text Available Wear-resistant and heat-resistant cast cobalt-based alloy for hardening of the contact surfaces of working blades of aircraft gas turbine engines instead of commercial alloys ХТН-61 and ВЖЛ-2 was developed. High levels of heat resistance were achieved by complex doping (modification of the alloy. Based on studies of heat resistance, wear resistance, the structure and melting point of the alloys, the optimum chemical and phase composition of the developed alloy was defined.

  15. Fat oxidation before and after a high fat load in the obese insulin-resistant state

    NARCIS (Netherlands)

    Blaak, E.E.; Hul, G.; Verdich, C.; Stich, V.; Martinez, A.; Petersen, M.; Feskens, E.J.M.; Patel, K.; Oppert, J.M.; Barbe, P.; Toubro, S.; Anderson, I.; Polak, J.; Astrup, A.; Macdonald, I.A.; Holst, C.; Sørensen, T.I.; Saris, W.H.

    2006-01-01

    Background: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. Aim: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701) a

  16. Fat oxidation before and after a high fat load in the obese insulin-resistant state

    NARCIS (Netherlands)

    Blaak, E.E.; Hul, G.; Verdich, C.; Stich, V.; Martinez, A.; Petersen, M.; Feskens, E.J.M.; Patel, K.; Oppert, J.M.; Barbe, P.; Toubro, S.; Anderson, I.; Polak, J.; Astrup, A.; Macdonald, I.A.; Holst, C.; Sørensen, T.I.; Saris, W.H.

    2006-01-01

    Background: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. Aim: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701)

  17. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Zachariah, Bobby

    2016-01-25

    Emerging evidence suggests that high fructose consumption may be a potentially important factor responsible for the rising incidence of insulin resistance and diabetes worldwide. The present study investigated the preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high fructose fed male Wistar rats at the molecular level. Fructose feeding for 10 weeks caused oxidative stress, inflammation and insulin resistance. Curcumin treatment attenuated the insulin resistance by decreasing IRS-1 serine phosphorylation and increasing IRS-1 tyrosine phosphorylation in the skeletal muscle of high fructose fed rats. It also attenuated hyperinsulinemia, glucose intolerance and HOMA-IR level. Curcumin administration lowered tumor necrosis factor alpha (TNF-α), C reactive protein (CRP) levels and downregulated the protein expression of cyclo-oxygenase 2 (COX-2), protein kinase theta (PKCθ). In addition, inhibitor κB alpha (IκBα) degradation was prevented by curcumin supplementation. Treatment with curcumin inhibited the rise of malondialdehyde (MDA), total oxidant status (TOS) and suppressed the protein expression of extracellular kinase ½ (ERK ½), p38 in the skeletal muscle of fructose fed rats. Further, it enhanced Glutathione Peroxidase (GPx) activity in the muscle of fructose fed rats. At the molecular level, curcumin inhibited the activation of stress sensitive kinases and inflammatory cascades. Our findings conclude that curcumin attenuated glucose intolerance and insulin resistance through its antioxidant and anti-inflammatory effects. Thus, we suggest the use of curcumin as a therapeutic adjuvant in the management of diabetes, obesity and their associated complications.

  18. Resistance switching memory in perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.B., E-mail: zbyan@nju.edu.cn; Liu, J.-M., E-mail: liujm@nju.edu.cn

    2015-07-15

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given.

  19. Highly flexible, transparent, and low resistance indium zinc oxide-Ag-indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Woo; Jeong, Jin-A; Bae, Jung-Hyeok; Moon, Jong-Min; Choi, Kwang-Hyuk; Jeong, Soon Wook; Park, No-Jin [School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology (KIT), Gumi 730-701 (Korea, Republic of); Kim, Jang-Joo; Lee, Se Hyung [School of Materials Science and Engineering, Seoul National University and Organic Light Emitting Diodes Center, Sillim-dong, Seoul 151-741 (Korea, Republic of); Kang, Jae-Wook [Surface Technology Research Center, Korea Institute of Machinery and Materials, 66 Sangnam-dong, Changwon-si, Gyeongnam, 641-831 (Korea, Republic of); Yi, Min-Su [Department of Materials Science and Engineering, Kyungpook National University, Sangju, Gyeongbuk, 742-711 (Korea, Republic of); Kim, Han-Ki [School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology (KIT), Gumi 730-701 (Korea, Republic of)], E-mail: hkkim@kumoh.ac.kr

    2008-09-01

    The characteristics of indium zinc oxide (IZO)-Ag-IZO multilayer grown on a polyethylene terephthalate (PET) substrate were investigated for flexible organic light-emitting diodes (OLEDs). The IZO-Ag-IZO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 6.93 {omega}/{open_square} and a high transmittance of 84.8%, despite the very thin thickness of the IZO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (12 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density-voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  20. Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice.

    Science.gov (United States)

    Ren, Daoyuan; Hu, Yuanyuan; Luo, Yiyang; Yang, Xingbin

    2015-10-01

    The present study was designed to evaluate the effects of selenium-containing tea polysaccharides (Se-GTP) from a new variety of selenium-enriched Ziyang green tea against high fructose (HF)-induced insulin resistance and hepatic oxidative stress in mice. Healthy male Kunming mice were fed 20% high fructose water and administered 200, 400 and 800 mg per kg bw Se-GTP for 8 weeks. Mice fed HF in drinking water displayed significant insulin resistance, hepatic steatosis and oxidative stress observed by hyperglycemia and hyperinsulinemia, as well as increases in hepatic non-esterified fatty acid (NEFA) and malonaldehyde (MDA). The administration of Se-GTP at 400 and 800 mg per kg bw significantly improved insulin sensitivity, and reduced liver steatosis and oxidative stress damage, and brought back the antioxidants and hepatic lipids towards near-normal values. In the oral glucose tolerance test, the administration of Se-GTP at 400 and 800 mg per kg bw had reduced plasma glucose concentrations after 30 min of glucose loading in HF-fed mice, suggesting that Se-GTP improved glucose intolerance. Histopathological examination indicated that the impaired pancreatic/hepatic tissues were effectively restored in HF-fed mice following the Se-GTP treatment. This is the first report showing that Se-GTP can ameliorate the high fructose-induced insulin resistance and hepatic oxidative injury.

  1. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  2. High-transparency and low-resistivity poly (methylmethacrylate) films containing silver nanowires and graphene-oxide nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Yo Han [Department of Information Display Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choo, Dong Chul [Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Tae Whan, E-mail: twk@hanyang.ac.kr [Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2016-07-15

    Highlights: • PMMA films containing both Ag-NWs and GONPs were formed by using a transfer method. • Scanning electron microscopy images showed that the Ag-NWs on the PMMA film were partially covered with the GONPs. • Transmittance and the sheet resistance of the PMMA films were approximately 90% at 550 nm and 24 Ω/sq, respectively. • Uniformity of the sheet resistance was significantly improved due to the GONP treatment. • XPS spectra showed that the enhancement in the sheet resistance originated from the quaternary nitrogen in the GONPs. - Abstract: Nanocomposite films containing silver nanowires (Ag NWs) and graphene-oxide nanoplatelets (GONPs) were formed on glass, and the nanocomposite films were then transferred to poly(methylmethacrylate) (PMMA) films. Scanning electron microscopy images showed that Ag NWs with a length of 20 μm and a width of 80 nm, together with GONPs with a size of 15 μm, had been formed on the PMMA film and that the Ag NWs on the PMMA film were partially covered with the GONPs. While the transmittance of the PMMA film with the Ag NWs and the GONPs was almost the same as that of the PMMA film with the Ag NWs alone, the corresponding sheet resistance was decreased due to the generation of quaternary nitrogen in the GONPs, which the results of X-ray photoelectron spectroscopy and Raman spectroscopy confirmed. The transmittance and the sheet resistance of the PMMA film containing Ag NWs and GONPs were approximately 90% at 550 nm and 24 Ohm/sq, respectively.

  3. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  4. Resistance switching in oxides with inhomogeneous conductivity

    Institute of Scientific and Technical Information of China (English)

    Shang Da-Shan; Sun Ji-Rong; Shen Bao-Gen; Wuttig Matthias

    2013-01-01

    Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures.In these experiments a wide range of dielectrics have been studied including binary transition metal oxides,perovskite oxides,chalcogenides,carbon-and silicon-based materials,as well as organic materials.RS phenomena can be used to store information and offer an attractive performance,which encompasses fast switching speeds,high scalability,and the desirable compatibility with Si-based complementary metal--oxide-semiconductor fabrication.This is promising for nonvolatile memory technology,i.e.,resistance random access memory (RRAM).However,a comprehensive understanding of the underlying mechanism is still lacking.This impedes faster product development as well as accurate assessment of the device performance potential.Generally speaking,RS occurs not in the entire dielectric but only in a small,confined region,which results from the local variation of conductivity in dielectrics.In this review,we focus on the RS in oxides with such an inhomogeneous conductivity.According to the origin of the conductivity inhomogeneity,the RS phenomena and their working mechanism are reviewed by dividing them into two aspects:interface RS,based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer,and bulk RS,realized by the formation,connection,and disconnection of conductive channels in the oxides.Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.

  5. Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms.

    Science.gov (United States)

    Sankar, P; Zachariah, Bobby; Vickneshwaran, V; Jacob, Sajini Elizabeth; Sridhar, M G

    2015-03-01

    Estrogen deficiency after menopause accelerates the redox imbalance and insulin signaling, leading to oxidative stress (OS) and insulin resistance (IR). The molecular mechanisms by which the loss of ovarian hormone leads to OS and IR remain unclear. In the present study we found that rats when subjected to ovariectomy (OVX) resulted in reduction of whole blood antioxidants and elevation of oxidant markers. The expression of anti-oxidant enzymes, superoxide dismutase (SOD1) and glutathione peroxidase (GPX1) was suppressed whereas the pro-oxidative enzyme NADPH oxidase (NOX4) and mitogen activated protein (MAP) kinases ERK 1/2 and p38 were increased at different tissues. Treatment with soy (SIF, 150 mg/kg BW for 12 weeks) extract markedly reversed these metabolic changes and improved OS. Ovariectomized rats also displayed glucose intolerance (GI) and IR as evident from the impaired glucose tolerance test, and reduced expression of adipose and hepatic insulin receptor beta (IRβ) and adipose tissue GLUT4. Treatment with SIF reversed the ovariectomy induced GI and IR. On the other hand, all these metabolic changes were further augmented when ovariectomy was followed by a high fat diet, and these changes were also reversed by SIF. Taken together, these findings emphasized the antioxidant property and anti-diabetic effects of soy isoflavones suggesting the use of this natural phytoestrogen as a strategy for relieving oxidative stress and insulin resistance in postmenopausal women. Copyright © 2015. Published by Elsevier Inc.

  6. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure

    Science.gov (United States)

    Jegou, C.; Gennisson, M.; Peuget, S.; Desgranges, L.; Guimbretière, G.; Magnin, M.; Talip, Z.; Simon, P.

    2015-03-01

    Raman micro-spectroscopy was applied to study the structure and oxidation resistance of UO2 (burnup 60 GWd/tHM) and MOX (burnup 47 GWd/tHM) irradiated fuels. The Raman technique, adapted to working under extreme conditions, enabled structural information to be obtained at the cubic micrometer scale in various zones of interest within irradiated fuel (central and zones like the Rim for UOX60, and the plutonium-enriched agglomerates for MOX47 characterized by a high burn-up structure), and the study of their oxidation resistance. As regards the structural information after irradiation, the spectra obtained make up a set of data consistent with the systematic presence of the T2g band characteristic of the fluorite structure, and of a triplet band located between 500 and 700 cm-1. The existence of this triplet can be attributed to the presence of defects originating in changes to the fuel chemistry occurring in the reactor (presence of fission products) and to the accumulation of irradiation damage. As concerns the oxidation resistance of the different zones of interest, Raman spectroscopy results confirmed the good stability of the restructured zones (plutonium-enriched agglomerates and Rim) rich in fission products compared to the non-restructured UO2 grains. A greater structural stability was noticed in the case of high plutonium content agglomerates, as this element favors the maintenance of the fluorite structure.

  7. Nanometer bismuth oxide produced by resistance heating vapor oxidation

    Institute of Scientific and Technical Information of China (English)

    HU Han-xiang; QIU Ke-qiang

    2006-01-01

    Bismuth oxide has wide applications in superconductive material, photoelectric material, electronic ceramic, electrolyte, and catalysts. To produce ultrafine bismuth oxide powders, some costly heating sources, such as plasma, high frequency induction, electron beam or laser, have to be used in the conventional vapor oxidation methods. The vapor oxidation method was improved by adding a reducing agent in the reaction system, where heating source was resistance tubular oven, instead of special heat source requirement. Nanometer bismuth oxide was prepared at 1 000-1 140 ℃, and the particle characteristics were investigated by XRD, SEM, DTA, laser sedimentograph. With low oxygen concentration (less than 20%) in the carrier gas, the bismuth oxide particle was near-sphere β-Bi2O3 with uniform and fine particle size (d0.5=65 nm, GSD=1.42); while with higher oxygen content (more than 50%), the powders were mixture of Bi2O2CO3 and β-Bi2O3.

  8. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats.

    Science.gov (United States)

    Reddy, Singareddy Sreenivasa; Ramatholisamma, Pasurla; Karuna, Rasineni; Saralakumari, Desireddy

    2009-09-01

    High intake of dietary fructose exerts a number of adverse metabolic effects. The aim of the present study was to investigate whether aqueous extract of Tinospora cordifolia stem (TCAE) alleviates high-fructose diet-induced insulin resistance and oxidative stress in rats. High-fructose diet (66% of fructose) and TCAE (400 mg/kg/day) were given simultaneously for a period of 60 days. Fructose fed rats showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, impaired glucose tolerance and impaired insulin sensitivity (PTCAE treatment prevented the rise in glucose levels by 21.3%, insulin by 51.5%, triglycerides by 54.12% and glucose-insulin index by 59.8% of the fructose fed rats. Regarding liver antioxidant status, fructose fed rats showed higher values of lipid peroxidation (91.3%), protein carbonyl groups (44%) and lowered GSH levels (42.1%) and, lowered activities of enzymatic antioxidants, while TCAE treatment prevented all these observed abnormalities. In conclusion, our data indicate the preventive role of T. cordifolia against fructose-induced insulin resistance and oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of chronic diseases characterized by hyperinsulinemia, hypertriglyceridemia, insulin resistance and aggravated antioxidant status.

  9. High temperature oxidation resistance of fluorine-treated TiAl alloys: Chemical vs. ion beam fluorination techniques

    Science.gov (United States)

    Neve, Sven; Masset, Patrick J.; Yankov, Rossen A.; Kolitsch, Andreas; Zschau, Hans-Eberhard; Schütze, Michael

    2010-11-01

    The modification of the alloy surface by halogens significantly improves their oxidation behaviour at high temperature. It corresponds to the preferential reaction of the aluminium with the applied fluorine at the oxide/alloy interface and it promotes the growth of an adherent and stable alumina layer. Well-defined fluorine profiles beneath the surface of the material can be achieved by either fluorine beam line ion implantation (BLI 2) or plasma immersion ion implantation (PI 3). As an alternative to the implantation-based approach, chemical fluorination techniques such as gas-phase treatment and dipping in F-based solutions were also investigated. The fluorine depth-profiles were measured before and after oxidation at 900 °C using non destructive ion beam analyses: Proton Induced Gamma-ray Emission (PIGE), Rutherford Backscattering Spectroscopy (RBS) as well as Elastic Recoil Detection Analysis (ERDA). It enables to control and to optimise the fluorination conditions of technical TiAl alloys for an industrial application.

  10. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  11. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    Science.gov (United States)

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-02-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs.

  12. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  13. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  14. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  15. Protective Effect of the Sputtered TiAlCrAg Coating on the High-Temperature Oxidation and Hot Corrosion Resistance of Ti-Al-Nb Alloy

    Institute of Scientific and Technical Information of China (English)

    Yanjun XI; Fuhui WANG; Lianlong HE

    2004-01-01

    The effect of a sputtered Ti-48Al-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5Al-5Nb (at. pct) alloy was investigated in air at 1000~1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAlNb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48Al-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5Al-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr,Kirkendall voids were found at the coating/substrate interface. TiAlCrAg coating provided excellent hot corrosion resistance for TiAlNb alloy in molten 75 wt pct Na2SO4+25 wt pct K2SO4 at 900℃ due to the formation of a continuous Al2O3 scale.

  16. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tian, E-mail: tianz@student.unsw.edu.au; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan [Australian Centre for Advanced Photovoltaics, UNSW Australia, Kensington, New South Wales 2052 (Australia)

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  17. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Science.gov (United States)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  18. LINK BETWEEN OXIDATIVE STRESS AND INSULIN RESISTANCE

    Institute of Scientific and Technical Information of China (English)

    Lan-fang Li; Jian Li

    2007-01-01

    Many studies on oxidative stress, insulin resistance, and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free fatty acids metabolism in diabetic and insulin-resistant states. Many pathogenic mechanisms such as insulin receptor substrate phosphorylation are involved in insulin resistance induced by oxidative stress. And antioxidant treatments can show benefits in animal models of diabetes mellitus and insulin resistance. However, negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating diabetic complications. Furthermore, it appears that oxidative stress is only one of the factors contributing to diabetic complications. Thus, antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.

  19. Measurement system for resistive metal oxide sensors matrix

    Science.gov (United States)

    Róg, Piotr; Rydosz, Artur; Brudnik, Andrzej

    2016-12-01

    The measurement system for laboratory array of gas sensors was constructed. The system can be used to measure the response characteristic of resistive metal oxide (MOx) gas sensors. Proposed system is flexible and reconfigurable easy, to perform high and low resistivity measurements.

  20. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide.

    Science.gov (United States)

    Keynes, Robert G; Duport, Sophie; Garthwaite, John

    2004-03-01

    Nitric oxide (NO) has been proposed to mediate neurodegeneration arising from NMDA receptor activity, but the issue remains controversial. The hypothesis was re-examined using organotypic slice cultures of rat hippocampus, with steps being taken to avoid known artefacts. The NO-cGMP signalling pathway was well preserved in such cultures. Brief exposure to NMDA resulted in a concentration-dependent delayed neuronal death that could be nullified by administration of the NMDA antagonist MK801 (10 microm) given postexposure. Two inhibitors of NO synthesis failed to protect the slices, despite fully blocking NMDA-induced cGMP accumulation. By comparing NMDA-induced cGMP accumulation with that produced by an NO donor, toxic NMDA concentrations were estimated to produce only physiological NO concentrations (2 nm). In studies of the vulnerability of the slices to exogenous NO, it was found that continuous exposure to up to 4.5 microm NO failed to affect ATP levels (measured after 6 h) or cause damage during 24 h, whereas treatment with the respiratory inhibitors myxothiazol or cyanide caused ATP depletion and complete cell death within 24 h. An NO concentration of 10 microm was required for ATP depletion and cell death, presumably through respiratory inhibition. It is concluded that sustained activity of neuronal NO synthase in intact hippocampal tissue can generate only low nanomolar NO concentrations, which are unlikely to be toxic. At the same time, the tissue is remarkably resistant to exogenous NO at up to 1000-fold higher concentrations. Together, the results seriously question the proposed role of NO in NMDA receptor-mediated excitotoxicity.

  1. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  2. ''MBE-Litho'': 3 nm-thick amorphous GaAs oxidized thin film functioning as highly sensitive inorganic resist for EB lithography and oxide mask for selective processes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kazuhiro; Hirokawa, Yuki; Ushio, Shoji; Kaneko, Tadaaki [Department of Physics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2011-02-15

    Molecular beam epitaxy (MBE) is one of the growth methods, which has been widely used for single crystalline semiconductor materials. In this study, we report a novel function of a 3 nm-thick amorphous GaAs thin layer deposited using MBE at room temperature. Its oxidized region exposed to H{sub 2}O-vapor ambient works as a highly sensitive inorganic resist film for low-energy electron-beam (LE-EB) lithography of 1-5 keV. In this method, the surface area modified by LE-EB direct writing provides a thermally stable oxide pattern, which can be directly applied to successive selective processes such as etching and growth under MBE environment. All the condition required for its selective etching/growth is to remove the background residual GaAs oxide of EB non-irradiated area in the same UHV chamber. Thus, MBE gives the simplest and most efficient solution to all the processes including the resist film pre-depositing, the background oxide removing and the successive etching/growth functions. We call this solution ''MBE-Litho ''. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Copper oxide resistive switching memory for e-textile

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2011-09-01

    Full Text Available A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  4. Copper oxide resistive switching memory for e-textile

    Science.gov (United States)

    Han, Jin-Woo; Meyyappan, M.

    2011-09-01

    A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  5. High Temperature Oxidation and Corrosion Properties of High Entropy Superalloys

    Directory of Open Access Journals (Sweden)

    Te-Kang Tsao

    2016-02-01

    Full Text Available The present work investigates the high temperature oxidation and corrosion behaviour of high entropy superalloys (HESA. A high content of various solutes in HESA leads to formation of complex oxides, however the Cr and Al activities of HESA are sufficient to promote protective chromia or alumina formation on the surface. By comparing the oxidation and corrosion resistances of a Ni-based superalloy—CM247LC, Al2O3-forming HESA can possess comparable oxidation resistance at 1100 °C, and Cr2O3-forming HESA can exhibit superior resistance against hot corrosion at 900 °C. This work has demonstrated the potential of HESA to maintain surface stability in oxidizing and corrosive environments.

  6. Highly oxidized superconductors

    Science.gov (United States)

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Erosion and high temperature oxidation resistance of new coatings fabricated by a sol-gel route for a TBC application.

    OpenAIRE

    Viazzi, Céline; Wellman , Richard; Oquab, Djar; Nicholls, John; Monceau, Daniel; Bonino, Jean-Pierre; Ansart, Florence

    2008-01-01

    This paper examines the erosion and cyclic oxidation performance of novel thermal barrier coatings produced via the sol-gel route. The ceramic top coat, with a thickness of 5-80 m, was deposited via a sol-gel route onto standard MCrAlY and PtAl bond coats. In both the erosion and the cyclic oxidation tests it was found that the bond coat had a profound affect on the results. The erosion of the sol-gel coatings were compared to standard EB PVD and PS TBCs and were found to be significantly...

  9. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  10. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  11. Oxidation Resistance: One Barrier to Moving Beyond Ni-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Distefano, James R [ORNL; Wright, Ian G [ORNL

    2006-01-01

    The implementation of new high-temperature materials is often hampered by their lack of oxidation or environmental resistance. This failing is one of the strongest barriers to moving beyond Ni-base superalloys for many commercial applications. In practice, usable high-temperature alloys have at least reasonable oxidation resistance, but the current generation of single-crystal Ni-base superalloys has sufficient oxidation resistance that optimized versions can be used without a metallic bond coating and only an oxygen-transparent ceramic coating for thermal protection. The material development process often centers around mechanical properties, while oxidation resistance, along with other realities, is given minor attention. For many applications, the assumption that an oxidation-resistant coating can be used to protect a substrate is seriously flawed, as coatings often do not provide sufficient reliability for critical components. Examples of oxidation problems are given for currently used materials and materials classes with critical oxidation resistance problems.

  12. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Nathalie; Williams, Paul T.; Lamendella, Regina; Faghihnia, Nastaran; Grube, Alyssa; Li, Xinmin; Wang, Zeneng; Knight, Rob; Jansson, Janet K.; Hazen, Stanley L.; Krauss, Ronald M.

    2016-12-20

    Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2-week baseline diet (41 percentage of energy (%E) CHO, 40 % fat, 19 % protein), followed by 2-week high- and low-RS diets separated by 2-week washouts. RS diets were assigned at random within the context of higher (51–53 %E)v. lower CHO (39–40 %E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine andγ-butyrobetaine concentrations were higher after the high-v. low-RS diet (P<0·01 each). These metabolites were not differentially affected by highv. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P<0·01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health.

  13. Role of Y4Al2O9 in High Temperature Oxidation Resistance of NiCoCrAlY-ZrO2·Y2O3 Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    NiCoCrAlY-ZrO2·Y2O3 coatings were deposited on the substrates by using a technology of combining electron,atom and ion beams (three beams). Isothermal oxidation for these samples was performed at 1100℃ for 100-300 h. The results show that a thermally grown oxide (TGO) layer was formed between NiCoCrAlY layer and oxidation. The TGO contains α-Al2O3 and Y4Al2O9 etc. oxides. The intensity ratio of α-Al2O3/Y4Al2O9 was monotonously decreased with increasing oxidation time based on XRD (X-ray diffraction) analysis. The Y4Al2O9 phase plays the most important role in high temperature oxidation resistance at 1100℃. The related mechanism was also discussed.

  14. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  15. Resistive switches and memories from silicon oxide.

    Science.gov (United States)

    Yao, Jun; Sun, Zhengzong; Zhong, Lin; Natelson, Douglas; Tour, James M

    2010-10-13

    Because of its excellent dielectric properties, silicon oxide (SiO(x)) has long been used and considered as a passive, insulating component in the construction of electronic devices. In contrast, here we demonstrate resistive switches and memories that use SiO(x) as the sole active material and can be implemented in entirely metal-free embodiments. Through cross-sectional transmission electron microscopy, we determine that the switching takes place through the voltage-driven formation and modification of silicon (Si) nanocrystals (NCs) embedded in the SiO(x) matrix, with SiO(x) itself also serving as the source of the formation of this Si pathway. The small sizes of the Si NCs (d ∼ 5 nm) suggest that scaling to ultrasmall domains could be feasible. Meanwhile, the switch also shows robust nonvolatile properties, high ON/OFF ratios (>10(5)), fast switching (sub-100-ns), and good endurance (10(4) write-erase cycles). These properties in a SiO(x)-based material composition showcase its potentials in constructing memory or logic devices that are fully CMOS compatible.

  16. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    Science.gov (United States)

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-01-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs. PMID:28223687

  17. Strong resistance of silicene nanoribbons towards oxidation

    Energy Technology Data Exchange (ETDEWEB)

    De Padova, Paola; Quaresima, Claudio; Perfetti, Paolo [CNR-ISM, via Fosso del Cavaliere, 00133 Roma (Italy); Olivieri, Bruno [CNR-ISAC, via Fosso del Cavaliere, 00133 Roma (Italy); Le Lay, Guy, E-mail: paola.depadova@ism.cnr.it [CINaM-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France)

    2011-08-10

    Silicene, the new allotropic form of silicon, represents an interesting promise for future new nanostructured materials. Here, we investigate the room temperature oxidation of a one-dimensional grating of silicene nanoribbons grown on a Ag(1 1 0) surface by high-resolution Si 2p core level photoemission spectroscopy and low-energy electron diffraction observations. The oxidation process starts at very high oxygen exposures, about 10{sup 4} times higher than on the clean Si(1 1 1)7 x 7 surface, which demonstrates the low reactivity of silicene to molecular oxygen. Ar{sup +}sputtering produces defects, which enhance the oxidation uptake. (fast track communication)

  18. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  19. Resistant starch consumption promotes lipid oxidation

    Directory of Open Access Journals (Sweden)

    Higgins Janine A

    2004-10-01

    Full Text Available Abstract Background Although the effects of resistant starch (RS on postprandial glycemia and insulinemia have been extensively studied, little is known about the impact of RS on fat metabolism. This study examines the relationship between the RS content of a meal and postprandial/post-absorbative fat oxidation. Results 12 subjects consumed meals containing 0%, 2.7%, 5.4%, and 10.7% RS (as a percentage of total carbohydrate. Blood samples were taken and analyzed for glucose, insulin, triacylglycerol (TAG and free fatty acid (FFA concentrations. Respiratory quotient was measured hourly. The 0%, 5.4%, and 10.7% meals contained 50 μCi [1-14C]-triolein with breath samples collected hourly following the meal, and gluteal fat biopsies obtained at 0 and 24 h. RS, regardless of dose, had no effect on fasting or postprandial insulin, glucose, FFA or TAG concentration, nor on meal fat storage. However, data from indirect calorimetry and oxidation of [1-14C]-triolein to 14CO2 showed that addition of 5.4% RS to the diet significantly increased fat oxidation. In fact, postprandial oxidation of [1-14C]-triolein was 23% greater with the 5.4% RS meal than the 0% meal (p = 0.0062. Conclusions These data indicate that replacement of 5.4% of total dietary carbohydrate with RS significantly increased post-prandial lipid oxidation and therefore could decrease fat accumulation in the long-term.

  20. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  1. Methods to Characterize Oxidation Resistance for Magnesia—carbon Refractories

    Institute of Scientific and Technical Information of China (English)

    LIXiang-min; MichelReigaud

    1996-01-01

    The parameters influencing the process of carbon oxidation in magnesia-carbon refracto-ries are reviewed.A typology of their oxidation resistance measurements is then presented;four different method are discussed in details.No agreement has been reached yet on a standard-ized test method.So far,oxidation resistance describes a process more than a property.

  2. Study on oxide resistance of long persistent phosphor SrAl2O4: Eu, Dy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The heat-treated temperature and preservative time influence on oxide resistance of SrAl2O4 :Eu2+ ,Dy3+ in high temperature atmosphere were studied in this paper. The result showed that oxide resistance was improved obviously by phosphor particles coated SiO2. The reason for the coating to craze above 900℃ was also analyzed.

  3. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  4. Synthesis and Oxidation Resistance of h-BN Thin Films

    Science.gov (United States)

    Stewart, David; Meulenberg, Robert; Lad, Robert

    Hexagonal boron nitride (h-BN) is an exciting 2D material for use in sensors and other electronic devices that operate in harsh, high temperature environments. Not only is h-BN a wide band gap material with excellent wear resistance and high temperature stability, but recent reports indicate that h-BN can prevent metallic substrates from oxidizing above 600°C in low O2 pressures. However, the PVD of highly crystalline h-BN films required for this oxidation protection has proven challenging. In this work, we have explored the growth of h-BN thin films by reactive RF magnetron sputtering from an elemental B target in an Ar/N2 atmosphere. The film growth rate is extremely slow and the resulting films are atomically smooth and homogeneous. Using DC biasing during deposition and high temperature annealing treatments, the degree of film crystallinity can be controlled. The oxidation resistance of h-BN films deposited on inert sapphire and reactive metal substrates such as Zr and ZrB2 has been examined by techniques such as XPS, XRD, and SEM after oxidation between 600 and 1200°C under varying oxygen pressures. The success of h-BN as a passivation layer for metallic substrates in harsh environments is shown to depend greatly on its crystalline quality and defects. Supported by the NSF SusChEM program.

  5. Effect of Metal Oxide on Electrical Resistivity of Conductive Wood Charcoal

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To analyze the effect of metal oxide on electrical resistivity of conductive wood charcoal,wood powder of Masson pine was mixed with ferric oxide (Fe_2O_3) and nickel oxide (NiO), respectively,and then the mixed powders were carbonized at high temperature in a laboratory-scale tube furnace in a nitrogen atmosphere. DCY-3 resistivity tester was used to measure electrical resistivity of conductive wood charcoal. When carbonization temperature was 1200 ℃, the electrical resistivity of controlsamples, Fe_2O_3 (...

  6. Research on High Temperature Oxidation Resistance of Hot-dip Aluminized Steel%热浸镀铝钢抗高温氧化腐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    吴笛

    2012-01-01

    Considering high temperature oxidation resistance of hot-dip aluminized steel, the experimental study on it at 900℃ and for 100h and through weight gain was discontinuously implemented. The results show that the oxidation by weight per unit area of hot-dip aluminized steel is a quarter of general carbon steel, and the oxide film which making up this deposit together with matrix and diffusion zone has excellent high temperature oxidation resistance.%在实验室条件下通过900C、100h的不连续氧化增重试验研究了热浸镀铝钢的抗高温氧化腐蚀性能,结果表明,热浸镀铝钢单位面积氧化增重量为普通碳钢的1/4,其中浸镀层由表面的氧化膜、母体和扩散区组成,氧化膜具有优良的抗高温氧化性能.

  7. Oxidative stress, insulin resistance, dyslipidemia and type 2diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Surapon Tangvarasittichai

    2015-01-01

    Oxidative stress is increased in metabolic syndromeand type 2 diabetes mellitus (T2DM) and this appearsto underlie the development of cardiovascular disease,T2DM and diabetic complications. Increased oxidativestress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.

  8. Association Between Free Fatty Acid (FFA and Insulin Resistance: The Role of Inflammation (Adiponectin and high sensivity C-reactive Protein/hs-CRP and Stress Oxidative (Superoxide Dismutase/SOD in Obese Non-Diabetic Individual

    Directory of Open Access Journals (Sweden)

    Indriyanti Rafi Sukmawati

    2009-12-01

    Full Text Available BACKGROUND: Obesity is highly related to insulin resistance, therefore, the increased number of obesity is followed by the increased prevalence of type 2 Diabetes Melitus. Obesity is associated with increased of reactive oxygen species (ROS in muscle, liver and endothelial cells. The increase of ROS would lead to insulin resistance (IR and increased pro-inflammatory protein. FFA plays an important role in IR by inhibiting muscle glucose transport and oxidation via effects on serine/threonine phosphorylation of IRS-1. The aim of this study was discover the existence of SOD, hs-CRP and and adiponectin levels towards the occurrence of insulin resistance which was caused by elevated level of FFA and to discover the interaction between SOD, hs-CRP and adiponectin in non diabetic obese adult male. METHODS: This was observational study with cross sectional design. There were 65 obese male non diabetic subjects and 45 non obese male non diabetic subjects who met the criteria. In this study, measurements were done on body mass index (BMI, fasting glucose, insulin, adiponectin, hs-CRP and SOD. Obese was defined as BMI >25 kg/m2, normal weight was defined as BMI 18.5-23 kh/m2 and Insulin Resistance was defined as HOMA-IR >1. RESULTS: This study showed that Hypoadiponectinemia condition, decreased SOD level and high level of hs-CRP is associated with insulin resistance in obese non diabetic subject. Adiponectin and SOD were correlated negatively with insulin resistance in obese non diabetic (Adiponectin, r=-0.455, p<0.001; SOD, r=-0.262, p=0.003, hs-CRP was positively correlated with insulin resistance in obese non diabetic (r=0.592, p<0.001. FFA levels was increased in obese insulin resistance compared with non obese non insulin resistance. The Odds Ratio of Adiponectin, hs-CRP and SOD in this study was analyzed by logistic binary. The OR for SOD 3.6 (p=0.001, hs-CRP 9.1 (p<0.001 and Adiponectin 7.2 (p<0.001. CONCLUSIONS: This study suggested that FFA

  9. Preparation of ZrO2-Al2O3 micro-laminated coatings on stainless steel and their high temperature oxidation resistance

    Institute of Scientific and Technical Information of China (English)

    YAO Ming-ming; HE Ye-dong; GOU Ying-jun; GAO Wei

    2005-01-01

    Micro-laminated ZrO2-Al2O3 coatings were prepared by electrochemical depositing ZrO2 film and Al2O3 film alternatively in ethanol solutions containing aluminum nitrate and zirconium nitrate, with small amounts of yttrium nitrate added respectively into both solutions. The micro-laminated ZrO2-Al2O3 coating is of nanostructure. FE-SEM analyses show that the cross section of the micro-laminated coatings has alternate six-layer films of ZrO2 and Al2O3, with the thickness of each layer in the range of nanometer or submicron. The surface of the micro-laminated coatings is composed of nano-particles. SEM, XRD and mass gain measurement were adopted to study the oxidation resistance of coatings on stainless steel. It has been found that all the coatings are effective in protecting the substrate from oxidation, and micro-laminated coatings exhibit more excellent protectiveness performance. Mechanisms accounting for such effects have been discussed.

  10. Using CrAlN multilayer coatings to improve oxidation resistance of steel interconnects for solid oxide fuel cell stacks

    Science.gov (United States)

    Smith, R. J.; Tripp, C.; Knospe, A.; Ramana, C. V.; Kayani, A.; Gorokhovsky, Vladimir; Shutthanandan, V.; Gelles, D. S.

    2004-06-01

    The requirements of low-cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. The performance of steel plates with multilayer coatings, consisting of CrN for electrical conductivity and CrAlN for oxidation resistance, was investigated. The coatings were deposited using large area filtered arc deposition technology, and subsequently annealed in air for up to 25 hours at 800 °C. The composition, structure, and morphology of the coated plates were characterized using Rutherford backscattering, nuclear reaction analysis, atomic force microscopy, and transmission electron microscopy techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitude. Electrical resistance was measured at room temperature.

  11. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  12. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    Science.gov (United States)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  13. Nanomaterial resistant microorganism mediated reduction of graphene oxide.

    Science.gov (United States)

    Chouhan, Raghuraj S; Pandey, Ashish; Qureshi, Anjum; Ozguz, Volkan; Niazi, Javed H

    2016-10-01

    In this study, soil bacteria were isolated from nanomaterials (NMs) contaminated pond soil and enriched in the presence of graphene oxide (GO) in mineral medium to obtain NMs resistant bacteria. The isolated resistant bacteria were biochemically and genetically identified as Fontibacillus aquaticus. The resistant bacteria were allowed to interact with engineered GO in order to study the biotransformation in GO structure. Raman spectra of GO extracted from culture medium revealed decreased intensity ratio of ID/IG with subsequent reduction of CO which was consistent with Fourier transform infrared (FTIR) results. The structural changes and exfoliatied GO nanosheets were also evident from transmission electron microscopy (TEM) images. Ultraviolet-visible spectroscopy, high resolution X-ray diffraction (XRD) and current-voltage measurements confirmed the reduction of GO after the interaction with resistant bacteria. X-ray photoelectron spectroscopy (XPS) analysis of biotransformed GO revealed reduction of oxygen-containing species on the surface of nanosheets. Our results demonstrated that the presented method is an environment friendly, cost effective, simple and based on green approaches for the reduction of GO using NMs resistant bacteria.

  14. Highly oxidized graphene oxide and methods for production thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  15. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  16. [Comparative study of the consumption of virgin olive oil or seje on lipid profile and oxidation resistance of high density lipoprotein (HDL) of rat plasma].

    Science.gov (United States)

    Isabel Giacopini, María; Guerrero, Omaira; Moya, Manuel; Bosch, Virgilio

    2011-06-01

    We compared the effect of the consumption of seje oil (Oenocarpus bataua), with that of olive oil, on plasma lipids and susceptibility in vitro to oxidation of high density lipoprotein (HDL) in the rat. Two groups often male Sprague Dawley rats were fed ad libitum, for a lapse of eight week, with a purified diets with 10g de seje oil or olive oil/100 g of diet (GS y GO respectively). The animals were exsanguinated at the end of the experimental after a 14 hour fast. Plasma was isolated by centrifugation, and the fractions of lipoproteins were separated from the plasma by sequential ultracentrifugation. Rats of GO had a statistically significant lower in concentration of TG (p < 0.05) compared with GS group. HDL fractions in both groups were oxidatively modified by incubation with copper ions. Differences in the fractions susceptibilities to peroxidation were studied by measuring the formation of thiobarbituric acid reactive substance (TBARS) for 3 hours. HDL in GS had a statistically significant decrease in TBARS formation (p < 0.05) relative to HDL of GO. This may be explained by the lower concentration of polyunsaturated fatty acids of HDL in GS compared with HDL in GO.

  17. Resveratrol improves high fat diet-induced fatty liver and insulin resistance by concomitant inhibiting proteolytic cleavage of SREBPS , FFAs oxidation, and intestinal TGS absorption.

    Science.gov (United States)

    Khaleel, Eman F; Abdel-Aleem, Ghada Ahmed; Mostafa, Dalia Gamal Eldin

    2017-08-04

    Resveratrol (RES) has the ability to ameliorate non-alcoholic fatty liver disease (NAFLD) and the mechanism remains unclear. Hence, using high-fat diet (HFD) obese rat model, we investigated the effect of low dose of RES (20 mg/kg) on hepatic Sterol regulatory element-binding proteins (SREBPs)-lipogenesis pathway, enzymes involved in β-oxidation and activity of pancreatic lipase. 4 groups of rats (n=8) of either control (12 % of calories as fat) or HFD (40 % of calories as fat), both were administered with either normal saline as vehicle or RES as a concomitant treatment for 8 weeks on a daily basis, orally. Then, various biochemical, histological and molecular experiments were carried out. RES prevented the development and progression of NAFLD and significantly improved insulin sensitivity through 1) inhibiting the proteolytic cleavage of SREBPs-1 and SREBPs-2 without affecting their precursor mRNA or protein levels 2) inhibiting FFA beta-oxidation and generation of ROS through significant inhibition of CPT-1 and UCP-2, 3) decreasing activity of pancreatic lipase in vivo and in-vitro. In conclusion, Our findings are the first in the literature to show new mechanisms of hepatoprotective effect of RES against HFD induced NAFLD in rats.

  18. SiBN陶瓷纤维的高温抗氧化性研究%High temperature oxidation resistance of SiBN ceramic fiber

    Institute of Scientific and Technical Information of China (English)

    王会峰; 唐彬彬; 牟世伟; 星禧; 柯盛包; 韩克清; 刘勇; 余木火

    2015-01-01

    The chemical structure and the thermal stability of SiBN ceramic fibers were investigated by FTIR and TG. SiBN ceramic fibers were treated under air atmosphere at 1 400℃. The structure and the element contents along the radius of SiBN ceramic fibers after the air⁃oxidation treatment were characterized by means of SEM,XRD and EDS. The results show that SiBN ceramic fibers exhibit good thermal stability at high temperature,which contain Si⁃N bonds and B⁃N bonds in the back⁃bone of the fiber and low carbon content (0.1%). After the air⁃oxidation treatment,the ceramic fibers show a skin⁃core structure. Oxygen mainly exists in the form of SiO2 in the skin of fiber,which can prevent the air from the interior of the fibers, thus providing the high temperature stability. In addition,after air⁃oxidation treatment,the SiBN ceramic fibers maintain their fiber shape and still show compact structure without micropores and amorphous character.%采用FTIR及TG对SiBN陶瓷纤维的结构及高温稳定性进行分析,在空气气氛中1400℃下对其进行高温氧化处理,并利用SEM、XRD、EDS等手段对高温处理后陶瓷纤维的结构及元素分布情况进行表征。结果表明:SiBN陶瓷纤维具有良好的高温稳定性,Si—N键、B—N键构成了SiBN陶瓷纤维的骨架架构,其碳的质量分数仅为0.1%;经高温氧化处理后SiBN纤维出现明显的皮芯结构,其中O元素以SiO2的形式主要富集在皮层,隔绝了纤维内部与空气的接触,从而保证了纤维的高温稳定性。另外,高温氧化处理后仍保持其纤维形状,结构致密,无明显孔洞,且仍为无定型结构。

  19. Effects of Dy on cyclic oxidation resistance of NiAl alloy

    Institute of Scientific and Technical Information of China (English)

    GUO Hong-bo; WANG Xiao-yan; LI Ji; WANG Shi-xing; GONG Sheng-kai

    2009-01-01

    The NiAl alloys modified by reactive element(RE), dysprosium(Dy), were produced by arc melting. The microstructures of the modified alloys were investigated by field emission-scanning electron microscope(FE-SEM) equipped with energy dispersive spectroscope(EDS) and back scatter detector. Cyclic oxidation tests at 1 200 ℃ were conducted to assess the cyclic oxidation performance of the alloys. The Dy dopant prevents the surface rumpling of the oxide scale and the formation of cavities beneath the oxide scale. The pegs consisting of Dy-rich oxide inclusion core and an outer alumina sheath develop deeply in the alloy and improve the oxide scale adhesion. 0.05%-0.1% (molar fraction) Dy dramatically improves the cyclic oxidation resistance of the NiAl alloy. Too high concentration of Dy is deleterious because of the fast oxidation rate caused by severe internal oxidation.

  20. Observation of nonvolatile resistive memory switching characteristics in Ag/graphene-oxide/Ag devices.

    Science.gov (United States)

    Venugopal, Gunasekaran; Kim, Sang-Jae

    2012-11-01

    In this paper, we report highly stable and bipolar resistive switching effects of Ag/Graphene oxide thinfilm/Ag devices. The graphene-oxide (GO) thinfilms were prepared on Ag/SiO2/Si substrates by spin-coating technique. The Ag/GO/Ag devices showed a steady and bipolar resistive switching characteristic. The resistance switching from low resistance state (LRS) and high resistance state (HRS) with the resistance ratio of HRS to LRS of about 10 which was attained at a voltage bias of 0.1 V. Based on the filamentary conduction model, the dominant conduction mechanism of switching effect was well explained. Our results show GO can be a promising candidate for future development of nonvolatile memory devices.

  1. Mice in the early stage of liver steatosis caused by a high fat diet are resistant to thioacetamide-induced hepatotoxicity and oxidative stress.

    Science.gov (United States)

    Lee, Jaeyong; Homma, Takujiro; Fujii, Junichi

    2017-08-05

    Lipogenesis is stimulated in the liver by an unfolded protein response (UPR) to endoplasmic reticulum stress under a variety of pathological conditions and results in the accumulation of lipids in hepatocytes. Assuming that UPR is a protective mechanism against stress, we hypothesized that the accumulated lipids might have a beneficial function. We prepared mice with fatty livers by feeding two types of high-calorie diets; a lard-rich high-calorie diet (LHD) or a menhaden oil-containing high-calorie diet (MHD), for two weeks and treated them, as well as control diet (CD)-fed mice, with thioacetamide (TAA), a liver toxicant. When a lethal dose (500mg/kg) of TAA was administered, the LHD-fed mice and the MHD-fed mice survived longer than those fed with CD. The accumulated lipids appeared to be associated with protecting the liver against TAA toxicity (200mg/kg). Consistently, lipid-loaded Hepa 1-6 cells showed a partial resistance to hydrogen peroxide toxicity compared to those cultured in conventional media. In conclusion, while sustained steatosis impairs liver function and leads to hazardous conditions, lipids that transiently accumulate as the result of UPR or other stimuli may exert a beneficial function in the liver at least partly through scavenging reactive oxygen species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thermoelectric Seebeck effect in oxide-based resistive switching memory.

    Science.gov (United States)

    Wang, Ming; Bi, Chong; Li, Ling; Long, Shibing; Liu, Qi; Lv, Hangbing; Lu, Nianduan; Sun, Pengxiao; Liu, Ming

    2014-08-20

    Reversible resistive switching induced by an electric field in oxide-based resistive switching memory shows a promising application in future information storage and processing. It is believed that there are some local conductive filaments formed and ruptured in the resistive switching process. However, as a fundamental question, how electron transports in the formed conductive filament is still under debate due to the difficulty to directly characterize its physical and electrical properties. Here we investigate the intrinsic electronic transport mechanism in such conductive filament by measuring thermoelectric Seebeck effects. We show that the small-polaron hopping model can well describe the electronic transport process for all resistance states, although the corresponding temperature-dependent resistance behaviours are contrary. Moreover, at low resistance states, we observe a clear semiconductor-metal transition around 150 K. These results provide insight in understanding resistive switching process and establish a basic framework for modelling resistive switching behaviour.

  3. Development of oxidation/corrosion-resistant composite materials and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Shanmugham, S. [and others

    1995-06-01

    Continuous fiber ceramic composites (CFCCs) are being developed for high temperature structural applications, many of which are in oxidative environments. Such composites are attractive since they are light-weight and possess the desired mechanical properties at elevated temperature and in aggressive environments. The most significant advantage is their toughness and their non-catastrophic failure behavior. The mechanical properties of CFCCs have been characteristically linked with the nature of the interfacial bond between the fibers and the matrix. Weakly bonded fiber-matrix intefaces allow an impinging matrix crack to be deflected such that the fracture process occurs through several stages: Crack deflection, debonding at the interface, fiber slip and pull-out, and ultimately fiber failure. Such a composite will fail in a graceful manner and exhibit substantial fracture toughness. Currently, carbon interface coatings are used to appropriately tailor interface properties, however their poor oxidation resistance has required a search of an appropriate replacement. Generally, metal oxides are inherently stable to oxidation and possess thermal expansion coefficients relatively close to those of Nicalon and SiC. However, the metal oxides must also be chemically compatible with the fiber and matrix. If the fiber/interface/matrix system is chemically compatible, then the interfacial bonding stress is influenced by the thermal residual stresses that are generated as the composite is cooled from processing to room temperature. In the current work, thermomechanical computational results were obtained from a finite element model (FEM) for calculating the thermal residual stresses. This was followed by experimental evaluation of Nicalon/SiC composites with carbon, alumina, and mullite interfacial coatings.

  4. The role of water in resistive switching in graphene oxide

    Science.gov (United States)

    Rogala, M.; Kowalczyk, P. J.; Dabrowski, P.; Wlasny, I.; Kozlowski, W.; Busiakiewicz, A.; Pawlowski, S.; Dobinski, G.; Smolny, M.; Karaduman, I.; Lipinska, L.; Kozinski, R.; Librant, K.; Jagiello, J.; Grodecki, K.; Baranowski, J. M.; Szot, K.; Klusek, Z.

    2015-06-01

    The resistive switching processes are investigated at the nano-scale in graphene oxide. The modification of the material resistivity is driven by the electrical stimulation with the tip of atomic force microscope. The presence of water in the atmosphere surrounding graphene oxide is found to be a necessary condition for the occurrence of the switching effect. In consequence, the switching is related to an electrochemical reduction. Presented results suggest that by changing the humidity level the in-plane resolution of data storage process can be controlled. These findings are essential when discussing the concept of graphene based resistive random access memories.

  5. Hot dip aluminizing on 17-4PH stainless steel and its high-temperature oxidation resistance%17-4PH不锈钢热浸镀铝及其高温耐氧化性能

    Institute of Scientific and Technical Information of China (English)

    王院生; 熊计; 王均; 李海丰; 张太平; 石树坤

    2011-01-01

    Hot-dip aluminizing and diffusion annealing were carried out on 17-4PH stainless steel. The microstructure and microhardness of the coating and its high-temperature oxidation resistance were studied. The results showed that the coating consists of three layers including rich aluminum layer, alloy layer and substrate layer.The major phase of the alloy layer is Fe2Al5. After diffusion annealing treatment at 950 ℃ for 1 h, the rich aluminum layer transforms into the alloy layer completely with a thickness of ca. 100 μm. The alloy layer can divide into an inner diffusion layer and an outer diffusion layer. The inner diffusion layer is ca.40 μm thick and its main phase is Fe3Al.The outer diffusion layer is mainly composed of FeAl. The microhardness of alloy layer reduces gradually from the surface to the substrate and the maximum value is 714 HV. After hot dip aluminizing, the high-temperature oxidation resistance of 17-4PH stainless steel is greatly improved. The high-temperature oxidation resistance of 17-4PH stainless steel is approximately seven times that of the common one at 1 000 ℃. During the oxidation process, r-A12O3 in the surface layer and intermetallic compounds FeAl and Fe3Al play a role in the high-temperature oxidation resistance.%在17-4PH不锈钢上热浸镀铝,然后进行扩散退火处理.研究了热浸镀铝层的显微组织和显微硬度的变化,并考察了其高温耐氧化性能.结果表明:17-4PH不锈钢热浸镀铝后表面分为富铝层、合金层、基体层等3层,合金层主要相为Fe2Al5.经950℃.1 h的扩散处理后,富铝层全部转变为合金层,厚度约为100 μM,且分为内扩散层与外扩散层.内扩散层厚度约为40 μm,主要相为Fe3Al;外扩散层主要相为FeAl.合金层的显微硬度从表面到基体逐渐降低,表面显微硬度最高达到714 HV.17-4PH不锈钢经热浸镀铝后,其高温耐氧化性能显著提高.在1000℃,热浸镀铝件的高温耐氧化性能约是未镀铝件的7倍.

  6. Oxidation kinetics of Ni metallic films: Formation of NiO-based resistive switching structures

    Energy Technology Data Exchange (ETDEWEB)

    Courtade, L.; Turquat, Ch. [L2MP, Laboratoire Materiaux et Microelectronique de Provence, UMR CNRS 6137, Universite du Sud Toulon Var, BP 20132, F-83957 La Garde Cedex (France); Muller, Ch. [L2MP, Laboratoire Materiaux et Microelectronique de Provence, UMR CNRS 6137, Universite du Sud Toulon Var, BP 20132, F-83957 La Garde Cedex (France)], E-mail: christophe.muller@l2mp.fr; Lisoni, J.G.; Goux, L.; Wouters, D.J. [IMEC, Interuniversity MicroElectronics Center, Kapeldreef 75, B-3001 Leuven (Belgium); Goguenheim, D. [L2MP, Laboratoire Materiaux et Microelectronique de Provence, UMR CNRS 6137, ISEN-Toulon, Maison des Technologies, Place Georges Pompidou, F-83000 Toulon (France); Roussel, P. [UCCS, Unite de Catalyse et Chimie du Solide, UMR CNRS 8181, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq (France); Ortega, L. [Laboratoire de Cristallographie, UPR CNRS 5031, BP 166, F-38042 Grenoble Cedex 9 (France)

    2008-04-30

    Resistive switching controlled by external voltage has been reported in many Metal/Resistive oxide/Metal (MRM) structures in which the resistive oxide was simple transition metal oxide thin films such as NiO or TiO{sub 2} deposited by reactive sputtering. In this paper, we have explored the possibility to form NiO-based MRM structures from the partial oxidation of a blanket Ni metallic film using a Rapid Thermal Annealing route, the remaining Ni layer being used as bottom electrode. X-ray diffraction was used to apprehend the Ni oxidation kinetics while transmission electron microscopy enabled investigating local microstructure and film interfaces. These analyses have especially emphasized the predominant role of the as-deposited Ni metallic film microstructure (size and orientation of crystallites) on (i) oxidation kinetics, (ii) NiO film microstructural characteristics (crystallite size, texture and interface roughness) and (iii) subsequent electrical behavior. On this latter point, the as-grown NiO films were initially in the low resistance ON state without the electro-forming step usually required for sputtered films. Above the threshold voltage varying from 2 to 5 V depending on oxidation conditions, the Pt/NiO/Ni MRM structures irreversibly switched into the high resistance OFF state. This irreversibility is thought to originate in the microstructure of the NiO films that would cause the difficulty to re-form conductive paths.

  7. Improving the oxidation resistance of diboride-based ceramics

    Science.gov (United States)

    Kazemzadeh Dehdashti, Maryam

    Oxidation behavior has restricted the development of ZrB2-based ceramics for aerospace and hypersonic flight vehicles applications. The research presented in this dissertation focuses on the effect of transition metal (TM) additives on oxidation behavior of ZrB2 ceramics. In the first stage of the research, the effect of Nb additions on the morphology of the oxide particles and stability of the protective B2O3 glassy layer, which formed on the top surface during oxidation, was investigated. Addition of Nb increased the thickness of the glassy layer and, as a result, improved the oxidation resistance of ZrB2 after oxidation at 1500°C. Next, the oxidation behavior of nominally pure ZrB2 and (Zr,W)B 2 after oxidation at temperatures ranging from 800 to 1600°C was studied. Two oxidation stages before and after significant evaporation of B2O3 at about 1100°C were recognized for nominally pure ZrB2. Higher stability for the WO3-B2O 3 glassy layer compared to pure B2O3 resulted in a shift in the onset of the second oxidation regime toward higher temperatures for (Zr,W)B2 specimens and resulted in higher oxidation resistance for (Zr,W)B2 compared to nominally pure ZrB2. In the third stage of the research, the effects of TM-oxides such as WO3, Nb2O5, or ZrO2 on weight loss and structure of B2O3 glasses was studied. Thermogravimetric analysis performed on (TM-oxide)-B2O3 glasses indicated that TM-oxide additions reduced the evaporation of B2O3. Since no change in the structure of the glasses was detected, it was concluded that the increased stability of (TM-oxide)-B2O3 glasses compared to pure B2O3 was due to the lower activity of B2O3 in (TM-oxide)-B2O3 glasses. Finally, comparison of the effects of W, Mo, or Nb on oxidation behavior of ZrB2 at 1600°C showed that Mo and Nb were the most effective additives for improving the oxidation resistance of ZrB2.

  8. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li, E-mail: chenli_927@126.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhuzhou Cemented Carbide Cutting Tools Co., LTD, Zhuzhou 412007 (China); Yang, Bing; Xu, Yuxiang; Pei, Fei [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhou, Liangcai [Institute of Materials Science and Technology, Vienna University of Technology, Vienna A1040 (Austria); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2014-04-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T{sub a} = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO{sub 2} into rutile (r-) TiO{sub 2}, where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO{sub 2}. Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si{sub 3}N{sub 4} coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating.

  9. Materials selection for oxide-based resistive random access memories

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuzheng; Robertson, John [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-12-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO{sub 2}, TiO{sub 2}, Ta{sub 2}O{sub 5}, and Al{sub 2}O{sub 3}, to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta{sub 2}O{sub 5} RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy.

  10. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  11. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length

  12. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  13. Al涂层对γ-TiAl合金高温抗氧化能力的影响%Effect of Al coatings on high-temperature oxidation resistance of γ-TiAl alloy

    Institute of Scientific and Technical Information of China (English)

    张扬; 张平则; 李淑琴; 魏东博; 周鹏; 魏祥飞

    2013-01-01

    Isothermal oxidation behavior of γ-TiAl alloy,which was aluminized at 850 ℃ and 950 ℃ by multi-arc ion plating (MAIP),were investigated.The oxidation mechanism of Al coatings was also discussed.The results show that the multi-arc ion plating aluminum films are compact and consist of Al,no cracks,holes,but with good binding capacity.They turn to a continuous and dense layer of Al2O3 and the diffusion layer TiAl3 after oxidation at 850 ℃ in air for 100 h; after high temperature oxidation at 950 ℃ in static air for 100 h,the surface oxidation film is formed of Al2O3and a little of TiO2,and TiAl2 is mostly phase in the film.The high temperature oxidation resistance of γ-TiAl alloy is improved obviously after multi-arc ion plating aluminum.%研究了多弧离子镀铝对γ-TiAl合金850℃、950℃恒温氧化性能的影响,同时分析讨论了镀铝层的氧化机制.结果表明:多弧离子镀铝后,形成的纯铝涂层均匀致密,无裂纹、孔洞,与基体结合良好.静态空气中,850℃氧化100 h后,形成了连续致密的Al2O3膜层及扩散层TiAl3相;950℃氧化100 h后,表面氧化膜由Al2O3及少量的TiO2组成,膜层中TiAl2为主要成膜相.多弧离子镀铝有效地提高了γ-TiAl合金高温抗氧化性能.

  14. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  15. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  16. Effect of diffusion on coating microstructure and oxidation resistance of aluminizing steel

    Institute of Scientific and Technical Information of China (English)

    夏原; 于升学; 姚枚; 李铁藩

    2001-01-01

    The effect of diffuse treatment on coating microstructure and oxidation resistance at high-temperature of hotdip aluminum were studied by means of TEM, SEM and XRD. The results show that, the diffusion temperature has significant effect on structure of coatings and its oxidation resistance. After diffusion at 750 ℃, the coating consists of thick outer surface layer (Fe2Al5+FeAl2 ), thin internal layer (FeAl+stripe FeAl2), and its oxidation resistance is poor. After diffusion at 950 ℃, the outer surface layer is composed of single FeAl2 phase, the internal layer is composed of FeAl phase, and its oxidation resistance declines due to the occurrence of early stage internal oxidation cracks in the coating.After diffusion at 850 ℃, the outer surface layer becomes thinner and consists of FeAl2+Fe2Al5 (small amount), the internal layer becomes thicker and consists of FeAl+spherical FeAl2, and the spheroidized FeAl2 phase in the internal layer and its existing in FeAl phase steadily improve the oxidation resistance of the coating.

  17. Free fatty acid oxidation in insulin resistance and obesity

    OpenAIRE

    Abel, E. Dale

    2010-01-01

    The growing worldwide epidemic of obesity and diabetes portends a significant increase in cardiovascular disease. Obesity is associated with insulin resistance, and there is growing evidence that these conditions independently increase the risk of heart failure. Changes in myocardial substrate utilization develop in obesity and insulin resistance, and are characterized by increased fatty acid oxidation and utilization, and decreased glucose utilization. This paper will review the evidence for...

  18. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers.

    Science.gov (United States)

    Kang, Dongwoo; Kwon, Jee Youn; Cho, Hyun; Sim, Jae-Hyoung; Hwang, Hyun Sick; Kim, Chul Su; Kim, Yong Jung; Ruoff, Rodney S; Shin, Hyeon Suk

    2012-09-25

    Protecting the surface of metals such as Fe and Cu from oxidizing is of great importance due to their widespread use. Here, oxidation resistance of Fe and Cu foils was achieved by coating them with reduced graphene oxide (rG-O) sheets. The rG-O-coated Fe and Cu foils were prepared by transferring rG-O multilayers from a SiO(2) substrate onto them. The oxidation resistance of these rG-O-coated metal foils was investigated by Raman spectroscopy, optical microscopy, and scanning electron microscopy after heat treatment at 200 °C in air for 2 h. The bare metal surfaces were severely oxidized, but the rG-O-coated metal surfaces were protected from oxidation. This simple solution process using rG-O is one advantage of the present study.

  19. A Simple Technique for High Resistance Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguia; Landin, Ramon Ochoa

    2012-01-01

    A simple electronic system for the measurement of high values of resistance is shown. This system allows the measurement of resistance in the range of a few megohm up to 10[superscript 9] [omega]. We have used this system for the evaluation of CdS thin film resistance, but other practical uses in the basic physics laboratory are presented.…

  20. A Simple Technique for High Resistance Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguia; Landin, Ramon Ochoa

    2012-01-01

    A simple electronic system for the measurement of high values of resistance is shown. This system allows the measurement of resistance in the range of a few megohm up to 10[superscript 9] [omega]. We have used this system for the evaluation of CdS thin film resistance, but other practical uses in the basic physics laboratory are presented.…

  1. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini

    2017-01-01

    •Protective action of dense and porous spinel coatings on Crofer 22 APU was compared. •Reduction and re-oxidation produces denser coatings than heat treating in air only. •Coating density has minor influence on oxidation resistance at 800 °C in air. •Dense coating resulted in three times lower Cr...

  2. Structure and Corrosion Resistance of Microarc Oxidation Coatings on AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Cui Shihai; Han Jianmin; Li Weijing; Li Ronghua; Zhu Xiaowen; Wang Jinhua

    2004-01-01

    Magnesium alloys are widely used as shells of 3C (computer, mobile phone and consumer electronics) equipments for its impressive mechanical and physical properties, such as low density, good resistance to electromagnetic radiation, suitable for high pressure diecasting and easily recycling, etc. But poor corrosion resistance confines its extensively application. In this paper, protective coatings was successfully prepared on AZ91D magnesium alloys by micro-arc oxidation (MAO) and painting process. Microstructures and phases of MAO coatings were invesgated with scanning electron microscope (SEM) and X-Ray diffractometer. Mechanical properties of MAO coating, such as adhesive force and corrosion resistance, were also tested. Results showed that MAO coatings were a good base for painting process. MAO coatings with paint have good adhesive properties to base metal and excellent corrosion resistance. Micro-arc oxidation with painting process is a good kind of surface treatment to improve the corrosion resistance of mobile phone shell made of AZ91D magnesium alloys.

  3. On High-Temperature Materials: A Case on Creep and Oxidation of a Fully Austenitic Heat-Resistant Superalloy Stainless Steel Sheet

    Directory of Open Access Journals (Sweden)

    A. Kanni Raj

    2013-01-01

    Full Text Available The creep behavior of AISI 310S stainless steel taken from SAIL’s Salem stainless steel plant has been investigated by constant load tensile creep test at the temperatures of 973, 1023, and 1073 K and loads of 66.6, 74.8, 86.6, and 94.8 MPa. It exhibits steady-state creep behavior in most test conditions. The double logarithm plot of rupture life and applied stress yielded straight lines at all the three test temperatures indicating that power-law creep due to dislocation climb is the operating mechanism of creep deformation. Linear relationship was obtained for plots of logarithm of rupture life against inverse temperature obeying Arrhenius type of temperature dependence with activation energy of 340 kJ/mol. The stress-rupture data yielded a master curve of Larson-Miller parameter. The plot of Monkman-Grant relationship is typical indicating that rupture is controlled by growth of grain boundary cavities. The metallographic examination of crept samples revealed formation of grain boundary voids and cracks leading to intergranular creep fracture. Deformation twins and carbide precipitates were also observed. Oxidation tests were also carried out isothermally at 973 K, 1023 K, and 1073 K in dry air. The plots of mass gain versus square root time were linear at all the three test temperatures obeying parabolic kinetics of oxidation. It was found that scales are well adherent to the substrate. The plot of parabolic rate constant and inverse temperature was linear giving an activation energy value of 210 kJ/mol. The metallographic examination of an oxidized sample reveals duplex types of scales. Finally, rupture properties are compared with that of AISI 600 iron-based superalloy and oxidation weight gain analysis with surface nanocrystalline AISI 310S stainless steel to analyze quantitatively its behavior.

  4. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-12-22

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  5. Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance

    Science.gov (United States)

    Lou, Kang; Wang, Feng Hui; Lu, Yong Jun; Zhao, Xiang

    2016-09-01

    Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.

  6. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670-773 K

  7. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  8. Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen.

    Science.gov (United States)

    Barder, Timothy E; Buchwald, Stephen L

    2007-04-25

    Electron-rich dialkylbiaryl phosphines, which comprise a common class of supporting ligands for Pd-catalyzed cross-coupling reactions, are highly resistant toward oxidation by molecular oxygen. Presented herein are possible reasons why this class of phosphine ligands manifests this property. Experimental and theoretical data suggest that the two alkyl substituents on the phosphorus center and the 2' and 6' positions of the biaryl backbone play an important role in inhibiting oxidation of this class of ligands.

  9. Oxide impurities in silicon oxide intermetal dielectrics and their potential to elevate via-resistances.

    Science.gov (United States)

    Qin, Wentao; Alldredge, Donavan; Heleotes, Douglas; Elkind, Alexander; Theodore, N David; Fejes, Peter; Vadipour, Mostafa; Godek, Bill; Lerner, Norman

    2014-08-01

    Silicon oxide used as an intermetal dielectric (IMD) incorporates oxide impurities during both its formation and subsequent processing to create vias in the IMD. Without a sufficient degassing of the IMD, oxide impurities released from the IMD during the physical vapor deposition (PVD) of the glue layer of the vias had led to an oxidation of the glue layer and eventual increase of the via resistances, which correlated with the O-to-Si atomic ratio of the IMD being ~10% excessive as verified by transmission electron microscopy (TEM) analysis. A vacuum bake of the IMD was subsequently implemented to enhance outgassing of the oxide impurities in the IMD before the glue layer deposition. The implementation successfully reduced the via resistances to an acceptable level.

  10. Identification of Iron Oxides Qualitatively/Quantitatively Formed during the High Temperature Oxidation of Superalloys in Air and Steam Environments

    Institute of Scientific and Technical Information of China (English)

    M.Siddique; N.Hussain; M.Shafi

    2009-01-01

    Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at 1200℃ exposed in air and steam environments for 400 h. The basic aim was to identify and compare the iron oxides qualitatively and quantitatively, formed during the oxidation of these alloys in two environments. The behaviour of alloy UBHA-25L in high temperature oxidation in both environments indicates that it has good oxidation resistance especially in steam, whereas Sanicro-28 has excellent corrosion resistance in steam environment. In air oxidation of lnconel-690 no iron oxide, with established Mossbauer parameters, was detected.

  11. ENHANCEMENT OF RESISTANCE TO OXIDATIVE DEGRADATION OF NATURAL RUBBER THROUGH LATEX DEGRADATION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A fully characterised natural rubber latex was subjected to mechanical degradation by stirring at intervals. The resistance to oxidative degradation of the different samples were studied by measuring the Plasticity retention indices (PRI).The results show that there is an enhancement of the PRI from 57% for the undegraded rubber to 79% for the one-hour degraded sample. Further degradation resulted in decrease of PRI as time of degradation increased. Therefore, the one-hour degraded sample is a special rubber with high oxidation resistance which is of great importance in engineering.

  12. Synthesis, characterization and application of some nanosized mixed metal oxides as high heat resistant pigments: Ca{sub 2}CuO{sub 3}, Ca{sub 3}Co{sub 2}O{sub 6}, and NiSb{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Osama A., E-mail: oafouad@yahoo.com [Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Cairo (Egypt); Hassan, Ali M.; Abd El-Wahab, Hamada [Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884 (Egypt); Mohy Eldin, Adel [Pachin Co., Cairo (Egypt); Naser, Abdel-Rahman M. [Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Cairo (Egypt); Wahba, Osama A.G. [Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884 (Egypt)

    2012-10-05

    Graphical abstract: Mixed metal oxides have been widely used for various applications such as pigments in coatings. This work presents synthesis of a group of mixed metal oxides (Ca{sub 2}CuO{sub 3}, Ca{sub 3}Co{sub 2}O{sub 6} and NiSb{sub 2}O{sub 6}) by employing two simple synthesis techniques namely; co-precipitation and solid-state calcinations methods. The prepared pigments were characterized using X-ray diffraction, infra-red spectroscopy, and scanning electron microscopy. The obtained XRD results showed that single phase double oxide compounds were the main components in each case. SEM images showed the formation of either platelet or well defined polyhedron crystal structures based on the type of the double oxide and the preparation method. The physical, mechanical, heat and corrosion resistance of dry paint films were also examined. The obtained results revealed that the prepared calcium based pigments showed excellent heat and corrosion resistance and that with copper oxide is the best in performance among others. Highlights: Black-Right-Pointing-Pointer Synthesis of single phase mixed metal oxide pigments by two simple methods; co-precipitation and solid state reaction. Black-Right-Pointing-Pointer The painted films using the prepared pigments showed high heat resistant up to 600 Degree-Sign C. Black-Right-Pointing-Pointer The painted films over mild steel sheets showed high corrosion resistant characteristics in 5% NaCl salt solution for 500 h. - Abstract: Mixed metal oxides have been widely used for various applications such as pigments in coatings. This work presents synthesis of a group of mixed metal oxides (Ca{sub 2}CuO{sub 3,} Ca{sub 3}Co{sub 2}O{sub 6} and NiSb{sub 2}O{sub 6}) by employing two simple synthesis techniques namely; co-precipitation and solid-state calcination method. The prepared pigments were characterized using X-ray diffraction, infra-red spectroscopy, and scanning electron microscopy. The obtained XRD results showed that single

  13. Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Henrique L; Rocha, Paulo R F; Kiazadeh, Asal [Center of Electronics Optoelectronics and Telecommunications (CEOT) Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Meskers, Stefan C J, E-mail: hgomes@ualg.pt [Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-01-19

    Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current-voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an enormous positive temperature coefficient. This anomalous behaviour contradicts the widely held view that switching is due to filaments that are formed reversibly by the diffusion of metal atoms. Instead, these findings together with small-signal impedance measurements indicate that creation and annihilation of filaments is controlled by filling of shallow traps localized in the oxide or at the oxide/polymer interface.

  14. Electric-field effects in resistive oxides: facts and artifacts

    Directory of Open Access Journals (Sweden)

    Reisner G. M.

    2013-01-01

    Full Text Available Striking non-linear conductivity effects induced by surprisingly low electric-fields in charge-ordered oxides, were reported variously as dielectric breakdown, charge-order collapse, depinning of charge-density-waves or other electronic effects. Our pulsed and d.c. I-V measurements on resistive oxides show that non-linear conductivity of electronic origin at low electric-fields is a rare phenomenon. In the majority of cases we detected no deviations from linearity in pulsed I-V characteristics under fields up to E ~ 500 V/cm. Current-controlled negative-differential-resistance (NDR and hysteresis were found in d.c. measurements at fields that decrease with increasing temperatures, a behavior typical of Joule heating in materials with negative temperature coefficient of resistivity. For the d.c. I-V characteristics of our samples exhibiting NDR, we found a rather unexpected correlation between ρ(Em - the resistivity at maximum field (at the onset of NDR and ρ(E=0 – the ohmic resistivity. The data points for ρ(Em versus ρ(E=0 obtained from such characteristics of 13 samples (8 manganites, 4 nickelates and one multiferroic at various ambient temperatures, plotted together on a log-log scale, follow closely a linear dependence with slope one that spans more than five orders of magnitude. This dependence is reproduced by several simple models.

  15. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides.

    Science.gov (United States)

    Gao, Peng; Wang, Zhenzhong; Fu, Wangyang; Liao, Zhaoliang; Liu, Kaihui; Wang, Wenlong; Bai, Xuedong; Wang, Enge

    2010-06-01

    Oxide materials with resistance hysteresis are very promising for next generation memory devices. However, the microscopic dynamic process of the resistance change is still elusive. Here, we use in situ transmission electron microscopy method to study the role of oxygen vacancies for the resistance switching effect in cerium oxides. The structure change during oxygen vacancy migration in CeO(2) induced by electric field was in situ imaged inside high-resolution transmission electron microscope, which gives a direct evidence for oxygen migration mechanism for the microscopic origin of resistance change effect in CeO(2). Our results have implications for understanding the nature of resistance change in metal oxides with mixed valence cations, such as fluorite, rutile and perovskite oxides. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Resistance to oxidation of white wines assessed by voltammetric means.

    Science.gov (United States)

    Rodrigues, Astride; Silva Ferreira, A C; Guedes de Pinho, Paula; Bento, Fátima; Geraldo, Dulce

    2007-12-26

    This work concerns the development of a methodology suited to measure the resistance to oxidation of white wines by cyclic voltammetry. The voltammetric responses of several white wines of different origin and age were analyzed in the oxidation potential range (0.2-1.2 V vs SCE). Currents measured at fixed potentials were correlated to the concentration of ascorbic acid, SO2, and total phenolics. A forced degradation study was monitored by cyclic voltammetry; from plots of current versus time, the consumption rates of oxidizable species in wine were estimated.

  17. Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide

    Directory of Open Access Journals (Sweden)

    Bin Gao

    2015-02-01

    Full Text Available Metal-oxide based electronics synapse is promising for future neuromorphic computation application due to its simple structure and fab-friendly materials. HfOx resistive switching memory has been demonstrated superior performance such as high speed, low voltage, robust reliability, excellent repeatability, and so on. In this work, the HfOx synaptic device was investigated based on its resistive switching phenomenon. HfOx resistive switching device with different electrodes and dopants were fabricated. TiN/Gd:HfOx/Pt stack exhibited the best synaptic performance, including controllable multilevel ability and low training energy consumption. The training schemes for memory and forgetting were developed.

  18. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ e

  19. Implantation of Y- and Hf-ions into a F-doped Ni-base superalloy improving the oxidation resistance at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zschau, H.-E. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); King, F. [Goethe-Universität Frankfurt am Main, Institut für Kernphysik, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Galetz, M.C.; Schütze, M. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2015-12-15

    The surface modification of Ni-base alloys with low Al-contents (between 2 and 5 wt.%) with fluorine leads to the formation of a protective alumina scale under high temperature service conditions. The combined implantation of fluorine and reactive elements (Y, Hf) can increase the adherence of this alumina scale needed for technical applications.

  20. Anomalous steam oxidation behavior of a creep resistant martensitic 9 wt. % Cr steel

    Energy Technology Data Exchange (ETDEWEB)

    Agüero, Alina, E-mail: agueroba@inta.es [Instituto Nacional de Técnica Aeroespacial, Ctra. de Ajalvir Km 4, 28850 Torrejón de Ardoz (Spain); González, Vanessa [Instituto Nacional de Técnica Aeroespacial, Ctra. de Ajalvir Km 4, 28850 Torrejón de Ardoz (Spain); Mayr, Peter [Chair of Welding Engineering, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Spiradek-Hahn, Krystina [Alloy Development Group, Montanuniversität Leoben, 8700 Leoben (Austria)

    2013-08-15

    The efficiency of thermal power plants is currently limited by the long-term creep strength and the steam oxidation resistance of the commercially available ferritic/martensitic steel grades. Higher operating pressures and temperatures are essential to increase efficiency but impose important requirements on the materials, from both the mechanical and chemical stability perspective. It has been shown that in general, a Cr wt. % higher than 9 is required for acceptable oxidation rates at 650 °C, but on the other hand such high Cr content is detrimental to the creep strength. Surprisingly, preliminary studies of an experimental 9 wt. % Cr martensitic steel, exhibited very low oxidation rates under flowing steam at 650 °C for exposure times exceeding 20,000 h. A metallographic investigation at different time intervals has been carried out. Moreover, scanning transmission electron microscopy (STEM) analysis of a ground sample exposed to steam for 10,000 h at 650 °C revealed the formation of a complex tri-layered protective oxide comprising a top and bottom Fe and Cr rich spinel layer with a magnetite intermediate layer on top of a very fine grained zone. - Highlights: • High steam oxidation resistant 9 wt. % Cr martensitic steel at 650 °C. • Multilayer thin protective Cr–Fe oxide. • Nano-grain sub-oxide metal zone.

  1. MICROSTRUCTURES AND OXIDATION RESISTANCE OF Fe3Al WELD OVERLAY

    Institute of Scientific and Technical Information of China (English)

    X.G.Min; X.Q.Yu; Y.S.Sun; J.R.Sun

    2001-01-01

    Using the Fe3Al electrode through manual arc surfacing (MAS),Fe3Al coatings havebeen deposited on the stainless steel substrate.The microstructures,hardness andoxidation resistance of the weld overlay have been investigated.The results show thatcrack-free overlays can be obtained when pre-heating of the substrate at 500℃ andpostweld heat treatment at 700℃ were used.Elements of Al,Cr,Ni etc.transferredbetween the substrate and the overlay,but this does not influence the microhardnessof the substrate and the Fe3Al overlay.Oxidation tests show that the Fe3Al overlayshave excellent oxidation resistance in comparison with the stainless steel substrate at800℃ and 900℃.

  2. NMR Guided Design of Endcaps With Improved Oxidation Resistance

    Science.gov (United States)

    Meador, Mary Ann B.; Frimer, Aryeh A.

    2002-01-01

    A polyimide is a polymer composed of alternating units of diamine and dianhydride, linked to each other via an imide bond. PMR polyimides, commonly used in the aerospace industry, are generally capped at each end by a norbornene endcap which serves a double function: (1) It limits the number of repeating units and, hence, the average molecular weight of the various polymer chains (oligomers), thereby improving processibility; (2) Upon further treatment (curing), the endcap crosslinks the various oligomer strands into a tough heat-resistant piece. Norbornenyl-end capped PMR polyimide resins' are widely used as polymer matrix composite materials for aircraft engine applications,2 since they combine ease of processing with good oxidative stability up to 300 C. PMR resins are prepared by a twestep approach involving the initial formation of oligomeric pre-polymers capped at both ends by a latent reactive end cap. The end cap undergoes cross-linking during higher temperature processing, producing the desired low density, high specific strength materials, as shown for PMR-15.

  3. Nicral ternary alloy having improved cyclic oxidation resistance

    Science.gov (United States)

    Barrett, C. A.; Lowell, C. E.; Khan, A. S.

    1982-01-01

    NiCrAl alloys are improved by the addition of zirconium. These alloys are in the Beta or gamma/gamma' + Beta region of the ternary system. Zirconium is added in a very low amount between 0.06 and 0.20 weight percent. There is a narrow optimum zirconium level at the low value of 0.13 weight percent. Maximum resistance to cyclic oxidation is achieved when the zirconium addition is at the optimum value.

  4. Features of Intermetallic Alloy TNM-B1 High-Temperature Oxidation

    Science.gov (United States)

    Smyslov, A. M.; Bybin, A. A.; Dautov, S. S.

    2016-09-01

    Features of intermetallic alloy based on titanium aluminide high-temperature oxidation at 800 - 850°C are studied. A mathematical dependence is obtained for oxidation rate on test duration. The structure and composition of an oxide layer formed during high-temperature oxidation are studied. It is shown that under operating conditions at the maximum working temperatures the intermetallic alloy exhibits low heat resistance.

  5. Characterization of oxide scales to evaluate high temperature oxidation behavior of Ni-20Cr coated superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. [Mechanical Engineering Department, BBSB Engineering College, Fatehgarh Sahib 140407 (India)], E-mail: hnr97@yahoo.com; Puri, D.; Prakash, S. [Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Maiti, Rabindranath [Central Research Facilities, Indian Institute of Technology Kharaghpur, Kharaghpur (India)

    2007-08-25

    Modern thermal spray processes such as plasma spraying are usually considered to deposit high-chromium, nickel-chromium coatings onto the superalloys to enhance their high temperature oxidation resistance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni-20Cr alloy powder was deposited on three Ni-base superalloys; Superni 75, Superni 600 and Superni 601 by shrouded plasma spray process. Oxidation kinetics was established for the uncoated as well as the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles by thermogravimetric technique. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. All the coated superalloys nearly followed the parabolic rate law of oxidation. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray (SEM/EDAX) techniques were used to characterise the oxide scales. The coating was found to be successful in maintaining its integrity with the superalloy substrates in all the cases. The oxide scales formed on the oxidized coated superalloys were found to be intact and spallation-free in general. The XRD analysis revealed the presence of phase like NiO, Cr{sub 2}O{sub 3} and NiCr{sub 2}O{sub 4} in the oxide scales. The XRD results were further supported by the SEM/EDAX analyses.

  6. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    Science.gov (United States)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  7. Resistive switching characteristic of electrolyte-oxide-semiconductor structures

    Science.gov (United States)

    Chen, Xiaoyu; Wang, Hao; Sun, Gongchen; Ma, Xiaoyu; Gao, Jianguang; Wu, Wengang

    2017-08-01

    The resistive switching characteristic of SiO2 thin film in electrolyte-oxide-semiconductor (EOS) structures under certain bias voltage is reported. To analyze the mechanism of the resistive switching characteristic, a batch of EOS structures were fabricated under various conditions and their electrical properties were measured with a set of three-electrode systems. A theoretical model based on the formation and rupture of conductive filaments in the oxide layer is proposed to reveal the mechanism of the resistive switching characteristic, followed by an experimental investigation of Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) to verify the proposed theoretical model. It is found that different threshold voltage, reverse leakage current and slope value features of the switching I-V characteristic can be observed in different EOS structures with different electrolyte solutions as well as different SiO2 layers made by different fabrication processes or in different thicknesses. With a simple fabrication process and significant resistive switching characteristic, the EOS structures show great potential for chemical/biochemical applications. Project supported by the National Natural Science Foundation of China (No. 61274116) and the National Basic Research Program of China (No. 2015CB352100).

  8. Mechanism Study of Reversible Resistivity Change in Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.; Chang, S. H.; Phatak, C.; Magyari-Kope, Blanka; Nishi, Y; Chattopadhyay, Soma; Kim, Jung Ho

    2015-01-01

    Here we present our findings related to the mechanism of reversible resistivity in Pt/TiO2/Pt cells and in Ta2O5 thin films. Our findings for Pt/TiO2/Pt cells indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging x-rays. We found that this effect, combined with the x-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a non-volatile reversible resistance change. For Ta2O5 thin films, we found that there are strong correlations among oxygen vacancy number and positions and energy gaps. Ab initio band structure calculations explain the evolution of the electronic excitation spectrum as a function of oxygen vacancy number and positions and importantly provide a predictive description of the oxygen deficient Ta oxide that may improve the desired performance based on atomic level design.

  9. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes.

    Science.gov (United States)

    Yin, Zhenxing; Lee, Chaedong; Cho, Sanghun; Yoo, Jeeyoung; Piao, Yuanzhe; Kim, Youn Sang

    2014-12-29

    Oxidation-resistant copper nanowires (Cu NWs) are synthesized by a polyol reduction method. These Cu NWs show excellent oxidation resistance, good dispersibility, and have a low sintering temperature. A Cu NW-based flexible, foldable, and free-standing electrode is fabricated by filtration and a sintering process. The electrode also exhibits high electrical conductivity even bending, folding, and free-standing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly redox-resistant solid oxide fuel cell anode materials based on La-doped SrTiO3 by catalyst impregnation strategy

    Science.gov (United States)

    Shen, X.; Sasaki, K.

    2016-07-01

    An anode backbone using 40 wt% (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ)-Sr0.9La0.1TiO3 (SLT) cermet was prepared for SSZ electrolyte-supported SOFC single cells. 15 mgcm-2 Ce0.9Gd0.1O2 (GDC) was impregnated to totally cover the SSZ-SLT anode backbone surface acting as a catalyst, and the cell voltage achieved 0.865 V at 200 mAcm-2 using (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode in 3%-humidified hydrogen fuel at 800 °C. Cell performance was substantially improved from 0.865 V to >0.97 V when 0.03 mgcm-2 Pd or Ni was further incorporated as a secondary catalyst into the anode layer. 50 redox cycles were performed to investigate redox stability of this high performance anode. It was found that even after the 50 redox cycle long-term degradation test, cell voltage at 200 mAcm-2 was retained around 0.94 V, higher than the cell performance using the conventional Ni-SSZ cermet anode. The catalytically-active reaction sites at ceria-Pd or ceria-Ni may account for the excellent performance, and the extremely low metal catalyst concentration prevent serious metal aggregation in achieving excellent redox stability.

  11. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  12. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  13. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms.

    Science.gov (United States)

    Pamplona, Reinald; Barja, Gustavo

    2011-10-01

    Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.

  14. Effect of relative density on cyclic oxidation resistance properties of MoSi2

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hui; LI Yi-min; ZHANG Hou-an

    2008-01-01

    MoSi2 powders were fabricated respectively by mechanical alloying technique and sintering at different temperatures to prepare materials with different relative densities. The relative oxidation behavior of all MoSi2 materials at 1473K was investigated by TGA, SEM and XRD. The results show that the "pesting" is not found in all materials after being oxidized for 480h. The density has no essential relation to the "pesting". The oxidation curve of specimens with lower density shows two-step oxidation kinetics. Both the first stage (0-1h) and the second stage (1-480h) nearly obey linear kinetics, but the oxidation rates are obviously different. The oxidation kinetics of MoSi2 with higher relative density nearly follows parabolic law. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 10.390 and 0.135 mg/cm2, respectively. The oxide scale of materials with lower densities is non-protective and makes the oxygen diffusion easy. A dense scale in the material with higher density is formed, which acts as a diffusion barrier to the oxygen atoms to penetrate into the matrix, showing much better high temperature oxidation resistance. The phases distribution of oxidation scale from the outside to the inside is SiO2→Mo5Si3→MoSi2.

  15. Analysis of iron oxidation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, J.C.; Peng, K.Y.; Gadalla, A.M.; Gadalla, N. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

    1995-10-01

    A new theory for the high-temperature oxidation of iron is proposed, in which the rate-limiting step is ternary diffusion of ferric, ferrous, and oxygen ions in the iron oxides that are formed. The predictions of this theory are compared with previously published experimental data. The only thermodynamic information required is a phase diagram.

  16. Resistance repeatability study of ion-beam deposited vanadium oxide thin films

    Science.gov (United States)

    Alvarez, P.; Pearson, D. I. C.; Pochon, S.; Thomas, O.; Cooke, M.; Gunn, R.

    2016-09-01

    Ion Beam Sputter Deposition (IBSD) is a versatile technique particularly suited to applications requiring high quality, high performance layer materials as it allows independent and accurate control of the process parameters. Vanadium oxides, used for example in the fabrication of microbolometers, optical switches or optical storage, exhibit interesting properties such as a high Temperature Coefficient of Resistance (TCR), relatively low 1/f noise and a semiconductormetal phase transition close to room temperature. However, it is very challenging to control the stoichiometry of the deposited film as there are at least 25 different oxidation states of vanadium, few of which display the required electrical characteristics. In the present study, vanadium oxide thin layers were deposited by IBSD using an Oxford Ionfab300+ and analyzed with regard to their electrical properties. The impact of the system parameters on the resistance repeatability, wafer-to-wafer and batch-to-batch, was thoroughly investigated to provide the end user with a clear understanding of the factors affecting film resistivity while ensuring at the same time a steep variation of resistance with temperature, as notably required for uncooled bolometers. These parameters were balanced to also achieve a good deposition rate, throughput and uniformity over large device areas, compatible with the requirements of industrial applications.

  17. Novel Functional Changes during Podocyte Differentiation: Increase of Oxidative Resistance and H-Ferritin Expression

    Directory of Open Access Journals (Sweden)

    Emese Bányai

    2014-01-01

    Full Text Available Podocytes are highly specialized, arborized epithelial cells covering the outer surface of the glomerular tuft in the kidney. Terminally differentiated podocytes are unable to go through cell division and hereby they are lacking a key property for regeneration after a toxic injury. Podocytes are long-lived cells but, to date, little is known about the mechanisms that support their stress resistance. Our aim was to investigate whether the well-known morphological changes during podocyte differentiation are accompanied by changes in oxidative resistance in a manner that could support their long-term survival. We used a conditionally immortalized human podocyte cell line to study the morphological and functional changes during differentiation. We followed the differentiation process for 14 days by time-lapse microscopy. During this period nondifferentiated podocytes gradually transformed into large, nonproliferating, frequently multinucleated cells, with enlarged nuclei and opened chromatin structure. We observed that differentiated podocytes were highly resistant to oxidants such as H2O2 and heme when applied separately or in combination, whereas undifferentiated cells were prone to such challenges. Elevated oxidative resistance of differentiated podocytes was associated with increased activities of antioxidant enzymes and H-ferritin expression. Immunohistochemical analysis of normal human kidney specimens revealed that podocytes highly express H-ferritin in vivo as well.

  18. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  19. Influence of Cr2O3-Al2O3 Composite Oxide Scale on Oxidation Resistance of ZG40Cr24

    Institute of Scientific and Technical Information of China (English)

    WANG Haitao; JIANG Peigang; HUANG Liping

    2012-01-01

    Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace.The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight gain method.The scale morphology and composition were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively.By energy dispersive spectroscopy (EDS) studies,a kind of composite oxide scale compounded highly by Cr2O3,Al2O3 and spinel MCr2O4 in molecule scale came into being at high temperature.With flat and compact structure,fine and even grains,such composite scale granted complete oxidation resistance to alloy ZG40Cr24.The oxidation resistance mechanism was studied deeply in electrochemistry corrosion.The P+N semiconductor composite scale composed plenty of inner PN junctions,of which the unilateral conductive and the out-of-order arrangement endowed itself insulating in all directions.The positive and negative charges in scale could not move,and the mobile number and transferring rate of them both dropped enormously,as a result,the oxidation rate of the matrix metal was cut down greatly.So the composite scale presented excellent oxidation resistance.

  20. Oxidation resistance 1 is essential for protection against oxidative stress and participates in the regulation of aging in Caenorhabditis elegans.

    Science.gov (United States)

    Sanada, Y; Asai, S; Ikemoto, A; Moriwaki, T; Nakamura, N; Miyaji, M; Zhang-Akiyama, Q-M

    2014-08-01

    Human oxidation resistance 1 (OXR1) functions in protection against oxidative damage and its homologs are highly conserved in eukaryotes examined so far, but its function still remains uncertain. In this study, we identified a homolog (LMD-3) of human OXR1 in the nematode Caenorhabditis elegans (C. elegans). The expressed LMD-3 was able to suppress the mutator phenotypes of E. coli mutMmutY and mutT mutants. Purified LMD-3 did not have enzymatic activity against 8-oxoG, superoxide dismutase (SOD), or catalase activities. Interestingly, the expression of LMD-3 was able to suppress the methyl viologen or menadione sodium bisulfite-induced expression of soxS and sodA genes in E. coli. The sensitivity of the C. elegans lmd-3 mutant to oxidative and heat stress was markedly higher than that of the wild-type strain N2. These results suggest that LMD-3 protects cells against oxidative stress. Furthermore, we found that the lifespan of the C. elegans lmd-3 mutant was significantly reduced compared with that of the N2, which was resulted from the acceleration of aging. We further examined the effects of deletions in other oxidative defense genes on the properties of the lmd-3 mutant. The deletion of sod-2 and sod-3, which are mitochondrial SODs, extended the lifespan of the lmd-3 mutant. These results indicate that, in cooperation with mitochondrial SODs, LMD-3 contributes to the protection against oxidative stress and aging in C. elegans.

  1. Intrinsic and interfacial effect of electrode metals on the resistive switching behaviors of zinc oxide films.

    Science.gov (United States)

    Xue, W H; Xiao, W; Shang, J; Chen, X X; Zhu, X J; Pan, L; Tan, H W; Zhang, W B; Ji, Z H; Liu, G; Xu, X-H; Ding, J; Li, R-W

    2014-10-24

    Exploring the role of electrode metals on the resistive switching properties of metal electrode/oxide/metal electrode sandwiched structures provides not only essential information to understand the underlying switching mechanism of the devices, but also useful guidelines for the optimization of the switching performance. A systematic study has been performed to investigate the influence of electrodes on the resistive switching characteristics of zinc oxide (ZnO) films in this contribution, in terms of both the intrinsic and interfacial effects. It has been found that the low-resistance state resistances (Ω(LRS)) of all the investigated devices are below 50 Ω, which can be attributed to the formation of highly conductive channels throughout the ZnO films. On the other hand, the high-resistance state resistances (Ω(HRS)) depend on the electronegativity and ionic size of the employed electrode metals. Devices with electrode metals of high electronegativity and large ionic size possess high Ω(HRS) values, while those with electrode metals of low electronegativity and small ionic size carry low Ω(HRS) values. A similar trend of the set voltages has also been observed, while the reset voltages are all distributed in a narrow range close to ±0.5 V. Moreover, the forming voltages of the switching devices strongly depend on the roughness of the metal/ZnO and/or ZnO/metal interface. The present work provides essential information for better understanding the switching mechanism of zinc oxide based devices, and benefits the rational selection of proper electrode metals for the device performance optimization.

  2. Random telegraph noise and resistance switching analysis of oxide based resistive memory

    Science.gov (United States)

    Choi, Shinhyun; Yang, Yuchao; Lu, Wei

    2013-12-01

    Resistive random access memory (RRAM) devices (e.g. ``memristors'') are widely believed to be a promising candidate for future memory and logic applications. Although excellent performance has been reported, the nature of resistance switching is still under extensive debate. In this study, we perform systematic investigation of the resistance switching mechanism in a TaOx based RRAM through detailed noise analysis, and show that the resistance switching from high-resistance to low-resistance is accompanied by a semiconductor-to-metal transition mediated by the accumulation of oxygen-vacancies in the conduction path. Specifically, pronounced random-telegraph noise (RTN) with values up to 25% was observed in the device high-resistance state (HRS) but not in the low-resistance state (LRS). Through time-domain and temperature dependent analysis, we show that the RTN effect shares the same origin as the resistive switching effects, and both can be traced to the (re)distribution of oxygen vacancies (VOs). From noise and transport analysis we further obtained the density of states and average distance of the VOs at different resistance states, and developed a unified model to explain the conduction in both the HRS and the LRS and account for the resistance switching effects in these devices. Significantly, it was found that even though the conduction channel area is larger in the HRS, during resistive switching a localized region gains significantly higher VO and dominates the conduction process. These findings reveal the complex dynamics involved during resistive switching and will help guide continued optimization in the design and operation of this important emerging device class.Resistive random access memory (RRAM) devices (e.g. ``memristors'') are widely believed to be a promising candidate for future memory and logic applications. Although excellent performance has been reported, the nature of resistance switching is still under extensive debate. In this study, we

  3. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C2H5 + O2 reaction yields ethylperoxyl rather than C2H4 + HO2...

  4. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Quanjiang; Zhang, Liang; Sun, Fei; Deng, Xin; Liang, Haihua; Bae, Taeok; He, Chuan (Indiana-Med); (UC)

    2014-10-02

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H{sub 2}O{sub 2}. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.

  5. Ultra-thin resistive switching oxide layers self-assembled by field-induced oxygen migration (FIOM) technique.

    Science.gov (United States)

    Lee, Sangik; Hwang, Inrok; Oh, Sungtaek; Hong, Sahwan; Kim, Yeonsoo; Nam, Yoonseung; Lee, Keundong; Yoon, Chansoo; Kim, Wondong; Park, Bae Ho

    2014-11-03

    High-performance ultra-thin oxide layers are required for various next-generation electronic and optical devices. In particular, ultra-thin resistive switching (RS) oxide layers are expected to become fundamental building blocks of three-dimensional high-density non-volatile memory devices. Until now, special deposition techniques have been introduced for realization of high-quality ultra-thin oxide layers. Here, we report that ultra-thin oxide layers with reliable RS behavior can be self-assembled by field-induced oxygen migration (FIOM) at the interface of an oxide-conductor/oxide-insulator or oxide-conductor/metal. The formation via FIOM of an ultra-thin oxide layer with a thickness of approximately 2-5 nm and 2.5% excess oxygen content is demonstrated using cross-sectional transmission electron microscopy and secondary ion mass spectroscopy depth profile. The observed RS behavior, such as the polarity dependent forming process, can be attributed to the formation of an ultra-thin oxide layer. In general, as oxygen ions are mobile in many oxide-conductors, FIOM can be used for the formation of ultra-thin oxide layers with desired properties at the interfaces or surfaces of oxide-conductors in high-performance oxide-based devices.

  6. Effects of different resistance exercise protocols on nitric oxide, lipid peroxidation and creatine kinase activity in sedentary males.

    Science.gov (United States)

    Güzel, Nevin Atalay; Hazar, Serkan; Erbas, Deniz

    2007-01-01

    The purpose of this study was to determine the changes of oxidative response and exercise-induced muscle damage after two different resistance exercise protocols. Whether training with low or high intensity resistance programs cause alterations in the activities of lipid peroxidation, nitric oxide (NOx), and creatine kinase (CK) activity in human plasma was investigated. Twenty untrained males participated into this study. Ten of the subjects performed high intensity resistance (HR) exercise circuit and the rest of them performed low intensity resistance (LR) exercise circuit of 4 different exercises as a single bout. Venous blood samples were drawn pre-exercise, immediately after the exercise, and at the 6(th), 24(th), 48(th) and the72(nd) hours of post-exercise. Samples were analyzed for markers of muscle damage (CK), lipid peroxidation (MDA) and NOx. NOx production increased in HR group (p resistance exercise protocol in this study caused a significant increase between pre and post-exercise values in both groups (p resistance exercise induces free radical production more than low intensity resistance exercise program. Key pointsHigh intensity resistance exercise caused increases in NOx, MDA and CK levels.Light intensity resistance exercises increased MDA and CK levels but did not affect NOx levels.Damage arose during resistance exercises may be related to the level of resistance applied.

  7. Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes

    Science.gov (United States)

    Yeom, Seung-Won; Ha, Hyeon Jun; Park, Junsu; Shim, Jae Won; Ju, Byeong-Kwon

    2016-12-01

    We fabricated transparent indium zinc oxide (IZO)/TiO2/IZO devices on flexible polyethylene phthalate (PET) substrates. These devices demonstrate bipolar resistive switching behavior, exhibit a transmittance greater than 80 % for visible light, and have stable resistive switching properties, including long retention and good endurance. In addition, the devices were investigated based on their temperature dependence; the results show metallic properties in the low-resistance state (LRS) and semiconducting properties in the high-resistance state (HRS). The conduction mechanism for resistive switching in our device was well-fitted with Ohmic conduction in the LRS and Poole-Frenkel emission in the HRS. The mechanism could be explained by the formation and the rupture of the conduction paths formed by the movement of oxygen ions and vacancies. Moreover, acute bending of the devices did not affect the memory characteristics because of the pliability of both the IZO electrodes and the thin oxide layer. These results indicate potential applications as resistive random access memories in future flexible, transparent electronic devices.

  8. Oxidation resistance of Ru-capped EUV multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Dai, Z; Nelson, E J; Wall, M A; Alameda, J; Nguyen, N; Baker, S; Robinson, J C; Taylor, J S; Clift, M; Aquila, A; Gullikson, E M; Edwards, N G

    2005-02-23

    Differently prepared Ru-capping layers, deposited on Mo/Si EUV multilayers, have been characterized using a suite of metrologies to establish their baseline structural, optical, and surface properties in as-deposited state. Same capping layer structures were tested for their thermal stability and oxidation resistance. Post-mortem characterization identified changes due to accelerated tests. The best performing Ru-capping layer structure was studied in detail with transmission electron microscopy to identify the grain microstructure and texture. This information is essential for modeling and performance optimization of EUVL multilayers.

  9. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  10. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Evaluation of Aging Resistance of Graphene Oxide Modified Asphalt

    Directory of Open Access Journals (Sweden)

    Shaopeng Wu

    2017-07-01

    Full Text Available Graphene oxide (GO has a unique layered structure with excellent gas and liquid blocking properties. It is widely used in many areas, such as gas sensors, carbon-based electronics, impermeable membranes, and polymeric composite materials. In order to evaluate whether GO (1% and 3% by weight of asphalt can improve the aging resistance performance of the asphalt, 80/100 penetration grade asphalt (90 A and styrene–butadiene–styrene modified asphalt (SBS MA were used to prepare the GO modified asphalt by the melt blending method. The surface morphology of the GO was analyzed by scanning electron microscope (SEM. The UV aging test was conducted to simulate the aging during the service period. After UV aging test, the physical performances of GO-modified asphalts were tested, and the IC=O and IS=O increments were tested by Fourier transform infrared spectroscopy (FTIR to evaluate the aging resistance performance of the GO modified asphalt. In addition, the rheological properties of GO modified asphalts were studied using a dynamic shear rheometer (DSR. The SEM analysis indicated that the GO exhibits many shared edges, and no agglomeration phenomenon was found. With respect to the physical performance test, the FTIR and the DSR results show that GO can improve the UV aging resistance performance of 90 A and SBS MA. In addition, the analysis indicated that the improvement effect of 3% GO is better than the 1% GO. The testing on the rheological properties of the modified asphalt indicated that the GO can also improve the thermo-oxidative aging resistance performance of asphalt.

  12. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  13. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress

    Science.gov (United States)

    Pfeiffer, Annika; Jaeckel, Martin; Lewerenz, Jan; Noack, Rebecca; Pouya, Alireza; Schacht, Teresa; Hoffmann, Christina; Winter, Jennifer; Schweiger, Susann; Schäfer, Michael K E; Methner, Axel

    2014-01-01

    Background and Purpose The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc−. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. Experimental Approach We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. Key Results Glutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. Conclusions and Implications These results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress. Linked Articles This article is part of a themed issue on

  14. Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation

    Science.gov (United States)

    Chen, Wen-Long; Liu, Min; Zhang, Ji-Fu

    2016-12-01

    ZrO2-7 wt.%Y2O3 (7YSZ) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. High-temperature oxidation of 7YSZ TBCs was accomplished at 950 °C and characterized by impedance spectroscopy and scanning electron microscopy with energy-dispersive spectrometry. The results indicated that the thermally grown oxide (TGO) mainly contained alumina. The increase of the thickness of the TGO layer appeared to follow a parabolic law. Impedance analysis demonstrated that the resistance of the TGO increased with increasing oxidation time, also following a parabolic law, and that characterization of the TGO thickness based on fitting an equivalent circuit to its measured resistance is feasible. The YSZ grain-boundary resistance increased due to increasing cracks within the coating for oxidation time less than 50 h. However, beyond 150 h, the YSZ grain-boundary resistance slightly decreased, mainly due to sintering of the coating during the oxidation process.

  15. Role of oxidative stress in endothelial insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Francesco Paneni; Sarah Costantino; Francesco Cosentino

    2015-01-01

    The International Diabetes Federation estimates that 316 million people are currently affected by impaired glucose tolerance (IGT). Most importantly, recent forecasts anticipate a dramatic IGT increase with more that 470 million people affected by the year 2035. Impaired insulin sensitivity is major feature of obesity and diabetes and is strongly linked with adverse cardiometabolic phenotypes. However, the etiologic pathway linking impaired glucose tolerance and cardiovascular disease remains to be deciphered. Although insulin resistance has been attributed to inflammatory programs starting in adipose tissue, emerging evidence indicates thatendothelial dysfunction may represent the upstreamevent preceding peripheral impairment of insulinsensitivity. Indeed, suppression of reactive oxygenspecies-dependent pathways in the endothelium hasshown to restore insulin delivery to peripheral organsby preserving nitric oxide (NO) availability. Here wedescribe emerging theories concerning endothelialinsulin resistance, with particular emphasis on the roleoxidative stress. Complex molecular circuits includingendothelial nitric oxide synthase, prostacyclin synthase,mitochondrial adaptor p66Shc, nicotinamide adeninedinucleotide phosphate-oxidase oxidase and nuclearfactor kappa-B are discussed. Moreover, the reviewprovides insights on the effectiveness of availablecompounds (i.e. , ruboxistaurin, sildenafil, endothelinreceptor antagonists, NO donors) in restoring endothelialinsulin signalling. Taken together, these aspects maysignificantly contribute to design novel therapeuticapproaches to restore glucose homeostasis in patientswith obesity and diabetes.

  16. Pack Aluminide Coatings Formed at 650 ℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z. D. Xiang; S. R. Rose; P. K. Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-lMo (wt.%)alloy steel by pack cementation at 650 ℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ℃ in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential Al oxidation.

  17. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    Science.gov (United States)

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  18. Pack Aluminide Coatings Formed at 650℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z.D.Xiang; S.R.Rose; P.K.Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-1Mo (wt.%) alloy steel by pack cementation at 650℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ~C in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential A1 oxidation.

  19. Microstructure and oxidation resistance of reactive plasma clad Cr7C3 /γ-Fe ceramic composite coating

    Institute of Scientific and Technical Information of China (English)

    Liu Junbo

    2007-01-01

    A new type oxidation resistance in situ Cr7C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the ceramic composite coating was investigated under the test condition of 900℃ and 50 hours. The results indicate that the coating has a rapidly solidified microstructure consisting of blocky primary Cr7C3 and the inter-blocky Cr7C3/γ-Fe eutectics and is metallurgically bonded to the hardened and tempered grade C steel substrate. The high temperature oxidation resistance of the coating is up to 1.9 times higher than that of grade C steel. The oxidation kinetics curve of the coating is conforming to the parabolic-rate law equation. The excellent oxidation resistance of the coating is mainly attributed to the continuous oxide films which consist of Cr2O3 and Fe2O3. The continuous oxide films can prevent the inner part of the coating from being further oxidized.

  20. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress.

    Science.gov (United States)

    Yan, Jingqi; Zhao, Yan; Suo, Siqingaowa; Liu, Yang; Zhao, Baolu

    2012-05-01

    Epidemiological data have suggested that drinking green tea is negatively associated with diabetes, and adipose oxidative stress may have a central role in causing insulin resistance, according to recent findings. The aim of this work is to elucidate a new mechanism for green tea's anti-insulin resistance effect. We used obese KK-ay mice, high-fat diet-induced obese rats, and induced insulin resistant 3T3-L1 adipocytes as models. Insulin sensitivity and adipose reactive oxidative species (ROS) levels were detected in animals and adipocytes. The oxidative stress assay and glucose uptake ability assay were performed, and the effects of EGCG on insulin signals were detected. Green tea catechins (GTCs) significantly decreased glucose levels and increased glucose tolerance in animals. GTCs reduced ROS content in both models of animal and adipocytes. EGCG attenuated dexamethasone and TNF-α promoted ROS generation and increased glucose uptake ability. EGCG also decreased JNK phosphorylation and promoted GLUT-4 translocation. EGCG and GTCs could improve adipose insulin resistance, and exact this effect on their ROS scavenging functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Freezing resistance of high iron phoasphoaluminate cement

    Science.gov (United States)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  2. High Impedance Comparator for Monitoring Water Resistivity.

    Science.gov (United States)

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  3. Influence of additives on oxidation resistance of binderless C/C composite

    Institute of Scientific and Technical Information of China (English)

    周声劢; 刘其城; 胡晓凯

    2003-01-01

    Experiment of adding B4C, SiC, and Si powders to improve oxidation resistance of the C/C compositeswas carried out. The results show that the increase of oxidation resistance is remarkable when the contents of B4C,SiC, and Si powders are 10%, 10%, and 5% in the composites, respectively. The regularities and mechanism ofthe effects of the ceramic powders on the oxidation resistance of the composites were also discussed.

  4. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  5. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  6. Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides

    Science.gov (United States)

    Fleck, Karsten; La Torre, Camilla; Aslam, Nabeel; Hoffmann-Eifert, Susanne; Böttger, Ulrich; Menzel, Stephan

    2016-12-01

    Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104 s , taking Pt /SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt /SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.

  7. Multilevel resistive switching nonvolatile memory based on MoS2 nanosheet-embedded graphene oxide

    Science.gov (United States)

    Shin, Gwang Hyuk; Kim, Choong-Ki; Bang, Gyeong Sook; Kim, Jong Yun; Jang, Byung Chul; Koo, Beom Jun; Woo, Myung Hun; Choi, Yang-Kyu; Choi, Sung-Yool

    2016-09-01

    An increasing demand for nonvolatile memory has driven extensive research on resistive switching memory because it uses simple structures with high density, fast switching speed, and low power consumption. To improve the storage density, the application of multilevel cells is among the most promising solutions, including three-dimensional cross-point array architectures. Two-dimensional nanomaterials have several advantages as resistive switching media, including flexibility, low cost, and simple fabrication processes. However, few reports exist on multilevel nonvolatile memory and its switching mechanism. We herein present a multilevel resistive switching memory based on graphene oxide (GO) and MoS2 fabricated by a simple spin-coating process. Metallic 1T-MoS2 nanosheets, chemically exfoliated by Li intercalation, were successfully embedded between two GO layers as charge-trapping sites. The resulting stacks of GO/MoS2/GO exhibited excellent nonvolatile memory performance with at least four resistance states, >102 endurance cycles, and >104 s retention time. Furthermore, the charge transport mechanism was systematically investigated through the analysis of low-frequency 1/f noise in various resistance states, which could be modulated by the input voltage bias in the negative differential resistance region. Accordingly, we propose a strategy to achieve multilevel nonvolatile memory in which the stacked layers of two-dimensional nanosheets are utilized as resistive and charge-storage materials.

  8. Effect of double glow plasma surface chromizing on high-temperature oxidation resistance of TC4 titanium alloy%TC4合金双辉等离子渗Cr高温氧化行为

    Institute of Scientific and Technical Information of China (English)

    魏东博; 张平则; 姚正军; 梁文萍; 缪强; 徐重

    2011-01-01

    Isothermal oxidation behavior of TC4 titanium alloy,which was chromized by the double glow plasma surface alloying technology(DGP),were investigated at 650 ℃,750 ℃ and 850 ℃.The results show that the chromizing layer consists of surface loose layer,compact deposited layer and Ti-Cr mutual diffusion layer.The diffusion layer has better oxidation resistance compared with NiCrAlY thermal barrier coating.The ratio of Cr to Ti content in the diffusion layer exhibits gradient distribution by Cr,Cr1.97Ti1.07 and CrTi4.Under oxidation circumstance,Cr,Ti and Al diffuse outward to form multilayer oxide films,which prevent inward diffusion of oxygen.At 650 ℃,the oxidation films consist of two layers: the external Cr2O3 layer and the internal TiO2 layer.At 750 ℃,a mixed oxide layer containing Cr2O3 and TiO2 is formed beneath the Cr2O3 layer and TiO2 layer,whereby Ti(Cr,Al)2 Laves phase is observed in the Ti-depleted layer.At 850 ℃,a mixed oxide layer containing TiO2,Ti2O3 and Ti3O5 is formed beneath the Cr2O3 layer and Al2O3 layer,whereby Ti(Cr,Al)2 Laves phase and Kirkendall voids are formed in the depletion layer.%研究了双层辉光等离子渗Cr对TC4合金650、750、850℃恒温氧化性能的影响。结果表明:渗Cr后,表面梯度合金层显著提高了TC4合金的高温氧化性能,Ti-Cr互扩散层可有效阻止氧向基体扩散。氧化过程中,Ti、Cr向外扩散形成TiO2/Cr2O3氧化膜,其形态与氧化温度有关。850℃氧化100 h后,渗Cr试样表面形成致密Cr2O3膜,恒温氧化性能优于NiCrAlY热障涂层。

  9. Steam Oxidation at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  10. Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    Science.gov (United States)

    Piltch, Nancy D.; Jih-Fen, Lei; Zeller, Mary V.

    1994-01-01

    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy.

  11. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  12. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Thorsen, Michael

    2008-01-01

    might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.......Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol......-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post...

  13. Aluminium-oxide wires for superconducting high kinetic inductance circuits

    Science.gov (United States)

    Rotzinger, H.; Skacel, S. T.; Pfirrmann, M.; Voss, J. N.; Münzberg, J.; Probst, S.; Bushev, P.; Weides, M. P.; Ustinov, A. V.; Mooij, J. E.

    2017-02-01

    We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5 kΩ sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700 000 at 20 mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.

  14. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  15. Mullite—corundum Refractories with High Creep Resistance

    Institute of Scientific and Technical Information of China (English)

    LIANGYong-be; LINan; 等

    1996-01-01

    Mullite-corundum bricks and kiln furni-ture with high creep resistance and good thermal shock resistance were fabricated based on low cost raw materials,the approaches of introducing some additives and optimisig,chemical composition and partical size were mployed to produce a high temperature matrix phase with high creep resistance and good thermal shock resistance.

  16. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mei Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Liu Xiaofei; Wang Cunxia; Wang Younian; Dong Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pulsed electron beam was used for sealing ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition. Black-Right-Pointing-Pointer At irradiation energy densities above 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. Black-Right-Pointing-Pointer The thermal diffusion rate of the irradiated coating was decreased. Black-Right-Pointing-Pointer Thermal insulation properties and high temperature oxidation resistance were improved. - Abstract: In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y{sub 2}O{sub 3}-stablized ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the 'sealing' of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 {mu}s, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm{sup 2}, and pulsed numbers 30. 1050 Degree-Sign C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the 'sealing' effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm{sup 2}, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal

  17. Improving the phase stability and oxidation resistance of β-NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    High temperature alloys are essential to many industries that require a stable material to perform in harsh oxidative environments. Many of these alloys are suited for specific applications such as jet engine turbine blades where most other materials would either melt or oxidize and crumble (1). These alloys must have a high melting temperature, excellent oxidation resistance, good creep resistance, and decent fracture toughness to be successfully used in such environments. The discovery of Ni based superalloys in the 1940s revolutionized the high temperature alloy industry and there has been continued development of these alloys since their advent (2). These materials are capable of operating in oxidative environments in the presence of combustion gases, water vapor and at temperatures around 1050 C. Demands for increased f uel efficiency, however, has highlighted the need for materials that can be used under similar atmospheres and at temperatures in excess of 1200 C. The current Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that result in softening of the alloys above 1000 C. Therefore, recent research has been aimed at exploring and developing newer alloy systems that can meet the escalating requirements. This thesis comprises a part of such an effort. The motivation of this work is to develop a novel high temperature alloy system that shows improved performance at higher temperatures than the currently employed alloys. The desired alloy should be in accordance with the requirements established in the National Energy Technology Laboratory (NETL) FutureGen program having an operating temperature around 1300 C. Alloys based on NiAl offer significant potential payoffs as structural materials in gas turbine applications due to a unique range of physical and mechanical properties. Alloying additions to NiAl could be used to further improve the pertinent properties that currently limit this system from

  18. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...... ionic-electronic conducting oxide that could solve these issues if it can be integrated into an appropriate electrode structure. Two new approaches to obtain high-performance nanostructured doped-ceria electrodes are highlighted. The first is an infiltration-based architecture with Ce0.8Pr0.2O2-δ...... an unprecedented electrode polarization resistance of ~0.01 Ω cm2 at 650 °C in H2/H2O. These results demonstrate that nano-ceria has the ability to achieve higher performance than Ni-based electrodes and show that the main challenge is obtaining sufficient electronic current collection without adding too much...

  19. High counting rate resistive-plate chamber

    Science.gov (United States)

    Peskov, V.; Anderson, D. F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast (less than 1 ns) and have very simple construction: just two parallel metallic plates or mesh electrodes. Depending on the applied voltage they may work either in spark mode or avalanche mode. The advantage of the spark mode of operation is a large signal amplitude from the chamber, the disadvantage is that there is a large dead time (msec) for the entire chamber after an event. The main advantage of the avalanche mode is high rate capability 10(exp 5) counts/mm(sup 2). A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (greater than 10(exp 10) Omega(cm) materials. In practice RPC's are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm(sup 2), leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases.

  20. Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.

  1. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    Science.gov (United States)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  2. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Nami Kartal S

    2010-01-01

    Full Text Available Abstract Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58–65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  3. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    Science.gov (United States)

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  4. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  5. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Behrani, Vikas [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb5Si3 composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  6. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  7. The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1- x Y x N Multilayer Coatings

    Science.gov (United States)

    Wang, Jingxian; Yazdi, Mohammad Arab Pour; Lomello, Fernando; Billard, Alain; Kovács, András; Schuster, Frédéric; Guet, Claude; White, Timothy J.; Wouters, Yves; Pascal, Céline; Sanchette, Frédéric; Dong, ZhiLi

    2017-09-01

    As machine tool coating specifications become increasingly stringent, the fabrication of protective titanium aluminum nitride (Ti-Al-N) films by physical vapor deposition (PVD) is progressively more demanding. Nanostructural modification through the incorporation of metal dopants can enhance coating mechanical properties. However, dopant selection and their near-atomic-scale role in performance optimization is limited. Here, yttrium was alloyed in multilayered Ti-Al-N films to tune microstructures, microchemistries, and properties, including mechanical characteristics, adhesion, wear resistance, and resilience to oxidation. By regulating processing parameters, the multilayer period (Λ) and Y content could be adjusted, which, in turn, permitted tailoring of grain nucleation and secondary phase formation. With the composition fixed at x = 0.024 in (Ti0.6Al0.4)1- x Y x N and Λ increased from 5.5 to 24 nm, the microstructure transformed from acicular grains with 〈111〉 preferred orientation to equiaxed grains with 〈200〉 texture, while the hardness (40.8 ± 2.8 GPa to 29.7 ± 4.9 GPa) and Young's modulus (490 ± 47 GPa to 424 ± 50 GPa) concomitantly deteriorated. Alternately, when Λ = 5.5 nm and x in (Ti0.6Al0.4)1- x Y x N was raised from 0 to 0.024, the hardness was enhanced (28.7 ± 7.3 GPa to 40.8 ± 2.8 GPa) while adhesion and wear resistance were not compromised. The Ti-Al-N adopted a rock-salt type structure with Y displacing either Ti or Al and stabilizing a secondary wurtzite phase. Moreover, Y effectively retarded coating oxidation at 1073 K (800 °C) in air by inhibiting grain boundary oxygen diffusion.

  8. Oxidation Resistance of CVD (Chemical Vapor Deposition) Coatings

    Science.gov (United States)

    1987-02-01

    carbonaceous residuoe were overcome, and dense, iadherent, coat-ings which :ýtop oxidat-ion Of the substrate art! reliably produced. The iridium deposition...flow, pressure and geometry within the reaction chamber, and substrate material. For the coating to have high integrity and adhesion to the substrate...entirely produced by Ultramet using chemical vapor deposition and a novel integrated fabrication technique. Coating the inside of a long chamber presents

  9. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  10. Approaches to oxidation-resistant refractory metal alloys

    OpenAIRE

    Wright, I; Nagarajan, V.

    1993-01-01

    The focus of the research reported here was on the design of high-temperature alloys which would form protective SiO2 and Al2O3 scales on exposure to high-temperature, oxidizing environments. One way to promote the growth of such scales is to incorporate sufficient amounts of Si or Al in the alloy substrate ; typically, additions of approximately 35 to 45 weight percent (all alloy compositions are given in weight percent unless explicitly stated otherwise) of Si or Al would be required to for...

  11. High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance.

    Science.gov (United States)

    Oral, Ebru; Neils, Andrew; Muratoglu, Orhun K

    2015-05-01

    Antioxidant stabilization of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been introduced to improve the oxidative stability of total joint implant bearing surfaces. Blending of antioxidants (most commonly vitamin E) with UHMWPE resin powder followed by consolidation and uniform radiation cross-linking is currently available for use in both total hips and total knees. It was previously shown that the fatigue resistance of vitamin E-blended and irradiated UHMWPEs could be further improved by spatially manipulating the vitamin E concentration throughout the implant and limiting cross-linking to the surface of the implant where it is necessary for wear resistance. This was possible by designing a low concentration of vitamin E on the surface and higher concentration in the bulk of the implant because cross-linking is hindered in UHMWPE as a function of increasing vitamin E concentration. In this study, we hypothesized that such a surface cross-linked UHMWPE with low wear rate and high fatigue strength could be obtained by limiting the penetration of radiation into UHMWPE with uniform vitamin E concentration. Our hypothesis tested positive; we were able to obtain control of the surface cross-linked region by manipulating the energy of the irradiation, resulting in extremely low wear, and high impact strength. In addition, we discussed alternatives of improving the oxidation resistance of such a material by using additional vitamin E reservoirs. These results are significant because this material may allow increased use of antioxidant-stabilized, cross-linked UHMWPEs in high stress applications and in more active patients.

  12. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance.

    Science.gov (United States)

    Soltani Nezhad, Shahla; Rabbani Khorasgani, Mohammad; Emtiazi, Giti; Yaghoobi, Mohammad Mehdi; Shakeri, Shahryar

    2014-03-01

    The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs-P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.

  13. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  14. New Approaches to Maximizing Thermo-oxidation Resistance of Polycyanurate Networks

    Science.gov (United States)

    2014-08-13

    thermo -oxidation resistance of polycyanurate networks 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Andrew J...enhanced thermo -oxidative stability compared to epoxy resins. Recent structure-property investigations in polycyanurate networks have revealed new...insights into the relationship between the chemical moieties found in the networks and the corresponding levels of thermo -oxidative resistance. In

  15. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    OpenAIRE

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resist...

  16. The influence of Si on oxidation resistance of aluminide coatings on TiAl alloy

    OpenAIRE

    M. Goral; G. Moskal; L. Swadzba

    2006-01-01

    Purpose: Increasing oxidation resistance of TiAl intermetallic alloy by depositing aluminide coating by slurrymethod and investigation of the influence of Si addition on isothermal oxidation of TiAlNb intermetallic alloy.Design/methodology/approach: : The isothermal oxidation resistance tests were done in the chamber furnaceat 900ºC for 500h time in the air atmosphere. The structure of coatings was investigated by light and scanningmicroscopy. The chemical composition of coatings and scales w...

  17. Effects of Boron Bearing Additives on Oxidation and Corrosion Resistance of Doloma—based carbon bonded Refractories

    Institute of Scientific and Technical Information of China (English)

    YEFangbao; ZHONGXiangchong; 等

    1998-01-01

    Oxidation of the added graphite and the bonding carbon is an imortant degradation mode of doloma-carbon refractories in service,In this work,the behavior and effects of various boron bearing materials(CaB6,ZrB2,Bc and colemanite)as an-tioxidants have been investigated and compared to the effect of Al-Mg alloy,For CaO-MgO-C mate-rials,the effect of boron bearingadditives is better than Al-Mg alloy,The borate melt formed at high temperature would retard or prevent carbon oxidation,thus contributing to improved oxidation resistance,Preliminary investigations on the effect of boron bearing additives and Al-Mg alloy on corrosion resistance of doloma-carbon materials have indicated that simultaneous addition of the two types of additives would lead to pronounced improvement of slag corrosion resistance.

  18. Comparisons of resistance of CF and Non-CF pathogens to Hydrogen Peroxide and Hypochlorous Acid Oxidants In Vitro

    Directory of Open Access Journals (Sweden)

    Ledet Elisa M

    2011-05-01

    Full Text Available Abstract Background Cystic fibrosis (CF lung disease has a unique profile of pathogens predominated by Pseudomonas aeruginosa (PsA and Staphylococcus aureus (SA. These microorganisms must overcome host immune defense to colonize the CF lungs. Polymorphonuclear neutrophils are a major component of the host defense against bacterial infection. A crucial microbicidal mechanism is the production of oxidants including hydrogen peroxide (H2O2 and hypochlorous acid (HOCl by neutrophils to achieve efficient bacterial killing. To determine to what degrees various CF pathogens resist the oxidants relative to non-CF pathogens, we compared the susceptibility of PsA, SA, Burkholderia cepacia (BC, Klebsiella pneumoniae (KP, and Escherichia coli (EC to various concentrations of H2O2 or HOCl, in vitro. The comparative oxidant-resistant profiles were established. Oxidant-induced damage to ATP production and cell membrane integrity of the microbes were quantitatively assessed. Correlation of membrane permeability and ATP levels with bacterial viability was statistically evaluated. Results PsA was relatively resistant to both H2O2 (LD50 = 1.5 mM and HOCl (LD50 = 0.035 mM. SA was susceptible to H2O2 (LD50 = 0.1 mM but resistant to HOCl (LD50 = 0.035 mM. Interestingly, KP was extremely resistant to high doses of H2O2 (LD50 = 2.5-5.0 mM but was very sensitive to low doses of HOCl (LD50 = 0.015 mM. BC was intermediate to resist both oxidants: H2O2 (LD50 = 0.3-0.4 mM and HOCl (LD50 = 0.025 mM. EC displayed the least resistance to H2O2 (LD50 = 0.2-0.3 mM and HOCl (LD50 = 0.015 mM. The identified profile of H2O2-resistance was KP > PsA > BC > EC > SA and the profile of HOCl-resistance PsA > SA > BC > EC > KP. Moreover, both oxidants affected ATP production and membrane integrity of the cells. However, the effects varied among the tested organisms and, the oxidant-mediated damage correlated differentially with the bacterial viability. Conclusions The order of HOCl-resistance

  19. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, Joseph B., E-mail: martyn.mclachlan@imperial.ac.uk; Fleet, Luke R.; Burgess, Claire H.; McLachlan, Martyn A.

    2014-11-03

    We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C{sub 60}) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (P{sub d}) (0.67–10 Pa). Deposition at 0.67 ≤ P{sub d} ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ P{sub d} < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing P{sub d} further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C{sub 60}. The free carrier concentration of ITO is strongly influenced by P{sub d}; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (R{sub s}) of 145 Ω/□ achieved for 300 nm thick ITO films. To reduce the R{sub s} a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an R{sub s} of ∼ 20 Ω/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate. - Highlights: • Indium tin oxide (ITO) deposited directly onto molecular semiconductor thin-films. • Oxygen is shown to influence ITO resistivity and multilayer morphology. • Damage was prevented by modifying pulsed laser deposition growth conditions. • Low sheet resistance, highly transparent ITO deposition was demonstrated.

  20. Hybrid Copper-Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering.

    Science.gov (United States)

    Yim, Changyong; Sandwell, Allen; Park, Simon S

    2016-08-31

    We developed a simple method to prepare hybrid copper-silver conductive tracks under flash light sintering. The developed metal nanoparticle-based ink is convenient because its preparation process is free of any tedious washing steps. The inks were composed of commercially available copper nanoparticles which were mixed with formic acid, silver nitrate, and diethylene glycol. The role of formic acid is to remove the native copper oxide layer on the surface of the copper nanoparticles. In this way, it facilitates the formation of a silver outer shell on the surface of the copper nanoparticles through a galvanic replacement. In the presence of formic acid, the copper nanoparticles formed copper formate, which was present in the unsintered tracks. However, under illumination by a xenon flash light, the copper formate was then converted to copper. Moreover, the resistance of the copper-only films increased by 6 orders of magnitude when oxidized at high temperatures (∼220 °C). However, addition of silver nitrate to the inks suppressed the oxidation of the hybrid copper-silver films, and the resistance changes in these inks at high temperatures were greatly reduced. In addition, the hybrid inks proved to be advantageous for use in electrical circuits as they demonstrated a stable electrical conductivity after exposure to ambient air at 180 °C.

  1. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  2. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training.

    Science.gov (United States)

    Deminice, Rafael; Sicchieri, Tiago; Mialich, Mirele S; Milani, Francine; Ovidio, Paula P; Jordao, Alceu A

    2011-03-01

    We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 × 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 × 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 ± 1.6) was half of that needed to complete the traditional interval training (40.3 ± 1.8). Significant increases (p creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.

  3. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  4. Comparative Studies on Low Noise Greases Operating under High Temperature Oxidation Conditions

    Institute of Scientific and Technical Information of China (English)

    Xiong Chunhua; Mi Hongying; Feng Qiang; Wu Baojie

    2014-01-01

    Oxidation induction time (OIT) testing by differential scanning calorimetry (DSC) was used to evaluate the oxidation resistance of lubricating greases. Under the high temperature condition, bearing noise was detected when grease passed the initial stable stage of oxidation. The chemical and physical structure of grease samples before and after high tem-perature oxidation were also analyzed by FT-IR spectrometry and scanning electron microscopy (SEM), then the effects of oxidation at high temperature on bearing noise were investigated. It is found out that for lithium greases, oxidation of base oil and thickener is the main reason responsible for the increasing bearing noise. As regards the polyurea greases, the change of ifber microstructure at high temperature is the main reason for the increasing bearing noise.

  5. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  6. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available BACKGROUND: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. METHODS AND FINDINGS: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. CONCLUSIONS: We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  7. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  8. Improvement of low temperature oxidation resistance in MoSi{sub 2}-oxides composites; Sankabutsu no fukugoka ni yoru MoSi{sub 2} zairyo no teion sanka tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W.; Uchiyama, T. [Riken Corp., Saitama (Japan)

    1999-11-15

    MoSi{sub 2}-oxides composites using fine aluminosilicate powder (< 0.2{mu}m) have demonstrated excellent low temperature oxidation resistance and thermal shock resistance. These properties strongly depend on microstructural morphology and are obtained in composites that network-structures of both phases of MoSi{sub 2} and oxides are developed, i.e., in composites with oxides of 20 {approx} 40 vol. %. When one phase is independently dispersed in the other phase, on the other hand, problems of low temperature oxidation and thermal shock occur. The low temperature oxidation problem occurs in the composites with oxides less than 15 vol. % and the thermal shock problem occurs in the composites with oxides more than 50 vol. %. These results will contribute to material design approaches for high temperature structural applications of MoSi{sub 2}. (author)

  9. High-temperature processing of oxide superconductors and superconducting oxide-silver oxide composite

    Science.gov (United States)

    Wu, M. K.; Loo, B. H.; Peters, P. N.; Huang, C. Y.

    1988-01-01

    High temperature processing was found to partially convert the green 211 phase oxide to 123 phase. High Tc superconductivity was observed in Bi-Sr-Cu-O and Y-Sr-Cu-O systems prepared using the same heat treatment process. High temperature processing presents an alternative synthetic route in the search for new high Tc superconductors. An unusual magnetic suspension with enhancement in critical current density was observed in the 123 and AgO composite.

  10. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

    DEFF Research Database (Denmark)

    Gentile, Christopher L; Ward, Emery; Holst, Jens Juul

    2015-01-01

    BACKGROUND: Diets high in either resistant starch or protein have been shown to aid in weight management. We examined the effects of meals high in non-resistant or resistant starch with and without elevated protein intake on substrate utilization, energy expenditure, and satiety in lean...... and overweight/obese women. METHODS: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS...... factors were not different among any of the test meals. However, peptide YY (PYY) was significantly elevated at 180 min following RS+WP meal. CONCLUSIONS: The combined consumption of dietary resistant starch and protein increases fat oxidation, PYY, and enhances feelings of satiety and fullness to levels...

  11. Atomistic simulations of the radiation resistance of oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, A., E-mail: alain.chartier@cea.fr [CEA-Saclay, DEN/DANS/DPC/SCP, 91191 Gif-Sur-Yvette (France); Van Brutzel, L. [CEA-Saclay, DEN/DANS/DPC/SCP, 91191 Gif-Sur-Yvette (France); Crocombette, J.-P. [CEA-Saclay, DEN/DANS/DMN/SRMP, 91191 Gif-Sur-Yvette (France)

    2012-09-01

    Fluorite compounds such as urania and ceria, or related compounds such as pyrochlores and also spinels show different behaviors under irradiations, which ranges from perfect radiation resistance to crystalline phase change or even complete amorphization depending on their structure and/or their composition. Displacement cascades - dedicated to the understanding of the ballistic regime and performed by empirical potentials molecular dynamics simulations - have revealed that the remaining damages of the above mentioned oxides are reduced to point defects unlike what is observed in zircon and zirconolite, which directly amorphize during the cascade. The variable behavior of these point defects is the key of the various responses of these materials to irradiations. This behavior can be investigated by two specific molecular dynamics methodologies that will be reviewed here: (i) the method of point defects accumulation as a function of temperature that gives access to the dose effects and to the critical doses for amorphization; (ii) the study Frenkel pairs life-time - i.e. their time of recombination as function of temperature - that may be used as a tool to understand the results obtained in displacements cascades or to identify the microscopic mechanisms responsible for the amorphization/re-crystallization during the point defects accumulations.

  12. Significant blood resistance to nitric oxide transfer in the lung.

    Science.gov (United States)

    Borland, Colin D R; Dunningham, Helen; Bottrill, Fiona; Vuylsteke, Alain; Yilmaz, Cuneyt; Dane, D Merrill; Hsia, Connie C W

    2010-05-01

    Lung diffusing capacity for nitric oxide (DLNO) is used to measure alveolar membrane conductance (DMNO), but disagreement remains as to whether DMNO=DLNO, and whether blood conductance (thetaNO)=infinity. Our previous in vitro and in vivo studies suggested that thetaNODLNO and DLCO were measured by a rebreathing technique before and after three successive equal volume-exchange transfusions with bovine Hb glutamer-200 (10 ml/kg each, total exchange 30 ml/kg). At baseline, DLNO/DLCO=4.5. After exchange transfusion, DLNO rose 57+/-16% (mean+/-SD, P=0.02) and DLNO/DLCO=7.1, whereas DLCO remained unchanged. Thus, in vitro and in vivo data directly demonstrate a finite thetaNO. We conclude that the erythrocyte and/or its immediate environment imposes considerable resistance to alveolar-capillary NO uptake. DLNO is sensitive to dynamic hematological factors and is not a pure index of conductance of the alveolar tissue membrane. With successive exchange transfusion, the estimated in vivo thetaNO [5.1 ml NO.(ml blood.min.Torr)(-1)] approached 4.5 ml NO.(ml blood.min.Torr)(-1), which was derived from in vitro measurements by Carlsen and Comroe (J Gen Physiol 42: 83-107, 1958). Therefore, we suggest use of thetaNO=4.5 ml NO.(min.Torr.ml blood)(-1) for calculation of DM(NO) and pulmonary capillary blood volume from DLNO and DLCO.

  13. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800ºC

    OpenAIRE

    Sebastien eDryepondt; Pint, Bruce A.; Maziasz, Philip J.

    2015-01-01

    Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all ...

  14. New Creep-Resistant Cast Alloys with Improved Oxidation Resistance in Water Vapor at 650–800°C

    OpenAIRE

    Dryepondt, Sebastien; Pint, Bruce A.; Maziasz, Philip J.

    2015-01-01

    Cast stainless steel CF8C-Plus (19wt%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700°C in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with, respectively, 21wt%Cr–15wt%Ni and 22wt%Cr–17.5wt%Ni were therefore developed and their long-term oxidation behaviors in humid air were compared with the oxidation behavior of five other cast alloys. At 650°C and 700°C, ...

  15. Studies on High Temperature Oxidation of Electrodeposited RE-Ni-W-P-SiC Composite Materials

    Institute of Scientific and Technical Information of China (English)

    ZHUXiao-yun; XURui-dong; GUOZhong-cheng

    2004-01-01

    The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated.The results show that during high temperature oxidation the relationship between the mass change of pure Ni,Ni-W-P,Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 rains while it is a power function relationship when the oxidation time is over 60 rains. The order for the oxidation rate of the four coatings is Ni> Ni-W-P>Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3-4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.

  16. Studies on High Temperature Oxidation of Electrodeposited RE-Ni-W-P-SiC Composite Materials

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-yun; XU Rui-dong; GUO Zhong-cheng

    2004-01-01

    The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated.The results show that during high temperature oxidation the relationship between the mass change of pure Ni, Ni-W-P,Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 mins while it is a power function relationship when the oxidation time is over 60 mins. The order for the oxidation rate of the four coatings is Ni> Ni-W-P> Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3~4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.

  17. Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance

    Science.gov (United States)

    Kurtz, Baptiste; Thibault, Helene B.; Raher, Michael J.; Popovich, John R.; Cawley, Sharon; Atochin, Dmitriy N.; Hayton, Sarah; Shakartzi, Hannah R.; Huang, Paul L.; Bloch, Kenneth D.; Buys, Emmanuel

    2011-01-01

    Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3−/−) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3−/− mice than in SD-fed WT mice. In contrast, HFD-fed NOS3−/− developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3−/− than in those from HFD-fed WT. Nω-nitro-l-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3−/− mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts. PMID:21856905

  18. Wear-resisting oxide films for 900{degree}C. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.B. [Wear Sciences Corp., Arnold, MD (United States); Li, S.Z. [Inst. of Metal Research, Shenyang (China); Murray, S.F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-03-01

    For the past 50 years, temperatures in advanced heat engines have been increasing. New-generating engines will require lubricants for 1,000 C and higher. One of the most critical applications is the regenerator seals on the automotive gas turbine. In this seal, a metal plate slides against a porous ceramic surface for several thousand hours at speeds on the order of 10 cm/sec. For long-term usage above 900 C it will probably be necessary to use oxide lubricants. If effective ones can be found, then a simple solution would be available for an application like the regenerator seal: fabricate it with an alloy which forms a lubricating oxide. The objective of this study was to explore this concept for the regenerator seal. A study was conducted to develop low-friction, wear-resistant surfaces on high-temperature alloys for the temperature range 26 C to 900 C. The approach investigated consisted of modifying the naturally occurring oxide film in order to improve its tribological properties. Improvement was needed at low temperatures where the oxide film, previously formed at high-temperature, spalls due to stresses induced by sliding. Experiments with titanium, tungsten, and tantalum additions showed a beneficial effect when added to nickel and nickel alloys. Low friction was maintained down to 100 C from 900 C. For unalloyed nickel friction and surface damage increased at 400 C to 500 C. Other approaches proved less successful and require further study.

  19. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  20. High quality factor indium oxide mechanical microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier [Department of Materials Physics, Faculty of Physics, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  1. Effect of Ce+ Ion Implantation upon Oxidation Resistance of Superalloy K38G

    Institute of Scientific and Technical Information of China (English)

    Qian Yuhai; Li Meishuan; Duo Shuwang; Zhao Youming

    2005-01-01

    The oxidation behavior (isothermal and cyclic oxidation) of cast superalloy K38G and the effect of Ce+ ion implantation with dose of 1×1017 ions/cm2 upon its oxidation resistance at 900 and 1000 ℃ in air were investigated. Meanwhile, the influence of Ce+ implantation on oxidation behavior of K38G with pre-oxide scale at 1000 ℃ in air was compared. The pre-oxidation was performed at 1000 ℃ in static air for 0.25 and 1.5 h, respectively. It is shown that the homogeneous external mixture oxide of rutile TiO2+Cr2O3 and non-continuous internal oxide of Al2O3 are formed during the oxidation procedure in all the cases. The isothermal oxidation resistance and the cracking or spallation resistance of superalloy K38G implanted with Ce+ by both of the two different implantation ways are not improved notably. This may be attributed to the mixed oxide composition characteristics and the blocking effect differences of Ce+ segregation along the oxide grain boundaries on the transport process for different diffusing ions.

  2. Growth and stability of oxidation resistant Si nanocrystals formed by decomposition of alkyl silanes

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Hamel, S; Dai, Z R; Saw, C; Williamson, A J; Galli, G

    2007-01-12

    The synthesis and characterization of 1-10 nm Si nanocrystals highly resistant to oxidation is described. The nanocrystals were prepared by thermal decomposition of tetramethylsilane at 680 C, or in a gold- induced catalytic process at lower temperatures down to 400-450 C using trioctylamine as an initial solvent. Transmission electron microscopic analysis of samples obtained in the presence of gold show that the nanocrystals form via solid-phase epitaxial attachment of Si to the gold crystal lattice. The results of computational modeling performed using first principles density functional theory (DFT) calculations predict that the enhanced stability of nanocrystals to oxidation is due to the presence of N or N-containing groups on the surface of nanocrystals.

  3. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish

    DEFF Research Database (Denmark)

    Blaise, Mickael; Alsarraf, Husam Mohammad Ali Baker; Wong, Jaslyn

    2012-01-01

    The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal...... structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices...

  4. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  5. High temperature oxidation behaviors of Ti-Cr alloys with Laves phase TiCr2

    Institute of Scientific and Technical Information of China (English)

    肖平安; 曲选辉; 雷长明; 祝宝军; 秦明礼; 敖晖; 黄培云

    2002-01-01

    The high temperature oxidation behaviors of Ti-Cr alloys containing 18%~35%Cr with Laves phase TiCr2 were investigated at 650~780 ℃ for exposure up to 104 h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21%Cr are higher than those measured for pure titanium, but for the alloys with more than 26%Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti-Cr alloys, and the mass gain is doubled with a temperature change from 650 ℃ to 700 ℃ or from 700 ℃ to 780 ℃, for the same exposure duration. TiCr2 shows no negative influence on the high temperature oxidation resistance of the alloys.

  6. The Rapid Emergence of High Level Gentamicin Resistance in Enterococci

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    1990-01-01

    Full Text Available The proportion of enterococci isolated from blood and urine cultures that were highly resistant to gentamicin and streptomycin were determined. No blood or urine isolates highly resistant to gentamicin were seen in 1983, whereas by 1986–87 25% of blood and 17% of urine isolates were highly resistant. The rapid emergence of gentamicin resistance has serious implications for patients with life threatening enterococcal disease.

  7. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments

    Science.gov (United States)

    Pint, B. A.; Terrani, K. A.; Brady, M. P.; Cheng, T.; Keiser, J. R.

    2013-09-01

    Alternative fuel cladding materials to Zr alloys are being investigated for enhanced accident tolerance, which specifically involves oxidation resistance to steam or steam-H2 environments at ⩾1200 °C for short times. Based on a comparison of a range of commercial and model alloys, conventional austenitic steels do not have sufficient oxidation resistance with only ˜18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application. Results at 1350 °C indicated that FeCrAl alloys and CVD SiC remain oxidation resistant in steam. At 1200 °C, high (⩾25% Cr) ferritic alloys appear to be good candidates for this application. Higher pressures (up to 20.7 bar) and H2 additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys, but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed for type 317 L tubing in a H2-50%H2O environment at 10.3 bar compared to 100% H2O.

  8. Oxide fiber composites with promising properties for high-temperature structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.A. [Ceramic Materials Engineering, University of Bayreuth, 95440 Bayreuth (Germany); Danzer, R. [Institut fuer Struktur- und Funktionskeramik, Montanuniversitaet Leoben, 8700 Leoben (Austria)

    2006-11-15

    This paper summarizes the mechanical properties of recently developed Oxide Fiber Composites (OFCs) consisting of high-strength continuous oxide fibers embedded in an oxide matrix. The OFCs exhibit a favorable combination of high strength and damage tolerance due to unusual homogeneous microstructures. The tensile behavior in both fiber- and matrix-dominated loadings and interlaminar shear behavior are described. Special emphasis is placed on the attractive thermal shock resistance and high-temperature long-term performance of these new materials. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  10. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.

  11. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance.

    Science.gov (United States)

    Molina, Marisa Nile; Ferder, León; Manucha, Walter

    2016-01-01

    Insulin resistance (IR) is present in pathologies such as diabetes, obesity, metabolic syndrome, impaired glucose tolerance, hypertension, inflammation, cardiac disease, and dyslipidemias. Population studies show that IR is multifactorial and has genetic components, such as defects in the insulin-signaling pathway (as serine phosphorylation on insulin substrate or decreased activation of signaling molecules) and RAS/MAPK-dependent pathways. IR is connected to mitochondrial dysfunction, overproduction of oxidants, accumulation of fat, and an over-activation of the renin-angiotensin system linked to the NADPH oxidase activity. In addition, nitric oxide (NO), synthesized by nitric oxide synthases (endothelial and inducible), is also associated with IR when both impaired release and reduced bioavailability of all which lead to inflammation and hypertension. However, increased NO may promote vasculoprotection. Moreover, reduced NO release induces heat shock protein 70 kDa (HSP70) expression in IR and diabetes, mediating beneficial effects against oxidative stress injury, inflammation and apoptosis. HSP70 may be used as biomarker of the chronicity of diabetes. Hsp72 (inducible protein) is linked to vascular complications with a high-fat diet by blocking inflammation signaling (cytoprotective and anti-cytotoxicity intracellular role). Elucidating the IR signaling pathways and the roles of NO and HSPs is relevant to the application of new treatments, such as heat shock and thermal therapy, nitrosylated drugs, chemical chaperones or exercise training.

  12. Resistive Switching Characteristics of Tantalum Oxide Thin Film and Titanium Oxide Nanoparticles Hybrid Structure.

    Science.gov (United States)

    Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Yoon, Tae-Sik; Choi, Young Jin; Kang, Chi Jung

    2015-11-01

    The fabrication of hybrid structure with TiO2 nanoparticle assembly and Ta2O5 thin film layer was demonstrated. The close-packed nanoparticles could influence the resistive switching behaviors due to the huge numbers of interface states and vacancies in the nanoparticle assembly. The device with hybrid structure presented the typical bipolar resistive switching characteristics in the structure of Ti/TiO2/Ta2O5/Au on SiO2/Si substrate. The set voltage was observed at -0.7 V, and the reset voltage occurred at (-)-0.7 V, which was smaller than that of Ta2O5 layer only. The electrical conduction mechanisms were the ohmic conduction at low resistance state (LRS) and the space charge limited conduction at high resistance state (HRS), respectively. The devices showed stable current ratio of LRS to HRS. The temperature dependent properties of the devices were also investigated. The device with nanoparticle assembly showed better electrical characteristics with low HRS current level and stable LRS current level with respect to the temperature.

  13. Direct laser printing of graphene oxide for resistive chemosensors

    Science.gov (United States)

    Papazoglou, S.; Tsouti, V.; Chatzandroulis, S.; Zergioti, I.

    2016-08-01

    This work presents the pulsed laser printing of graphene oxide, and a subsequent thermal reduction step, aiming towards the fabrication of a chemical sensor device that operates at room temperature. Laser printing was performed using the Laser Induced Forward Transfer technique, which enables for the rapid and highly resolved deposition of liquid and solid phase materials, while printing conditions were also studied, in terms of optimum laser fluence regime and donor-receiver substrates distance, so as to avoid undesirable satellite debris, which has detrimental effects on the sensor performance such as adjacent sensor cross-talk, etc. The evaluation of the reduction efficiency was made by Fourier Transform Reflectance spectroscopy and electrical characterization of the thermally reduced devices. Finally, the response of the sensor upon exposure to water vapors is evaluated, and sensitivities down to 0.22%/%RH were recorded.

  14. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    Science.gov (United States)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  15. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    Science.gov (United States)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  16. Colossal dielectric constant in high entropy oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berardan, David; Franger, Sylvain; Dragoe, Diana; Meena, Arun Kumar; Dragoe, Nita [ICMMO (UMR 8182 CNRS), Universite Paris-Sud, Universite Paris-Saclay, 91405, Orsay (France)

    2016-04-15

    Entropic contributions to the stability of solids are very well understood and the mixing entropy has been used for forming various solids, for instance such as inverse spinels, see Nawrotsky et al., J. Inorg. Nucl. Chem. 29, 2701 (1967) [1]. A particular development was related to high entropy alloys by Yeh et al., Adv. Eng. Mater. 6, 299 (2004) [2] and Cantor et al., Mater. Sci. Eng. A 375-377, 213 (2004) [3] (for recent reviews see Zhang et al., Prog. Mater. Sci. 61, 1 (2014) [4] and Tsai et al., Mater. Res. Lett. 2, 107 (2014) [5]) in which the configurational disorder is responsible for forming simple solid solutions and which are thoroughly studied for various applications especially due to their mechanical properties, e.g. Gludovatz et al., Science 345, 1153 (2014) [6] and Lu et al., Sci. Rep. 4, 6200 (2014) [7], but also electrical properties, Kozelj et al., Phys. Rev. Lett. 113, 107001 (2014) [8], hydrogen storage, Kao et al., Int. J. Hydrogen Energy 35, 9046 (2010) [9], magnetic properties, Zhang et al., Sci. Rep. 3, 1455 (2013) [10]. Many unexplored compositions and properties still remain for this class of materials due to their large phase space. In a recent report it has been shown that the configurational disorder can be used for stabilizing simple solid solutions of oxides, which should normally not form solid solutions, see Rost et al., Nature Commun. 6, 8485 (2015) [11] these new materials were called ''entropy-stabilized oxides''. In this pioneering report, it was shown that mixing five equimolar binary oxides yielded, after heating at high temperature and quenching, an unexpected rock salt structure compound with statistical distribution of the cations in a face centered cubic lattice. Following this seminal study, we show here that these high entropy oxides (named HEOx hereafter) can be substituted by aliovalent elements with a charge compensation mechanism. This possibility largely increases the potential development of new

  17. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  18. Signatures of Conformational Stability and Oxidation Resistance in Proteomes of Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Anita Vidovic

    2014-06-01

    Full Text Available Protein oxidation is known to compromise vital cellular functions. Therefore, invading pathogenic bacteria must resist damage inflicted by host defenses via reactive oxygen species. Using comparative genomics and experimental approaches, we provide multiple lines of evidence that proteins from pathogenic bacteria have acquired resistance to oxidative stress by an increased conformational stability. Representative pathogens exhibited higher survival upon HSP90 inhibition and a less-oxidation-prone proteome. A proteome signature of the 46 pathogenic bacteria encompasses 14 physicochemical features related to increasing protein conformational stability. By purifying ten representative proteins, we demonstrate in vitro that proteins with a pathogen-like signature are more resistant to oxidative stress as a consequence of their increased conformational stability. A compositional signature of the pathogens’ proteomes allowed the design of protein fragments more resilient to both unfolding and carbonylation, validating the relationship between conformational stability and oxidability with implications for synthetic biology and antimicrobial strategies.

  19. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    Science.gov (United States)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-02-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  20. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  1. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  2. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Benjamin F.; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rocha, Paulo R. F. [Instituto de Telecomunicações, Av. Rovisco, Pais, 1, 1049-001 Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Gomes, Henrique L. [Instituto de Telecomunicações, Av. Rovisco, Pais, 1, 1049-001 Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Leeuw, Dago M. de [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2015-11-28

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10{sup 17 }m{sup −2}. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.

  3. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Science.gov (United States)

    Bory, Benjamin F.; Rocha, Paulo R. F.; Gomes, Henrique L.; de Leeuw, Dago M.; Meskers, Stefan C. J.

    2015-11-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 1017 m-2. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.

  4. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress.

    Science.gov (United States)

    Haberzettl, Petra; O'Toole, Timothy E; Bhatnagar, Aruni; Conklin, Daniel J

    2016-12-01

    Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Mice fed control (10-13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. In control diet-fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet-fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O'Toole TE, Bhatnagar A, Conklin DJ. 2016. Exposure to fine

  5. Oxidation resistance of co-deposited Ni-SiC nanocomposite coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ni-6.0%SiC (mass fraction) nanocomposite coating was prepared from a nickel sulfate bath by co-electrodeposition of Ni and SiC nanoparticles in an average size of 30 nm. The oxidation at 1 000 ℃ shows that the Ni-6.0%SiC nanocomposite coating has a superior oxidation resistance compared with the pure Ni film due to the formation of SiO2 oxide particles along grain boundaries,blocking the outward diffusion of Ni and changing the oxidation growth mechanism. The effect of SiC nanoparticles on the oxidation progress was discussed in detail.

  6. High temperature oxidation behavior of AISI 304L stainless steel-Effect of surface working operations

    Science.gov (United States)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  7. Ultra High Molecular Weight Polyethylene/Graphene Oxide Nanocomposites: Thermal, Mechanical and Wettability Characterisation

    OpenAIRE

    2015-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is the material most commonly used among hard-on-soft bearings in artificial joints. However, the eventual failure of joint implants has been directly related to the wear and oxidation resistance of UHMWPE. The development of novel materials with improved wear and oxidative characteristics has generated great interest in the orthopaedic community and numerous carbon nanostructures have been investigated in the last years due to their excellent...

  8. Isothermal and cyclic oxidation resistance of pack siliconized Mo-Si-B alloy

    Science.gov (United States)

    Majumdar, Sanjib

    2017-08-01

    Oxidation behaviour of MoSi2 coated Mo-9Si-8B-0.75Y (at.%) alloy has been investigated at three critical temperatures including 750, 900 and 1400 °C in static air. Thermogravimetric analysis (TGA) data indicates a remarkable improvement in the oxidation resistance of the silicide coated alloy in both isothermal and cyclic oxidation tests. The cross-sectional scanning electron microscopy and energy dispersive spectroscopic analysis reveal the occurrence of internal oxidation particularly at the crack fronts formed in the outer MoSi2 layer during thermal cycling. The dominant oxidation mechanisms at 750-900 °C and 1400 °C are identified. Development of MoB inner layer further improves the oxidation resistance of the silicide coated alloy.

  9. Insulin resistance in H pylori infection and its association with oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Mehmet Aslan; Mehmet Horoz; Yasar Nazligul; Cengiz Bolukbas; F Fusun Bolukbas; Sahbettin Selek; Hakim Celik; Ozcan Erel

    2006-01-01

    AIM:To determine the insulin resistance (IR) and oxidative status in H pylori infection and to find out if there is any relationship between these parameters and insulin resistance.METHODS:Fifty-five H pylori positive and 48 H pylori negative patients were enrolled. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Serum total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined in all subjects.RESULTS:The total antioxidant capacity was significantly lower in H pylori positive group than in H pylori negative group (1.36 ± 0.33 and 1.70 ± 0.50,respectively; P < 0.001), while the total oxidant status and oxidative stress index were significantly higher in H pylori positive group than in H pylori negative group (6.79 ± 3.40 and 5.08 ± 0.95, and 5.42 ± 3.40 and 3.10± 0.92, respectively; P < 0.001). Insulin resistance was significantly higher in H pylori positive group than in H pylori negative group (6.92 ± 3.86 and 3.61 ± 1.67, respectively; P < 0.001). Insulin resistance was found to be significantly correlated with total antioxidant capacity (r= -0.251, P < 0.05), total oxidant status (r = 0.365, P <0.05), and oxidative stress index (r = 0.267, P < 0.05).CONCLUSION: Insulin resistance seems to be associated with increased oxidative stress in H pylori infection.Further studies are needed to clarify the mechanisms underlying this association and elucidate the effect of adding antioxidant vitamins to H pylori eradication therapy on insulin resistance during H pylori infection.

  10. Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti Si N coatings

    Science.gov (United States)

    Zhang, C. H.; Lu, X. C.; Wang, H.; Luo, J. B.; Shen, Y. G.; Li, K. Y.

    2006-07-01

    Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.

  11. Effects of ovariectomy and resistance training on oxidative stress markers in the rat liver

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cury Rodrigues

    2013-09-01

    Full Text Available OBJECTIVE: The objective of this study was to assess the effects of resistance training on oxidative stress markers in the livers of ovariectomized rats. METHOD: Adult Sprague-Dawley rats were divided into the following four groups (n = 8 per group: sham-operated sedentary, ovariectomized sedentary, sham-operated resistance training, and ovariectomized resistance training. During the resistance training period, the animals climbed a 1.1-m vertical ladder with weights attached to their tails; the sessions were conducted 3 times per week, with 4-9 climbs and 8-12 dynamic movements per climb. The oxidative stress was assessed by measuring the levels of reduced glutathione and oxidized glutathione, the enzymatic activity of catalase and superoxide dismutase, lipid peroxidation, vitamin E concentrations, and the gene expression of glutathione peroxidase. RESULTS: The results showed significant reductions in the reduced glutathione/oxidized glutathione ratio (4.11±0.65 nmol/g tec, vitamin E concentration (55.36±11.11 nmol/g, and gene expression of glutathione peroxidase (0.49±0.16 arbitrary units in the livers of ovariectomized rats compared with the livers of unovariectomized animals (5.71±0.71 nmol/g tec, 100.14±10.99 nmol/g, and 1.09±0.54 arbitrary units, respectively. Moreover, resistance training for 10 weeks was not able to reduce the oxidative stress in the livers of ovariectomized rats and induced negative changes in the hepatic anti-oxidative/oxidative balance. CONCLUSION: Our findings indicate that the resistance training program used in this study was not able to attenuate the hepatic oxidative damage caused by ovariectomy and increased the hepatic oxidative stress.

  12. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  13. Cold Resistant Properties of High Modulus Polyurethane

    Institute of Scientific and Technical Information of China (English)

    LI Minghua; XIA Ru; ZHANG Yuchuan; HUANG Zhifang; YAO Heping; HUANG Wanli; WANG Yifeng; HUI Jianqiang; WU Chunyu

    2009-01-01

    Six kinds of polyurethane(PU)elastomers were prepared based on different poly-esters,polyethers and chain extenders.The structure,mechanical properties and cold resistant proper-ties of PU were systematically investigated by FTIR,XRD,DMTA,universal testing machine and flex ductility machine.The results show that T_g of soft segment is the main factor of the cold resistant properties of polyurethane elastomer.Compared with the same relative molecular mass of the polyester and the polyether,the polyether flexibility is better,the glass transition temperature(T_g)is lower and the cold resistant properties is remarkable,for example the cold resistant properties of PU based on poly(tetramethylene glycol),1,4-BG and MDI achieves the fifth level.The physics performances of polyurethane elastomers,such as breakdown strength,Young's modulus and the cold resistant prop-erties,are all superior.

  14. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  15. High Performance Nitrous Oxide Analyzer for Atmospheric Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  16. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  17. Oxidation resistance of the nanostructured YSZ coating on the IN-738 superalloy

    Directory of Open Access Journals (Sweden)

    Ahmad Keyvani

    2014-12-01

    Full Text Available Conventional and nanostructured YSZ coatings were deposited on the IN-738 Ni super alloy by the atmospheric plasma spray technique. The oxidation was measured at 1100°C in an atmospheric electrical furnace. According to the experimental results the nanostructured coatings showed a better oxidation resistance than the conventional ones. The improved oxidation resistance of the nanocoating could be explained by the change in structure to a dense and more packed structure in this coating. The mechanical properties of the coatings were tested using the thermal cyclic, nanoindentation and bond strength tests, during which the nanostructured YSZ coating showed a better performance by structural stability.

  18. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  19. Differential oxidative metabolism and 5-ketoclomazone accumulation are involved in Echinochloa phyllopogon resistance to clomazone.

    Science.gov (United States)

    Yasuor, Hagai; Zou, Wei; Tolstikov, Vladimir V; Tjeerdema, Ronald S; Fischer, Albert J

    2010-05-01

    Echinochloa phyllopogon (late watergrass) is a major weed of California rice (Oryza sativa) that has evolved cytochrome P450-mediated metabolic resistance to different herbicides with multiple modes of action. E. phyllopogon populations from Sacramento Valley rice fields have also recently shown resistance to the herbicide clomazone. Clomazone is a proherbicide that must be metabolized to 5-ketoclomazone, which is the active compound that inhibits deoxyxylulose 5-phosphate synthase, a key enzyme of the nonmevalonate isoprenoid pathway. This study evaluated the differential clomazone metabolism within strains of the same species to investigate whether enhanced oxidative metabolism also confers clomazone resistance in E. phyllopogon. Using reverse-phase liquid chromatography-tandem mass spectrometry techniques in the multireaction monitoring mode, we elucidated that oxidative biotransformations are involved as a mechanism of clomazone resistance in this species. E. phyllopogon plants hydroxylated mostly the isoxazolidinone ring of clomazone, and clomazone hydroxylation activity was greater in resistant than in susceptible plants. The major clomazone metabolites resulted from monohydroxylation and dihydroxylation of the isoxazolidinone ring. Resistant plants accumulated 6- to 12-fold more of the monohydroxylated metabolite than susceptible plants, while susceptible plants accumulated 2.5-fold more of the phytotoxic metabolite of clomazone, 5-ketoclomazone. Our results demonstrate that oxidative metabolism endows multiple-herbicide-resistant E. phyllopogon with cross-resistance to clomazone through enhanced herbicide degradation and lower accumulation of the toxic metabolite in resistant versus susceptible plants.

  20. Improvement of oxidation resistance of 9% Cr steel for A-USC by pre-oxidation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Hiroshi; Muneki, S.; Hara, T.; Abe, F. [National Inst. for Materials Science (Japan); Kutsumi, H. [New Energy and Industrial Technology Development Organization (Japan)

    2008-07-01

    The thin scale of Cr-rich oxides formed on the surface of 9Cr steel by pre-oxidation treatment in Ar gas is confirmed to be stable during subsequent oxidation test in steam at 650 C for a long time exceeding 20,000 h. No evidence was found for the breakaway in the weight gain curves for the specimens with pre-oxidation treatment. The long-term oxidation test is being continued. The characterization of the thin scale of Cr-rich oxides, less than 0.1{mu}min thickness, is carried out by means of STEM-EDS. The major component of the thin scale is identified as Cr{sub 2}O{sub 3} containing small amount of Fe. The Mn-rich layer, identified as (Fe, Cr, Mn){sub 3}O{sub 4}, is located close to the scale/steam interface. The enrichment of Si is observed along the interface between the Cr{sub 2}O{sub 3} scale and alloy matrix. The improvement of oxidation resistance of the 9Cr steel in steam at 650 C by the pre-oxidation treatment correlates with the formation of protective Cr{sub 2}O{sub 3}-rich scale during the pre-oxidation treatment, which is enhanced by the enrichment of Si along the interface between the scale and alloy matrix. (orig.)

  1. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults

    DEFF Research Database (Denmark)

    Solomon, Thomas; Sistrun, Sakita N; Krishnan, Raj K

    2008-01-01

    Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes...... oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic...... training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake...

  2. Effects of ginger (Zingiber officinale Roscoe supplementation and resistance training on some blood oxidative stress markers in obese men

    Directory of Open Access Journals (Sweden)

    Sirvan Atashak

    2014-06-01

    Full Text Available Excessive adiposity increases oxidative stress, and thus may play a critical role in the pathogenesis and development of obesity-associated comorbidities, in particular atherosclerosis, diabetes mellitus, and arterial hypertension. Improved body composition, through exercise training and diet, may therefore significantly contribute to a reduction in oxidative stress. Further, some foods high in antioxidants (e.g., ginger provide additional defense against oxidation. This study was conducted to assess the effects of ginger (Zingiber officinale Roscoe supplementation and progressive resistance training (PRT on some nonenzymatic blood [total antioxidant capacity (TAC and malondialdehyde (MDA] oxidative stress markers in obese men. Thirty-two obese males (body mass index ≥30, aged 18–30 years were randomized to one of the following four groups: a placebo (PL; n = 8; resistance training plus placebo (RTPL; n = 8; resistance training plus ginger supplementation (RTGI; n = 8; and ginger supplementation only (GI; n = 8. Participants in the RTGI and GI groups consumed 1 g ginger/day for 10 weeks. At the same time, PRT was undertaken by the RTPL and RTGI groups three times/week. Resting blood samples were collected at baseline and at 10 weeks, and analyzed for plasma nonenzymatic TAC and MDA concentration. After the 10-week intervention, we observed significant training × ginger supplementation × resistance training interaction for TAC (p = 0.043 and significant interactions for training × resistance training and training × ginger supplementation for MDA levels (p < 0.05. The results of this study show that 10 weeks of either ginger supplementation or PRT protects against oxidative stress and therefore both of these interventions can be beneficial for obese individuals; however, when combined, the effects cancel each other out.

  3. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films.

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-05

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  4. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  5. Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eunsung; Murray, P. Terrence; Subramanyam, Guru; Malik, Hans K.; Schwartz, Kenneth L. [Research Institute, University of Dayton, Dayton, OH 45469-0170 (United States); Research Institute, University of Dayton, Dayton, OH 45469-0170, USA and Graduate Materials Engineering, University of Dayton, Dayton, OH 45469-0240 (United States); Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469-0232 (United States); Northrop Grumman Electronic Systems, Linthicum, MD 21090 (United States)

    2012-07-30

    Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

  6. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance

    Science.gov (United States)

    Bindschedler, Laurence V.; Dewdney, Julia; Blee, Kris A.; Stone, Julie M.; Asai, Tsuneaki; Plotnikov, Julia; Denoux, Carine; Hayes, Tezni; Gerrish, Chris; Davies, Dewi R.; Ausubel, Frederick M.; Bolwell, G. Paul

    2011-01-01

    Summary The oxidative burst is an early response to pathogen attack leading to the production of reactive oxygen species (ROS) including hydrogen peroxide. Two major mechanisms involving either NADPH oxidases or peroxidases that may exist singly or in combination in different plant species have been proposed for the generation of ROS. We identified an Arabidopsis thaliana azide-sensitive but diphenylene iodonium-insensitive apoplastic oxidative burst that generates H2O2 in response to a Fusarium oxysporum cell-wall preparation. Transgenic Arabidopsis plants expressing an anti-sense cDNA encoding a type III peroxidase, French bean peroxidase type 1 (FBP1) exhibited an impaired oxidative burst and were more susceptible than wild-type plants to both fungal and bacterial pathogens. Transcriptional profiling and RT-PCR analysis showed that the anti-sense (FBP1) transgenic plants had reduced levels of specific peroxidase-encoding mRNAs, including mRNAs corresponding to Arabidopsis genes At3g49120 (AtPCb) and At3g49110 (AtPCa) that encode two class III peroxidases with a high degree of homology to FBP1. These data indicate that peroxidases play a significant role in generating H2O2 during the Arabidopsis defense response and in conferring resistance to a wide range of pathogens. PMID:16889645

  7. OXIDATION RESISTANCE OF NANOCRYSTAL ODS ALUMINIDE COATINGS PRODUCED BY PACK ALUMINIZING PROCESS ASSISTED BY BALL PEENING

    Institute of Scientific and Technical Information of China (English)

    Z.L. Zhan; Y.D. He; W. Gao

    2006-01-01

    Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pack aluminizing process assisted by ball peening. Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time.The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction )methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.

  8. High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering

    Science.gov (United States)

    Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.

    2017-02-01

    Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.

  9. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  10. MoSi2 oxidation resistance coatings for Mo5Si3/MoSi2 composites

    Institute of Scientific and Technical Information of China (English)

    YAN Jianhui; XU Hongmei; ZHANG Houan; TANG Siwen

    2009-01-01

    In order to improve the oxidation resistance properties of 30 at.% Mo5Si3/MoSi2 composite at high temperature in air, a molybdenum disili-tide coating was prepared on its surface by a molten salt technology. XRD and SEM analysis showed that only tetragonal MoSi2 phase ex-isted in the coating after being siliconized for 5 h at 900℃. The oxidation film formed on the uncoated sample was not dense, so that oxygen diffused easily through it. The volatilization of MoO3 resulted in the oxidation film separating from the substrate. The MoSi2coating was proved to be an effective method to prevent 30 at.% MosSi3/MoSi2 composites from being oxidized at 1200℃. A dense glassy SiO2 film was formed on the MoSi2 coating surface, which acted as a barrier layer for the diffusion of oxygen atoms to the substrate. The 30at.% Mo5Si3/MoSi2 composites with a MoSi2 coating showed much better oxidation resistance at high temperature.

  11. Synthesis of biolubricants with high viscosity and high oxidation stability

    Directory of Open Access Journals (Sweden)

    Bondioli Paolo

    2003-03-01

    Full Text Available The synthetic procedure as well as the main properties of obtained products of a group of complex esters are reported here. Complex esters were prepared using low molecular weight saturated fatty acids, trimethylolpropane and a dicarboxylic acid as a feedstock. By means of this procedure it is possible to obtain products having high viscosity and very good lubricating, thermal and cold properties. Thanks to the absence of unsaturations into the ester also the oxidation property is good, opening several application perspective for these products which are partly prepared from renewable source.

  12. Thioredoxin Ch1 of Chlamydomonas reinhardtii displays an unusual resistance toward one-electron oxidation.

    Science.gov (United States)

    Sicard-Roselli, Cécile; Lemaire, Stéphane; Jacquot, Jean-Pierre; Favaudon, Vincent; Marchand, Christophe; Houée-Levin, Chantal

    2004-09-01

    To test thioredoxin resistance to oxidizing free radicals, we have studied the one-electron oxidation of wild-type thioredoxin and of two forms with the point mutations D30A and W35A, using azide radicals generated by gamma-ray or pulse radiolysis. The oxidation patterns of wild-type thioredoxin and D30A are similar. In these forms, Trp35 is the primary target and is 'repaired' by one-electron reduction; first by intramolecular electron transfer from tyrosine, and then from other residues. Conversely, during oxidation of W35A, Trp13 is poorly reactive. For all proteins, activity is conserved showing an unusual resistance toward oxidation.

  13. Evaluation of snap bean cultivars for resistance to ambient oxidants in field plots and to ozone in chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meiners, J.P.; Heggestad, H.E.

    1979-04-01

    Most cultivars of snap beans (Phaseolus vulgaris) currently available in the US were evaluated for resistance to oxidant (ozone) air pollution in field plots at Beltsville and Salisbury, Maryland, in one or more of the past 8 years. Of 387 cultivars and breeding lines tested, 270 were classified resistant, 86 intermediate, and 31 susceptible. Responses of seedlings with one expanded trifoliate leaf to high concentrations of ozone revealed statistically significant differences among cultivars. The correlation between leaf injury induced by ozone on seedlings and ozone injury on the same cultivars as adult field-grown plants was low (r = .20) but significant. 13 references, 3 tables.

  14. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  15. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  16. Oxidation resistant coatings for CoSb3

    Science.gov (United States)

    Zawadzka, K.; Godlewska, E.; Mars, K.; Nocun, M.

    2012-06-01

    Doped cobalt antimonides, are used as components of thermoelectric devices at temperatures not exceeding 450 °C because of poor thermal and chemical stability. In absence of oxygen they degrade by sublimation of antimony, while in air they easily oxidize to form volatile antimony oxides and non-volatile thick double oxide scales [1]. In both cases, protective coatings are indispensable to ensure safe performance of thermoelectric devices over extended times. The most promising solution, reported so far, is a thick aerogel coating, which practically stops antimony loss by sublimation. The assessment of coating effectiveness is generally based on thermogravimetric tests in vacuum, so permeability of oxygen and protection from oxidation cannot be evaluated. The paper presents investigations on the development of protective coatings, which would prevent oxidation of CoSb3. Two types of coatings were applied: magnetron sputtered Cr-Si thin layers [2] and thick enamel layers. Testing involved interrupted oxidation in air for 20-80 h at 500 °C and 600 °C. The Cr-Si thin layers appeared oxygen-tight at 500 °C while the enamel layers - even at 600 °C.

  17. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber

    2012-01-01

    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  18. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  19. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  20. Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways.

    Science.gov (United States)

    Roulin, A; Almasi, B; Meichtry-Stier, K S; Jenni, L

    2011-10-01

    The control mechanisms and information content of melanin-based colourations are still debated among evolutionary biologists. Recent hypotheses contend that molecules involved in melanogenesis alter other physiological processes, thereby generating covariation between melanin-based colouration and other phenotypic attributes. Interestingly, several molecules such as agouti and glutathione that trigger the production of reddish-brown pheomelanin have an inhibitory effect on the production of black/grey eumelanin, whereas other hormones, such as melanocortins, have the opposite effect. We therefore propose the hypothesis that phenotypic traits positively correlated with the degree of eumelanin-based colouration may be negatively correlated with the degree of pheomelanin-based colouration, or vice versa. Given the role played by the melanocortin system and glutathione on melanogenesis and resistance to oxidative stress, we examined the prediction that resistance to oxidative stress is positively correlated with the degree of black colouration but negatively with the degree of reddish colouration. Using the barn owl (Tyto alba) as a model organism, we swapped eggs between randomly chosen nests to allocate genotypes randomly among environments and then we measured resistance to oxidative stress using the KRL assay in nestlings raised by foster parents. As predicted, the degree of black and reddish pigmentations was positively and negatively correlated, respectively, with resistance to oxidative stress. Our results reveal that eumelanin- and pheomelanin-based colourations can be redundant signals of resistance to oxidative stress. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. EFFECTS OF DIFFERENT RESISTANCE EXERCISE PROTOCOLS ON NITRIC OXIDE, LIPID PEROXIDATION AND CREATINE KINASE ACTIVITY IN SEDENTARY MALES

    Directory of Open Access Journals (Sweden)

    Nevin Atalay Güzel

    2007-12-01

    Full Text Available The purpose of this study was to determine the changes of oxidative response and exercise-induced muscle damage after two different resistance exercise protocols. Whether training with low or high intensity resistance programs cause alterations in the activities of lipid peroxidation, nitric oxide (NOx, and creatine kinase (CK activity in human plasma was investigated. Twenty untrained males participated into this study. Ten of the subjects performed high intensity resistance (HR exercise circuit and the rest of them performed low intensity resistance (LR exercise circuit of 4 different exercises as a single bout. Venous blood samples were drawn pre-exercise, immediately after the exercise, and at the 6th, 24th, 48th and the72nd hours of post-exercise. Samples were analyzed for markers of muscle damage (CK, lipid peroxidation (MDA and NOx. NOx production increased in HR group (p < 0.05. The MDA response to the two different resistance exercise protocol in this study caused a significant increase between pre and post-exercise values in both groups (p < 0.05. Also, there was a significant difference in the MDA level between the two groups in post-exercise values (p < 0.05 and higher values were observed in HR group. CK activities showed a significant increase in all post exercise values (p < 0.05 of both groups but there were no difference between HR and LR groups. These findings support that high intensity resistance exercise induces free radical production more than low intensity resistance exercise program

  2. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMIHomeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  3. Stable high conductivity ceria/bismuth oxide bilayered electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, E.D.; Jayaweera, P.; Jiang, N.; Lowe, D.M.; Pound, B.G. [SRI international, Menlo Park, CA (United States). Materials Research Center

    1997-01-01

    The authors have developed a high conductivity bilayered ceria/bismuth oxide anolyte/electrolyte that uses the Po{sub 2} gradient to obtain stability at the anolyte-electrolyte interface and reduced electronic conduction due to the electrolyte region. Results in terms of solid oxide fuel cell (SOFC) performance and stability are presented. These results include a 90 to 160 mV increase in open-circuit potential, depending on temperature, with the bilayered structure as compared to SOFCs fabricated from a single ceria layer. An open-circuit potential of >1.0 V was obtained at 500 C with the bilayered structure. This increase in open-circuit potential is obtained without any measurable increase in cell resistance and is stable for over 1,400 h of testing, under both open-circuit and maximum power conditions. Moreover, SOFCs fabricated from the bilayered structure result in a 33% greater power density as compared to cells with a single ceria electrolyte layer.

  4. Extraction of ULSI Interconnect Resistance at High Frequencies

    Institute of Scientific and Technical Information of China (English)

    XIAO Xia; JIAN Duanduan; YAO Suying; ZHANG Shengcai; RUAN Gang

    2005-01-01

    Correct extraction of the ultra-large-scale integrated (ULSI) interconnect components at hight frequencies is very important for evaluating electrical performances of high-speed ULSI circuits.In this paper, the extraction of the interconnect resistance at high frequencies is derived from the Ohm′s law and verified by the software FastHenry.The results are also compared with those of another resistance formula originated from the effective area of the current flowing. The applicability of these two formulae is discussed.The influence of the interconnect geometry on the resistance at high frequencies is studied.The computation indicates that the effect of frequency on the resistance is weak when the skin depth is larger than half of the short side of the rectangular interconnect cross section.With further increase of frequency, the resistance increases obviously. Results imply that conductor with a square cross section exhibits the largest resistance for rectangular conductors of constant cross section area.

  5. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    Science.gov (United States)

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet

    2017-03-01

    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  6. Heritable oxidative phosphorylation differences in a pollutant resistant Fundulus heteroclitus population

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiao, E-mail: xdu@rsmas.miami.edu [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Crawford, Douglas L. [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Nacci, Diane E. [Population Ecology Branch, Atlantic Ecology Division, Office of Research and Development, U.S. Environmental Protection Agency, 27 Tarzwell Dr., Narragansett, RI 02882 (United States); Oleksiak, Marjorie F., E-mail: moleksiak@rsmas.miami.edu [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States)

    2016-08-15

    Highlights: • Laboratory reared fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Laboratory reared F3 fish from polluted population displayed higher routine metabolism and complex II activity but lower complex I enzyme activity. • Enhanced OxPhos metabolism and toxicity resistance were retained in laboratory reared F3 fish from the polluted population. - Abstract: Populations can adapt to stress including recent anthropogenic pollution. Our published data suggests heritable differences in hepatocyte oxidative phosphorylation (OxPhos) metabolism in field-caught killifish (Fundulus heteroclitus) from the highly polluted Elizabeth River, VA, USA, relative to fish from a nearby, relatively unpolluted reference site in King’s Creek VA. Consistent with other studies showing that Elizabeth River killifish are resistant to some of the toxic effects of certain contaminants, OxPhos measurements in hepatocytes from field-caught King’s Creek but not field-caught Elizabeth River killifish were altered by acute benzo [a] pyrene exposures. To more definitively test whether the enhanced OxPhos metabolism and toxicity resistance are heritable, we measured OxPhos metabolism in a laboratory-reared F3 generation from the Elizabeth River population versus a laboratory-reared F1 generation from the King’s Creek population and compared these results to previous data from the field-caught fish. The F3 Elizabeth River fish compared to F1 King’s Creek fish had significantly higher State 3 respiration (routine metabolism) and complex II activity, and significantly lower complex I activity. The consistently higher routine metabolism in the F3 and field-caught Elizabeth River fish versus F1 and field-caught King’s Creek fish implies a heritable change in OxPhos function. The observation that LEAK, E-State, Complex I and Complex II were different in laboratory bred

  7. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Science.gov (United States)

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  8. Oxidation Resistance Analysis Of Metallic (FeCrAl Foil Catalytic Converter Developed By Ultrasonic Approach

    Directory of Open Access Journals (Sweden)

    Leman A.M

    2016-01-01

    Full Text Available Mobile sources contribute about 44% of outdoor toxic emissions, approximately 50% of cancer risk and at around 74% of noncancer risk health problems. Catalytic converter is quite needed in removing the pollutant and in preventing a health problem. The main problem in the catalytic converter is low oxidation resistance when operated at high temperature. Therefore, this paper aimed to develop catalytic converter material in high-temperature operation at around 1100 °C using FeCrAl foils as a metallic catalytic converter which coated by γ-Al2O3. This research is conducted using 3 various techniques such as ultrasonic bath for 3, 4, and 5 hours, Nickel (Ni electroplating for 30, 45 and 60 minutes and the combination of ultrasonic bath and electroplating technique. Oxidation resistance analysis was conducted using tube furnace under argon gas for 60 hours in 3 cycles. Mass changes analysis of treated samples is showed by degradation mass. Lowest mass change of by ultrasonic bath samples is 0.3 wt%, for a combination of ultrasonic and electroplating samples is 0.3 wt% shown by UT 3 hours as well as 0.6 shown by EP 30 min. Parabolic rate constant is obtained by the time calculation based on the mass change of treated and untreated samples. It shown that UB 3 h is lowest parabolic rate constant of 2.258 × 10-20 g2 cm-4s -1 and UB 5 h is 1.13 × 10-20 g2 cm-4s -1. Lowest mass gain and lowest parabolic rate constant are become an indicator that the samples and that technique are recommended to fabricate the catalytic converter.

  9. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼1012 inch−2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  10. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  11. Influence of a Protective Coating Slurry on Enhancing the Descaling Ability and Oxidation Resistance of 9%Nickel Steel

    Institute of Scientific and Technical Information of China (English)

    HE Ying; WEI Lianqi; ZHANG Xiaomeng; ZHOU Xun; WANG Shuhua; SHAN Xin; YE Shufeng

    2014-01-01

    A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1%and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form MgFe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.

  12. Does high serum uric acid level cause aspirin resistance?

    Science.gov (United States)

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage.

  13. High level resistance to aminoglycosides in enterococci from Riyadh.

    Science.gov (United States)

    Al-Ballaa, S R; Qadri, S M; Al-Ballaa, S R; Kambal, A M; Saldin, H; Al-Qatary, K

    1994-07-01

    Enterococci with high level of aminoglycosides resistance are being reported from different parts of the world with increasing frequency. Treatment of infections caused by such isolates is associated with a high incidence of failure or relapse. This is attributed to the loss of the synergetic effect of aminoglycosides and cell wall active agents against isolates exhibiting this type of resistance. To determine the prevalence of enterococci with high level resistance to aminoglycosides in Riyadh, Saudi Arabia, 241 distinct clinical isolates were examined by disk diffusion method using high content aminoglycosides disks. Seventy-four isolates (30%) were resistant to one or more of the aminoglycosides tested. The most common pattern of resistance was that to streptomycin and kanamycin. Of the 241 isolates tested, 29 (12%) were resistant to high levels of gentamicin, 35 (15%) to tobramycin, 65 (27%) to kanamycin and 53 (22%) to streptomycin. The highest rate of resistance to a high level of gentamicin was found among enterococcal blood isolates (30%). Eighteen of the isolates were identified as Enterococcus faecium, 13 (72%) of these showed high level resistance to two or more of the aminoglycosides tested.

  14. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    Science.gov (United States)

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  15. Core-multishell globular oxidation in a new TiAlNbCr alloy at high temperatures.

    Science.gov (United States)

    Tang, S Q; Qu, S J; Feng, A H; Feng, C; Shen, J; Chen, D L

    2017-06-14

    Oxidation resistance is one of key properties of titanium aluminide (TiAl) based alloys for high-temperature applications such as in advanced aero-engines and gas turbines. A new TiAlNbCr alloy with micro-addition of yttrium has been developed, but its oxidation behavior is unknown. To provide some fundamental insights, high-temperature oxidation characteristics of this alloy are examined via scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, and X-ray diffraction. We show that distinctive core-multishell globular oxidation and "daisy" flower-like oxidation occur exclusively around Y2O3 particles. Globular oxides exhibit multi-layered Y2O3/TiO2/Al2O3-rich/TiO2-rich shell structures from the inside to outside. Flower-like inner oxides consist of core Y2O3 particles surrounded by divergent Al2O3 and oxygen-rich α2-Ti3Al in the near-scale substrate. As the scale-substrate interface moves inward, the inner oxide structures suffer deeper oxidation and transform into the globular oxide structures. Our results demonstrate that the unique oxidation characteristics and the understanding of formation mechanisms pave the way for the exploration and development of advanced oxidation-resistant TiAl-based materials.

  16. Pneumococcal gene complex involved in resistance to extracellular oxidative stress.

    Science.gov (United States)

    Andisi, Vahid Farshchi; Hinojosa, Cecilia A; de Jong, Anne; Kuipers, Oscar P; Orihuela, Carlos J; Bijlsma, Jetta J E

    2012-03-01

    Streptococcus pneumoniae is a gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H(2)O(2)) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

  17. Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    NARCIS (Netherlands)

    Andisi, Vahid Farshchi; Hinojosa, Cecilia A.; de Jong, Anne; Kuipers, Oscar P.; Orihuela, Carlos J.; Bijlsma, Jetta J. E.; Weiser, J.N.

    2012-01-01

    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogeno

  18. High Temperature Oxidation and Microstructural Evolution of Modified MCrAlY Coatings

    Science.gov (United States)

    Pulci, Giovanni; Tirillò, Jacopo; Marra, Francesco; Sarasini, Fabrizio; Bellucci, Alessandra; Valente, Teodoro; Bartuli, Cecilia

    2013-11-01

    Thermal sprayed MCrAlY coatings are widely used as a bond coat in thermal barrier systems to protect the substrate from corrosion and high temperature oxidation and to improve the compatibility between the ceramic top coat and metallic substrate. In this paper, the high temperature oxidation resistance of MCrAlY coatings with modified compositions was evaluated; in particular, the effect of the addition of reactive and refractory elements (Ta, Re, Si, and Hf) was investigated. MCrAlY coatings were obtained by high velocity oxygen fuel spray and vacuum plasma spray techniques; samples were exposed to air at 1423 K (1150 °C) and the oxidation kinetics were evaluated by measuring the thickness of the thermally grown oxide (TGO) scale at several exposure times. Experimental data confirmed that the oxidation resistance of MCrAlY coatings is strictly related to the amount of the reactive and refractory elements in the starting powders and that a thorough understanding of the microstructural modifications taking place during oxidation is essential for controlling TGO growth and thermal barriers' durability.

  19. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings.

    Science.gov (United States)

    Reinitz, Steven D; Currier, Barbara H; Levine, Rayna A; Van Citters, Douglas W

    2014-05-01

    Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties.

  20. Effect of welding thermal cycles on the oxidation resistance of 9 wt.% Cr heat resistant steels in 550 °C lead-bismuth eutectic

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2016-12-01

    The oxidation resistance for the heat affected zone (HAZ) and base metal of 9 wt.% Cr heat resistant steel in 550 °C lead-bismuth eutectic has been investigated. The oxide film presents a three-layer structure. The outer layer is Fe3O4 while the inner layer is mainly FeCr2O4. The oxide film thickness becomes thinner and thinner in turns of the coarse grained HAZ, fine grained HAZ, inter-critical HAZ and base metal. The oxygen diffusion is the rate determining step during the oxidation process. The Cr-enriched M23C6 plays a significant role on the oxidation rate at the initial stage of oxidation. Increasing the carbon content is a useful method to improve the oxidation resistance.

  1. Reduction of Resistivity in Cu Thin Films by Partial Oxidation: Microstructural Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Prater, W

    2003-10-14

    We report the electrical resistance and microstructure of sputter deposited copper thin films grown in an oxygen containing ion-beam sputtering atmosphere. For films thinner than 5 nm, 2-10% oxygen causes a decrease in film resistance, while for thicker films there is a monotonic increase in resistivity. X-ray reflectivity measurements show significantly smoother films for these oxygen flow rates. X-ray diffraction shows that the oxygen doping causes a refinement of the copper grain size and the formation of cuprous oxide. We suggest that the formation of cuprous oxide limits copper grain growth, which causes smoother interfaces, and thus reduces resistivity by increasing specular scattering of electrons at interfaces.

  2. Development of Resistance-Based pH Sensor Using Zinc Oxide Nanorods.

    Science.gov (United States)

    Copal, Vernalyn C; Tuico, Anthony R; Mendoza, Jamie P; Ferrolino, John Paul R; Vergara, Christopher Jude T; Salvador, Arnel A; Estacio, Elmer S; Somintac, Armando S

    2016-06-01

    The resistance-based pH sensing capability of ZnO nanorods was presented in this study. Interdigitated finger structures of nickel/gold (Ni/Au) electrodes were fabricated on the substrates prior to the sensing material. The effect of varying electrode widths was also considered. Zinc oxide (ZnO) film, as seed layer, was deposited via spray pyrolysis, and zinc oxide nanorods (ZnO-NRs) were grown via low temperature chemical bath deposition. Resistance measurements have shown plausible difference in varying pH of a test solution. The sensor was found reasonably more appreciable in sensing acidic solutions. The electrode widths were also found to relay substantial consequence in the resistance-based sensor. The least electrode-width design has shown a significant increase in the sensitivity of the sensor, with higher initial resistance and greater range of response.

  3. Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Jingwu [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Kong, Yi, E-mail: yikong@csu.edu.cn [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Chen, Li [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Du, Yong [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China)

    2016-08-15

    Highlights: • The lowest bonding energy sequence for dimers in the vacuum: Zr−O < Ti−O < Al−O. • The lowest bonding energy sequence for oxygen above the surface: Ti−O < Zr−O < Al−O. • At 300 K, the addition of Zr benefitting the formation of vacancy and TiO{sub 2}. • At 1123 K, the addition of Zr leading to a more stable surface. • Our findings explain that the oxidation resistance of TiAlZrN superior to TiAlN at 1123 K as well as TiAlZrN at 300 K. - Abstract: It was demonstrated experimentally that doping Zr into TiAlN coatings at room temperature will detriment its oxidation resistance. On the other hand, there are evidences that doping Zr into TiAlN at high temperature will improve coating's oxidation resistance. In the present work, we address the effect of Zr on the oxidation resistance of TiAlN by means of ab initio molecular dynamics simulations. The TiAlN and TiAlZrN (1 Zr atom replacing 1 Ti atom) surfaces covered with 4 oxygen atoms at 300 K and 1123 K were simulated. Based on the analysis of the atomic motion, bond formation after relaxation, and the charge density difference maps we find that at 300 K, the addition of Zr induces escape of Ti atoms from the surface, resulting in formation of surface vacancies and subsequently TiO{sub 2}. Comparison of metal-oxygen dimers in the vacuum and above the TiAlZrN surface further shows that the addition of Zr in the TiAlN surface will change the lowest bonding energy sequence from Zr−O < Ti−O < Al−O in the vacuum to Ti−O < Zr−O < Al−O above the TiAlZrN surface. From Molecular Dynamics simulations at 1123 K, it is find that no Ti vacancies were generated in the surface. Moreover, less charge is transferred from metal to N atoms and the bond lengths between Ti and O atoms become shorter at 1123 K as compared with 300 K, suggesting that the addition of Zr atom promotes the interaction of Ti and O at TiAlZrN surface at 1123 K, leading to a more stable surface. Our simulation

  4. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  5. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Science.gov (United States)

    Li, Chien-Yu; Li, Ciao-Yu; Wu, You-Lin; Hsu, Chung-Ping; Lee, Ming-Ching; Houng, Mau-Phon

    2016-12-01

    Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27 μ m . Au nanorod were obtained through electro-deposition under a pulse bias of -1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au-sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  6. Isolation and characterization of a native strain of Aspergillus niger ZRS14 with capability of high resistance to zinc and its supernatant application towards extracellular synthesis of zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Morahem Ashengroph

    2013-01-01

    Full Text Available Introduction: Zinc oxide nanoparticles have quite a few applications in the fields of biology, optics, mechanics, magnetism, energy, hygiene and medicine. Due to serious problems associated with physiochemical synthesis of ZnO nanoparticles, including environmental pollution, complicated and costly processes, there is a growing need to develop a simple biological procedure for synthesis of nanoparticles to achieve the monodisperse-sized particles with a higher purity, low energy consumption and a cleaner environment. We conducted this investigation to screen and isolate native fungi strains capable of high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles using fungal secretions as biological catalysts.Materials and methods: 15 different strains of fungi were isolated from soil samples collected from lead and zinc mines of Angoran-Zanjan using conventional enrichment process and characterized initially based on macroscopic and microscopic characteristics and colony morphology. The intrinsic tolerance of the isolated strains to zinc toxic metal was measured in the synthetic and complex media using the agar dilution method. The supernatants of isolated fungi were incubated with zinc acetate solution in a shaker incubator for 72h; then, the strain that was able to synthesis ZnO nanoparticle was identified. The ZnO nanoparticles formation was investigated by using spectroscopic techniques and microscopic observations.Results: Among the 15 isolated strains, the strain ZRS14 had highest zinc metal tolerance ability and was selected and identified as Aspergillus niger strain ZRS14 (GenBank accession number KF414527 based on morphological and molecular phylogenetic analysis. For synthesis of ZnO nanoparticles by isolated A. niger ZRS14, fungal cell-free filtrate of the strain was collected and incubated in the presence of zinc acetate solution at a final concentration of 250 mg/l zinc metal ion at 28º C for

  7. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800ºC

    Directory of Open Access Journals (Sweden)

    Sebastien eDryepondt

    2015-08-01

    Full Text Available Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all the alloys formed internal Cr-rich nodules, and outer nodules or layers rich in Fe and Ni, but they grew a protective Cr-rich inner layer over time. At 750ºC, the lower alloyed steels such as CF8C-Plus showed large metal losses, but the two new alloys still exhibited a protective oxidation behavior. The 21Cr-15Ni alloy was severely oxidized in locations at 800ºC, but that was not the case for the 22Cr-17.5Ni alloy. Therefore, the two new modified alloys represent a potential operating temperature gain of respectively 50 and 100ºC in aggressive environments compared with the CF8C-Plus alloy.

  8. New creep resistant cast alloys with improved oxidation resistance in water vapor at 650-800°C

    Science.gov (United States)

    Dryepondt, Sebastien; Pint, Bruce; Maziasz, Philip

    2015-08-01

    Cast stainless steel CF8C-Plus (19wt.%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700ºC in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with respectively 21wt%Cr-15wt%Ni and 22wt%Cr-17.5wt%Ni were therefore developed and their long-term oxidation behavior in humid air were compared with the oxidation behavior of five other cast alloys. At 650 and 700ºC, all the alloys formed internal Cr-rich nodules, and outer nodules or layers rich in Fe and Ni, but they grew a protective Cr-rich inner layer over time. At 750ºC, the lower alloyed steels such as CF8C-Plus showed large metal losses, but the two new alloys still exhibited a protective oxidation behavior. The 21Cr-15Ni alloy was severely oxidized in locations at 800ºC, but that was not the case for the 22Cr-17.5Ni alloy. Therefore, the two new modified alloys represent a potential operating temperature gain of respectively 50 and 100ºC in aggressive environments compared with the CF8C-Plus alloy.

  9. Oxidation resistance and microstructure of Ru-capped extreme ultraviolet lithography multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Dai, Z; Nelson, E J; Wall, M A; Alameda, J B; Nguyen, N; Baker, S L; Robinson, J C; Taylor, J S; Aquila, A; Edwards, N V

    2005-06-15

    The oxidation resistance of protective capping layers for extreme ultraviolet lithography (EUVL) multilayers depends on their microstructure. Differently prepared Ru-capping layers, deposited on Mo/Si EUVL multilayers, were investigated to establish their baseline structural, optical, and surface properties in as-deposited state. The same capping layer structures were then tested for their thermal stability and oxidation resistance. The best performing Ru-capping layer structure was analyzed in detail with transmission electron microscopy (TEM). As compared to other Ru capping layers preparations studied here it is the only one that shows grains with preferential orientation. This information is essential for modeling and performance optimization of EUVL multilayers.

  10. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  11. New resistivity for high-mobility quantum Hall conductors

    Science.gov (United States)

    Mceuen, P. L.; Szafer, A.; Richter, C. A.; Alphenaar, B. W.; Jain, J. K.

    1990-01-01

    Measurements showing dramatic nonlocal behavior in the four-terminal resistances of a high-mobility quantum Hall conductor are presented. These measurements illustrate that the standard definition of the resistivity tensor is inappropriate, but they are in excellent agreement with a new model of the conductor that treats the edge and bulk conducting pathways independently. This model uses a single intensive parameter, analogous to a local resistivity for the bulk channel only, to characterize the system.

  12. Impact of graphene and single-layer BN insertion on bipolar resistive switching characteristics in tungsten oxide resistive memory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongmin; Kim, Duhwan; Jo, Yongcheol; Han, Jaeseok; Woo, Hyeonseok [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, Hyungsang, E-mail: hskim@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, K.K., E-mail: kkkim@dongguk.edu [Department of Energy and Materials Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Hong, J.P. [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Im, Hyunsik, E-mail: hyunsik7@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2015-08-31

    The role of the atomic interface in the resistive switching in Al–WO{sub 3}–Al devices is investigated by inserting metallic graphene or insulating hexagonal BN sheet between the top Al electrode and WO{sub 3} film. Clear reversible bipolar-type resistive switching phenomena were observed, regardless of the interface modification. However, endurance and retention properties were affected by the nature of the interface. While the device containing the graphene interface showed significantly improved performance, another device containing the hexagonal BN sheet showed degraded performance. These experimental findings suggest that atomic configuration of the electrode/oxide interface plays a key role in determining the resistive switching characteristics. - Highlights: • We fabricated WO{sub 3}-based non-volatile memories. • Effects of interface on memory performance were studied using graphene and BN. • The graphene-inserted device showed significantly improved performance.

  13. Enhancement of memory windows in Pt/Ta{sub 2}O{sub 5−x}/Ta bipolar resistive switches via a graphene oxide insertion layer

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Je Bock; Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Min Yong [Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); R& D Division, SK Hynix, Kyoungki-do 467-701 (Korea, Republic of); Yoon, Hee Wook; Park, Ho Bum [Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); The Research Institute for Natural Science, Novel Functional Materials and Devices Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-07-31

    The influence of a graphene oxide (GO) layer on Pt/Ta{sub 2}O{sub 5−x}/Ta bipolar resistive switches, in which the GO layer is spin-coated on the Ta bottom electrode before the growth of a Ta{sub 2}O{sub 5−x} switching element was examined. Experimental observations suggest that the insertion of the GO layer is crucial for adjusting the low resistance states without changing the high resistance states. Controlling GO layer thickness represents the variation of the forming voltage and on/off ratio, demonstrating enhanced memory windows. The possible nature of the enhanced switching events is described by adapting the creation of strong conductive filaments driven by a greater resistive GO layer. - Highlights: • Graphene oxide (GO) layer functions as the strong conductive filaments. • The GO insertion layer controls the low resistance states of bipolar switching. • Memory windows of bipolar switching were intentionally manipulated.

  14. Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet*

    Science.gov (United States)

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B.; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G.; Halade, Ganesh V.; Ahuja, Seema S.; Clark, Robert A.; DeFronzo, Ralph A.; Abboud, Hanna E.; El Jamali, Amina

    2015-01-01

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle. PMID:25825489

  15. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands.

    Science.gov (United States)

    Menyo, Matthew S; Hawker, Craig J; Waite, J Herbert

    2013-11-21

    The mussel byssal cuticle employs DOPA-Fe(3+) complexation to provide strong, yet reversible crosslinking. Synthetic constructs employing this design motif based on catechol units are plagued by oxidation-driven degradation of the catechol units and the requirement for highly alkaline pH conditions leading to decreased performance and loss of supramolecular properties. Herein, a platform based on a 4-arm poly(ethylene glycol) hydrogel system is used to explore the utility of DOPA analogues such as the parent catechol and derivatives, 4-nitrocatechol (nCat) and 3-hydroxy-4-pyridinonone (HOPO), as structural crosslinking agents upon complexation with metal ions. HOPO moieties are found to hold particular promise, as robust gelation with Fe(3+) occurs at physiological pH and is found to be largely resistant to oxidative degradation. Gelation is also shown to be triggered by other biorelevant metal ions such as Al(3+), Ga(3+) and Cu(2+) which allows for tuning of the release and dissolution profiles with potential application as injectable delivery systems.

  16. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    2012-01-01

    and resistance in this oxide scale. Slurry coated ferritic alloy samples were oxidized long term in air containing 1% water at 900˚C to measure the oxidation rate of the coated samples. The ferritic alloys included in the study were Crofer 22APU and Sandvik 1C44Mo20. Some complementary experiments were also.......85Sr0.15)CoO3 + 10% Co3O4, LSC, coatings were found to be relatively successful in decreasing the oxidation rate, the chromium content in the outermost part of ii the dense scale, and the electrical resistance in the growing oxide scales when applied onto Crofer 22APU. But, the positive effects...... on Crofer 22APU alloy samples and their failure on Sandvik 1C44Mo20 samples are believed to depend on the manganese access in the coating/alloy system. It appeared that a certain amount of manganese was acquired to stabilize the oxide growth on the alloy samples coated with cobalt rich coatings...

  17. Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird.

    Science.gov (United States)

    Losdat, Sylvain; Helfenstein, Fabrice; Blount, Jonathan D; Marri, Viviana; Maronde, Lea; Richner, Heinz

    2013-02-23

    Stressful conditions experienced by individuals during their early development have long-term consequences on various life-history traits such as survival until first reproduction. Oxidative stress has been shown to affect various fitness-related traits and to influence key evolutionary trade-offs but whether an individual's ability to resist oxidative stress in early life affects its survival has rarely been tested. In the present study, we used four years of data obtained from a free-living great tit population (Parus major; n = 1658 offspring) to test whether pre-fledging resistance to oxidative stress, measured as erythrocyte resistance to oxidative stress and oxidative damage to lipids, predicted fledging success and local recruitment. Fledging success and local recruitment, both major correlates of survival, were primarily influenced by offspring body mass prior to fledging. We found that pre-fledging erythrocyte resistance to oxidative stress predicted fledging success, suggesting that individual resistance to oxidative stress is related to short-term survival. However, local recruitment was not influenced by pre-fledging erythrocyte resistance to oxidative stress or oxidative damage. Our results suggest that an individual ability to resist oxidative stress at the offspring stage predicts short-term survival but does not influence survival later in life.

  18. COMPARISON OF RESISTANCE FOR SEVERAL DISPLACEMENT HIGH PERFORMANCE VEHICLES

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-ping; LI Yun; DONG Zu-shun

    2005-01-01

    According to the linear wave resistance theory, a comparison among the ship resistance for the high speed round bilge ships, the deep "Vee" vessels, the wave-piercing catamarans, and the high speed trimarans was given by using the high-speed round-bilge ship as a benchmark. And the optimal speed range of each ship form was also suggested by using the analysis of the research results.

  19. Self-learning ability realized with a resistive switching device based on a Ni-rich nickel oxide thin film

    Science.gov (United States)

    Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Y. F.; Yu, Q.; Li, P.; Fung, S.

    2011-12-01

    The resistive switching device based on a Ni-rich nickel oxide thin film exhibits an inherent learning ability of a neural network. The device has the short-term-memory and long-term-memory functions analogous to those of the human brain, depending on the history of its experience of voltage pulsing or sweeping. Neuroplasticity could be realized with the device, as the device can be switched from a high-resistance state to a low-resistance state due to the formation of stable filaments by a series of electrical pulses, resembling the changes such as the growth of new connections and the creation of new neurons in the brain in response to experience.

  20. A Peroxiredoxin Promotes H2O2 Signaling and Oxidative Stress Resistance by Oxidizing a Thioredoxin Family Protein

    Directory of Open Access Journals (Sweden)

    Jonathon D. Brown

    2013-12-01

    Full Text Available H2O2 can cause oxidative damage associated with age-related diseases such as diabetes and cancer but is also used to initiate diverse responses, including increased antioxidant gene expression. Despite significant interest, H2O2-signaling mechanisms remain poorly understood. Here, we present a mechanism for the propagation of an H2O2 signal that is vital for the adaptation of the model yeast, Schizosaccharomyces pombe, to oxidative stress. Peroxiredoxins are abundant peroxidases with conserved antiaging and anticancer activities. Remarkably, we find that the only essential function for the thioredoxin peroxidase activity of the Prx Tpx1(hPrx1/2 in resistance to H2O2 is to inhibit a conserved thioredoxin family protein Txl1(hTxnl1/TRP32. Thioredoxins regulate many enzymes and signaling proteins. Thus, our discovery that a Prx amplifies an H2O2 signal by driving the oxidation of a thioredoxin-like protein has important implications, both for Prx function in oxidative stress resistance and for responses to H2O2.

  1. Metal Coordination Polymers as Potential High-Energy Lithographic Resists

    Science.gov (United States)

    1989-05-15

    resists,I ~ ~ ~ 1-&obalt polymers--- - dfiroiuinpIrms (CotiueC-positive6 resjits ,-beta- diketones 19 At8tTRACT (Cniu nreverse ifnecessary and odentify by...have synthesized several cobalt(III) coordi- nation polymers, one of which was briefly described earlier (5,6). The general synthesis for three... diketones from ad- jacent units in the polymer chains. The corresponding sulfone polymer can be synthesized from the oxidation of the sulfoxide

  2. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    Science.gov (United States)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  3. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms

    Science.gov (United States)

    Jia, Qingbo; Gu, Dongdong

    2014-10-01

    This work presented a comprehensive study of high-temperature oxidation behaviors and mechanisms of Selective laser melting (SLM) processed Inconel 718 superalloy parts using different methods including isothermal oxidation testing, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The experimental results revealed that the oxidation process of the tested parts processed at a lower volumetric laser energy density experienced the severe spallation. On reasonably increasing the applied volumetric laser energy density, the oxidation kinetics of the as-produced parts obeyed a parabolic law, exhibiting the significantly improved oxidation resistance performance. The constitutional phases within the oxidation film were identified and the corresponding formation mechanisms were elucidated in detail according to the thermodynamic principles. The cross-sectional morphologies of oxidized Inconel 718 parts indicated that the oxidation microstructure mainly consisted of an external oxidation layer and an internal oxidation zone. The oxidation process was controlled by the outward diffusion of oxide forming elements and inward penetration of oxygen, by which the interaction mechanisms between the microstructures and internal oxidation zones were clarified. On the basis of the experimental results and theoretical analyses, the physical oxidation mechanisms were accordingly established to illustrate the oxidation behaviors of SLM-processed Inconel 718 parts at elevated operative temperatures.

  4. Tantalum oxide nanoscale resistive switching devices: TEM/EELS study (Presentation Recording)

    Science.gov (United States)

    Norris, Kate J.; Zhang, Jiaming; Merced-Grafals, Emmanuelle; Musunuru, Srinitya; Zhang, Max; Samuels, Katy; Yang, Jianhua J.; Kobayashi, Nobuhiko P.

    2015-08-01

    The field of non-volatile memory devices has been boosted by resistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage potential. Tantalum oxide being one of the leading candidates for the dielectric component of resistance switching devices was investigated in this study. 55nm TaOx devices in all states were compared through cross sectional TEM techniques including HRTEM, EELS, and EFTEM and will be discussed in this presentation. Based on the chemical and physical features found in the cross sectioned nanodevices we will discuss the switching mechanism of these nanoscale devices.

  5. Complete Maps for the Internal Oxidation of Ideal Ternary Alloys Forming Insoluble Oxides under High Oxidant Pressures

    Institute of Scientific and Technical Information of China (English)

    F.GESMUNDO; S.WANG; Y.NIU

    2009-01-01

    This paper presents an analysis of the conditions of stability of the different forms of internal oxidation of ideal ternary A-B-C alloys, where A is the most noble and C the most reactive component, forming insoluble oxide and exposed to high pressures of a single oxidant. The treatment, based on an extension to ternary alloys of Wagner's criterion for the transition from internal to external oxidation in binary alloys, allows to predict the existence of three different forms of internal oxidation. In fact, in addition to the most common kinds of internal attack, involving the coupled internal oxidation of B+C beneath external AO scales and the internal oxidation of C beneath external BO scales, a third mode, involving the internal oxidation of C beneath external scales composed of mixtures of AO+BO, becomes also possible under special conditions. A combination of the boundary conditions for the existence of these different types of internal oxidation allows to predict three different kinds of complete maps for the internal oxidation in these systems, one of which involves only two modes, while the other two involve all the three possible modes of internal oxidation.

  6. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    Science.gov (United States)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  7. Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge.

    Science.gov (United States)

    Tomášek, Oldřich; Albrechtová, Jana; Němcová, Martina; Opatová, Pavlína; Albrecht, Tomáš

    2017-01-25

    It has been hypothesized that carotenoid-based sexual ornamentation signals male fertility and sperm competitive ability as both ornamentation and sperm traits may be co-affected by oxidative stress, resulting in positive covariation (the 'redox-based phenotype-linked fertility hypothesis'; redox-based PLFH). On the other hand, the 'sperm competition theory' (SCT) predicts a trade-off between precopulatory and postcopulatory traits. Here, we manipulate oxidative status (using diquat dibromide) and carotenoid availability in adult zebra finch (Taeniopygia guttata) males in order to test whether carotenoid-based beak ornamentation signals, or is traded off against, sperm resistance to oxidative challenge. Initial beak colouration, but not its change during the experiment, was associated with effect of oxidative challenge on sperm velocity, such that more intense colouration predicted an increase in sperm velocity under control conditions but a decline under oxidative challenge. This suggests a long-term trade-off between ornament expression and sperm resistance to oxidative challenge. Shortening of the sperm midpiece following oxidative challenge further suggests that redox homeostasis may constrain sperm morphometry. Carotenoid supplementation resulted in fewer sperm abnormalities but had no effect on other sperm traits. Overall, our data challenge the redox-based PLFH, partially support the SCT and highlight the importance of carotenoids for normal sperm morphology.

  8. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  9. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  10. Membrane protein resistance of oligo(ethylene oxide) self-assembled monolayers.

    Science.gov (United States)

    Vaish, Amit; Vanderah, David J; Vierling, Ryan; Crawshaw, Fay; Gallagher, D Travis; Walker, Marlon L

    2014-10-01

    As part of an effort to develop biointerfaces for structure-function studies of integral membrane proteins (IMPs) a series of oligo(ethylene oxide) self-assembled monolayers (OEO-SAMs) were evaluated for their resistance to protein adsorption (RPA) of IMPs on Au and Pt. Spectroscopic ellipsometry (SE) was used to determine SAM thicknesses and compare the RPA of HS(CH2)3O(CH2CH2O)6CH3 (1), HS(CH2)3O(CH2CH2O)6H (2), [HS(CH2)3]2CHO(CH2CH2O)6CH3 (3) and [HS(CH2)3]2CHO(CH2CH2O)6H (4), assembled from water. For both substrates, SAM thicknesses for 1 to 4 were found to be comparable indicating SAMs with similar surface coverages and OEO chain order and packing densities. Fibrinogen (Fb), a soluble plasma protein, and rhodopsin (Rd), an integral membrane G-protein coupled receptor, adsorbed to the SAMs of 1, as expected from previous reports, but not to the hydroxy-terminated SAMs of 2 and 4. The methoxy-terminated SAMs of 3 were resistant to Fb but, surprisingly, not to Rd. The stark difference between the adsorption of Rd to the SAMs of 3 and 4 clearly indicate that a hydroxy-terminus of the OEO chain is essential for high RPA of IMPs. The similar thicknesses and high RPA of the SAMs of 2 and 4 show the conditions of protein resistance (screening the underlying substrate, packing densities, SAM order, and conformational mobility of the OEO chains) defined from previous studies on Au are applicable to Pt. In addition, the SAMs of 4, exhibiting the highest resistance to Fb and Rd, were placed in contact with undiluted fetal bovine serum for 2h. Low protein adsorption (≈12.4ng/cm(2)), obtained under these more challenging conditions, denote a high potential of the SAMs of 4 for various applications requiring the suppression of non-specific protein adsorption.

  11. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  12. Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel

    Science.gov (United States)

    Jin, Xiaojie; Chen, Shenghu; Rong, Lijian

    2017-10-01

    The mechanical properties and high temperature oxidation behaviors of 9Cr2WVTa steels with Mn contents in the range of 0.04-0.93 wt% were investigated. There are no obvious differences in the tensile properties at room temperature and high temperature, only a slight reduction in the impact toughness when Mn content reaches 0.93 wt%. Remarkably, the high temperature oxidation resistance is significantly improved with an increase of Mn content. After 500 h of oxidation, a (Fe0.6Cr0.4)2O3 oxide scale is developed on the steel with 0.04 wt% Mn, Mn1.5Cr1.5O4 oxides are occasionally detected when Mn content reaches 0.47 wt%, while a thin compact scale with a mixture of Mn1.5Cr1.5O4 and Cr1.3Fe0.7O3 oxides is formed on the steel containing 0.93 wt% Mn. Addition of Mn promotes the formation of Mn-oxides, which lowers oxygen partial pressure and accelerates external oxidation of Cr. At last, the presence of Mn-Cr spinels and Cr-rich oxides improves the oxidation resistance.

  13. Optical and electrical properties of zinc oxide thin films with low resistivity via Li-N dual-acceptor doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daoli, E-mail: zhang_daoli@mail.hust.edu.cn [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Zhang Jianbing [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Guo Zhe [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Miao Xiangshui [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China)

    2011-05-19

    Highlights: > Zinc oxide films have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified SILAR method. > The resistivity of ZnO film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1}, carrier concentration of 8.02 x 1018 cm{sup -3}, and transmittance of about 80% in visible range showing good crystallinity with prior c-axis orientation. > A shallow acceptor level of 91 meV is identified from free-to-neutral-acceptor transitions. > Another deep level of 255 meV was ascribed to Li{sub Zn}-Li{sub i} complex. - Abstract: Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1} and carrier concentration of 8.02 x 10{sup 18} cm{sup -3}. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.

  14. The effects of high resistance-few repetitions and low resistance-high repetitions resistance training on climbing performance.

    Science.gov (United States)

    Hermans, Espen; Andersen, Vidar; Saeterbakken, Atle Hole

    2017-05-01

    The aim of the study was to compare the effects of different strength training intensities on climbing performance, climbing-specific tests and a general strength test. Thirty lower grade and intermediate-level climbers participated in a 10-week training programme. The participants were randomized into three groups: high resistance-few repetitions training groups (HR-FR), low resistance-high repetitions training groups (LR-HR) and a control group (CON) which continued climbing/training as usual. Post-testing results demonstrated statistical tendencies for climbing performance improvements in the HR-FR and LR-HR (p = 0.088-0.090, effect size = 0.55-0.73), but no differences were observed between the groups (p = 0.950). For the climbing-specific tests, no differences were observed between the groups (p = 0.507-1.000), but the HR-FR and LR-HR improved their time in both Dead-hang (p = 0.004-0.026) and Bent-arm hang (p training groups reduced their climbing sessions during the intervention compared to the CON group (p = 0.057-0.074). In conclusion, HR-FR and LR-HR training programmes demonstrated an 11% and 12% non-significant improvement in climbing performance despite a 50% reduction in climbing sessions, but improved the results in strength and climbing-specific tests. None of the training intensities was superior compared to the others.

  15. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  16. Highly active ozonides selected against drug resistant malaria

    Science.gov (United States)

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  17. Highly active ozonides selected against drug resistant malaria

    Directory of Open Access Journals (Sweden)

    Lis Lobo

    2016-01-01

    Full Text Available Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART, artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites.

  18. O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Hongyuan; Liu, Xin; Wang, Dan; Su, Liangping; Zhao, Tingting; Li, Zhongwei; Lin, Cong; Zhang, Yu; Huang, Baiqu; Lu, Jun; Li, Xiaoxue

    2017-03-08

    In C. elegans, the transcription factor skinhead-1 (SKN-1), the ortholog of human NF-E2-related factor 2 (Nrf-2), plays important roles in oxidative stress defense and aging processes. It has been documented that the activity of SKN-1 is regulated by its phosphorylation modification. However, whether other posttranslational modifications of SKN-1 affect its function remains unclear to date. Here we report, for the first time, that SKN-1 is O-GlcNAcylated at Ser470 and Thr493 by O-GlcNActransferase OGT-1. By generating the double mutations of Ser470/Thr493 in the wild type and skn-1(zu67) worms, respectively, we found that disruption of O-GlcNAc modification on SKN-1 repressed the accumulation of SKN-1 in the intestinal nuclei, and decreased the activities of SKN-1 in modulating lifespan and oxidative stress resistance. Moreover, under oxidative stress, SKN-1 was highly O-GlcNAcylated, resulting in the decrease of GSK-3-mediated phosphorylation at Ser483 adjacent to the O-GlcNAcylated residues (Ser470 and Thr493). These data suggest that O-GlcNAcylation of SKN-1 is crucial for regulating lifespan and oxidative stress resistance via the crosstalk with its phosphorylation in C. elegans. These findings have important implications for studying the functions of O-GlcNAcylation on Nrf-2 in human aging-related diseases.

  19. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal oxid

  20. Differential response of DDT susceptible and resistant Drosophila melanogaster strains to DDT and oxidative stress

    Science.gov (United States)

    Metabolic DDT resistance in Drosophila melanogaster is associated with increased cytochrome P450 expression. Increased P450 activity is also associated with increased oxidative stress. In contrast, increased glutathione S transferase (GST) expression has been associated with a greater ability of o...

  1. Effects of fish oil on oxidation resistance of VLDL in hypertriglyceridemic patients

    NARCIS (Netherlands)

    Hau, M.-F.; Smelt, A.H.M.; Bindels, A.J.G.H.; Sijbrands, E.J.G.; Laarse, A. van der; Onkenhout, W.; Duyvenvoorde, W. van; Princen, H.M.G.

    1996-01-01

    In hypertriglyceridemic (HTG) patients the addition of fish oil to the diet causes a marked reduction in the concentration of triglyceride-rich lipoproteins in the serum. To investigate the effects of fish oil on the oxidation resistance of VLDL and LDL in HTG patients, nine male patients received 1

  2. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  3. Effects of fish oil on oxidation resistance of VLDL in hypertriglyceridemic patients

    NARCIS (Netherlands)

    Hau, M.-F.; Smelt, A.H.M.; Bindels, A.J.G.H.; Sijbrands, E.J.G.; Laarse, A. van der; Onkenhout, W.; Duyvenvoorde, W. van; Princen, H.M.G.

    1996-01-01

    In hypertriglyceridemic (HTG) patients the addition of fish oil to the diet causes a marked reduction in the concentration of triglyceride-rich lipoproteins in the serum. To investigate the effects of fish oil on the oxidation resistance of VLDL and LDL in HTG patients, nine male patients received 1

  4. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Watanabe, M.; Veen, van der S.; Nakajima, H.; Abee, T.

    2012-01-01

    Lactobacillus plantarum is a facultatively anaerobic bacterium that can perform respiration under aerobic conditions in the presence of haem, with vitamin K2 acting as a source of menaquinone. We investigated growth performance and oxidative stress resistance of Lb. plantarum WCFS1 cultures grown in

  5. Neutrophil oxidative metabolism and killing of P. brasiliensis after air pouch infection of susceptible and resistant mice.

    Science.gov (United States)

    Meloni-Bruneri, L H; Campa, A; Abdalla, D S; Calich, V L; Lenzi, H L; Burger, E

    1996-04-01

    The oxidative burst of polymorphonuclear neutrophils (PMN) and their ability to inhibit Paracoccidioides brasiliensis growth was studied in susceptible (B10.A) and resistant (A/J) mice. The cells were obtained after subcutaneous inoculation in air pouches, yielding highly pure PMN preparations; the number of cells was similar for both strains at 24 h and five times higher in the resistant strain at 15 days. The oxidative metabolism of these PMN was evaluated by the luminol and lucigen-enhanced chemiluminescence upon stimulation with PMA or killed P. brasiliensis (Pb). At 24 h of infection PMN from both strains showed similar responses. However, at 15 days a great enhancement of the Pb-stimulated luminol-enhanced chemiluminescence was observed only in PMN from resistant mice. Such increase was markedly inhibited by the addition of catalase. Independent of the mouse strain or time of infection of lucigen-enhanced chemiluminescence showed the same intensity. The lucigen-enhanced chemiluminescence of PMN without stimuli from resistant mice did not change with the time of infection, however, after 15 days of infection a significantly lower chemiluminescence was detected with PMN from susceptible mice. At 15 days of infection the PMN from B10.A were unable to kill P. brasiliensis yeast cells in vitro. Because the lucigenin- and luminol-enhanced chemiluminescence detects, respectively, the O2- production and the myeloperoxidase/hydrogen peroxide halide system, the present data show parallels between deficiency in the production of oxygen-reactive species by PMN and lower fungicidal activity.

  6. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  7. Fabrication of Oxidation-Resistant Metal Wire Network-Based Transparent Electrodes by a Spray-Roll Coating Process.

    Science.gov (United States)

    Kiruthika, S; Gupta, Ritu; Anand, Aman; Kumar, Ankush; Kulkarni, G U

    2015-12-16

    Roll and spray coating methods have been employed for the fabrication of highly oxidation resistant transparent and conducting electrodes (TCEs) by a simple solution process using crackle lithography technique. We have spray-coated a crackle paint-based precursor to produce highly interconnected crackle network on PET roll mounted on a roll coater with web speed of 0.6 m/min. Ag TCE with a transmittance of 78% and sheet resistance of ∼20 Ω/□ was derived by spraying Ag precursor ink over the crackle template followed by lift-off and annealing under ambient conditions. The Ag wire mesh was stable toward bending and sonication tests but prone to oxidation in air. When electrolessly coated with Pd, its robustness toward harsh oxidation conditions was enhanced. A low-cost transparent electrode has also been realized by using only small amounts of Ag as seed layer and growing Cu wire mesh by electroless method. Thus, made Ag/Cu meshes are found to be highly stable for more than a year even under ambient atmosphere.

  8. Status of Research on Application of High Purity Rare Earth Oxides in Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Ma Zhihong; Qiu Jufeng

    2004-01-01

    The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.

  9. HULL GESTURE AND RESISTANCE PREDICTION OF HIGH-SPEED VESSELS*

    Institute of Scientific and Technical Information of China (English)

    NI Chong-ben; ZHU Ren-chuan; MIAO Guo-ping; FAN Ju

    2011-01-01

    Since trim and sinkage are significant while vessels are advancing forward with high speed, the predicted vessel resistance based on restrained model theory or experiment may not be real resistance of vessels during voyage. It is necessary to take the influence of hull gesture into account for oredicting the resistance of high-speed ship. In the present work the resistance problem of high speed ship is treated with the viscous flow theory, and the dynamic mesh technique is adopted to coincide with variation of hull gesture of high speed vessel on voyage. The simulation of the models of S60 ship and a trimaran moving in towing tank with high speed are conducted by using the above theory and technique. The corresponding numerical results are in good agreement with the experimental data. It indicates that the resistance prediction for high speed vessels should take hull gesture into consideration and the dynamic mesh method proposed here is effective in calculating the resistance of high speed vessels.

  10. Influence of Oxidation Behavior of Feedstock on Microstructure and Ablation Resistance of Plasma-Sprayed Zirconium Carbide Coating

    Science.gov (United States)

    Hu, Cui; Ge, Xuelian; Niu, Yaran; Li, Hong; Huang, Liping; Zheng, Xuebin; Sun, Jinliang

    2015-10-01

    Plasma spray is one of the suitable technologies to deposit carbide coatings with high melting point, such as ZrC. However, in the spray processes performed under atmosphere, oxidation of the carbide powder is inevitable. To investigate the influence of the oxidation behavior of feedstock on microstructure and ablation resistance of the deposited coating, ZrC coatings were prepared by atmospheric and vacuum plasma spray (APS and VPS) technologies, respectively. SiC-coated graphite was applied as the substrate. The obtained results showed that the oxidation of ZrC powder in APS process resulted in the formation of ZrO and Zr2O phases. Pores and cracks were more likely to be formed in the as-sprayed APS-ZrC coating. The VPS-ZrC coating without oxides possessed denser microstructure, higher thermal diffusivity, and lower coefficients of thermal expansion as compared with the APS-ZrC coating. A dense ZrO2 layer would be formed on the surface of the VPS-ZrC-coated sample during the ablation process and the substrate can be protected sufficiently after being ablated in high temperature plasma jet. However, the ZrO2 layer, formed by oxidation of the APS-ZrC coating having loose structure, was easy to be washed away by the shearing action of the plasma jet.

  11. High rate resistive plate chamber for LHC detector upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Y., E-mail: haddad@llr.in2p3.fr [Laboratoire Leprince-Ringuet (LLR), École Polytechnique, 91120 Palaiseau (France); Laktineh, I.; Grenier, G.; Lumb, N. [IPNL, Villeurbanne 69622 Lyon (France); Cauwenbergh, S. [Ghent University, Ghent (Belgium)

    2013-08-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPCs) used as muon detectors in the LHC experiments has prevented the use of such detectors in the high rate regions in both CMS and ATLAS detectors. One alternative to these detectors is RPCs made with low resistivity glass plates (10{sup 10}Ωcm), a beam test at DESY has shown that such detectors can operate at few thousand Hz/cm{sup 2} with high efficiency (>90%)

  12. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  13. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  14. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  15. Improving the phase stability and oxidation resistance of beta-nickel aluminum

    Science.gov (United States)

    Brammer, Travis Michael

    This thesis is written in an alternate format. The thesis is composed of a general introduction, four original manuscripts, and a general conclusion. References cited within each chapter are located immediately after that section. In addition, figures and tables are numbered independently within each chapter. The general introduction focuses on the driving force behind this research, and gives an overview of previous work done on nickel-based superalloys. Chapter 2 describes the preliminary experiments and how those experiments guided the rest of the thesis work. Chapter 3 deals specifically with the oxidation performance of platinum group metal (PGM) and hafnium modifications to beta-NiAl intermetallic. Chapter 4 investigates the role of grain size on the oxidation resistance of NiAl based alloys. Chapter 5 focuses on the role of melting temperature on the oxidation resistance of NiAl based alloys. Chapter 6 summarizes the important results of this study.

  16. Steam oxidation resistant coatings for steam turbine components: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.; Garcia de Blas, J.; Muelas, R.; Sanchez, A.; Tsipas, S. [Instituto de Tecnica Aeroespacial, Madrid (Spain). Area de Materiales

    2001-07-01

    The principal objective of the COST Action 522 is to raise the operating temperatures of both gas and steam turbines in order to increase their efficiency to reduce fuel consumption and emissions. Concerning steam turbines, the operating temperature is expected to rise from 550 C to 650 C, and the use of oxidation resistant coatings is being considered for the first time in Europe. In this preliminary work, two deposition techniques have so far been explored: slurry paints and atmospheric plasma spray (APS). Commercially available materials, known to have good oxidation resistance, were selected for both deposition techniques: one aluminium slurry and three alloyed materials for thermal spray: AlFe, FeCrAl and NiAl. The coatings were characterised by SEM-EDS and steam oxidation testing was carried out at 650 C. The preliminary findings show that some of the studied coatings may offer adequate protection. (orig.)

  17. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  18. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    Science.gov (United States)

    Dlubak, Bruno; Martin, Marie-Blandine; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Blume, Raoul; Schloegl, Robert; Fert, Albert; Anane, Abdelmadjid; Hofmann, Stephan; Seneor, Pierre; Robertson, John

    2012-12-21

    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

  19. Investigation into the resistance of lactoperoxidase tolerant Escherichia coli mutants to different forms of oxidative stress.

    Science.gov (United States)

    De Spiegeleer, Philipp; Vanoirbeek, Kristof; Lietaert, Annelies; Sermon, Jan; Aertsen, Abram; Michiels, Chris W

    2005-11-15

    Six lactoperoxidase tolerant Escherichia coli transposon mutants isolated and characterized in an earlier study, and some newly constructed double mutants, were subjected to peroxide, superoxide and hypochlorite stress, and their inactivation was compared to that of the wild type strain MG1655. Knock out mutants of waaQ and waaO, which owed their lactoperoxidase tolerance to an impaired outer membrane permeability due to a reduced porin content, also exhibited higher resistance to hypochlorite, as did a knock-out strain of lrp, encoding a regulatory protein affecting a wide range of cellular functions. Unlike the outer membrane mutants however, the lrp strain was also more resistant to t-butyl hydroperoxide, but more susceptible to the superoxide generating compound plumbagin. Finally, a lactoperoxidase tolerant knock-out strain of ulaA, involved in ascorbic acid uptake, did not show resistance to any of the other oxidants. The possible modes of action of these different oxidants are discussed.

  20. New Endcaps for Improved Oxidation Resistance in PMR Polyimides

    Science.gov (United States)

    Frimer, Aryeh A.

    2003-01-01

    A polyimide is a polymer composed of alternating units of diamine and dianhydride, linked to each other via an imide bond. PMR polyimides, commonly used in the aerospace industry, are generally capped at each end by an endcap (such as the nadic endcap used in PMR 15) which serves a double function: (1) it limits the number of repeating units and, hence, the average molecular weight of the various polymer chains (oligomers), thereby improving processibility; (2) Upon further treatment (curing), the endcap crosslinks the various oligomer strands into a tough heat-resistant piece. It is this very endcap, so important to processing, that accounts for much of the weight loss in the polymer on aging in air at elevated temperatures. Understanding this degradation provides clues for designing new endcaps to slow down degradation, and prolong the lifetime of the material.

  1. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    Science.gov (United States)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  2. Characterization of the wear resistant aluminum oxide - 40% titaniumdioxide coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-02-01

    Full Text Available Plasma spray coatings play an important role in the design of surface properties of engineering components in order to increase their durability and performance under different operating conditions. Coatings are the most often used for wear resistance. This paper presents the microstructure and mechanical properties Al2O3_­40wt.%TiO2 coating resistant to dry friction slide, grain abrasion and erosion of particles at operating temperatures up to 540°C. In order to obtain the optimal characteristics of coating was performed  optimization  of deposition parameters. The powder Al2O3­40wt.%TiO2 is deposited atmospheric plasma spraying (APS process with a plasma current of 700, 800 and 900A. Evaluate the quality of the coating Al2O3­40wt.%TiO2 were made on the basis of their hardness, tensile bond strength and microstructure. The best performance showed the deposited layers with 900A. The morphology of the powder particles Al2O3­40wt.%TiO2 was examined with SEM (Scanning Electron Microscope. Microstructure of the coatings was examined by light microscopy. Analysis of the deposited layers was performed in accordance with standard Pratt & Whitney. Evaluation of mechanical properties of the layers was done by examining HV0.3 microhardness and tensile strength of the tensile testing. Studies have shown that plasma currents significantly affects the mechanical properties and microstructure of coatings which are of crucial importance for the protection for components subjected to wear       

  3. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Romain, Cindy; Bardy, Guillaume; Fouret, Gilles; Feillet-Coudray, Christine; Gaillet, Sylvie; Lacan, Dominique; Cristol, Jean-Paul; Rouanet, Jean-Max

    2013-12-01

    Oxidative stress is involved in obesity. However, dietary antioxidants could prevent oxidative stress-induced damage. We have previously shown the preventive effects of a melon superoxide dismutase (SODB) on oxidative stress. However, the mechanism of action of SODB is still unknown. Here, we evaluated the effects of a 1-month curative supplementation with SODB on the liver of obese hamsters. Golden Syrian hamsters received either a standard diet or a cafeteria diet composed of high-fat, high-sugar, and high-salt supermarket products, for 15 weeks. This diet resulted in insulin resistance and in increased oxidative stress in the liver. However, inflammatory markers (IL-6, TNF-α, and NF-κB) were not enhanced and no liver steatosis was detected, although these are usually described in obesity-induced insulin resistance models. After the 1-month supplementation with SODB, body weight and insulin resistance induced by the cafeteria diet were reduced and hepatic oxidative stress was corrected. This could be due to the increased expression of the liver antioxidant defense proteins (manganese and copper/zinc superoxide dismutase, catalase, and glutathione peroxidase). Even though no inflammation was detected in the obese hamsters, inflammatory markers were decreased after SODB supplementation, probably through the reduction of oxidative stress. These findings suggest for the first time that SODB could exert its antioxidant properties by inducing the endogenous antioxidant defense. The mechanisms underlying this induction need to be further investigated. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effect of rhenium on short term oxidation of niobium based alloys for high temperature applications

    Science.gov (United States)

    Sierra, Ruth M.

    resulted in the negative weight gain. Alloys with this type of weight gain is advantageous as it refers to nullifying the formation of bulky Nb2O5. There was no metal left at 1400°C. Pesting was no observed at low temperature range. However, spalling was noticed at 1200 and 1300°C. Tungsten additions have helped in the formation of Nb5Si 3, Cr2Re3, NbCr2, and NbSS. All the phases formed were intermetallics, except the solid solution. These high temperature phases have helped to resist oxidation to an extent. The formation of a CrNbO 4 and SiO2 has helped in lowering the oxidation kinetics. No pesting was observed, spalling of the oxide was noticed only at 1300°C. Oxidation behavior of these alloys were characterized by the weight change per unit surface area method. Oxidation products were characterized by x-ray diffraction and scanning electron microscopy in several modes including backscatter imaging, secondary imaging, energy dispersive x-ray spectroscopy, and x-ray mapping

  5. Preparation and tribological properties of high temperature resistance graphene oxide/polyimide nanocomposites%耐高温GO/聚酰亚胺复合材料的制备及摩擦性能

    Institute of Scientific and Technical Information of China (English)

    闵春英; 聂鹏; 刘颖; 沈聃; 曾名; 李娜

    2014-01-01

    通过溶液共混的方式制备出化学改性氧化石墨烯增强聚酰亚胺纳米复合材料。在干摩擦条件下,研究了氧化石墨烯的添加量对氧化石墨烯( GO)纳米片和γ-氨丙基三乙氧基硅烷改性氧化石墨烯( GO-Si)纳米片增强聚酰亚胺复合材料摩擦学性能的影响。结果表明,由0.5%GO-Si填充的PI复合材料的减摩和抗磨损性能明显优于GO增强的聚酰亚胺复合材料。此外,由扫描电镜( SEM)观察形貌显示,GO-Si在PI基体中分散均匀,而且GO-Si 与PI高分子基体之间存在着较强的作用力,复合材料的磨损表面比较平滑。由热失重分析结果表明,GO-Si有效地提高了PI复合材料的热稳定性。%Chemically modified graphene oxide ( GO) reinforced polyimide nanocomposites were synthesized by means of the method of solution blending. The tribological behavior of the polyimide( PI) composites were investigated under dry friction condi-tion. The effects of the addition concentration on the friction and wear behavior of the composites filled with graphene oxide ( GO) nanosheets and isocyanate propyl triethoxysilane modified graphene oxide ( GO-Si) nanosheets were investigated. The results show that the friction-reduction and anti-wear performance of the PI composite filled with GO-Si is the most obvious, then the composite filled with GO is the next. Furthermore, scanning electron microscope ( SEM) investigation shows that GO-Si-filled PI composites has smooth worn surface under given applied load and sliding speed, and well-dispersed GO-Si in PI matrix provide a large surface area available for interaction between polymer molecules and GO-Si, which help to reduce the wear of PI composites. The thermal a-nalysis indicates that the GO-Si can improve the thermal stability of the PI composites.

  6. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  7. Improving the oxidation resistance of AlCrN coatings by tailoring chromium out-diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Galindo, R., E-mail: rescobar@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Martinez, R. [AIN-Centro de Ingenieria Avanzada de Superficies, Cordovilla, E-31191 Pamplona (Spain); Albella, J.M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain)

    2010-11-15

    In this work, we have studied the improvement on the oxidation resistance of AlCrN-based coatings by adding a subsurface titanium nitride barrier layer. Since oxidation is interrelated with the inward diffusion of oxygen into the surface of Al{sub x}Cr{sub 1-x}N (x = 0.70) coatings and the outward diffusion of Cr to the surface, the oxidation behaviour of the aluminium-rich AlCrN coatings can be tuned by designing the coating in an appropriate layered structure. The buried depth of the embedded layer and the oxidation time were varied, and the changes in the AlCrN/TiN depth composition profiles and surface oxidation stoichiometry were analysed by means of Glow Discharge Optical Emission Spectroscopy (GDOES) and Cross Sectional SEM (X-SEM) maps. It was observed that when a TiN diffusion barrier of 300 nm was deposited near the top surface (500 nm from the surface) the inhibition of the inward diffusion of oxygen and formation of beneficial alumina surface layers was promoted and consequently an increase of the oxidation resistance is achieved. This is explained in terms of a limited surplus of chromium from the coating to the surface. This was corroborated after performing experiments using CrN as embedded barrier layer which resulted in a continuous surplus of chromium to the surface and the formation of Cr-rich oxides. GDOES, in combination with X-SEM elemental maps, was proved to be a fast and accurate technique to monitor composition in-depth changes during oxidation, providing unique information regarding the oxide structure formation.

  8. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    Directory of Open Access Journals (Sweden)

    H Çakır-Atabek

    2015-11-01

    Full Text Available The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8 and untrained (N=8 men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM; 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP significantly increased during the test and then decreased during the recovery in both groups (p0.05. Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50% is enough to increase LHP, whereas higher intensity (more than 80% is required to evoke protein oxidation.

  9. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou

    2013-07-01

    Full Text Available The effect of amorphous and crystalline iron (Fe and aluminum (Al oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly. The study aimed at understanding the role of the above mentioned soil components on penetration resistance. The findings showed that the increase of iron and aluminum oxides and oxy-hydroxides content resulted in an increase of soil penetration resistance and the relationships between them were significant. Crystalline iron forms found to have a more profound effect on penetration resistance as compared to amorphous iron forms. Finally, positive and significant relationships were also found between penetration resistance and clay content. However, it is not entirely clear which of the two soil components plays the most important role in penetration resistance changes in soils.

  10. Electrical properties of deuteron irradiated high resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Jerzy, E-mail: krupka@imio.pw.edu.pl [Insitute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [H. Niewodniczański Institute of Nuclear Physics Polish Academy of Science, Cracow (Poland); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Avdeyev, Sergej P. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł; Kozłowski, Roman [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland)

    2014-04-01

    We have investigated resistivity changes introduced on the high-resistivity p-type silicon wafer by the irradiation with deuteron beam with an energy of 4.4 GeV performed in the NUCLOTRON superconducting accelerator. Two contactless techniques were used for the measurements of resistivity changes: namely the microwave split post dielectric resonator (SPDR) technique and capacitance measurements in the frequency domain. The first technique allows resistivity measurements in the plane of the wafer, while the second one in the direction perpendicular to the wafer. The resistivity map obtained with the SPDR technique enabled us to obtain a permanent fingerprint of the accelerator beam intensity profile. It has been shown that after the irradiation, the material resistivity increased to ∼3.9 × 10{sup 5} Ω cm in the wafer region exposed to the maximum beam intensity. Complementary studies of the properties and concentrations of radiation deep-level defects were performed by the high-resolution photo-induced current transient spectroscopy (HRPITS). These studies have shown that the irradiation of the high resistivity silicon with 4.4-GeV deuterons results in the formation of several types of deep-level defects responsible for the charge compensation.

  11. The Effect of Silicon and Aluminum Additions on the Oxidation Resistance of Lean Chromium Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, J.S.; Alman, D.E.; Rawers, J.C.

    2001-09-01

    The effect of Si and Al additions on the oxidation of lean chromium austenitic stainless steels has been studied. A baseline composition of Fe-16Cr-16Ni-2Mn-1Mo was selected to allow combined Si and Al additions of up to 5 wt. pct. in a fully austenitic alloy. The baseline composition was selected using a net Cr equivalent equation to predict the onset of G-ferrite formation in austenite. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700 C to 800 C. Oxidation resistance of alloys with Si only additions were outstanding, particularly at 800 C. It was evident that different rate controlling mechanisms for oxidation were operative at 700 C and 800 C in the Si alloys. In addition, Si alloys pre-oxidized at 800 C, showed a zero weight gain in subsequent testing for 1000 hours at 700 C. The rate controlling mechanism in alloys with combined Si and Al addition for oxidation at 800 C was also different than alloys with Si only. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms.

  12. Therapeutic effects of hydrogen saturated saline on rat diabetic model and insulin resistant model via reduction of oxidative stress

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jin; ZHA Xiao-juan; KANG Zhi-min; XU Mao-jin; HUANG Qin; ZOU Da-jin

    2012-01-01

    Background Molecular hydrogen,as a novel antioxidant,has been proven effective in treating many diseases.This study aimed to evaluate the therapeutic effects of hydrogen saturated saline in treatment of a rat model of diabetes mellitus and a rat model of insulin resistant.Methods A rat diabetes mellitus model was established by feeding a high fat/high carbohydrate diet followed by injection of a small dose of streptozotocin,and an insulin resistant model was induced with a high glucose and high fat diet.Hydrogen saturated saline was administered to rats with both models conditions on a daily basis for eight weeks.A pioglitazone-treated group and normal saline-treated group served as positive and negative controls.The general condition,body weight,blood glucose,blood lipids,and serum insulin levels of rats were examined at the 8th week after treatment.The oxidative stress indices,including serum superoxide dismutase (SOD),glutathione (GSH) and malondialdehyde (MDA) were also evaluated after eight weeks of treatment using the commercial kits.Results Hydrogen saturated saline showed great efficiency in improving the insulin sensitivity and lowering blood glucose and lipids.Meanwhile,the therapeutic effects of hydrogen saturated saline were superior to those of pioglitazone.Hydrogen saturated saline markedly attenuated the MDA level and elevated the levels of antioxidants SOD and GSH.Conclusion Hydrogen saturated saline may improve the insulin resistance and alleviate the symptoms of diabetes mellitus by reducing the oxidative stress and enhancing the anti-oxidant system.

  13. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids

    Directory of Open Access Journals (Sweden)

    Susu He

    2016-12-01

    Full Text Available The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.

  14. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  15. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    Science.gov (United States)

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  16. High temperature oxidation of beta-NiAl

    Science.gov (United States)

    Koychak, J. K.; Mitchell, T. E.; Smialek, J. L.

    1985-01-01

    The oxidation of single crystal beta-NiAl has been studied primarily using electron microscopy. Oriented metastable Al2O3 phases form during transient oxidation at 800 C. Specific orientation relationships exist on all metal orientations studied and are a result of the small mismatch along aligned close-packed directions in the cation sublattices of the metal and oxide. Transformation of the metastable Al2O3 phases at 1100 C results in an oxide morphology described as the 'lacey' structure of alpha-Al2O3 scales. This structure results from impingement of oriented patches of alpha-Al2O3 as the transformation initiates and moves radially parallel to the surface. Scale growth occurs by diffusion along high angle grain boundaries. A drastic reduction in oxidation rate accompanies the change in oxide morphology.

  17. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  18. Origin and prevention of high contact resistance in multilevel metal-polyimide structures

    Science.gov (United States)

    Day, David R.; Senturia, Stephen D.

    1982-05-01

    When polyimide is used as the insulating dielectric in multilevel-metal structures, a high contact resistance can result within the interconnecting vias. This paper examines the particular case of oxygen plasma patterning of the polyimide using a photoresist mask. Auger analysis in combination with compositional depth profiling was employed on a series of samples to measure surface composition of etched vias in polyimide. Results show two effects which, together, can account for high contact resistance: first, there is a thicker than normal aluminum oxide layer on the first level metal surface (due to exposure to the oxygen plasma); second, there is a thin, etch-resistant carbonaceous film (due to redeposition of organic material during plasma etching) that prevents oxide thinning through chemical means. It was found that by lowering the plasma pressure to 50 mTorr near the end of the etch, the organic film can be removed. In the absence of the carbonaceous layer, the oxide can then be chemically thinned to produce clean aluminum surfaces within the vias.

  19. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  20. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  1. Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-jun; XU Bin-shi; ZHU Sheng; MA Shi-ning; ZHANG wei

    2005-01-01

    Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room tem perature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800 ℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2 O3, Fe2 O3, Fe3 O4 and FeO. These phases distribute unevenly. The protective Al2 O3 film firstly forms and preserves the coatings from further oxidation.

  2. Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance?

    Directory of Open Access Journals (Sweden)

    Lesley M L Hall

    Full Text Available BACKGROUND: South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures. METHODOLOGY/PRINCIPAL FINDINGS: Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010; lower VO2max (40.6±6.6 vs 52.4±5.7 ml x kg(-1 x min(-1, p = 0.001; and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg x kg(-1 x min(-1 at 55% VO2max, p = 0.013, and absolute (3.46±2.20 vs 6.00±1.93 mg x kg(-1 x min(-1 at 25 ml O(2 x kg(-1 x min(-1, p = 0.021, exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10-13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity. CONCLUSIONS/SIGNIFICANCE: These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.

  3. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Fluid Science (IFS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  4. Analyzing Ferroresonance Phenomena in Power Transformers Including Zinc Oxide Arrester and Neutral Resistance Effect

    Directory of Open Access Journals (Sweden)

    Hamid Radmanesh

    2012-01-01

    Full Text Available This paper studies the effect of zinc oxide arrester (ZnO and neutral earth resistance on controlling nonconventional oscillations of the unloaded power transformer. At first, ferroresonance overvoltage in the power system including ZnO is investigated. It is shown this nonlinear resistance can limit the ferroresonance oscillations but it cannot successfully control these phenomena. Because of the temperature dissipation of ZnO, it can withstand against overvoltage in a short period and after that ferroresonance causes ZnO failure. By applying neutral earth resistance to the system configuration, mitigating ferroresonance has been increased and chaotic overvoltage has been changed to the smoother behavior such as fundamental resonance and periodic oscillation. The simulation results show that connecting the neutral resistance exhibits a great mitigating effect on nonlinear overvoltage.

  5. Synthesis of Highly Reduced Graphene Oxide for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Chubei Wang

    2016-01-01

    Full Text Available A facile method to synthesize highly reduced graphene oxide in solid phase was developed. The reduced graphene oxide was scarcely prepared in solid phase. Solid substances act as spacers and pillaring agents. Sheets can not be close to each other in reduction process, and sheets agglomeration might not form. After reduction reaction is complete, the spacers and pillaring agents are removed. The average interlayer spacing and surface area of product are bigger than those of reduced graphene oxide. The product has few-layered sheet, and the ratio of carbon to oxygen is high, which might imply that the product is more similar to graphene compared to reduced graphene oxide. The specific capacitance of product is almost three times higher than that of reduced graphene oxide at the same current density.

  6. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  7. Physical and chemical mechanisms in oxide-based resistance random access memory.

    Science.gov (United States)

    Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zhang, Rui; Hung, Ya-Chi; Syu, Yong-En; Chang, Yao-Feng; Chen, Min-Chen; Chu, Tian-Jian; Chen, Hsin-Lu; Pan, Chih-Hung; Shih, Chih-Cheng; Zheng, Jin-Cheng; Sze, Simon M

    2015-01-01

    In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

  8. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer.

    Science.gov (United States)

    Matassa, D S; Amoroso, M R; Lu, H; Avolio, R; Arzeni, D; Procaccini, C; Faicchia, D; Maddalena, F; Simeon, V; Agliarulo, I; Zanini, E; Mazzoccoli, C; Recchi, C; Stronach, E; Marone, G; Gabra, H; Matarese, G; Landriscina, M; Esposito, F

    2016-09-01

    Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC.

  9. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    Science.gov (United States)

    Nomura, Ken-Ichi; Kalia, Rajiv K.; Li, Ying; Nakano, Aiichiro; Rajak, Pankaj; Sheng, Chunyang; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-04-01

    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic ‘nanoreactor’ by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp2 carbons with pentagonal and heptagonal defects. This work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites.

  10. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  11. Spin-on metal oxide materials with high etch selectivity and wet strippability

    Science.gov (United States)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  12. High-temperature oxidation behavior of Al2O3/TiAl matrix composite in air

    Institute of Scientific and Technical Information of China (English)

    AI TaoTao; WANG Fen; FENG XiaoMing

    2009-01-01

    improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites.

  13. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  14. Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification

    Science.gov (United States)

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He-Hau, Jr.

    2014-03-01

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

  15. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Techasen, Anchalee [Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hou, Bo [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Jamnongkan, Wassana; Armartmuntree, Napat [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Yongvanit, Puangrat, E-mail: puangrat@kku.ac.th [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan)

    2015-08-14

    immortalized cholangiocytes. • The resistance was acquired by daily treatment of low H{sub 2}O{sub 2} (25 μM) for 15 passages. • The cells highly expressed catalase, SODs and DNMT1 with rapid cell proliferation. • Pseudopodia and the loss of cell-to-cell adhesion appeared by 100 μM H{sub 2}O{sub 2} treatment. • The resistant cells can be used as a model of oxidative stress-related carcinogenesis.

  16. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes

    KAUST Repository

    Wang, Zhijuan

    2011-05-01

    Reduced graphene oxide (rGO)-modified glassy carbon electrode is used to detect the methicillin-resistant Staphylococcus aureus (MRSA) DNA by using electrochemical impedance spectroscopy. Our experiments confirm that ssDNA, before and after hybridization with target DNA, are successfully anchored on the rGO surface. After the probe DNA, pre-adsorbed on rGO electrode, hybridizes with target DNA, the measured impedance increases dramatically. It provides a new method to detect DNA with high sensitivity (10-13M, i.e., 100 fM) and selectivity. © 2011 Elsevier B.V.

  17. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance.

    Science.gov (United States)

    Paul, Sanjoy; Doering, Tamara L; Moye-Rowley, W Scott

    2015-01-01

    Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in C. neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans.

  18. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  19. Microstructure and Oxidation Resistance of Laser Remelted Plasma Sprayed Nicraly Coating

    Directory of Open Access Journals (Sweden)

    Niemiec D.

    2016-06-01

    Full Text Available The article presents results of research relating to the impact of laser treatment done to the surface of plasma sprayed coatings NiCrAlY. Analysis consisted microstructure and oxidation resistance of coatings subjected to two different laser melting surfaces. The test were performed at a temperature 1000°C the samples were removed from the furnace after 25, 300, 500, 750 and 1000 hours. The investigations range included analysis of top surface of coatings by XRD characterization oxides formed types and microscopic investigations of coatings morphology

  20. Role of Y in the oxidation resistance of CrAlYN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Meister, S.; El Mrabet, S. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco 28049 (Spain); Mariscal, A.; Jiménez de Haro, M.C.; Justo, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Brizuela, M. [TECNALIA, Mikeletegui Pasealekua, 2, Donostia-San Sebastián 20009 (Spain); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Sánchez-López, J.C., E-mail: jcslopez@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain)

    2015-10-30

    Highlights: • The oxidation behavior of CrAlYN films (Al < 10 at.%) depends on the Al/Y distribution. • ∼4 at.% Y enhances the oxidation resistance up to 1000 °C of CrAlYN-coated M2 steels. • Controlled inward oxygen diffusion affects positively the film oxidation resistance. • Mixed Al–Y oxides appear to block the diffusion of elements from the substrate. • Yttrium modifies the passivation layer composition by increasing the Al/Cr ratio. - Abstract: CrAlYN coatings with different aluminum (4–12 at.%) and yttrium (2–5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N{sub 2} mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr{sub 2}N, and a more effective Fe and C blocking.

  1. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Science.gov (United States)

    Shvets, Petr; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-01

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  2. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  3. SEMICONDUCTOR DEVICES Hot-carrier-induced on-resistance degradation of step gate oxide NLDMOS

    Science.gov (United States)

    Yan, Han; Bin, Zhang; Koubao, Ding; Shifeng, Zhang; Chenggong, Han; Jiaxian, Hu; Dazhong, Zhu

    2010-12-01

    The hot-carrier-induced on-resistance degradations of step gate oxide NLDMOS (SG-NLDMOS) transistors are investigated in detail by a DC voltage stress experiment, a TCAD simulation and a charge pumping test. For different stress conditions, degradation behaviors of SG-NLDMOS transistors are analyzed and degradation mechanisms are presented. Then the effect of various doses of n-type drain drift (NDD) region implant on Ron degradation is investigated. Experimental results show that a lower NDD dosage can reduce the hot-carrier induced Ron degradation effectively, which is different from uniform gate oxide NLDMOS (UG-NLDMOS) transistors.

  4. High temperature oxidation behavior of high speed steel for hot rolls material

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Fang Liu; Changsheng Liu; Dale Sun; Lisong Yao

    2005-01-01

    The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800℃. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800℃) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstructure, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650℃, increasing gradually at 650 to 750℃, and drastically at 750 to 800℃, because the phase transformation happens at about 750℃.

  5. A role for sigma factor SigE in Corynebacterium pseudotuberculosis resistance to nitric oxide/ peroxide stress

    Directory of Open Access Journals (Sweden)

    Luis G. C. Pacheco

    2012-04-01

    Full Text Available Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σE for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE null mutant strain (delta-sigE of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO. The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS, confirming the significance of σE for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σE in composition of this bacterium´s exoproteome.

  6. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Baixing; Peng, Zhenjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Qing [School of Science, Lanzhou University of Technology, Lanzhou 730050 (China)

    2014-04-01

    Highlights: • The PEO coating growth rate increased with the cathodic voltage increasing. • Higher cathodic voltage resulted in more compact coating structure. • The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline γ-Al{sub 2}O{sub 3} and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  7. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Metikos-Hukovic, M., E-mail: mmetik@fkit.h [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Babic, R. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Grubac, Z. [Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split (Croatia); Petrovic, Z. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Lajci, N. [Faculty of Mine and Metallurgy, University of Prishtina, 10000 Prishtina, Kosovo (Country Unknown)

    2011-06-15

    Highlights: {yields} ASS alloyed with nitrogen treated at 1150 {sup o}C exhibits microstructure homogeneity. {yields} Passivation peak of ASS corresponds to oxidation of metal and absorbed hydrogen. {yields} Transfer phenomena and conductivity depend on the film formation potential. {yields} Electronic structure of the passive film and its corrosion resistance correlate well. {yields} Passive film on ASS with nitrogen is low disordered and high corrosion resistant. - Abstract: Passivity of austenitic stainless steel containing nitrogen (ASS N25) was investigated in comparison with AISI 316L in deareated acid solution, pH 0.4. A peculiar nature of the passivation peak in a potentiodynamic curve and the kinetic parameters of formation and growth of the oxide film have been discussed. The electronic-semiconducting properties of the passive films have been correlated with their corrosion resistance. Alloying austenitic stainless steel with nitrogen increases its microstructure homogeneity and decreases the concentration of charge carriers, which beneficially affects the protecting and electronic properties of the passive oxide film.

  8. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Science.gov (United States)

    Hirono, Toko; Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie; Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Pohl, David-Leon; Rozanov, Alexandre; Rymaszewski, Piotr; Wang, Anqing; Wermes, Norbert

    2016-09-01

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  9. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  10. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  11. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  12. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training

    DEFF Research Database (Denmark)

    Ceci, R.; Beltran Valls, M.R.; Duranti, G.

    2014-01-01

    to a graded maximal exercise stress test (GXT) at baseline and after the 12-weeks of EMRT protocol, with blood samples collected before, immediately after, 1 and 24. h post-GXT test. Blood glutathione (GSH, GSSG, GSH/GSSG), plasma malonaldehyde (MDA), protein carbonyls and creatine kinase (CK) levels, as well......We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed...... to evaluate the impact of EMRT on oxidative stress biomarkers induced in old people (70-75 years) by a single bout of acute, intense exercise. Sixteen subjects randomly assigned to either a control, not exercising group ( n=8) or a trained group performing EMRT protocol for 12-weeks ( n=8), were submitted...

  13. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Ji-Hyun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of); Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Lee, Dongsoo [Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Jeon, Sanghun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of)

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  14. THE SULFIDATION/OXIDATION RESISTANCE OF TWO Ni-Cr-Al-Y ALLOYS AT 700℃

    Institute of Scientific and Technical Information of China (English)

    Y.X.Lu; W.X.Chen; R.Eadie

    2004-01-01

    The high temperature corrosion resistance of Ni-25.gCr-13.5Al-1.2Y-0.6Si and Ni-10.2Co-12.4 Cr-16.0A l-0.5 Y-0.2Hf alloys was assessed in sulfidation/oxidation environments.In the environment with a sulfur partial pressure of 1Pa.and an oxygen partial pressure of 10-19Pa,both these alloys exhibited three distinct stages in the weight gain-time curve when tested at 700℃.In the initial stage,selective sulfidation of Cr suppressed the formation of the other metal sulfides,resulting in lower weight gains.In the transient stage,breakdown and cracking of Cr sulfides and insufficient concentration of Cr at the outer zone led to the rapid formation of Ni sulfides and a rapid increase in weight.In the steady-state stage,corrosion was controlled by the diffusion of anions and/or cations,which led to a parabolic rate law.

  15. Transcriptomic Analyses on the Role of Nitric Oxide in Plant Disease Resistance.

    Science.gov (United States)

    Mata-Pérez, Capilla; Begara-Morales, Juan C; Luque, Francisco; Padilla, María N; Jiménez-Ruiz, Jaime; Sánchez-Calvo, Beatriz; Fierro-Risco, Jesús; Barroso, Juan B

    2016-01-01

    Nitric oxide (NO) is a gaseous molecule having key roles in many physiological processes such as germination, growth, development and senescence. It has been also shown the important role of NO as a signaling molecule in the response to a wide variety of stress situations, including both biotic and abiotic stress conditions. In the last few years, a growing number of studies have focused on NO-cell targets by several approaches such as transcriptomic and proteomic analyses. This review is centered on offering an update about the principal medium- and large-scale transcriptomic analyses performed with several NO donors including microarray, cDNA-amplification fragment length polymorphism (AFLP) and high throughput sequencing (RNA-seq technology) approaches mainly focused on the role of this reactive nitrogen species in relation to plant disease resistance. Different putative NO-responsive genes have been identified in different plant tissues and plant species by application of several NO donors suggesting the implication of NO-responsive genes with plant adaptive responses to biotic stress processes. Finally, it is also provided an overview about common transcription factor-binding sites of NO-responsive genes and the need to further analyze the different NO-targets by other omics studies.

  16. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2

    Institute of Scientific and Technical Information of China (English)

    Santiago J. CartamiI-Bueno[1; Peter G. Steeneken[1; Frans D. Tichelaar[2; Efren Navarro-Moratalla[3; Warner J. Venstra[1; Ronald van Leeuwen[1; Eugenio Coronado[3; Herre S.J. van der Zant[1; Gary A. Steele[1; Andres Castellanos-Gomez[1

    2015-01-01

    Controlling the strain in two-dimensional (2D) materials is an interesting avenue to tailor the mechanical properties of nanoelectromechanical systems. Here, we demonstrate a technique to fabricate ultrathin tantalum oxide nanomechanical resonators with large stress by the laser oxidation of nano-drumhead resonators composed of tantalum diselenide (TaSe2), a layered 2D material belonging to the metal dichalcogenides. Before the study of their mechanical properties with a laser interferometer, we verified the oxidation and crystallinity of the freely suspended tantalum oxide using high-resolution electron microscopy. We demonstrate that the stress of tantalum oxide resonators increases by 140 MPa (with respect to pristine TaSe2 resonators), which causes an enhancement in the quality factor (14 times larger) and resonance frequency (9 times larger) of these resonators.

  17. Gallium Oxide Nanostructures for High Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  18. Liquid nitrogen cooled integrated power electronics module with high current carrying capability and lower on resistance

    Science.gov (United States)

    Ye, Hua; Lee, Changwoo; Simon, Randy W.; Haldar, Pradeep; Hennessy, Michael J.; Mueller, Eduard K.

    2006-11-01

    This letter presents the development of high-performance integrated cryogenic power modules, where both driver components and power metal-oxide semiconductor field-effect transistors are integrated in a single package, to be used in a 50kW prototype cryogenic inverter operating at liquid nitrogen temperature. The authors have demonstrated a compact high-voltage, cryogenic integrated power module that exhibited more than 14 times improvement in on-resistance and continuous current carrying capability exceeding 40A. The modules are designed to operate at liquid nitrogen temperature with extreme thermal cycling. The power electronic modules are necessary components that provide control and switching for second generation, yttrium barium copper oxide-based high temperature superconductor devices including cables, motors, and generators.

  19. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  20. Oxide phase development upon high temperature oxidation of {gamma}-NiCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, T.J.; Pers, N.M. van der; Sloof, W.G. [Department of Materials Science and Engineering, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands)

    2006-03-15

    The amount of each oxide phase developed upon thermal oxidation of a {gamma}-Ni-27Cr-9Al (at.%) alloy at 1353 K and 1443 K and a partial oxygen pressure of 20 kPa is determined with in-situ high temperature X-ray Diffractometry (XRD). The XRD results are compared with microstructural observations from Scanning Electron Microscope (SEM) backscattered electron images, and model calculations using a coupled thermodynamic-kinetic oxidation model. It is shown that for short oxidation times, the oxide scale consists of an outer layer of NiO on top of an intermediate layer of Cr{sub 2}O{sub 3} and an inner zone of isolated {alpha}-Al{sub 2}O{sub 3} precipitates in the alloy. The amounts of Cr{sub 2}O{sub 3} and NiO in the oxide scale attain their maximum values when successively continuous Cr{sub 2}O{sub 3} and {alpha}-Al{sub 2}O{sub 3} layers are formed. Then a transition from very fast to slow parabolic growth kinetics occurs. During the slow parabolic growth, the total amount of non-protective oxide phases (i.e. all oxide phases excluding {alpha}-Al{sub 2}O{sub 3}) in the oxide scale maintain at an approximately constant value. The formation of NiCr{sub 2}O{sub 4} and subsequently NiAl{sub 2}O{sub 4} happens as a result of solid-state reactions between the oxide phases within the oxide scale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. High throughput phenotyping for aphid resistance in large plant collections

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2012-08-01

    Full Text Available Abstract Background Phloem-feeding insects are among the most devastating pests worldwide. They not only cause damage by feeding from the phloem, thereby depleting the plant from photo-assimilates, but also by vectoring viruses. Until now, the main way to prevent such problems is the frequent use of insecticides. Applying resistant varieties would be a more environmental friendly and sustainable solution. For this, resistant sources need to be identified first. Up to now there were no methods suitable for high throughput phenotyping of plant germplasm to identify sources of resistance towards phloem-feeding insects. Results In this paper we present a high throughput screening system to identify plants with an increased resistance against aphids. Its versatility is demonstrated using an Arabidopsis thaliana activation tag mutant line collection. This system consists of the green peach aphid Myzus persicae (Sulzer and the circulative virus Turnip yellows virus (TuYV. In an initial screening, with one plant representing one mutant line, 13 virus-free mutant lines were identified by ELISA. Using seeds produced from these lines, the putative candidates were re-evaluated and characterized, resulting in nine lines with increased resistance towards the aphid. Conclusions This M. persicae-TuYV screening system is an efficient, reliable and quick procedure to identify among thousands of mutated lines those resistant to aphids. In our study, nine mutant lines with increased resistance against the aphid were selected among 5160 mutant lines in just 5 months by one person. The system can be extended to other phloem-feeding insects and circulative viruses to identify insect resistant sources from several collections, including for example genebanks and artificially prepared mutant collections.

  2. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    Science.gov (United States)

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-02-24

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  3. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil

    Directory of Open Access Journals (Sweden)

    Ioanna Chinou

    2012-02-01

    Full Text Available The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  4. Effects of nitric oxide on resistance to bacterial infection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, E. (INSERM, Paris, France); Bouley, G.; Blayo, M.C.

    1981-06-01

    Continuous exposure to 2 ppM nitric oxide (NO) for as long as 4 wk did not reduce the resistance of male mice to infection by aerosol inoculation with Pasteurella multocida. In contrast, mortality was slightly enhanced and survival shortened in NO-exposed compared to control female mice; however, the importance of these small differences is uncertain. These results suggest only that male and famale mice did not react similarly to the infectious challenge after exposure to NO.

  5. High temperature oxidation and electrochemical studies on novel co-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Leonhard

    2013-02-27

    Isothermal oxidation in air was carried out on novel γ'-strengthened Cobalt-base superalloys of the system Co-Al-W-B. After fast initial oxide formation, a multi-layered structure establishes, consisting of an outer cobalt oxide layer, a middle spinel-containing layer, and an inner Al{sub 2}O{sub 3}-rich region. Ion diffusion in outward direction is hindered by the development of Al{sub 2}O{sub 3}, that can be either present as a continuous and protective layer or as a discontinuous Al{sub 2}O{sub 3}-rich area without comparable protective effect. Furthermore, high temperature oxidation leads to phase transformation (from γ/γ' into γ/Co{sub 3}W) at the alloy/oxide layer interface due to aluminium depletion. Pure cobalt and ternary Co-Al-W alloys exhibit parabolic oxide growth due to the lack or insufficient amounts of protective oxides, whereas quaternary Co-Al-W-B alloys possess sub-parabolic oxidation behaviour (at 900 C). At lower temperatures (800 C), even a blockage of further oxidation can be observed. High amounts of B (0.12 at%) significantly improve oxidation resistance mainly due to its beneficial effect on inner Al{sub 2}O{sub 3}-formation at the alloy/oxide interface. Furthermore, B prevents decohesion of high temperature scales due to the formation of B-rich phases (presumably tungsten borides) in the middle oxide layer. Appropriate amounts of chromium (8 at%) as additional alloying element to Co-Al-W-B alloys lead to the formation of an inner duplex layer composed of protective Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} phases. In this respect, chromium also benefits selective oxidation of aluminium, which results in higher Al{sub 2}O{sub 3}-contents compared to chromium-free alloys. Major drawbacks of chromium additions are, on the one hand, the formation of volatile chromium-containing species at temperatures exceeding 1000 C and on the other hand, the instability of the γ/γ'-microstructure. Titanium and silicon additions lead to

  6. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.

    2011-12-05

    The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

  7. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  8. An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance

    Science.gov (United States)

    Wang, Qian; Han, Yushan; Shi, Kaixiang; Fan, Xia; Wang, Lu; Li, Mingshun; Wang, Gejiao

    2017-01-01

    Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable. PMID:28128323

  9. Improved low contact resistance in high-Tsub(c) Y-Ba-Cu-O ceramic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maas, J. van der; Gasparov, V.A.; Pavuna, D.

    1987-08-13

    The authors report a simple method of contact preparation for high-Tsub(c) copper-oxide materials (Y-Ba-Cu-O). Based on high-temperature metallization it reduces the contact resistance from typically 1 ..cap omega.. mm/sup -2/ down to < or approx. 10 ..mu cap omega.. mm/sup -2/ (77 K), and enables the critical current of a bulk sample to be measured, with current densities in the contact area in excess of 2,000 A cm/sup -2/.

  10. Intellective high-precision macromolecule resistance temperature/humidity instrument

    Science.gov (United States)

    Liu, Guixiong; Zhou, Qinhe; Kuang, Yongcong; Xu, Jing; Zeng, Zhixin

    2001-09-01

    Considering that the resistance of macromolecule resistor varies in a wide range and humidity sensor component is sensitive to temperature as well, a intelligent high- precision macromolecule resistance temperature/humidity instrument was proposed in this paper, the instrument is based on the integration of frequency-and-period-measuring method, and sensing characteristic calculation and compensation using interpolation. Practical applications show that the instrument has the advantages of high precision, simple peripheral circuit, low cost, suitability for remote measurement, strong ability of anti-interference and wide operation range.

  11. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance.

    Science.gov (United States)

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N(1)-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H(2)O(2) and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  12. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Xing-Xing Liu

    2012-01-01

    Full Text Available The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg with (sham-nicotinamide and burn-nicotinamide groups or without (sham-operated and burn groups coadministration of nicotinamide (100 mg/kg. The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N1-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H2O2 and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  13. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction

    Science.gov (United States)

    Keane, Kevin Noel; Cruzat, Vinicius Fernandes; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem; Newsholme, Philip

    2015-01-01

    The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation. PMID:26257839

  14. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    Science.gov (United States)

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  15. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  16. The Effect of Zirconium Addition on the Oxidation Resistance of Aluminide Coatings

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Pytel, Maciej; Romanowska, Jolanta; Sieniawski, Jan

    2015-04-01

    Nickel, Mar M247, and Mar M200 superalloys were coated with zirconium-doped aluminide deposited by the chemical vapor deposition method. All coatings consisted of two layers: an additive one, comprising of the β-NiAl phase and the interdiffusion one. The interdiffusion layer on pure nickel consisted of the γ'-Ni3Al phase and β-NiAl phase on superalloys. Precipitations of zirconium-rich particles were found near the coating's surface and at the interface between the additive and the interdiffusion layer. Zirconium doping of aluminide coating improved the oxidation resistance of aluminide coatings deposited both on the nickel substrate and on the Mar M200 superalloy. Precipitations of ZrO2 embedded by the Al2O3 oxide were formed during oxidation. It seems that the ZrO2 oxide increases adhesion of the Al2O3 oxide to the coating and decreases the propensity of the Al2O3 oxide rumpling and spalling.

  17. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  18. Highly mobile oxygen holes in magnesium oxide

    Science.gov (United States)

    Freund, Minoru M.; Freund, Friedemann; Batllo, Francois

    1989-01-01

    High-purity MgO exhibits an unexpected giant anomaly of the apparent static dielectric constant and a positive surface charge of the order of 5 x 10 to the 21st/cu cm in the top 15 nm. It is postulated that the MgO matrix contains traces of peroxy defects, O2(2-), associated with Mg(2+) vacancies. Above approximately 400 C the O2(2-) dissociates to vacancy bound O(-) and highly mobile O(-) states, which diffuse to the surface, giving rise to a high surface conductivity.

  19. Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper.

    Science.gov (United States)

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin

    2016-12-21

    Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.

  20. Copper oxide as a high temperature battery cathode material

    Science.gov (United States)

    Ritchie, A. G.; Mullins, A. P.

    1994-10-01

    Copper oxide has been tested as a cathode material for high temperature primary reserve thermal batteries in single cells at 530 to 600 C and at current densities of 0.1 to 0.25 A cm(exp -2) using lithium-aluminium alloy anodes and lithium fluoride-lithium chloride-lithium bromide molten salt electrolytes. Initial on-load voltages were around 2.3 V, falling to 1.5 V after about 0.5 F mol(exp -1) had been withdrawn. Lithium copper oxide, LiCu2O2, and cuprous oxide, Cu2O, were identified as discharge products.

  1. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those...... carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...

  2. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  3. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; LI HuLin

    2001-01-01

    @@ Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.

  4. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen

    2001-01-01

    Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.  ……

  5. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  6. Method of separate determination of high-ohmic sample resistance and contact resistance

    Directory of Open Access Journals (Sweden)

    Vadim A. Golubiatnikov

    2015-09-01

    Full Text Available A method of separate determination of two-pole sample volume resistance and contact resistance is suggested. The method is applicable to high-ohmic semiconductor samples: semi-insulating gallium arsenide, detector cadmium-zinc telluride (CZT, etc. The method is based on near-contact region illumination by monochromatic radiation of variable intensity from light emitting diodes with quantum energies exceeding the band gap of the material. It is necessary to obtain sample photo-current dependence upon light emitting diode current and to find the linear portion of this dependence. Extrapolation of this linear portion to the Y-axis gives the cut-off current. As the bias voltage is known, it is easy to calculate sample volume resistance. Then, using dark current value, one can determine the total contact resistance. The method was tested for n-type semi-insulating GaAs. The contact resistance value was shown to be approximately equal to the sample volume resistance. Thus, the influence of contacts must be taken into account when electrophysical data are analyzed.

  7. Oxidized LDL Is Associated With Metabolic Syndrome Traits Independently of Central Obesity and Insulin Resistance.

    Science.gov (United States)

    Hurtado-Roca, Yamilee; Bueno, Hector; Fernandez-Ortiz, Antonio; Ordovas, Jose Maria; Ibañez, Borja; Fuster, Valentin; Rodriguez-Artalejo, Fernando; Laclaustra, Martin

    2017-02-01

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baseline data from 3,987 subjects without diabetes in the Progression of Early Subclinical Atherosclerosis (PESA) Study. For the second, third, and fourth ox-LDL quartiles versus the first, the odds ratios (95% CI) for MS were 0.84 (0.52, 1.36), 1.47 (0.95, 2.32), and 2.57 (1.66, 4.04) (P insulin resistance (HOMA-IR). Results showing the same trend were found for all MS components except glucose concentration. Ox-LDL mediated 13.9% of the association of waist circumference with triglycerides and only 1-3% of the association with HDL-cholesterol, blood pressure, and insulin concentration. HOMA-IR did not mediate the association between ox-LDL and MS components. This study found higher ox-LDL concentrations were associated with MS and its components independently of central obesity and insulin resistance. Ox-LDL may reflect core mechanisms through which MS components develop and progress in parallel with insulin resistance and could be a clinically relevant predictor of MS development. © 2017 by the American Diabetes Association.

  8. Oxidation and thermal fatigue of coated and uncoated NX-188 nickel-base alloy in a high velocity gas stream

    Science.gov (United States)

    Johnson, J. R.; Young, S. G.

    1972-01-01

    A cast nickel-base superalloy, NX-188, coated and uncoated, was tested in a high-velocity gas stream for resistance to oxidation and thermal fatigue by cycling between room temperature and 980, 1040, and 1090 C. Contrary to the behavior of more conventional nickel-base alloys, uncoated NX-188 exhibited the greatest weight loss at the lowest test temperature. In general, on the basis of weight change and metallographic observations a coating consisting of vapor-deposited Fe-Cr-Al-Y over a chromized substrate exhibited the best overall performance in resistance to oxidation and thermal fatigue.

  9. Diode-less bilayer oxide (WO(x)-NbO(x)) device for cross-point resistive memory applications.

    Science.gov (United States)

    Liu, Xinjun; Sadaf, Sharif Md; Son, Myungwoo; Shin, Jungho; Park, Jubong; Lee, Joonmyoung; Park, Sangsu; Hwang, Hyunsang

    2011-11-25

    The combination of a threshold switching device and a resistive switching (RS) device was proposed to suppress the undesired sneak current for the integration of bipolar RS cells in a cross-point array type memory. A simulation for this hybrid-type device shows that the matching of key parameters between switch element and memory element is an important issue. Based on the threshold switching oxides, a conceptual structure with a simple metal-oxide 1-oxide 2-metal stack was provided to accommodate the evolution trend. We show that electroformed W-NbO(x)-Pt devices can simultaneously exhibit both threshold switching and memory switching. A qualitative model was suggested to elucidate the unique properties in a W-NbO(x)-Pt stack, where threshold switching is associated with a localized metal-insulator transition in the NbO(x) bulk, and the bipolar RS derives from a redox at the tip of the localized filament at the WO(x)-NbO(x) interface. Such a simple metal-oxide-metal structure, with functionally separated bulk and interface effects, provides a fabrication advantage for future high-density cross-point memory devices.

  10. High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C

    Indian Academy of Sciences (India)

    Subhash Kamal; R Jayaganthan; S Prakash

    2010-06-01

    Oxidation and hot corrosion are serious problems in aircraft, marine, industrial, and land-base gas turbines. It is because of the usage of wide range of fuels coupled with increased operating temperatures, which leads to the degradation of turbine engines. To obviate these problems, superalloys, viz. Superni 75, Superni 718 and Superfer 800H superalloys (Midhani grade), are the prominent materials for the high temperature applications. It is very essential to investigate the degradation mechanism of superalloys due to oxidation and hot corrosion and substantiate the role of alloying elements for the formation of protective oxide films over the surface of the superalloys. Therefore, the present work investigates the oxidation and hot corrosion behaviour of superalloys exposed to air and molten salt (Na2SO4–60% V2O5) environment, respectively, at 900°C under cyclic conditions. The weight change measurements made on the superalloys during the experiments are used to determine the kinetics of oxidation and hot corrosion. X-ray diffraction (XRD), X-ray mapping and field emission scanning electron microscope (FESEM, FEI, Quanta 200F company) with EDAX Genesis software attachment, made in Czech Republic are used to characterize the corroded products of the superalloys. It is observed that the formation of scale rich in Cr2O3, NiO and spinel NiCr2O4 has contributed for the better oxidation and hot corrosion resistance of Superni 75; whereas relatively lesser hot corrosion resistance of Superfer 800H is due to the formation of non-protective oxides of iron and sulphides of iron and nickel. The parabolic rate constants calculated for the superalloys show that the corrosion rate is minimum in air as compared to molten salt envi