WorldWideScience

Sample records for high osmolarity glycerol

  1. Evidence of a New Role for the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway in Yeast: Regulating Adaptation to Citric Acid Stress†

    Lawrence, Clare L.; Botting, Catherine H.; Antrobus, Robin; Coote, Peter J.

    2004-01-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite mino...

  2. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

  3. The effects of peroral glycerol on plasma osmolarity in diabetic patients and healthy individuals

    Thornit, Dorte Nellemann; Sander, Birgit; la Cour, Morten

    2009-01-01

    Glycerol is used as a peroral treatment of increased intraocular and intracranial pressure due to its osmotic effect despite the potential increase in blood pressure and blood glucose. We examined the effects of peroral glycerol in diabetic patients and healthy individuals on blood pressure......, capillary glucose, and plasma osmolarity. On two separate days, 15 diabetic patients ingested glycerol in doses of 855 and 1710 mg/kg body weight in a randomised, unmasked sequence. Five healthy individuals ingested a dose of 1710 mg/kg body weight. Mean arterial blood pressure (MAP), capillary glucose (CG......, non-significant increase occurred in blood pressure. Maximal DeltaCG was approximately 1 mM irrespective of the dose and presence of diabetes (p > 0.1). The pOSM response was analysed with a kinetic model and found independent of the presence of diabetes (p = 0.6). The maximal fitted DeltapOSM was 12...

  4. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum.

    Gu, Qin; Zhang, Chengqi; Yu, Fangwei; Yin, Yanni; Shim, Won-Bo; Ma, Zhonghua

    2015-08-01

    Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Renal clearance of an ionic high-osmolar and a nonionic low-osmolar contrast medium

    Thomsen, H.S.; Vestergaard, A.; Nielsen, S.L.; Fogh-Andersen, N.; Golman, K.; Dorph, S.

    1991-01-01

    One hundred patients with normal serum creatinine concentration underwent intravenous urography with either an ionic high-osmolar (diatrizoate) or a nonionic low-osmolar (iopamidol) contrast medium after randomization. Before injection of the contrast medium, a blood sample was drawn for determinating serum creatinine concentration, and a urine sample for measurement of urine osmolality. Using x-ray fluorescence, the plasma concentration of iodine (contrast medium) was determined on blood samples drawn approximately 3 and 4 hours after injection of the contrast medium. The glomerular filtration rate was calculated by two different formulas: one requiring only a single sample and one requiring at least two samples (standard). There were poor correlations between the standard contrast medium clearance and the serum creatinine concentration, the estimated creatinine clearance (calculated from a nomogram), as well as the urine osmolality. The 3-hour and the 4-hour single-sample values correlated well with the two-sample values for both contrast media. In patients with normal serum creatinine, the glomerular filtration rate determined by measuring the contrast medium concentration in a single plasma sample obtained at 3 hours, is almost identical to the value determined from two samples. Consequently, two samples are unnecessary

  7. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  8. High and low osmolar contrast media: Who pays?

    Goethlin, J.H.

    1988-01-01

    To possibly avoid a case of contrast medium-related death in Norway every second or third year will mean a cost of many millions of dollars. It is not feasible without many patients being deprived of diagnostic possibilities. The solution is at present to use LOCM in high risk patients and small children until sufficient data (large, controlled series) can give a reliable answer to if or when LOCM should be used. (orig.)

  9. Low osmolar (non-ionic) contrast media versus high osmolar (ionic) contrast media in intravenous urography and enhanced computerized tomography: a cost-effectiveness analysis.

    Wangsuphachart, S

    1991-12-01

    The cost-effectiveness of three alternative policies for the use of intravenous contrast media for urography and enhanced computerized tomography (CT) are analyzed. Alternative #1 is to use high osmolar contrast media (HOCM) in all patients, the historical policy. Alternative #2 is to replace it with low osmolar contrast media (LOCM) in all patients. Alternative #3 is to use LOCM only in the high risk patients. Data on the 6,242 patients who underwent intravenous urography and enhanced CT at the Department of Radiology, Chulalongkorn Hospital in 1989 were used. Both societal and hospital viewpoints were analyzed. The incremental cost-effectiveness (ICE) between #2 and #1 was 26,739 Baht (US$1,070) per healthy day saved (HDS), while the ICE between #3 and #1 was 12,057 Baht (US$482) per HDS. For fatal cases only, ICE between #2 and #1 was 35,111 Baht (US$1,404) per HDS, while the ICE between #3 and #1 was 18,266 Baht (US$731) per HDS. The incremental cost (IC) per patient was 2,341 Baht (US$94) and 681 Baht (US$27) respectively. For the hospital viewpoint the ICE between #2 and #1 was 13,744 (US$550) and between #3 and #1 was 6,127 Baht (US$245) per HDS. The IC per patient was 1,203 Baht (US$48) and 346 Baht (US$14), respectively. From the sensitivity analysis, #3 should be used if the LOCM price is reduced more than 75% (equal to 626 Baht or less) and more than 80% of the patients are able to pay for the contrast media.

  10. High incidence of nephropathy in neurosurgical patients after intra-arterial administration of low-osmolar and iso-osmolar contrast media.

    Serafin, Zbigniew; Karolkiewicz, Maciej; Gruszka, Marzena; Strózecki, Pawel; Lasek, Wladyslaw; Odrowaz-Sypniewska, Grazyna; Manitius, Jacek; Beuth, Wojciech

    2011-05-01

    Percutaneous endovascular examinations and interventions require significant amounts of iodinated contrast media (CM) and have been reported to be complicated by an increased incidence of post-contrast nephropathy. To evaluate renal function, the incidence of post-contrast nephropathy, and risk factors after interventional procedures in neurosurgical patients after intra-arterial administration of a low-osmolar contrast medium (LOCM) versus an iso-osmolar contrast medium (IOCM). This single-center, prospective, randomized, double-blinded study included 92 patients in its final analysis (mean age 49.6 ± 12.6 years, 29.3% men, mean eGFR 97.8 ± 26.3 mL/min/1.73 m(2)). LOCM was used in 48 patients (52.2%) and IOCM in 44 patients (47.8%). The patients were given an average of 151.2 ± 52.1 mL of contrast medium intra-arterially. Serum creatinine (SCr), urinary N-acetyl-β-glucosaminidase (NAG) excretion, and creatinine clearance (CCr) were measured at baseline, and on days 1 and 3 after the procedure. Baseline risk factors, renal functional parameters, and average CM doses were not statistically different between the two groups. SCr, NAG, and CCr values did not differ significantly between the LOCM and IOCM groups on days 1 and 3 after CM administration. Nephropathy developed in 21 cases (22.8%): 13 (27.1%) after LOCM use and 8 (18.2%) after IOCM; (P = NS). The only significant risk factors of CIN were the diabetes (P = 0.0466) and atherosclerosis (P = 0.0498). We found a high incidence of nephropathy in neurosurgical patients after intra-arterial CM administration. The renal function values and incidence of nephropathy following LOCM administration were not statistically different from those following IOCM administration.

  11. [Comparison of diagnostic quality in hysterosalpingography between iodinated non-ionic contrast media with low and high osmolarity].

    Piccotti, K; Guida, D; Carbonetti, F; Stefanetti, L; Macioce, A; Cremona, A; David, V

    Comparison of diagnostic quality in hysterosalpingography between low and high-osmolality contrast media. We performed a retrospective evaluation of two cohorts of patients who underwent HSG using contrast media with different osmolarity: the first group ,47 patients, underwent hysterosalpingography in the period September 2011-December 2012 using Iopromide 370 mg/ml; the second group, 50 patients, underwent HSG from January 2013 to October 2013 using Iomeprol 400 mg/ml. Three radiologists, in consensus reading,, reviewed the radiographs by assessing the following four parameters: opacification of the uterine cavity, uterine profiles definition, Fallopian tubes visualization, contrast media spillage into peritoneum. A score-scale from 0 to 3 was assigned for each of the mentioned parameter (0 = minimum non-diagnostic exam, 1 = sufficient examination; 2 = good quality examination; maximum 3 = high quality images). We documented a statistically significant higher quality in displaying Fallopian tubes among patients studied through high osmolarity contrast medium (Iopromide 370 mg/ml) than what obtained through lower osmolarity contrast medium (Iomeprol 400 mg/ml). The use of high osmolarity contrast medium enabled better visualization of the tubes and a greater number of diagnoses of chronic aspecific salpigintis due to the increased osmolality and viscosity of Iomeprol 400 mg/ml. There were no significant differences between the two contrast agents in the evaluation of intra-uterine pathology and in the evaluation of the tubal patency.

  12. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  13. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  14. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Bassam Nohra

    2016-09-01

    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  15. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-06-01

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  16. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.

    1970-01-01

    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  17. KdpE and a putative RsbQ homologue contribute to growth of Listeria monocytogenes at high osmolarity and low temperature

    Brøndsted, Lone; Kallipolitis, Birgitte H; Ingmer, Hanne

    2003-01-01

    The kdp locus of Listeria monocytogenes encodes products with homology to structural proteins of a high-affinity potassium uptake system and to a two-component signal transduction system commonly involved in controlling gene expression. We have investigated the role of kdpE, encoding......-frame deletions of either kdpE or orfX were unaffected by high osmolarity. Transcriptional analysis of kdpE and orfX revealed that their products are encoded by the same transcript. Thus, our data indicate that the absence of both KdpE and OrfX influences growth under osmotic pressure. Interestingly, Orf...

  18. Liquid phase conversion of Glycerol to Propanediol over highly ...

    characterization results showed that the copper metal was well-dispersed over MgO support and a new phase. Cu-MgO was ... Currently propanediols are produced from petroleum derivatives .... of MgO.15 Barret-Joyner-Halenda (BJH) method is applied to ..... number of available Cu sites with respect to glycerol as. 0.8. 1.0.

  19. Prediction of parenteral nutrition osmolarity by digital refractometry.

    Chang, Wei-Kuo; Yeh, Ming-Kung

    2011-05-01

    Infusion of high-osmolarity parenteral nutrition (PN) formulations into a peripheral vein will damage the vessel. In this study, the authors developed a refractometric method to predict PN formulation osmolarity for patients receiving PN. Nutrients in PN formulations were prepared for Brix value and osmolality measurement. Brix value and osmolality measurement of the dextrose, amino acids, and electrolytes were used to evaluate the limiting factor of PN osmolarity prediction. A best-fit equation was generated to predict PN osmolarity (mOsm/L): 81.05 × Brix value--116.33 (R(2) > 0.99). To validate the PN osmolarity prediction by these 4 equations, a total of 500 PN admixtures were tested. The authors found strong linear relationships between the Brix values and the osmolality measurement of dextrose (R(2) = 0.97), amino acids (R(2) = 0.99), and electrolytes (R(2) > 0.96). When PN-measured osmolality was between 600 and 900 mOsm/kg, approximately 43%, 29%, 43%, and 0% of the predicted osmolarity obtained by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. When measured osmolality was between 900 and 1,500 mOsm/kg, 31%, 100%, 85%, and 15% of the predicted osmolarity by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. The refractive method permits accurate PN osmolarity prediction and reasonable quality assurance before PN formulation administration.

  20. Facile Determination of Sodium Ion and Osmolarity in Artificial Tears by Sequential DNAzymes.

    Kim, Eun Hye; Lee, Eun-Song; Lee, Dong Yun; Kim, Young-Pil

    2017-12-07

    Despite high relevance of tear osmolarity and eye abnormality, numerous methods for detecting tear osmolarity rely upon expensive osmometers. We report a reliable method for simply determining sodium ion-based osmolarity in artificial tears using sequential DNAzymes. When sodium ion-specific DNAzyme and peroxidase-like DNAzyme were used as a sensing and detecting probe, respectively, the concentration of Na⁺ in artificial tears could be measured by absorbance or fluorescence intensity, which was highly correlated with osmolarity over the diagnostic range ( R ² > 0.98). Our approach is useful for studying eye diseases in relation to osmolarity.

  1. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    Selembo, Priscilla A.

    2009-07-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.

  2. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  3. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  4. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  5. Salt-sensitivity of σ(H) and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation.

    Widderich, Nils; Rodrigues, Christopher D A; Commichau, Fabian M; Fischer, Kathleen E; Ramirez-Guadiana, Fernando H; Rudner, David Z; Bremer, Erhard

    2016-04-01

    The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. © 2015 John Wiley & Sons Ltd.

  6. Salt-sensitivity of σH and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation

    Widderich, Nils; Rodrigues, Christopher D.A.; Commichau, Fabian M.; Fischer, Kathleen E.; Ramirez-Guadiana, Fernando H.; Rudner, David Z.; Bremer, Erhard

    2016-01-01

    Summary The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. PMID:26712348

  7. KdpE and a putative RsbQ homologue contribute to growth of Listeria monocytogenes at high osmolarity and low temperature

    Brøndsted, Lone; Kallipolitis, Birgitte H; Ingmer, Hanne

    2003-01-01

    The kdp locus of Listeria monocytogenes encodes products with homology to structural proteins of a high-affinity potassium uptake system and to a two-component signal transduction system commonly involved in controlling gene expression. We have investigated the role of kdpE, encoding the transcri......The kdp locus of Listeria monocytogenes encodes products with homology to structural proteins of a high-affinity potassium uptake system and to a two-component signal transduction system commonly involved in controlling gene expression. We have investigated the role of kdpE, encoding...... the transcriptional response regulator, as well as of the downstream gene, orfX, in adaptation of L. monocytogenes EGD to NaCl and low temperature. When grown in chemically defined medium the addition of NaCl to 2% decreased the growth rate of a mutant with an insertional inactivated kdpE, while mutants carrying in......-frame deletions of either kdpE or orfX were unaffected by high osmolarity. Transcriptional analysis of kdpE and orfX revealed that their products are encoded by the same transcript. Thus, our data indicate that the absence of both KdpE and OrfX influences growth under osmotic pressure. Interestingly, Orf...

  8. Osmolarity and root canal antiseptics.

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  9. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  10. A novel route to synthesis of glycerol dimethyl ether from epichlorohydrin with high selectivity

    Ding, Xiaoshu; Liu, Hao; Yang, Qiusheng; Li, Naihua; Dong, Xiangmo; Wang, Shufang; Zhao, Xinqiang; Wang, Yanji

    2014-01-01

    The effective utilization of glycerol, a by-product in the production of biodiesel, into useful chemicals is desirable from the viewpoint of green chemistry. With this in mind, a novel and highly selective route to synthesizing glycerol dimethyl ether (2,3-dimethoxy-1-propanol), a potential fuel additive, from glycerol was proposed. This route uses both glycerol and methanol as starting materials, takes epichlorohydrin as an intermediate product, and utilizes HCl as a recycling agent. Hereinto, the key step of this route is the reaction between epichlorohydrin and methanol to produce 2,3-dimethoxy-1-propanol which is identified by GC–MS, ESI-MS, IR and NMR. The thermodynamics of this reaction was analyzed and the result showed that the thermodynamics of a reaction was favorable and a high product yield was expected. The effect of various parameters such as kind of acid catalyst, molar ratio of epichlorohydrin to methanol, reaction temperature and reaction time was studied. Among various acid catalysts investigated, the acidic ionic liquid [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 exhibited the highest activity and selectivity: conversion of epichlorohydrin of 100% and selectivity of 2,3-dimethoxy-1-propanol of 99% at 393 K, 10 h, an initial pressure of 0.1 MPa and a molar ratio of catalyst:ECH:CH 3 OH of 0.01:1:5. After the reaction, [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 was separated by vacuum distillation and then reused for the next cycle directly. The results showed that the product selectivity remained at about 94% but the conversion of epichlorohydrin dropped to 75% after being used five times. Subsequently, a reaction mechanism for the synthesis of 2,3-dimethoxy-1-propanol from epichlorohydrin and methanol was proposed. - Highlights: • Epichlorohydrin was converted effectively into glycerol dimethyl ether used as potential fuel additive. • The selectivity of 99% and the conversion of 100% under the mild reaction condition. • The reaction was high product selectivity and

  11. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  12. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  13. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  14. A high glycerol-containing leave-on scalp care treatment to improve dandruff.

    Harding, Clive R; Matheson, Jane R; Hoptroff, Michael; Jones, David A; Luo, Yanjun; Baines, Fiona L; Luo, Shengjun

    2014-01-01

    Dandruff is a common cosmetic condition associated with flaky scalp skin and pruritus. It is generally treated with regular use of antifungal-based shampoos. Research into factors underlying the characteristic skin lesions has revealed perturbations in epidermal differentiation and a dramatic deterioration in the associated process of stratum corneum (SC) maturation. These observations suggest that directly addressing the quality of the SC could have a scalp benefit. In this study, the authors investigated the efficacy of a moisturising leave-on lotion (LOL) containing a high concentration of glycerol (10%) and other known skin benefit agents (saturated fatty acid and sunflower seed oil) to reduce dandruff over an 8-week treatment period with 3 applications per week. Results of expert visual grading and biophysical measurements of SC parameters (transepidermal water loss and hydration) revealed a significant reduction in the dandruffcondition over this period, with significant improvement in both SC water barrier function and hydration. These scalp skin benefits were maintained for up to a week following cessation of the treatment. This study indicates that use of a glycerol-rich substantive LOL, designed to directly improve the quality of the SC barrier can have a significant impact on the dandruff condition.

  15. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation

  16. Organic 'compensatory' osmolytes in osmolarity control and ...

    1997-09-02

    Sep 2, 1997 ... In this framework, cell osmoregulation can be considered as dealing with the ... ability or in the salinity of their environmental water. Many examples of ..... Metabolic effects of acclimation to media of different osmolarities are.

  17. Synthesis of high purity monoglycerides from crude glycerol and palm stearin

    Pakamas Chetpattananondh

    2008-07-01

    Full Text Available The optimum conditions for the glycerolysis of palm stearin and crude glycerol derived from biodiesel process werefound to be a reaction temperature of 200oC with a molar ratio of crude glycerol to palm stearin of 2.5:1, and a reaction timeof 20 minutes. The yield and purity of monoglycerides obtained under these conditions was satisfactory as compared withthe glycerolysis of pure glycerol. To increase the purity of monoglycerides a two-step process, removal of residual glyceroland crystallization, was proposed instead of either vacuum or molecular distillation. Residual glycerol was removed byadding hydrochloric acid followed by washing with hot water. Optimum conditions for crystallization were achieved byusing isooctane as a solvent and a turbine impeller speed of 200 rpm at a crystallization temperature of 35oC. A purity notexceeding 99 percent of monoglycerides was obtained with monopalmitin as the major product.

  18. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  19. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    Mazurek, Piotr Stanislaw; Yu, Liyun; Gerhard, R.

    2016-01-01

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer materialis based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets intoits matrix. The approach has two major ......, and the applicability ofthe models is discussed. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153....

  20. Isolation and partial characterization of a new strain of Klebsiella pneumoniae capable of high 1,3 propanediol production from glycerol

    B. Sen

    2015-04-01

    Full Text Available Glycerol is a promising feedstock for microbial cultivation and production of 1,3 propanediol (1,3 PDO. Here we report a newly isolated bacterial strain BA11 from soil, capable of fermenting glycerol to 1,3 PDO, and has been identified to be a strain of Klebsiella pneumoniae. Strain BA11 was fast growing showing peak 1,3 PDO production in 6 h of cultivation with productivity of 1.2 g/L-h without the addition of Vitamin B12. Based on the optimum glycerol utilization (75% and 1,3 PDO production (8.3 g/L and yield (0.56 mol/mol glycerol utilized, the most appropriate glycerol concentration for cultivation was 20 g/L. The strain BA11 could tolerate the pH range of 6 to 8.5 as no inhibitory effects were seen on growth as well as 1,3 PDO production. Strain BA11 was most active and could produce high 1,3 PDO in the incubation temperature range of 25 to 40 oC. The production of 1,3 PDO was maximum (9.3 g/L under aerobic condition with 95.8% glycerol utilization. Addition of glucose to the glycerol fermentation led to increased cell mass but no improvement in the 1,3 PDO production.

  1. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  2. EXPERIMENTALLY-DERIVED FORMULA FOR COMPUTING SERUM OSMOLARITY IN CHICKENS

    RODICA CĂPRIŢĂ

    2007-10-01

    Full Text Available Osmolarity is a colligative property of solutions that depends on the number ofdissolved particles. The three types of solutes most encountered in biological fluidsare electrolytes, organic non-electrolyte molecules and colloids. The osmolarity ofthe extracellular fluid is about equal to that of the intracellular fluid, although thereare significant differences in the ionic composition of the two compartments. Plasmaosmolarity is a convenient and accurate guide to intracellular osmolarity. There areseveral different formulas for the calculation of human serum osmolarity. The goalof this study is to estimate the plasma osmolarity in chickens from theconcentrations of the main electrolytes and the glucose and urea content, and toestablish the contribution of each osmotic component. Linear regression analysiswas carried out to determine the best predictors of serum osmolarity in chickens.Two equations were also deduced for calculating serum osmolarity using manualregression analysis.

  3. Biohydrogen Production from Glycerol using Thermotoga spp

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium,

  4. Assessment of tear film osmolarity using the TearLab™ osmometer in normal dogs and dogs with keratoconjunctivitis sicca.

    Sebbag, Lionel; Park, Shin Ae; Kass, Philip H; Maggs, David J; Attar, Mayssa; Murphy, Christopher J

    2017-07-01

    To evaluate repeatability and reproducibility of tear osmolarity measured using the TearLab ™ osmometer in normal dogs and to assess its diagnostic potential in dogs with keratoconjunctivitis sicca (KCS). Beagle dogs; six normal and five with KCS. Tear osmolarity and Schirmer tear test-1 (STT-1) values were obtained at various times. Normal dogs were assessed for diurnal variation and repeatability and reproducibility of measurements. Dogs with KCS were evaluated before and after 5 months' topical twice-daily therapy with 2% cyclosporine. Mean ± SD tear osmolarity (mOsm/L) was significantly higher in normal dogs (337.4 ± 16.2) than in dogs with KCS before therapy (306.2 ± 18.0; P dogs, tear osmolarity readings were stable during the daytime (P = 0.99). Repeated measurements revealed high variability and typically poor-to-moderate repeatability and reproducibility, although this was improved by taking three successive measurements at each session. Considering combined data from all dogs, a positive correlation existed between STT-1 and tear osmolarity measurements (Pearson's correlation test, P = 0.04, r = 0.62). Canine tear osmolarity as determined by TearLab ™ osmometer was variable, required multiple readings to be informative, and differed from values reported for humans. Dogs with KCS had a lower tear osmolarity than did normal dogs, and this increased following cyclosporine therapy. © 2016 American College of Veterinary Ophthalmologists.

  5. The Tear Osmolarity Changes After Cataract Surgery

    Banu Öncel

    2012-01-01

    Full Text Available Pur po se: To determine the tear osmolarity changes in patients who had undergone phacoemulsification surgery. Ma te ri al and Met hod: Tear osmolarity measurements were performed in 30 eyes of 30 patients who had undergone cataract surgery without any complication. Measurements were performed before surgery and consecutively at 1st month, 3rd month, and 6th month after the surgery. TearLab osmometer (TearLab Corporation, San Diego, CA, USA device was used for the measurements and paired ttest was used for statistical analysis. Re sults: The mean age of the patients was 72.3±3.7 (67-78 years. Thirteen patients were men and 17 patients were women. The mean osmolarity values were 305.8±6.5 mOsm/L before the surgery and 312.3±6.4 mOsm/L at 1st month, 307.5±5.1 mOsm/L at 3rd month and 305.1±5.7 at 6th month after the surgery. The difference between the values before surgery and at 1st month was found statistically significant (p=0.001. Dis cus si on: The tear osmolarity increases at the first month after surgery but decreases to the levels measured before surgery at the 3rd month. The increase at the first month may be due to the corneal incisions and medication used after the surgery. We think that we have to take into account this similarity increase in all cataract patients, especially in those who also have dry eye disease. (Turk J Ophthalmol 2012; 42: 35-7

  6. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd– strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd– mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth. PMID:24004455

  7. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  8. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    Ferreira Célia

    2010-11-01

    Full Text Available Abstract Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry.

  9. Nephropathy after administration of iso-osmolar and low-osmolar contrast media

    Biondi-Zoccai, Giuseppe; Lotrionte, Marzia; Thomsen, Henrik S

    2014-01-01

    BACKGROUND/OBJECTIVES: Contrast-induced nephropathy (CIN) may be a severe complication to the administration of iodine-based contrast media for diagnostic or interventional procedure using radiation exposure. Whether there is a difference in nephrotoxic potential between the various agents...... is uncertain. We aimed to perform a systematic review and network meta-analysis of randomized trials on iodine-based contrast agents. METHODS: Randomized trials of low-osmolar or iso-osmolar contrast media were searched in CENTRAL, Google Scholar, MEDLINE/PubMed, and Scopus. Risk of CIN was appraised within...... a hierarchical Bayesian model computing absolute rates (AR) and odds ratios (OR) with 95% credibility intervals, and probability of being best (Pbest) for each agent. RESULTS: A total of 42 trials (10048 patients) were included focusing on 7 different iodine-based contrast media. Risk of CIN was similarly low...

  10. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study.

    Zhang, Bo-Bo; Lu, Li-Ping; Xu, Gan-Rong

    2015-07-20

    The underlying mechanisms by which solid-state fermentation (SSF) was more advantageous over submerged fermentation (SmF) for converting high concentration of glycerol into Monacolin K by Monascus purpureus were investigated innovatively. First, the established kinetic models and kinetic parameters showed that the cell growth, Monacolin K formation and glycerol consumption in SSF were more rapid than those in SmF. Secondly, the comparison of fatty acid composition of mycelial cells indicated a better fluidity and permeability of the cell membrane in SSF than that of SmF, which was also consistent with the difference in the ratio of extracellular/intracellular Monacolin K between the two systems. Thirdly, the phenomenon of glycerol concentration gradient was verified in SSF, which could well explain the resistance effect to high concentration of glycerol in SSF. These new findings provide some important insights to the elucidation of the advantages of SSF for the synthesis of fungal secondary metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  13. Tear osmolarity and dry eye symptoms in diabetics

    Fuerst N

    2014-03-01

    Full Text Available Nicole Fuerst,1 Nicole Langelier,1 Mina Massaro-Giordano,1 Maxwell Pistilli,1 Kalliopi Stasi,1 Carrie Burns,2 Serena Cardillo,2 Vatinee Y Bunya1 1Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Purpose: To assess the relationship between tear osmolarity and dry eye symptoms in patients with diabetes. Patients and methods: Fifty patients with diabetes were enrolled. Demographic information and past medical history were recorded. Symptoms were assessed using the ocular surface disease index (OSDI. Tear osmolarity of each eye was measured with the TearLab® Osmolarity System. Results: The majority of the subjects were female (76%, African American (56%, and/or had a diagnosis of type 2 diabetes (82%. The mean ± standard deviation (SD for age was 54.6±13.4, and maximum tear osmolarity was 304.6±12.7 mOsm/L. Men had higher osmolarity than women (mean ± standard error (SE 311.8±4.0 mOsm/L versus 302.3±1.9 mOsm/L, P=0.02. Age, race, use of artificial tears, years of diabetes, and hemoglobin A1c did not have a statistically significant association with tear osmolarity. Longer duration of diabetes was associated with lower (less severe OSDI scores (r=-0.35, P=0.01. Higher tear osmolarity was associated with lower (less severe OSDI scores (r=-0.29, P=0.04. Conclusion: Approximately half of the diabetic subjects in our study had elevated tear osmolarity, and half of our population also reported symptoms consistent with dry eye disease. However, the two were slightly inversely related in that those with higher osmolarity reported fewer symptoms. Subjects with a longer duration of diabetes also reported fewer dry eye symptoms. Therefore, health care providers should be aware that patients who are most likely to have ocular surface disease, including those with

  14. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  15. THE DEPENDENCE OF GLYCEROL ACCUMULATION AND STARCH HYDROLYZATES FERMENTATION FROM WORT CONCENTRATION

    Оliynichuk S. Т.

    2015-08-01

    was concluded that the involvement of other mechanisms for osmoadaptation not related to HOG (high-osmolarity glycerol way, or less active glycerol synthesis system in response to osmotic stress. The practical significance of research using a new experimental osmophilic yeast strain consists of increasing the depth of substrate utilization and ethanol yield from the starch of grain raw materials that have a positive impact on the economy and ecology of ethanol (bioethanol production.

  16. Osmolarity as a contributing factor in topical drug delivery

    Funke, Claire; Szeri, Andrew J.

    2017-11-01

    Gels and dissolvable solids are drug delivery platforms being evaluated for application of active pharmaceutical ingredients, termed microbicides, which act topically against infection by sexually transmitted HIV. In previous work, we have investigated how dilution by naturally produced fluid from the vaginal mucosa affects drug transport into the vaginal wall. We expand on this work by no longer assuming a constant flux and instead developing a relation for fluid transport based on osmolarity - thus allowing fluid to pass both into and out of epithelial cells. This relation shows that varying the osmolarity of the applied solution can have a significant effect on the amount of drug delivered to its target while holding the applied amount constant. This effect is modulated by a dimensionless group that relates the rates of solute and solvent transport. Ultimately, our goal is to develop a tool to understand better how to manipulate solution osmolarity in order to improve drug delivery within safety parameters for mucosal tissue.

  17. Are iso-osmolar, as compared to low-osmolar, contrast media cost-effective in patients undergoing cardiac catheterization? An economic analysis.

    Hiremath, Swapnil; Akbari, Ayub; Wells, George A; Chow, Benjamin J W

    2018-04-23

    Contrast-induced acute kidney injury is a prominent complication following cardiac catheterization, though the risk has progressively decreased in recent times with appropriate risk stratification and use of safer contrast agents. Despite data supporting further lowering of risk with the iso-osmolar agent, iodixanol, uptake has lagged, perhaps due to increased upfront cost of this agent. We undertook an economic analysis to estimate the cost-effectiveness of a strategy utilizing iodixanol compared to using a low-osmolar contrast agent. We created a Markov model to evaluate the two strategies, and included a differential relative risk of contrast-induced acute kidney injury, based on a systematic review of the literature. Downstream clinical events, including need for dialysis and mortality, were modeled using data from existing published literature. A third-party payer perspective was utilized for the analysis and presentation of the primary economic analysis. The strategy of using iodixanol dominated in both the low-risk and high-risk base case analyses. However, the difference was quite small in the low-risk scenario (lifetime cost: C$678,034 vs. C$678,059 and life expectancy: 19.80 vs. 19.72 years). The difference was more marked (life expectancy 15.65 vs. 14.15 years and cost C$680,989 vs. C$682,023) in the high-risk case analysis. This was robust across most of the variables tested in sensitivity analyses. The use of iodixanol, compared with low-osmolar contrast agents, for cardiac catheterization, results in a small benefit clinical outcomes, and in a savings in direct healthcare costs. Overall, our analysis supports the use of iodixanol for cardiac catheterization, especially in patients at high risk of acute kidney injury.

  18. Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications

    Authayanun, Suthida; Mamlouk, Mohamed; Scott, Keith; Arpornwichanop, Amornchai

    2013-01-01

    Highlights: • PEMFC systems with a glycerol steam reformer for stationary application are studied. • Performance of HT-PEMFC and LT-PEMFC systems is compared. • HT-PEMFC system shows good performance over LT-PEMFC system at a high current density. • HT-PEMFC system with water gas shift reactor shows the highest system efficiency. • Heat integration can improve the efficiency of HT-PEMFC system. - Abstract: A high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has a major advantage over a low-temperature polymer electrolyte fuel cell (LT-PEMFC) demonstrated by a tolerance to a higher CO content in the hydrogen feed and thus a simpler fuel processing. In this study, a direct comparison between the performance of HT-PEMFC and LT-PEMFC systems integrated with a glycerol steam reformer with and without a water gas shift reactor is shown. Under pure hydrogen operation, the LT-PEMFC performance is superior to the HT-PEMFC. However, the HT-PEMFC system shows good performance over the LT-PEMFC system when operated under high current density and high pressure (3 atm) and using the reformate gas derived from the glycerol processor as fuel. At high current density, the high concentration of CO is the major limitation for the operation of HT-PEMFC system without water gas shift reactor, whereas the LT-PEMFC suffers from CO poisoning and restricted oxygen mass transport. Considering the system efficiency with co-heat and power generation, the HT-PEMFC system with water gas shift reactor shows the highest overall system efficiency (approximately 60%) and therefore one of the most suitable technologies for stationary applications

  19. Glycerol from biodiesel production: the new corn for dairy cattle

    Shawn S Donkin

    2008-07-01

    Full Text Available Glycerol, also known as glycerin, is a colorless, odorless, hygroscopic, and sweet-tasting viscous liquid. It is a sugar alcohol with high solubility index in water and has a wide range of applications in the food, pharmaceutical, and cosmetic industries. The use of glycerol in diets for dairy cattle is not novel; however, this interest has been renewed due to the increased availability and favorable pricing of glycerol as a consequence of recent growth in the biofuels industry. Experimental evidence supports the use of glycerol as a transition cow therapy but feeding rates are low, ranging from 5 to 8 % of the diet DM. There is a paucity of research that examines the use of glycerol as a macro-ingredient in rations for lactating dairy cows. Most reports indicate a lack of effect of addition of glycerol to the diet when it replaces corn or corn starch. Recent feeding experiments with lactating dairy cows indicate replacing corn with glycerol to a level of 15% of the ration DM does not adversely effect milk production or composition. Milk production was 37.0, 36.9, 37.3, 36.4 ± 0.6 kg/d and feed intake was 24.0, 24.5, 24.6, 24.1 ± 0.5 kg/d for 0, 5, 10 and 15% glycerol treatments respectively and did not differ (P > 0.05 except for a modest reduction in feed intake during the first 7 days for the 15% glycerol treatment. Glycerol fed to dairy cattle is fermented to volatile fatty acids in the rumen and early reports indicated that glycerol is almost entirely fermented to propionate. In vitro data indicates glycerol fermentation increases the production of propionate and butyrate at the expense of acetate. Rumen microbes appear to adapt to glycerol feeding and consequently, cows fed glycerol also require an adaptation period to glycerol inclusion. Debate exists regarding the fate of glycerol in the rumen and although most reports suggest that glycerol is largely fermented in the rumen, the extent of rumen digestion may depend on level of

  20. Adipose-Derived Stem Cells Respond to Increased Osmolarities.

    Urška Potočar

    Full Text Available Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC. To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400-600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L. Increased osmolarities resulted in transient (nuclear DNA and actin reorganisation and non-transient, long-term morphological changes (vesicle formation, increase in cell area, and culture morphology, as well as reduced proliferation in monolayer cultures. Increased osmolarities diminished acid proteoglycan production and compactness of chondrogenically induced pellet cultures, indicating decreased chondrogenic potential. Viability of hASC was strongly dependent on the type of culture, with hASC in monolayer culture being more tolerant to increased osmolarity compared to hASC in suspension, alginate-agarose hydrogel, and pellet cultures, thus emphasizing the importance of choosing relevant in vitro conditions according to the specifics of clinical application.

  1. Daytime Variations of Tear Osmolarity Measurement in Dry Eye Patients

    Ulviye Yiğit

    2013-12-01

    Full Text Available Purpose: We have targeted primarily to show the variations of tear osmolarity during the daytime period in subjects with dry eyes and non-dry eyes and, secondarily, to evaluate the relationship of these variations with Schirmer’s test and break-up time (BUT. Material and Method: Twenty newly diagnosed dry eye patients and 20 healthy voluntary subjects with similar age and gender were included in this prospective study. In addition to the full ophthalmic examination, Schirmer’s test and BUT test were applied to all participants. Tear osmolarity measurements were done after pre-examination but in different day. The measurements were registered with TearLab Osmolarity System (TearLab Corporation, San Diego, CA, USA every 3 hours within 8:00 AM and 5:00 PM. The results were evaluated statistically. Results: No statistically significant difference was found between the mean age and gender of dry eye syndrome (DES and control groups (p>0.05. The mean measurements of Schirmer’s test and BUT in the DES group were statistically significantly lower than those in the control group (p=0.0001. The mean measurements of tear osmolarity at 8:00 AM, 11:00 AM, 2:00 PM, and 5:00 PM in the DES group were statistically significantly higher than those in the control group (p=0.001, p=0.0001. No statistically significant difference in tear osmolarity at 8:00 AM, 11: 00 AM, 2:00 PM, and 5:00 PM was found between the groups, and within DES and control groups (p>0.05. Discussion: We did not determine significant change in daytime variations of the tear osmolarity in dry eye patients and healthy subjects. As a secondary result, we can conclude that there is no difference among tear osmolarity, Shirmer’s and BUT tests in the diagnosis of DES. (Turk J Ophthalmol 2013; 43: 437-41

  2. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  3. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  4. One-pot high-yield synthesis of single-crystalline gold nanorods using glycerol as a low-cost and eco-friendly reducing agent

    Parveen, Rashida [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Gomes, Janaina F. [Universidade Federal de São Carlos, Departamento de Engenharia Química (Brazil); Ullah, Sajjad [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Acuña, José J. S. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (Brazil); Tremiliosi-Filho, Germano, E-mail: germano@iqsc.usp.br [University of São Paulo, Institute of Chemistry of São Carlos (Brazil)

    2015-10-15

    The formation of gold nanorods (AuNRs) has recently attracted great attention due to their shape-dependent optical properties that are important for many applications. The development of simpler and safer methods for the high-yield synthesis of AuNRs employing low-cost and easily handled reagents is thus of great importance. Here, we introduce, for the first time, a one-pot seedless method for the preparation of single-crystalline AuNRs in almost 100 % yield based on the use of glycerol in alkaline medium as an eco-friendly, low-cost and pH-tunable reducing agent. The synthesized AuNRs were characterized by UV–Vis–NIR spectroscopy, FEG–SEM and HRTEM. The effect of the presence of capping agent (CTAB) and the concentration of reactants (glycerol, NaOH and AgNO{sub 3}) on the yield and aspect ratio (AR) of AuNRs is discussed. The AR and yield of AuNRs showed a clear dependence on the pH and temperature of the reaction mixture as well as on the concentration of AgNO{sub 3} added as an auxiliary reagent. The longitudinal plasmon resonance band of the resulting AuNRs can be tuned between 620 and 1200 nm by varying the reaction conditions. AuNRs with an aspect ratio (AR) of around 4 were obtained in almost 100 % yield at room temperature and under mild reducing environment. The formation of AuNRs is faster at higher pH (>11) and higher temperature (>30 °C), but the AuNR yield is smaller (<70 %). Variation in the pH of the reaction mixture in the range 12–13.5 results in the formation of AuNRs with different ARs and in different yields (27–99 %). Detailed study of the AuNRs crystallography by HRTEM showed that the AuNRs grow in [001] direction and have a perfect single-crystalline fcc structure, free from structural faults or dislocations. The present green method, which introduces glycerol as a tunable reducing agent with a pH-dependent reducing power, can provide a more general strategy for the preparation of a wide range of metallic nanoparticles.

  5. Radiometric assays for glycerol, glucose, and glycogen

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  6. Glycerol reforming in supercritical water : a short review

    Markocic, Elena; Kramberger, Boris; van Bennekom, Joost G.; Heeres, Hero Jan; Vos, John; Knez, Zeljko; Markočič, Elena; Knez, Željko

    Due to the rise in global biodiesel production, the amount of crude glycerol, the main byproduct, has increased steadily. Identification of high value added outlets for crude glycerol has been explored in detail to increase the overall economics of the biodiesel process. Examples are the use of

  7. Glycerol tertiary butyl ethers via etherification of glycerol with isobutene

    Behr, A. [Dortmund Univ. (Germany). Chair of Chemical Process Development/Technical Chemistry A

    2007-07-01

    Glycerol and isobutene can react to a mixture of glycerol tertiary butyl ethers (GTBE) which can be used as additives for gasoline, diesel or biodiesel. This reaction was investigated in lab scale yielding a proposal for a process flow diagram containing reaction, extraction, flash and rectification units. This process has the advantages that only the suitable higher ethers are formed and that both glycerol and isobutene are fully converted. The homogeneous acid catalyst is low-priced and can be completely recycled. (orig.)

  8. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology

    MY Loqman

    2010-05-01

    Full Text Available The remarkable increase in chondrocyte volume is a major determinant in the longitudinal growth of mammalian bones. To permit a detailed morphological study of hypertrophic chondrocytes using standard histological techniques, the preservation of normal chondrocyte morphology is essential. We noticed that during fixation of growth plates with conventional fixative solutions, there was a marked morphological (shrinkage artifact, and we postulated that this arose from the hyper-osmotic nature of these solutions. To test this, we fixed proximal tibia growth plates of 7-day-old rat bones in either (a paraformaldehyde (PFA; 4%, (b glutaraldehyde (GA; 2% with PFA (2% with ruthenium hexamine trichloride (RHT; 0.7%, (c GA (2% with RHT (0.7%, or (d GA (1.3% with RHT (0.5% and osmolarity adjusted to a ‘physiological’ level of ~280mOsm. Using conventional histological methods, confocal microscopy, and image analysis on fluorescently-labelled fixed and living chondrocytes, we then quantified the extent of cell shrinkage and volume change. Our data showed that the high osmolarity of conventional fixatives caused a shrinkage artefact to chondrocytes. This was particularly evident when whole bones were fixed, but could be markedly reduced if bones were sagittally bisected prior to fixation. The shrinkage artefact could be avoided by adjusting the osmolarity of the fixatives to the osmotic pressure of normal extracellular fluids (~280mOsm. These results emphasize the importance of fixative osmolarity, in order to accurately preserve the normal volume/morphology of cells within tissues.

  9. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  10. Activation of platelets by low-osmolar contrast media: differential effects of ionic and nonionic agents

    Hardeman, M. R.; Konijnenberg, A.; Sturk, A.; Reekers, J. A.

    1994-01-01

    To determine the effects of an ionic low-osmolar contrast medium (ioxaglate) and two nonionic low-osmolar contrast media (iohexol and iopamidol) on human platelet activation in vitro. Flow cytometry analysis subsequent to reaction with fluorescence-labeled monoclonal antibodies was used to detect

  11. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g

  12. Calibrating the glycerol dialkyl glycerol tetraether temperature signalin speleothems

    Blyth, A.J.; Schouten, S.

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  13. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems

    Blyth, A.J.; Schouten, S.|info:eu-repo/dai/nl/137124929

    2013-01-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples

  14. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye

    Gaffney, E.A.

    2010-01-01

    Tear hyperosmolarity is thought to play a key role in the mechanism of dry eye, a common symptomatic condition accompanied by visual disturbance, tear film instability, inflammation and damage to the ocular surface. We have constructed a model for the mass and solute balance of the tears, with parameter estimation based on extensive data from the literature which permits the influence of tear evaporation, lacrimal flux and blink rate on tear osmolarity to be explored. In particular the nature of compensatory events has been estimated in aqueous-deficient (ADDE) and evaporative (EDE) dry eye. The model reproduces observed osmolarities of the tear meniscus for the healthy eye and predicts a higher concentration in the tear film than meniscus in normal and dry eye states. The differential is small in the normal eye, but is significantly increased in dry eye, especially for the simultaneous presence of high meniscus concentration and low meniscus radius. This may influence the interpretation of osmolarity values obtained from meniscus samples since they need not fully reflect potential damage to the ocular surface caused by tear film hyperosmolarity. Interrogation of the model suggests that increases in blink rate may play a limited role in compensating for a rise in tear osmolarity in ADDE but that an increase in lacrimal flux, together with an increase in blink rate, may delay the development of hyperosmolarity in EDE. Nonetheless, it is predicted that tear osmolarity may rise to much higher levels in EDE than ADDE before the onset of tear film breakup, in the absence of events at the ocular surface which would independently compromise tear film stability. Differences in the predicted responses of the pre-ocular tears in ADDE compared to EDE or hybrid disease to defined conditions suggest that no single, empirically-accessible variable can act as a surrogate for tear film concentration and the potential for ocular surface damage. This emphasises the need to measure

  15. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye.

    Gaffney, E A; Tiffany, J M; Yokoi, N; Bron, A J

    2010-01-01

    Tear hyperosmolarity is thought to play a key role in the mechanism of dry eye, a common symptomatic condition accompanied by visual disturbance, tear film instability, inflammation and damage to the ocular surface. We have constructed a model for the mass and solute balance of the tears, with parameter estimation based on extensive data from the literature which permits the influence of tear evaporation, lacrimal flux and blink rate on tear osmolarity to be explored. In particular the nature of compensatory events has been estimated in aqueous-deficient (ADDE) and evaporative (EDE) dry eye. The model reproduces observed osmolarities of the tear meniscus for the healthy eye and predicts a higher concentration in the tear film than meniscus in normal and dry eye states. The differential is small in the normal eye, but is significantly increased in dry eye, especially for the simultaneous presence of high meniscus concentration and low meniscus radius. This may influence the interpretation of osmolarity values obtained from meniscus samples since they need not fully reflect potential damage to the ocular surface caused by tear film hyperosmolarity. Interrogation of the model suggests that increases in blink rate may play a limited role in compensating for a rise in tear osmolarity in ADDE but that an increase in lacrimal flux, together with an increase in blink rate, may delay the development of hyperosmolarity in EDE. Nonetheless, it is predicted that tear osmolarity may rise to much higher levels in EDE than ADDE before the onset of tear film breakup, in the absence of events at the ocular surface which would independently compromise tear film stability. Differences in the predicted responses of the pre-ocular tears in ADDE compared to EDE or hybrid disease to defined conditions suggest that no single, empirically-accessible variable can act as a surrogate for tear film concentration and the potential for ocular surface damage. This emphasises the need to measure

  16. Tear Osmolarity and Correlation With Ocular Surface Parameters in Patients With Dry Eye.

    Mathews, Priya M; Karakus, Sezen; Agrawal, Devika; Hindman, Holly B; Ramulu, Pradeep Y; Akpek, Esen K

    2017-11-01

    To analyze the distribution of tear film osmolarity in patients with dry eye and its association with other ocular surface parameters. Tear osmolarity and other quantitative dry eye parameters were obtained from patients with 1) clinically significant dry eye (significant symptoms and ocular surface staining, n = 131), 2) symptoms-only dry eye (significant symptoms but no significant ocular surface staining, n = 52), and 3) controls (no significant symptoms or staining, n = 42). Tear osmolarity varied significantly across groups (P = 0.01), with patients with clinically significant dry eye having the highest tear osmolarity (312.0 ± 16.9 mOsm/L), control patients having the lowest tear osmolarity (305.6 ± 9.7 mOsm/L), and patients with symptoms-only dry eye falling in between (307.4 ± 5.6 mOsm/L). Patients with clinically significant dry eye also tended to have a greater intereye difference in osmolarity (12.0 ± 13.4) than did the individuals with symptoms-only dry eye (9.1 ± 12.4) and controls (9.0 ± 7.4) (P = 0.06). In multivariable regression models, higher tear osmolarity was associated with higher Ocular Surface Disease Index, discomfort subscore (P = 0.02), and higher corneal and conjunctival staining scores (P eye tear osmolarity was not correlated with the corresponding tear film breakup time or Schirmer test (P > 0.05 for both). Individuals with symptomatic dry eye that is not yet clinically significant seem to have higher and more variable osmolarity measurements than controls, potentially indicating that changes in osmolarity precede clinical findings.

  17. Effects of addition glycerol co-product of biodiesel in the thermophysical properties of water-glycerol solution applied as secondary coolant

    Medeiros, Pedro Samuel Gomes; Barbosa, Cleiton Rubens Formiga; Fontes, Francisco de Assis Oliveira [Federal University of Rio Grande do Norte, Natal, RN (Brazil). Energy Laboratory. Thermal Systems Studies Group], e-mail: cleiton@ufrnet.br

    2010-07-01

    This paper evaluates the effects of glycerol concentration on thermophysical properties of water-glycerol solution applied as a secondary coolant in refrigeration systems by expansion-indirect. The processing of triglycerides for biodiesel production generates glycerol as co-product and there are concerns of environmental and economic order on the surplus of glycerol. The addition of glycerol in water alters the colligative and thermophysical properties (melting point, mass, specific heat, thermal conductivity and dynamic viscosity). There are studies that prove the feasibility of using glycerol as an additive and this paper has the goal to verify the changes on properties compared with pure water. This comparison was made from data obtained by the software simulation and they analyzed using graphs and tables. It was shown that glycerol increases the density and dynamic viscosity, and reduces the specific heat and thermal conductivity. This behavior of water-glycerol solution is proportional to the mass concentration of glycerol and it is justified because the glycerol has low values of specific heat, thermal conductivity and high viscosity when compared with water. Despite the losses in the thermophysical properties, glycerol shows its potential application, because of the cryoscopic effect and it is a non-toxic substance at low cost. (author)

  18. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  19. Introduction of low-osmolar contrast agents in radiology: medical, economic, legal, and public policy issues

    Jacobson, P.D.; Rosenquist, C.J.

    1988-01-01

    This case study of the public policy implications of introducing a new technology in radiology, namely, low-osmolar contrast media (LOCM), raises the issues of whether and how to place appropriate limits on new technologies. Although these contrast media represent small episodic costs, they may add up to an aggregate expenditure of nearly $1 billion per year if used for all contrast injections. As a result, this technology raises a number of important medical, economic, legal, and public policy questions. The cost-effectiveness analysis and an analysis of the medical evidence suggest that LOCM should be limited to high-risk patients. The authors discuss in this article how the legal system might respond to such limitations, and they consider various public policy options for adopting restrictions on use. They conclude that the medical profession should take the lead in developing protocols for appropriate assessment, reimbursement, and use of LOCM

  20. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice.

    Wei, Don; Lee, DaYeon; Li, Dandan; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele

    2016-05-01

    The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.

  1. Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis.

    Biondi-Zoccai, Giuseppe; Lotrionte, Marzia; Thomsen, Henrik S; Romagnoli, Enrico; D'Ascenzo, Fabrizio; Giordano, Arturo; Frati, Giacomo

    2014-03-15

    Contrast-induced nephropathy (CIN) may be a severe complication to the administration of iodine-based contrast media for diagnostic or interventional procedure using radiation exposure. Whether there is a difference in nephrotoxic potential between the various agents is uncertain. We aimed to perform a systematic review and network meta-analysis of randomized trials on iodine-based contrast agents. Randomized trials of low-osmolar or iso-osmolar contrast media were searched in CENTRAL, Google Scholar, MEDLINE/PubMed, and Scopus. Risk of CIN was appraised within a hierarchical Bayesian model computing absolute rates (AR) and odds ratios (OR) with 95% credibility intervals, and probability of being best (Pbest) for each agent. A total of 42 trials (10048 patients) were included focusing on 7 different iodine-based contrast media. Risk of CIN was similarly low with iodixanol (AR=5.7% [2.2%-13.9%], Pbest=18.8%), iomeprol (AR=6.0% [2.2%-15.4%], Pbest=24.8%), iopamidol (AR=6.1% [2.2%-15.5%], Pbest=21.5%), and ioversol (AR=6.0% [2.1%-16.4%], Pbest=31.3%). Conversely, CIN was twice as common with iohexol (AR=11.2% [4.1%-29.5%], Pbest=0.1%) and ioxaglate (AR=11.0% [4.0%-26.9%], Pbestcontrast media with a similar renal safety profile. Iohexol and ioxaglate have a poorer renal safety profile, whereas further data may be required on iopromide. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    Zhang, Jizhe; Sun, Miao; Han, Yu

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product

  3. Effect on thrombus growth and thrombolysis of two types of osmolar contrast media in rabbits

    Levi, M. [=Marcel M.; Pascucci, C.; Agnelli, G.; Sturk, A.; Hoek, J.; ten Cate, J. Wouter

    1990-01-01

    Thromboembolic complications have been reported after diagnostic or interventional radiological procedures. However, contrast media inhibit platelet function and blood coagulation in vitro. To investigate these characteristics in vivo, we determined the effect of nonionic and ionic low osmolar

  4. Computed tear film and osmolarity dynamics on an eye-shaped domain

    Li, Longfei; Braun, Richard J.; Driscoll, Tobin A.; Henshaw, William D.; Banks, Jeffrey W.; King-Smith, P. Ewen

    2016-01-01

    The concentration of ions, or osmolarity, in the tear film is a key variable in understanding dry eye symptoms and disease. In this manuscript, we derive a mathematical model that couples osmolarity (treated as a single solute) and fluid dynamics within the tear film on a 2D eye-shaped domain. The model includes the physical effects of evaporation, surface tension, viscosity, ocular surface wettability, osmolarity, osmosis and tear fluid supply and drainage. The governing system of coupled non-linear partial differential equations is solved using the Overture computational framework, together with a hybrid time-stepping scheme, using a variable step backward differentiation formula and a Runge–Kutta–Chebyshev method that were added to the framework. The results of our numerical simulations provide new insight into the osmolarity distribution over the ocular surface during the interblink. PMID:25883248

  5. Comparison of diarrhea induced by ingestion of fructooligosaccharide Idolax and disaccharide lactulose: role of osmolarity versus fermentation of malabsorbed carbohydrate.

    Clausen, M R; Jørgensen, J; Mortensen, P B

    1998-12-01

    Whether carbohydrate malabsorption causes diarrhea probably depends on the balance between the osmotic force of the carbohydrate and the compensatory capacity of the colon to dispose of the carbohydrate by bacterial fermentation. The present study evaluated the specific role of the osmolarity by comparing the severity of diarrhea after ingestion of two nonabsorbable carbohydrates, the fructooligosaccharide Idolax and the disaccharide lactulose. Both carbohydrates are readily fermented by the colonic flora but differ in osmolarity, the osmotic force being twice as high for lactulose as for Idolax. Twelve subjects were given increasing doses (0, 20, 40, 80, 160 g/d) of Idolax and lactulose in a crossover design. Every dose level was administered for three days with intervals of one week. Stools were collected on the third day to determine 24-hr volume, concentrations of short-chain fatty acids, L- and D-lactate, residues of Idolax or lactulose, sodium, potassium, pH, osmolarity, and in vitro productions of organic acids. Measured by short-chain fatty acid and lactate formation in a fecal incubation system, the fermentation of Idolax and lactulose was identical and very rapid compared with a range of reference carbohydrates. A laxative effect of both Idolax and lactulose was demonstrated. The increment in fecal volume as a function of the dose administered was twice as high for lactulose (slope of the regression line = 7.3, r = 0.64, Pdiarrhea is proportional to the osmotic force of the malabsorbed saccharide, even though all or the majority of the saccharide is degraded by colonic bacteria. The capacity to modify the diarrhea varies considerably from person to person and is associated with colonic saccharide disposal, whereas the variation in response to isosmolar amounts of different saccharides is small within the same individual.

  6. Effects of viscosity on power and hand injection of iso-osmolar iodinated contrast media through thin catheters.

    Zhang, James J; Hogstrom, Barry; Malinak, Jiri; Ikei, Nobuhiro

    2016-05-01

    It can be challenging to achieve adequate vessel opacification during percutaneous coronary interventions when using thin catheters, hand injection, and iso-osmolar contrast media (CM) such as iodixanol (Visipaque™). To explore these limitations and the possibility to overcome them with iosimenol, a novel CM. Three X-ray contrast media with different concentrations were used in this study. A series of in vitro experiments established the relationship between injection pressure and flow rate in angiography catheters under various conditions. The experiments were conducted with power and hand injections and included a double-blind evaluation of user perception. By using hand injection, it was generally not possible to reach a maximum injection pressure exceeding 50 psi. The time within which volunteers were able to complete the injections, the area under the pressure-time curve (AUC), and assessment of ease of injection all were in favor of iosimenol compared with iodixanol, especially when using the 4F thin catheter. Within the pressure ranges tested, the power injections demonstrated that the amount of iodine delivered at a fixed pressure was strongly related to viscosity but unrelated to iodine concentration. There are substantial limitations to the amount of iodine that can be delivered through thin catheters by hand injection when iso-osmolar CM with high viscosity is used. The only viable solution, besides increasing the injection pressure, is to use a CM with lower viscosity, since the cost of increasing the concentration, in terms of increased viscosity and consequent reduction in flow, is too high. Iosimenol, an iso-osmolar CM with lower viscosity than iodixanol might therefore be a better alternative when thinner catheters are preferred, especially when the radial artery is used as the access site. © The Foundation Acta Radiologica 2015.

  7. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  9. Effects of visceral adiposity on glycerol pathways in gluconeogenesis.

    Neeland, Ian J; Hughes, Connor; Ayers, Colby R; Malloy, Craig R; Jin, Eunsook S

    2017-02-01

    To determine the feasibility of using oral 13 C labeled glycerol to assess effects of visceral adiposity on gluconeogenic pathways in obese humans. Obese (BMI ≥30kg/m 2 ) participants without type 2 diabetes underwent visceral adipose tissue (VAT) assessment and stratification by median VAT into high VAT-fasting (n=3), low VAT-fasting (n=4), and high VAT-refed (n=2) groups. Participants ingested [U- 13 C 3 ] glycerol and blood samples were subsequently analyzed at multiple time points over 3h by NMR spectroscopy. The fractions of plasma glucose (enrichment) derived from [U- 13 C 3 ] glycerol via hepatic gluconeogenesis, pentose phosphate pathway (PPP), and tricarboxylic acid (TCA) cycle were assessed using 13 C NMR analysis of glucose. Mixed linear models were used to compare 13 C enrichment in glucose between groups. Mean age, BMI, and baseline glucose were 49years, 40.1kg/m 2 , and 98mg/dl, respectively. Up to 20% of glycerol was metabolized in the TCA cycle prior to gluconeogenesis and PPP activity was minor (gluconeogenesis from glycerol in obese humans. Our findings provide preliminary evidence that excess visceral fat disrupts multiple pathways in hepatic gluconeogenesis from glycerol. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Anti-irritant and anti-inflammatory effects of glycerol and xylitol in sodium lauryl sulphate-induced acute irritation.

    Szél, E; Polyánka, H; Szabó, K; Hartmann, P; Degovics, D; Balázs, B; Németh, I B; Korponyai, C; Csányi, E; Kaszaki, J; Dikstein, S; Nagy, K; Kemény, L; Erős, G

    2015-12-01

    Glycerol is known to possess anti-irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)-induced acute irritation. The experiments were performed on male SKH-1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS-induced elevation of TEWL and moderated the irritant-induced increase in dermal blood flow and in the number of leucocyte-endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin-1 alpha. However, expression of interleukin-1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor-alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Both of the analysed polyols exert considerable anti-irritant and anti-inflammatory properties, but the effective concentration of xylitol is lower than that of

  12. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    Selembo, Priscilla A.

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H2/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H 2/mol-glycerol (43 mL H2/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste. © 2009 Wiley Periodicals, Inc.

  13. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  14. GE-145, a new low-osmolar dimeric radiographic contrast medium

    Wistrand, Lars-G.; Rogstad, Astri; Hagelin, Gunnar

    2010-01-01

    Background: Contrast-induced nephrotoxicity is a significant risk when using radiographic contrast media clinically, especially in high risk patients. Consequently, there is a need for a new contrast agent with improved clinical safety with regards to nephrotoxicity. Purpose: To evaluate the physicochemical properties as well as the preclinical safety and biodistribution parameters of the newly developed radiographic contrast medium GE-145. Material and Methods: Standard methods for radiographic contrast media were used for evaluation of physicochemical properties. The acute toxicity in rats was studied at 8, 10, and 12.5 gI/kg, the clinical chemistry parameters were determined, and histology of the kidneys was performed. Biodistribution was studied in rats using 123 I-labeled GE-145. Results: GE-145 is more hydrophilic than iodixanol and has a considerably lower osmolality. The viscosity is similar to that of iodixanol and the protein binding is low. The acute toxicity is similar to that of iodixanol and the biodistribution is similar to that of other radiographic contrast media, showing mainly renal excretion. Kidney histology showed a moderate reversible vacuolization, similar to that of iodixanol. Conclusion: GE-145 exhibits similar preclinical properties to other dimeric radiographic contrast media. In addition, the low osmolality enables an iso-osmolar formulation containing a significantly higher concentration of electrolytes than Visipaque

  15. Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage.

    Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M

    2015-01-07

    We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Renal Safety of Iodinated Contrast Media Depending on Their Osmolarity – Current Outlooks

    Mruk, Bartosz

    2016-01-01

    Iodinated contrast media (ICM) are commonly administered pharmaceutical agents. Most often they are used intravenously and intraarterially. Although iodinated contrast agents are relatively safe and widely used, adverse events occur and questions remain about their use, safety, and interactions. The most important adverse effects of contrast media include hypersensitivity reactions, thyroid dysfunction, and contrast-induced nephropathy. Radiologists must be aware of the risk factors for reactions to contrast media. Nonionic iodinated contrast agents can be divided into monomeric, low-osmolar, and dimeric, iso-osmolar classes. The osmotic characteristics of contrast media have been a significant focus in many investigations of contrast-induced nephropathy

  17. An experimental and kinetic modeling study of glycerol pyrolysis

    Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.

    2016-01-01

    Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.

  18. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  19. Investigation of glycerol polymerization in the clinker grinding process

    Parvulescu, A.N.; Rossi, M.; Della Pina, C.; Ciriminna, R.; Pagliaro, M.

    2011-01-01

    Concrete production is a large scale process that involves high energy consumption. In order to increase the sustainability of this process, the reduction of energy input is necessary. Bio-glycerol was demonstrated to be a highly efficient renewable-based additive in the grinding process for

  20. The fate of 14C-glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera : Pyralidae)

    Tsumuki, Hisaaki; Kanehisa, Katsuo

    1981-01-01

    The interconversion between glycogen and glycerol was examined during diapausing and post-diapausing stages by injecting 14 C-glycerol. Radioactive glycerol injected was rapidly incorporated into glycogen in diapausing larvae at 25 0 C even during increase of glycerol, showing that the interconversion between glycogen and glycerol may easily occur on warmer days in winter. However, this interconversion proceeded in the direction of glycerol synthesis at such low temperature as 4 0 C. The isotope injected was incorporated into various tissues to varying degrees, especially it was found predominantly in fat body glycogen. The degradation rate of 14 C-glycerol in diapausing larvae was lower than in post-diapausing larvae. On the other hand, in non-diapausing larvae which were shown to contain no glycerol, 14 C-glycerol was rapidly degraded in comparison with hibernating larvae. A cause of no glycerol accumulation in non-diapausing larvae may be attributed to such high activity of glycerol degradation. (author)

  1. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  2. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  3. Flow cytometric viability assessment and transmission electron microscopic morphological study of Bacteria in Glycerol

    Saegeman, V.S.M.; Vos, de R.; Tebaldi, N.D.; Wolf, van der J.M.; Bergervoet, J.H.W.; Verhaegen, J.; Lismont, D.; Verduyckt, B.; Ectors, N.L.

    2007-01-01

    Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85%

  4. Tear osmolarity measurements in dry eye related to primary Sjögren's syndrome.

    Utine, Canan Asli; Bıçakçıgil, Müge; Yavuz, Sule; Çiftçi, Ferda

    2011-08-01

    To evaluate the tear osmolarity in patients with dry eye syndrome related to primary Sjögren's Syndrome (SS). Twenty eyes of 10 patients with dry eye and primary SS (Group 1) and 20 eyes of 20 subjects who do not have dry eye syndrome (Group 2) were included in this cross-sectional study. In all eyes, ophthalmic examination was performed in the same order: International Ocular Surface Disease Index survey, visual acuity assessment, conjunctival hyperemia scoring, tear osmolarity measurement with TearLab(™) Osmolarity System, tear film break-up time assessment, corneal fluorescein staining scoring, ocular surface Lissamine Green staining scoring, anesthetized Schirmer test. Dry eye severity was graded according to Dry Eye Workshop (DEWS) classification system. Four eyes with grade 1, four eyes with grade 2, seven eyes with grade 3, and five eyes with grade 4 dryness, according to DEWS system, were included. The mean tear osmolarity value was 301.9 ± 11.40 mOsm/L (range: 290-328) in Group 1, and 294.85 ± 8.33 mOsm/L (range: 283-311) in Group 2 (p = 0.03). In Group 1, tear osmolarity values were positively correlated with OSDI scores (r(18) = 0.55, r(2) = 0.31, p = 0.01), DEWS classification grades (r(18) = 0.73, r(2) = 0.54, p dry eye syndrome related to primary SS compared to control subjects, and positively correlated with the severity of dry eye.

  5. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  7. Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate lake system

    Loomis, S.E.; Russell, J.M.; Heureux, A.M.; D'Andrea, W.J.; Sinninghe Damsté, J.S.

    2014-01-01

    Quantitative climate reconstructions are crucial for understanding the magnitude of and mechanisms behind natural and anthropogenic climate change, yet there are few proxies that can reliably reconstruct terrestrial temperature. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial

  8. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  9. A maximal incremental effort alters tear osmolarity depending on the fitness level in military helicopter pilots.

    Vera, Jesús; Jiménez, Raimundo; Madinabeitia, Iker; Masiulis, Nerijus; Cárdenas, David

    2017-10-01

    Fitness level modulates the physiological responses to exercise for a variety of indices. While intense bouts of exercise have been demonstrated to increase tear osmolarity (Tosm), it is not known if fitness level can affect the Tosm response to acute exercise. This study aims to compare the effect of a maximal incremental test on Tosm between trained and untrained military helicopter pilots. Nineteen military helicopter pilots (ten trained and nine untrained) performed a maximal incremental test on a treadmill. A tear sample was collected before and after physical effort to determine the exercise-induced changes on Tosm. The Bayesian statistical analysis demonstrated that Tosm significantly increased from 303.72 ± 6.76 to 310.56 ± 8.80 mmol/L after performance of a maximal incremental test. However, while the untrained group showed an acute Tosm rise (12.33 mmol/L of increment), the trained group experienced a stable Tosm physical effort (1.45 mmol/L). There was a significant positive linear association between fat indices and Tosm changes (correlation coefficients [r] range: 0.77-0.89), whereas the Tosm changes displayed a negative relationship with the cardiorespiratory capacity (VO2 max; r = -0.75) and performance parameters (r = -0.75 for velocity, and r = -0.67 for time to exhaustion). The findings from this study provide evidence that fitness level is a major determinant of Tosm response to maximal incremental physical effort, showing a fairly linear association with several indices related to fitness level. High fitness level seems to be beneficial to avoid Tosm changes as consequence of intense exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and nonionic iodine containing contrast material in experimental animals

    McAlister, W.H.; Kissane, J.M.

    1990-01-01

    Conventional, low osmolar, and non-ionic iodine containing contrast media and saline controls were placed in the paws, muscles, and subcutaneous tissues of Sprague-Dawley rat thighs. The paw injections were observed and photographed, while the thighs were examined histologically. Results showed that although the low osmolar and non-ionic agents did produce inflammatory reactions and focal necrosis in the soft tissues, they were much better tolerated than were the conventional ionic agents. A non-ionic or low osmolar ionic contrast agent should be strongly considered when a possibility for extravasation exists. (orig.)

  11. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  12. Co-digestion of sewage sludge with glycerol to boost biogas production

    Fountoulakis, M.S.; Petousi, I.; Manios, T.

    2010-01-01

    The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 o C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 ± 36 ml CH 4 /d before the addition of glycerol and 2353 ± 94 ml CH 4 /d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate (μ max ) and the saturation constant (K S ) of glycerol were 0.149 ± 0.015 h -1 and 0.276 ± 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.

  13. Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis

    Liqun Jiang

    2017-11-01

    Full Text Available In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C, time (0.5–3 h and solid-to-liquid ratios (5–20% were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%. After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process.

  14. Influence of crude glycerol on the biomass and lipid content of microalgae

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  15. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    Nascimento, Ana P.; Linares, Jose J.

    2014-01-01

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L -1 glycerol and 4 mol L -1 KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min -1 , high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt 3 Sn/C) is beneficial for increasing the cell performance. (author)

  16. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte

    Nascimento, Ana P.; Linares, Jose J., E-mail: joselinares@unb.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Instituto de Quimica

    2014-03-15

    This paper studies the influence of the operating variables (glycerol concentration, temperature and feed rate) for a direct glycerol fuel cell fed with glycerol using polybenzimidazole (PBI) impregnated with KOH as electrolyte and Pt/C as catalyst. Temperature displays a beneficial effect up to 75 °C due to the enhanced conductivity and kinetics of the electrochemical reactions. The optimum cell feed corresponds to 1 mol L{sup -1} glycerol and 4 mol L{sup -1} KOH, supplying sufficient quantities of fuel and electrolyte without massive crossover nor mass transfer limitations. The feed rate increases the performance up to a limit of 2 mL min{sup -1}, high enough to guarantee the access of the glycerol and the exit of the products. Finally, the use of binary catalysts (PtRu/C and Pt{sub 3}Sn/C) is beneficial for increasing the cell performance. (author)

  17. The Lubricity of Glycerol and its Solutions

    Sivebæk, Ion Marius; Jakobsen, J.

    2016-01-01

    Glycerol has been recognised as an excellent diesel fuel and lubricant. It is a liquid that can originate from the transesterification of plant oil that also results in plant oil metyl (or ethyl) ester (biodiesel). Machine elements lubricated by glycerol show very low friction, in fact lower than...

  18. Synthesis and applications of 13C glycerol

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  19. Coupling Fluid and Solute Dynamics Within the Ocular Surface Tear Film: A Modelling Study of Black Line Osmolarity

    Zubkov, V. S.; Breward, C. J. W.; Gaffney, E. A.

    2012-01-01

    in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye. Vertical

  20. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs

    Liu He

    2012-05-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs from the Gulu hot springs (23–83.6 °C, pH > 7 and Yangbajing hot springs (80–128 °C, pH > 7 were analyzed in order to investigate the distribution of archaeal lipids among different hot springs in Tibet. A soil sample from Gulu was incubated at different temperatures and analyzed for changes in iGDGTs to help evaluate whether surrounding soil may contribute to the iGDGTs in hot springs. The sources of bacterial GDGTs (bGDGTs in these hot springs were also investigated. The results revealed different profiles of iGDGTs between Gulu and Yangbajing hot springs. Core iGDGTs and polar iGDGTs also presented different patterns in each hot spring. The PCA analysis showed that the structure of polar iGDGTs can be explained by three factors and suggested multiple sources of these compounds. Bivariate correlation analysis showed significant positive correlations between polar and core bGDGTs, suggesting the in situ production of bGDGTs in the hot springs. Furthermore, in the soil incubation experiment, temperature had the most significant influence on concentration of bGDGTs rather than iGDGTs, and polar bGDGTs had greater variability than core bGDGTs with changing temperature. Our results indicated that soil input had little influence on the composition of GDGTs in Tibetan hot springs. On the other hand, ring index and TEX86 values were both positively correlated with incubation temperature, suggesting that the structure of archaeal lipids changed in response to varying temperature during incubation.

  1. Palatability, digestibility, and metabolizable energy of dietary glycerol in adult cats.

    Machado, G S; Pezzali, J G; Marx, F R; Kessler, A M; Trevizan, L

    2017-02-01

    Glycerol is a humectant, which reduces water activity when added to the diet. This property seems to offer dietary benefits, specifically in high-moisture diets for cats, where some humectants cannot be used. According to the U.S. Food and Drug Administration, glycerol is generally recognized as sustenance safe (GRAS). It is suggested that cats are able to metabolize glycerol and use it as an energy source without compromising health. Three experiments were conducted to evaluate the following characteristics of glycerol in the diet for cats: 1) a preference test, 2) digestibility, ME, and fecal and urinary characteristics, and 3) postprandial plasma glycemia. Twelve healthy adult female cats were randomly distributed among 4 treatments consisting of a basal diet (4,090 kcal ME/kg DM, 32% CP, 11% fat, 2.3% crude fiber, and 7.0% ash) and 3 diets with varying percentages of glycerol, made by replacing the basal diet with 2.5, 5.0, and 10.0% purified glycerol (99.5%). The inclusion of glycerol proportionally reduced ( Cats did not show a preference for any diet in particular ( > 0.05). The digestibility assays showed that increasing dietary glycerol levels did not affect food intake or the apparent total tract digestibility of macronutrients and energy ( > 0.05). The inclusion of glycerol in the diets did not alter the stool moisture, fecal score, or urine volume. However, glycerol was detected in urine when it was incorporated into the diet at 10%. Glycemia increased up to 900 min following the first meal after the fasting period with no difference between treatments, even when the means were adjusted for food intake. The blood glucose area under the curve also showed no significant difference between treatments ( > 0.05). Cats accepted glycerol under the conditions of the study, and its nutritional value was determined as it has been done for other species. The ME of glycerol for adult cats was estimated to be 3,185 kcal/kg DM. Supplementing the diets of the cats

  2. Comparison of the image quality of intravenous urograms using low-osmolar contrast media

    Kaye, B.; Howard, J.; Foord, K.D.; Cumberland, D.C.

    1988-01-01

    Almost equivalent, intravenous iodine doses of the three new low-osmolar contrast media, ioxaglate (Hexabrix), iopamidol (Niopam) and iohexol (Omnipaque) have been compared for image quality on the intravenous urogram. Generally good radiographic images were obtained. Iohexol gave better results for the nephrogram and pelvicalyceal distension compared with the other contrast media, but only the nephrogram results were statistically significant. Pyelographic density and ureteric distension and density were similar with all three contrast media. In patients where low-osmolality contrast media need to be used for intravenous urography, we suggest that iohexol gives the best radiographic images. Other factors, such as cost and the relative incidence of side-effects of the low-osmolar contrast media also need to be taken into consideration. (author)

  3. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  4. Microbial recycling of glycerol to biodiesel.

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells.

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Hanaee-Ahvaz, Hana; Farazmand, Ali

    2017-11-10

    The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.

  6. Assessment of dry eye in a GVHD murine model: Approximation through tear osmolarity measurement.

    Martínez-Carrasco, Rafael; Sánchez-Abarca, Luis Ignacio; Nieto-Gómez, Cristina; García, Elisabet Martín; Ramos, Teresa L; Velasco, Almudena; Sánchez-Guijo, Fermín; Aijón, José; Hernández-Galilea, Emiliano

    2017-01-01

    Dry eye disease is one of the most frequent pathological events that take place in the course of the graft versus host disease (GVHD), and is the main cause of deterioration in quality of life for patients. Thus, demonstration of dry eye signs in murine models of oGVHD is crucial for the validation of these models for the study of the disease. Given the increasing evidence that tear osmolarity is an important player of dry eye disease, our purpose in this study was to validate the use of a reliable method to assess tear osmolarity in mice: the electrical impedance method. Then, we wanted to test its utility with an oGVHD model. Tear volume assessment was also performed, using the phenol red thread test. We found differences in tear osmolarity in mice that received a transplant with cells from bone marrow and spleen (the GVHD group) when compared with mice that only received bone marrow cells (the BM group) at day 7 (362 ± 8 mOsm/l and 345 ± 9 mOsm/l respectively; P dry eye disease, what contributes to give relevance to this model for the study of GVHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Osmolarity affects matrix synthesis in the nucleus pulposus associated with the involvement of MAPK pathways: A study of ex vivo disc organ culture system.

    Li, Pei; Gan, Yibo; Xu, Yuan; Li, Songtao; Song, Lei; Li, Sukai; Li, Huijuan; Zhou, Qiang

    2016-06-01

    Matrix homeostasis within the nucleus pulposus (NP) is important for disc function. Unfortunately, the effects of osmolarity on NP matrix synthesis in a disc organ culture system and the underlying mechanisms are largely unknown. The present study was to investigate the effects of different osmolarity modes (constant and cyclic) and osmolarity levels (hypo-, iso-, and hyper-) on NP matrix synthesis using a disc organ culture system and determine whether ERK1/2 or p38MAPK pathway has a role in this process. Porcine discs were cultured for 7 days in various osmotic media, including constant hypo-, iso-, hyper-osmolarity (330, 430, and 550 mOsm/kg, respectively) and cyclic-osmolarity (430 mOsm/kg for 8 h, followed by 550 mOsm/kg for 16 h). The role of ERK1/2 and p38MAPK pathways were determined by their inhibitors U0126 and SB202190 respectively. The expression of SOX9 and downstream aggrecan and collagen II, biochemical content, and histology were used to assess NP matrix synthesis. The findings revealed that NP matrix synthesis was promoted in iso- and cyclic-osmolarity cultures compared to hypo- or hyper-osmolarity culture although the level of matrix synthesis in cyclic-osmolarity culture did not reach that in iso-osmolarity culture. Further analysis suggested that inhibition of the ERK1/2 or p38MAPK pathway in iso- and cyclic-osmolarity cultures reduced NP matrix production. Therefore, we concluded that the effects of osmolarity on NP matrix synthesis depend on osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic), and the ERK1/2 and p38MAPK pathways may participate in this process. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1092-1100, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Synthesis and applications of 13C glycerol

    Stocking, E.; Khalsa, O.; Martinez, R.; Silks, L.A. III

    1994-01-01

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13 C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U- 13 C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13 C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U- 13 C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13 C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  9. Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves.

    McGarvey, K A; Lee, J M; Boughner, D R

    1984-03-01

    We have examined the tensile viscoelastic properties of fresh and glycerol-preserved human dura mater, and correlated the results with structural information from the scanning electron microscope. The interwoven laminar structure of dura produces rather high flexural stiffness, while the crossed-fibrillar laminae produce planar mechanical isotropy. Glycerol storage shifts the stress-strain curve to lower strain, reduces stress relaxation and creep, and lowers the ultimate tensile strength and strain at fracture. These changes may be due to glyceraldehyde crosslinking, or to increased interfibrillar friction. The latter hypothesis suggests that glycerol storage may reduce the fatigue lifetime of the tissue.

  10. Synthesis and characterization of polyesters derived from glycerol and phthalic acid

    Danilo Hansen Guimarães

    2007-09-01

    Full Text Available The production of polyester via polycondensation between glycerol and phthalic acid using dibutyltin dilaurate is reported. Three glycerol:phthalic acid molar ratio used for the bulk polymerization were: 2:2; 2:3 and 2:4. FTIR confirmed the esterification of glycerol by the acid for all the polymers. DSC indicated no crystallinity, although the XRD plots indicate a very incipient crystallinity for the polymers containing higher amounts of phthalic anhydride. Scanning electron microscopy results indicates high homogeneity for all the polymers prepared.

  11. Valorization of crude glycerol from biodiesel production

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  12. Fermentative utilization of glycerol residue for the production of acetic acid

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  13. Assessment of tear osmolarity and other dry eye parameters in post-LASIK eyes.

    Hassan, Ziad; Szalai, Eszter; Berta, Andras; Modis, Laszlo; Nemeth, Gabor

    2013-07-01

    To assess the tear osmolarity using the TearLab device after laser in situ keratomileusis (LASIK) and to compare the values with those obtained by traditional tear film tests before and after the procedure. Thirty eyes of 15 refractive surgery candidates (5 men and 10 women of mean age: 30.55 ± 11.79 years) were examined. Using a special questionnaire (Ocular Surface Disease Index), subjective dry eye complaints were evaluated, and then, the tear osmolarity was measured with the TearLab system (TearLab Corporation) and conventional dry eye tests were carried out. Examinations were performed preoperatively and at 1, 30, and 60 days after the surgery. The mean value of tear osmolarity was 303.62 ± 12.29 mOsm/L before the surgery and 303.58 ± 20.14 mOsm/L at 60 days after the treatment (P = 0.69). Mean lid parallel conjunctival folds value was 0.68 ± 0.68 before the procedure and 0.58 ± 0.65 subsequent to surgery (P = 0.25). Meibomian gland dysfunction was not detected. No significant deviation was observed in the values of Schirmer test, corneal staining, tear break-up time, and lid parallel conjunctival folds when compared with postoperatively obtained values during the follow-up period (P > 0.05). During LASIK flap creation, intact corneal innervation is damaged, and the ocular surface lacrimal functional unit can be impaired. In our study, no abnormal dry eye test results were observed before or after the procedure. Based on our results, LASIK treatment is safe for dry eye involving the administration of adequate artificial tears for a minimum of 3 months.

  14. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  15. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa

    2018-01-01

    ABSTRACT Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrole...

  16. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  17. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  18. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  19. Glycerol and microwave preservation of annual statice (Limonium sinuatum Mill.)

    Paparozzi, E.T.; McCallister, D.E.

    1988-01-01

    Stems of annual statice (Limonium sinuatum Mill.) were harvested from the field in 1982 and soaked in varying concentrations of glycerol: water solutions for 24 and 48 h and then microwaved for 0, 1, 3 or 5 min. Half of the branch stems were measured for flexibility, with the remainder being assessed 1 year later. Stems harvested in 1983 were wet- and dry-stored at 3°C for varying lengths of time and then preserved. Preservation was best when statice was preserved immediately. Cold storage decreased preserved statice flexibility, but was better than air-drying. Fresh cut statice stems, up to 34 cm long, should be preserved by soaking in a 1:2 or 1:3 glycerol: water solution for 48 h followed by microwaving for 1 min at medium-high (34°C)

  20. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  1. Electrochemical Oxidation of Glycerol Using Gold Electrode

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  2. Acute growth hormone administration causes exaggerated increases in plasma lactate and glycerol during moderate to high intensity bicycling in trained young men

    Lange, K.H.; Larsson, B.; Flyvbjerg, A.

    2002-01-01

    ). In the placebo trial, all subjects completed the exercise protocol without any difficulties. In contrast, two subjects were not able to complete the exercise protocol in the GH trial, and one subject barely managed to complete the protocol. In addition, GH administration resulted in exaggerated increases...... in increased whole body fat oxidation (indirect calorimetry). Plasma glucose was, on average, 9% higher during exercise after GH administration compared with placebo (P ... during 90 min of subsequent bicycling at moderate to high intensity. The exaggerated increase in plasma lactate may be associated with substantially decreased exercise performance....

  3. Comparison of tear osmolarity and ocular comfort between daily disposable contact lenses: hilafilcon B hydrogel versus narafilcon A silicone hydrogel.

    Sarac, Ozge; Gurdal, Canan; Bostancı-Ceran, Basak; Can, Izzet

    2012-06-01

    The aim of this study was to evaluate tear osmolarity and ocular comfort with two different types of hydrogel daily disposable lenses. The right eyes of 15 first-time contact lens users were included in this prospective study. All eyes wore hilafilcon B silicone hydrogel contact lenses for 8 h (group 1). After 1 week without contact lenses, all eyes wore narafilcon A silicone hydrogel contact lenses for 8 h (group 2). Tear osmolarity measurement was performed before and after 4 and 8 h of each contact lens wear. Ocular comfort was assessed after 4 and 8 h of each contact lens wear. In group 1, the mean baseline, 4- and 8-h tear osmolarity values were 293 ± 10.57, 303.00 ± 10.5 mOsm/L (p = 0.023), and 295.0 ± 1.4 mOsm/L (p > 0.05), respectively. In group 2, the mean baseline, 4- and 8-h tear osmolarity values were 294 ± 13.65, 300.9 ± 11.3 mOsm/L (p = 0.007), and 298.80 ± 7.2 mOsm/L (p > 0.05), respectively. In group 1, the mean comfort score was 7.20 ± 0.45 and 8.60 ± 0.45 at 4 and 8 h, respectively (p = 0.038). In group 2, the mean comfort score significantly decreased from 9.80 ± 0.45 to 7.80 ± 0.84 at 4 h (p = 0.039). Both hydrogel and silicone hydrogel daily disposable contact lenses elevated tear osmolarity during 8 h of contact lens wear. The increase in tear osmolarity with both contact lenses was below the cut-off value for dry eye and was not associated with ocular comfort.

  4. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial).

    Bolognese, Leonardo; Falsini, Giovanni; Schwenke, Carsten; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo

    2012-01-01

    Conflicting data have been reported on the effects of low-osmolar and iso-osmolar contrast media on contrast-induced acute kidney injury (CI-AKI). In particular, no clinical trial has yet focused on the effect of contemporary contrast media on CI-AKI, epicardial flow, and microcirculatory function in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. The Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty for Acute Myocardial Infarction (CONTRAST-AMI) trial is a prospective, randomized, single-blind, parallel-group, noninferiority study aiming to evaluate the effects of the low-osmolar contrast medium iopromide compared to the iso-osmolar agent iodixanol on CI-AKI and tissue-level perfusion in patients with ST-segment elevation acute myocardial infarction. Four hundred seventy-five consecutive, unselected patients who underwent primary percutaneous coronary intervention were randomized to iopromide (n = 239) or iodixanol (n = 236). All patients received high-dose N-acetylcysteine and hydration. The primary end point was the proportion of patients with serum creatinine (sCr) increases ≥25% from baseline to 72 hours. Secondary end points were Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade, increase in sCr ≥50%, increase in sCr ≥0.5 or ≥1 mg/dl, and 1-month major adverse cardiac events. The primary end point occurred in 10% of the iopromide group and in 13% of the iodixanol group (95% confidence interval -9% to 3%, p for noninferiority = 0.0002). A TIMI myocardial perfusion grade of 0 or 1 was present in 14% of patients in the 2 groups. No differences between the 2 groups were found in any of the secondary analyses of sCr increase. No significant difference in 1-month major adverse cardiac events was found (8% vs 6%, p = 0.37). In conclusion, in a population of unselected patients with ST-segment elevation acute myocardial infarction

  5. Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water.

    Chavalittamrong, B; Pidatcha, P; Thavisri, U

    1982-09-01

    Oral rehydration has been recommended in patients with diarrhoea to replace fluid loss from the gastrointestinal tract and reduce the need for intravenous therapy. Beverages (i.e. Cola, Sprite etc.) and coconut water may be used as sources of oral fluid when glucose-electrolyte solution is not available. To evaluate the usefulness and effectiveness of these soft drinks, the basic data such as electrolytes, sugar, calories, osmolarity and pH were determined. The electrolytes of the beverages were significantly lower (p less than 0.001) than the coconut water, especially potassium. The osmolarity of the beverages, which were 693 mOsm/l, was significantly higher (p less than 0.001) than the coconut water (288 mOsm/l); pH of the beverages (3.1) was more acidic (p less than 0.001) than the coconut water (5.4). While the sugar content of the beverages, which were 8.7 gm/dl, was significantly higher (p less than 0.001) than the coconut water (1.1 gm/dl). On comparison, all brands of beverages would give more calories than the coconut water however the coconut water would be absorbed more easily than any brand of soft drink beverage.

  6. A study on renal damage in rats induced by different concentrations and osmolarities of diatrizoate

    Park, Ki Soon; Sung, Dong Wook; Yoon, Yup; Lim, Jae Hoon

    1992-01-01

    There has been few papers regarding the pathologic changes of kidney induced by contrast media, especially in terms of iodine concentration or osmolarity. In order to evaluate histopathologic changes, a series of rat kidneys, after injection of iodinated contrast media, were examined. A total of 220 rats were divided into two groups:those given Urografin-60% by 6.3ml/Kg(1840mg/6.3ml):those given Urografin-76% by 5ml/Kg(1850mg/5ml). The kidneys were removed and microscopically examined on 1, 2, 3, 5, 7,10th days, 2nd, 3rd, 4th, 6th and 12th weeks after injection of contrast media, respectively. The results were as follows: Renal pathologic changes induced by contrast media were congestion and ectatic change of the interstitial vessels, epithelial degeneration and necrosis of the collecting ducts. Congestion of interstitial vessels and epithelial degeneration and necrosis of the collecting ducts were serve in the higher iodine concentration Urografin-76% group(2100 Osm/Kg H 2 O) than the Urografin-60% group (1500 Osm/Kg H 2 O). And above pathological changes persisted for 12 weeks without significant interval changes. The authors conclude that the renal damage induced by ionic contrast media becomes more severe in higher concentrations or osmolarities in spite of the same amount of iodine and that the pathologic changes persisted until 12 weeks without improvement

  7. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. [The correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK].

    Zhang, Luyan; Sun, Xiyu; Yu, Ye; Xiong, Yan; Cui, Yuxin; Wang, Qinmei; Hu, Liang

    2016-01-01

    To investigate the correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK (FS-LASIK) surgery. In this prospective clinical study, 31 patients undergoing FS-LASIK for myopia were recruited. The upper and lower tear meniscus volumes (UTMV and LTMV) were measured by customized anterior segment optical coherence tomography, tear film osmolarity was measured by a TearLab Osmolarity test device, central corneal sensation was measured by a Cochet-Bonner esthesiometer preoperatively, at 1 week, 1 and 3 months postoperatively. Repeated measures analysis of variance was used to evaluate whether the tear film osmolarity, tear meniscus volume, and corneal sensation were changed after surgery. The correlations between these variables were analyzed by the Pearson correlation analysis. The tear film osmolarity was (310.03 ± 16.48) mOsms/L preoperatively, (323.51 ± 15.92) mOsms/L at 1 week, (319.93 ± 14.27) mOsms/L at 1 month, and (314.97±12.91) mOsms/L at 3 months. The UTMV was (0.42±0.15), (0.25± 0.09), (0.30±0.11), and (0.35±0.09) μL, respectively; the LTMV was (0.60±0.21),(0.37±0.08), (0.44± 0.14), and (0.52±0.17) μL, respectively. The tear film osmolarity was significantly higher at 1 week and 1 month postoperatively compared with the baseline (P=0.001, 0.004), and reduced to the preoperative level at 3 months (P=0.573). The UTMV, LTMV, and corneal sensation values presented significant decreases at all postoperative time points (all Psensation at 1 week after surgery (r=0.356,P=0.005). There were significant correlations between the preoperative LTMV and corneal sensation at 1 week, 1 and 3 months (respectively, r=0.422, 0.366, 0.352;P=0.001, 0.004, 0.006). No significant correlations were found between the tear film osmolarity, tear meniscus volume, and corneal sensation after surgery (all P>0.05). The tear film osmolarity, tear meniscus volume, and corneal sensation became aggravated due

  9. Catalytic glycerol steam reforming for hydrogen production

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  10. Catalytic glycerol steam reforming for hydrogen production

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  11. Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.

    Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas

    2016-04-28

    We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that

  12. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  13. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effective Removal of Heavy Metal Ions Using Glycerol and Starch Xanthate

    Aliyu Mohammed

    2017-09-01

    Full Text Available Glycerol and insoluble starch xanthates were synthesised and effectively used in the removal of Pb, Cd and Cu from aqueous solutions. The insoluble metal complex formed between the sulphur atoms in the xanthates and the heavy metals were easily separated. Lower dosage of glycerol xanthate was required in each case, with the optimum molar ratio (M2+/GX of 2. Moreover, the use of glycerol xanthate required no pH adjustments to give a 100 % heavy metal removal within the range of the detection limit. As for the ISX, there was a remarkable metal scavenging activity when the ISX contained high amount of Sulphur per molecule (10.12% S and when the pH was adjusted to 6. Butyl xanthate was also synthesised to make a good comparison with the glycerol and insoluble starch xanthate. The xanthates from these two sustainable materials (Starch and glycerol are proven to be more effective in metal scavenging activity. FTIR and CHNS elemental analyses were used to prove the evidence of xanthation, in addition, 13C NMR was used to characterise the glycerol xanthate.

  15. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity.

    Gutiérrez-Pérez, Oscar; Juárez-Mosqueda, María de Lourdes; Carvajal, Salvador Uribe; Ortega, María Elena Trujillo

    2009-06-01

    The use of glycerol for boar semen cryopreservation results in low fertility, possibly due to toxicity. This has led to recommend the use of solutions with less than 4% glycerol. Trehalose is a disaccharide known to stabilize proteins and biologic membranes during processes such as cryopreservation. Thus, it was decided to evaluate the cryoprotective effect of glycerol/trehalose mixtures. Effects on motility (M), viability (Vb) and acrosomal integrity (nA) were evaluated. Sperm samples were frozen in three different extenders: G4 contained 4% glycerol; T1 contained 1% glycerol plus 250 mM trehalose and T0.5 was constituted by 0.5% glycerol plus 250 mM trehalose. All extenders yielded similar post-freezing/thawing motility rates. Viability was diminished in T0.5 as compared to the others. In regard to acrosome integrity, it was twice as high (Pextender. Thus, T1 twice as many spermatozoa were alive, motile and intact, than in either T0.5 or G4, i.e. during freeze/thawing the use of T1 resulted in twice as many fertile cells as when using the other extenders. During our study, we noted that there were wide individual variations both in sperm viability and in motility.

  16. Design and analysis of fuel ethanol production from raw glycerol

    Posada, J.A.; Cardona, C.A.

    2010-01-01

    Three configurations for fuel ethanol production from raw glycerol using Escherichia coli were simulated and economically assessed using Aspen Plus and Aspen Icarus, respectively. These assessments considered raw glycerol (60 wt%) purification to both crude glycerol (88 wt%) and pure glycerol (98 wt%). The highest purification cost (PC) was obtained using pure glycerol due to its higher energy consumption in the distillation stage. In addition, the remaining methanol in the raw glycerol stream was recovered and recycled, decreasing the purification costs. The E. coli strain is able to convert crude glycerol (at 10 g/L or 20 g/L), or pure glycerol (at 10 g/L) to ethanol. Among these three glycerol concentrations, the lowest bioconversion cost was obtained when crude glycerol was diluted at 20 g/L. Purification and global production costs were compared with the commercial prices of glycerol and fuel ethanol from corn and sugarcane. Purification costs of raw glycerol were lower than previously reported values due to the methanol recovery. Global production costs for fuel ethanol from glycerol were lower than the reported values for corn-based production and higher than those for cane-based production. (author)

  17. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Coupling Fluid and Solute Dynamics Within the Ocular Surface Tear Film: A Modelling Study of Black Line Osmolarity

    Zubkov, V. S.

    2012-07-06

    We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye. Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins. © 2012 Society for Mathematical Biology.

  19. Oral contrast agents for small bowel distension in MRI: influence of the osmolarity for small bowel distention

    Ajaj, Waleed; Kuehle, Christiane; Nuefer, Michael; Goehde, Susanne C.; Lauenstein, Thomas C.; Goyen, Mathias; Schneemann, Hubert; Ruehm, Stefan G.

    2005-01-01

    To assess the effect of the osmolarity for small bowel distension in MRI, ten volunteers ingested at two separate occasions negative oral contrast agents with different quantity and osmolarity: (1) a water solution combined with 2.0% sorbitol and 0.2% locus bean gum (LBG) with a quantity of 1500 ml and an osmolarity of 148 mOsmol/l, (2) a water solution combined with 2.0% sorbitol and 2.0% barium sulphate with a quantity of 1000 ml and an osmolarity of 194 mOsmol/l. Small bowel distension was quantified on coronal 2D-TrueFISP images by measuring the small bowel diameters. There were no statistically significant differences in mean small bowel diameter between both contrast agents. The mean small bowel distension was 19.2 mm after ingestion of 1500 ml of sorbitol-LBG solution and 19.0 mm after ingestion of 1000-ml sorbitol-barium sulphate solution. Furthermore, all volunteers found the ingestion of 1000-ml solution more pleasant than the 1500-ml solution. The ingestion of 1000 ml of sorbitol-barium sulphate solution led to a sufficient small bowel distension compared to 1500 ml of sorbitol-LBG solution. The side effect rate of both solutions was low. Based on these data, we recommend a quantity of 1000 ml of sorbitol-barium sulphate solution as an alternative for 1500-ml sorbitol-LBG solution for optimal bowel distension. (orig.)

  20. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts

    Algoufi, Y.T.; Akpan, U.G.; Kabir, G.; Asif, M.; Hameed, B.H.

    2017-01-01

    Highlights: • Catalytic transesterification with dimethyl carbonate (DMC) converts glycerol into glycerol carbonate (GLC). • DMC and Sr_x–Al catalysts affect the reaction mechanisms that convert glycerol into GLC. • The morphology and textural structure of Sr_x–Al catalysts perpetuate catalytic activity. • The atomic ratio of Sr/Al has a unique effect on Sr–Al catalytic activity. • Sr_0_._5–Al catalyst exhibits limited leaching after five reaction cycles. - Abstract: The high demand for renewable energy has led to the upsurge of methanol-assisted biodiesel synthesis. Therefore, glycerol as a byproduct entered the waste stream given the oversupply of biodiesel to the market. The dimethyl carbonate (DMC)-assisted transesterification of glycerol on a catalyst has been a popular approach for converting glycerol into valuable glycerol carbonate (GLC). The synthesis of GLC from the DMC-assisted transesterification of glycerol on mixed oxide catalysts (Sr_x–Al) with different Sr/Al ratios was examined in this study. A glycerol conversion of 99.4% and a GLC yield of 100% were achieved in a catalyst with Sr/Al = 0.5 (Sr_0_._5–Al). Both values are higher than those in catalysts synthesized with Sr/Al = 0.25 and 0.75. The Sr_0_._5–Al catalyst withstood five transesterification reaction cycles without a serious deactivation induced by the leaching of active SrO. Therefore, the Sr_0_._5–Al catalyst is suitable for consecutive uses in the DMC-assisted transesterification of glycerol with DMC into GLC.

  1. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  2. Valorisation of crude glycerol through biological conversion into bioplastics and biofuels in the frame of an FP7 project

    Varrone, Cristiano; Gavala, Hariklia N.

    a very low value, due to the impurities and contaminants, and the purification of glycerol is not a viable option for the biodiesel industry anymore. In fact, crude glycerol is usually contaminated with water, methanol, soap, oil, and other compounds deriving from the transesterification process....... Therefore, the purification cost is high when converting crude glycerol by traditional chemistry methods. Setting up of biorefineries, that co-produce high-value compounds, has been considered a concrete solution to enhance economic viability of biodiesel production. The project: the overall aim...

  3. Studies on distribution and excretion of 14C-glycerol in rats, rabbits and mice

    Takanashi, Shigeru; Kamiyama, Hiroshi; Suzuki, Hidetaka; Tohira, Yasuo; Ogawa, Machiko

    1978-01-01

    Tissue distribution and excretion of uniformly labeled 14 C-glycerol were investigated using rats, rabbits and mice. Blood disappearance half life of 14 W/V% 14 C-glycerol in mice (1 ml/head), rats (1 ml/head) and rabbits (2 ml/head) given intravenously was 0.4, 1.8 and 2.4 hours, respectively. When 14 W/V% 14 C-glycerol was injected in rats (1 ml/head) and rabbits (2 ml/head), 65% of administered radioactivity was excreted in to expired air within 48 hrs. This suggests that glycerol is mostly metabolised via the Embden-Meyehof pathway and the TCA cycle, and finally converted to CO 2 and H 2 O. At a low dose, the conversion ratio to CO 2 was greater than the case of a high dose, and a inverse relationship was observed between the CO 2 -conversion ratio and the dose. At levels above 1 ml of 56 W/V% glycerol, an approximately constant portion of the administered dose appeared to be oxidized. The results of the whole body autoradiogram showed the distribution of the radioactivity throughout the body. Disappearance of radioactivity from liver and blood was rapid, but transport to brain, excretion to the salivary gland, and secretion to Harder's gland were slow. The distribution in tissues showed that the highest distribution of 14 C-glycerol was found in the carcass; liver showed the next highest distribution; high distribution was also found initially in the kidneys; brain, heart, lung and spleen showed low distribution, but they decreased with time elapsed. Disappearance of radioactivity from the brain was relatively slower than the liver. Besides, another result indicated that in pregnant mice 14 C-glycerol did not cross the placenta very quickly. The fact that the apparent disappearance rate from the foetuses does not seem to parallel that of the placenta is suggestive of selective accumulation in foetal tissues. (auth.)

  4. Comparison of chromatographic methods for the determination of bound glycerol in biodiesel

    Foglia, T.A.; Jones, K.C.; Nunez, A.; Phillips, J.G. [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (United States); Mittelbach, M. [Inst. for Chemistry, Univ. of Graz, Graz (Austria)

    2004-09-01

    An important fuel criterion for biodiesel is bound glycerol, which is a function of the residual amount of triglycerides and partial glycerides in the biodiesel. Either high-temperature gas chromatography or high performance liquid chromatography can be used for determining these minor but important components in biodiesel. In this paper we have conducted a statistical study on the accuracy of the two methods for ascertaining the bound glycerol in biodiesel fuels obtained from different feedstocks. Analysis of variance showed that with one exception, namely diacylglycerols in some soy oil based biodiesel, there was no statistical difference in bound glycerol for the biodiesel samples analyzed or a difference between methods. Operationally, the high performance liquid chromatographic method is superior to the high temperature gas chromatographic method in that it requires no sample derivatization, has shorter analysis times, and is directly applicable to most biodiesel fuels. (orig.)

  5. Corneal thickness changes during corneal collagen cross-linking with UV-A irradiation and hypo-osmolar riboflavin in thin corneas

    Belquiz Amaral Nassaralla

    2013-06-01

    Full Text Available PURPOSE: To evaluate the thinnest corneal thickness changes during and after corneal collagen cross-linking treatment with ultraviolet-A irradiation, using hypo-osmolar riboflavin solution in thin corneas. METHODS: Eighteen eyes of 18 patients were included in this study. After epithelium removal, iso-osmolar 0.1% riboflavin solution was instilled to the cornea every 3 minutes for 30 minutes. Hypo-osmolar 0.1% riboflavin solution was then applied every 20 seconds for 5 minutes or until the thinnest corneal thickness reached 400 µm. Ultraviolet-A irradiation was performed for 30 minutes. During irradiation, iso-osmolar 0.1% riboflavin drops were applied every 5 minutes. Ultrasound pachymetry was performed at approximately the thinnest point of the cornea preoperatively, after epithelial removal, after iso-osmolar riboflavin instillation, after hypo-osmolar riboflavin instillation, after ultraviolet-A irradiation, and at 1, 6 and 12 months after treatment. RESULTS: Mean preoperative thinnest corneal thickness was 380 ± 11 µm. After epithelial removal it decreased to 341 ± 11 µm, and after 30 minutes of iso-osmolar 0.1% riboflavin drops, to 330 ± 7.6 µm. After hypo-osmolar 0.1% riboflavin drops, mean thinnest corneal thickness increased to 418 ± 11 µm. After UVA irradiation, it was 384 ± 10 µm. At 1, 6 and 12 months after treatment, it was 372 ± 10 µm, 381 ± 12.7, and 379 ± 15 µm, respectively. No intraoperative, early postoperative, or late postoperative complications were noted. CONCLUSIONS: Hypo-osmolar 0.1% riboflavin solution seems to be effective for swelling thin corneas. The swelling effect is transient and short acting. Corneal thickness should be monitored throughout the procedure. Larger sample sizes and longer follow-up are required in order to make meaningful conclusions regarding safety.

  6. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Glycerol: a brief history and their application in stereoselective syntheses; Glicerol: um breve historico e aplicacao em sinteses estereosseletivas

    Beatriz, Adilson; Araujo, Yara J.K.; Lima, Denis Pires de, E-mail: adilson.beatriz@ufms.b [Universidade Federal de Mato Grosso do Sul (DQ/UFMS), Campo Grande, MS (Brazil). Dept. de Quimica

    2011-07-01

    Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products. (author)

  8. Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method

    Nasir, N. F.; Mirus, M. F.; Ismail, M.

    2017-09-01

    Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.

  9. Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application

    Loureiro da Costa Lira Gargalo, Carina; Carvalho, Ana; Gernaey, Krist

    2017-01-01

    To further advance the development and implementation of glycerol-based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner, considering both production as well as the logistics aspects related to the supply chain structure...... is able to identify operational decisions, including locations, capacity levels, technologies, and product portfolio, as well as strategic decisions such as inventory levels, production amounts, and transportation to the final markets. Several technologies are considered for the glycerol valorization...... to high value-added products. Existing countries with major production and consumption of biodiesel in Europe are considered as candidates for the facility sites and demand markets, and their spatial distribution is also carefully studied. The results showed that (i) the optimal solution that provides...

  10. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-01-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments...... of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose...

  11. Osmolaridad de bebidas lácteas, leches y fórmulas infantiles Osmo osmolarity larity of lactic bever beverages ages ages, milks and inf infant ant formulas

    Iván Darío Flórez Gómez

    2004-02-01

    Full Text Available Introducción : la osmolaridad elevada de los líquidos que se administran a los niños con diarrea puede en algunos casos aumentar el volumen de ésta. Con frecuencia se recomienda utilizar productos de leche fermentada para la alimentación de los niños durante la enfermedad diarreica. Sin embargo, estos productos pueden tener alta osmolaridad. El objetivo del presente estudio fue determinar la osmolaridad de algunos de estos productos así como de fórmulas lácteas y leches. Materiales y métodos : se determinó la osmolaridad de algunos kumis, yogures, fórmulas infantiles y preparaciones basadas en leche pasterizada. Resultados: la osmolaridad promedio de 9 muestras de yogures industriales con frutas y azúcar fue 741 mOsm/L (DE 97.5; la de 8 muestras de yogures “dietéticos”, 391 mOsm/L (DE 26.4; la de 4 muestras de kumis con azúcar, 658 mOsm/L (DE 69.9; la de 3 muestras de leches “deslactosadas”, 352 mOsm/L (DE 62.6; y la de 4 muestras de leches pasteurizadas, 262 mOsm/L (DE 6.3. Discusión: en Colombia no ha existido una cultura de utilización de bebidas lácteas fermentadas de preparación casera. Se dispone de yogures y kumis comerciales azucarados, con frutas, cuyo costo es relativamente elevado y que tienen alta osmolaridad. Es pertinente analizar si sus efectos benéficos superan a los dañinos. Introduction: high osmolarity of the fluids administered during diarrhea can, in some cases, increase its volume. The use of fermented milk products for feeding children during diarrheal illness is frequently recommended. The objective of this study was to determine the osmolarity of some of these products, infant formulas and milks. Materials and methods : the osmolarity of some kumis, yogurts, infantile formulas and milk, was determined. Results: average osmolarity of 9 samples of industrial yogurts with fruits and sugar was 741 mOsm/L (SD 97.5; of 8 samples of light yogurts, 391 mOsm/L (SD 26.4; of 4 kumis samples with sugar

  12. Conversion of Crude Glycerol to 1, 3-Propanediol by Newly Isolated Kluyvera Cryocrescens

    Loh, S.K.; Stasha Eleanor Rosland Abel

    2016-01-01

    Bio diesel, an environmental-friendly and renewable fuel, has gained market share and popularity as an alternative to fossil fuel. While expanding its production globally to meet the demand, the production of its principal co-product, crude glycerol which is surplus and under utilised, has affected both the economic and environment. Crude glycerol has limited usage due to the impurities present. It cannot be disposed naturally in the environment and its storage and processing are very costly. Glycerol with its triglyceride backbone serves as a natural metabolite susceptible to microbial degradation into high value-added compounds. In this study, a novel 1,3-PD producing bacterial strain isolated from palm oil mill effluent was used in microbial fermentation of crude glycerol. The strain, identified as Kluyvera cryocrescens NBRC 102467 based on its 16S ribosomal ribonucleic acid sequences, was capable of producing 1,3-PD (5.28 g litre -1 ) along with by-products, butanol (0.34 g litre -1 ) and acetone (0.31 g litre -1 ) after an optimum 48 hour of incubation at 30 degree Celsius in agitated medium enriched with crude glycerol at 150 revolutions per minute. Interestingly, its productivity peaked at the 6 hour reaching 0.28 g litre -1 hour -1 and declined thereafter. In future, this strain has potential to be used in the bioprocess of interest. (author)

  13. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  15. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  16. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  17. Are there any differences in acute adverse reactions among five low-osmolar non-ionic iodinated contrast media?

    Gomi, Tatsuya; Nagamoto, Masashi; Hasegawa, Makoto; Katoh, Asako; Sugiyama, Miki; Murata, Nozomu; Kunihiro, Toshiyuki; Kohda, Ehiichi [Toho University Ohashi Medical Centre, Department of Radiology, Tokyo (Japan)

    2010-07-15

    The differences regarding adverse reactions in different low-osmolar non-ionic contrast media had not been investigated previously. Thus, the aims of this study were to identify differences in the incidence of adverse reactions in five different low-osmolar non-ionic contrast media. We prospectively recorded all adverse events associated with five different low-osmolar non-ionic contrast media used in 8,931 consecutive patients for CT. Patients were randomly assigned to five groups: iomeprol 300 mgI/ml, iopamidol 300 mgI/ml, iohexol 300 mgI/ml, iopromide 300 mgI/ml and ioversol 320 mgI/ml. Adverse events were observed in 241 patients (2.7%). The incidence of acute adverse reactions was significantly higher in the following groups: (1) iomeprol (3.9%) and iopromide (3.5%) groups, (2) patients aged 59 years or less (4.5%) compared with those aged 60 years or over (1.9%), (3) the first period (3.5%) compared with the late period (2.3%), (4) those with a past history of adverse reactions to contrast media (11.2%), and (5) patients receiving contrast media for the first time (3.3%) compared with those had received it previously (2.0%). The incidence of acute adverse reactions may be reduced in younger patients by using iopamidol, iohexol and ioversol. (orig.)

  18. Are there any differences in acute adverse reactions among five low-osmolar non-ionic iodinated contrast media?

    Gomi, Tatsuya; Nagamoto, Masashi; Hasegawa, Makoto; Katoh, Asako; Sugiyama, Miki; Murata, Nozomu; Kunihiro, Toshiyuki; Kohda, Ehiichi

    2010-01-01

    The differences regarding adverse reactions in different low-osmolar non-ionic contrast media had not been investigated previously. Thus, the aims of this study were to identify differences in the incidence of adverse reactions in five different low-osmolar non-ionic contrast media. We prospectively recorded all adverse events associated with five different low-osmolar non-ionic contrast media used in 8,931 consecutive patients for CT. Patients were randomly assigned to five groups: iomeprol 300 mgI/ml, iopamidol 300 mgI/ml, iohexol 300 mgI/ml, iopromide 300 mgI/ml and ioversol 320 mgI/ml. Adverse events were observed in 241 patients (2.7%). The incidence of acute adverse reactions was significantly higher in the following groups: (1) iomeprol (3.9%) and iopromide (3.5%) groups, (2) patients aged 59 years or less (4.5%) compared with those aged 60 years or over (1.9%), (3) the first period (3.5%) compared with the late period (2.3%), (4) those with a past history of adverse reactions to contrast media (11.2%), and (5) patients receiving contrast media for the first time (3.3%) compared with those had received it previously (2.0%). The incidence of acute adverse reactions may be reduced in younger patients by using iopamidol, iohexol and ioversol. (orig.)

  19. Effect on renal function of an iso-osmolar contrast agent in patients with monoclonal gammopathies

    Preda, Lorenzo; Agazzi, Alberto; Martinelli, Giovanni; Raimondi, Sara; Lanfranchi, Carla Federica; Passerini, Rita; Calvetta, Albania; Bellomi, Massimo

    2011-01-01

    To assess the safety of the non-ionic iso-osmolar contrast agent iodixanol on renal function in patients with monoclonal gammopathies undergoing CT. We explored the effect of iodixanol on renal function in 30 patients with monoclonal gammopathies and 20 oncological patients with a normal electrophoretic profile (control group). The parameters used to estimate renal function were: serum creatinine, eGFR (determined 24 h before and 48 h after the administration of iodixanol), and urinary excretion of Neutrophil Gelatinase-Associated Lipocalin (NGAL) determined 2 h and 24 h after. Serum creatinine was also determined 1 month after the administration of iodixanol. No significant increase in serum creatinine values were observed in the monoclonal gammopathies group and in 19/20 patients in the control group. Only 1 patient in the control group developed a transient contrast agent-induced nephropathy. We found no statistically significant difference between the two groups regarding the percentage variation from baseline values of serum creatinine, creatinine clearance, NGAL 2 h after, and eGFR. Whereas NGAL at 24 h showed a statistically significant increase in patients with Monoclonal gammopathies. The use of iodixanol appears to be safe in patients with monoclonal gammopathies and an eGFR ≥ 60 ml/min/1.73 mq. (orig.)

  20. Comparison of Tear Osmolarity in Rheumatoid Arthritis Patients With and Without Secondary Sjogren Syndrome.

    Ng, Alex L K; Choy, Bonnie N K; Chan, Tommy C Y; Wong, Ian Y H; Lai, Jimmy S M; Mok, Mo Yin

    2017-07-01

    To compare tear osmolarity (TO) and other dry eye parameters in rheumatoid arthritis (RA) patients with or without secondary Sjogren syndrome (sSS). Consecutive patients with RA were divided into a sSS group and no-sSS group using conventional diagnostic criteria by rheumatologists using symptomatology, Schirmer test score, and anti-Ro or anti-La autoantibody status. The TO, Ocular Surface Disease Index, dry eye disease (DED) parameters [such as tear breakup time (TBUT) and corneal staining score] and the systemic inflammatory markers [erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP)] were compared. Correlation analyses between TO and the DED parameters and inflammatory markers were also performed. A total of 42 cases with mean age 54.8 ± 12.3 were included, with 12 patients (29%) having sSS and 30 (71%) without sSS. TO was increased in both groups (329 ± 20 and 319 ± 25 mOsm/L, respectively), but no statistically significant difference was found between the 2 groups (P = 0.126). RA with sSS had significantly shorter TBUT, higher corneal staining score, and ESR CRP levels (P sSS. There was no significant correlation between TO and the Schirmer test score, and the physician could not use TO to diagnose sSS. However, TO correlated well with both DED parameters (TBUT and corneal staining score) and systemic inflammatory markers (ESR and CRP).

  1. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    Sreerangappa, Ramesh; Debecker, Damien P.

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced from an aqueous solution, by a one-pot spray drying route. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The new catalyst does not leach and is recyclable. NaAlO2 microspheres outcompete commercially available NaAlO2 as well as o...

  2. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  3. Investigation of glycerol assimilation and cofactor metabolism in Lactococcus lactis

    Holm, Anders Koefoed

    of glycerol kinase from L. lactis, introduction of a heterologous glycerol assimilation pathway and construction of a library of NADH oxidase activity. Based on a preliminary analysis of transcription level data, an attempt was made to stimulate glycerol assimilation by overexpressing the glycerol kinase...... already present in L. lactis. The construction and verification of a strain with increased glycerol kinase activity was not fully completed and is still ongoing. Similarly the construction of mutants expressing a heterologous pathway for glycerol dissimilation is also an ongoing task. An artificial...... effects and improve the growth rate, though not completely to the level of the reference strain. The fact that this effect was predominantly observed while utilizing xylose implicates the involvement of the pentose phosphate pathway. A possible mechanism underlying the observed growth characteristics...

  4. Diagnostic accuracy of calculated serum osmolarity to predict dehydration in older people: adding value to pathology laboratory reports.

    Hooper, Lee; Abdelhamid, Asmaa; Ali, Adam; Bunn, Diane K; Jennings, Amy; John, W Garry; Kerry, Susan; Lindner, Gregor; Pfortmueller, Carmen A; Sjöstrand, Fredrik; Walsh, Neil P; Fairweather-Tait, Susan J; Potter, John F; Hunter, Paul R; Shepstone, Lee

    2015-10-21

    To assess which osmolarity equation best predicts directly measured serum/plasma osmolality and whether its use could add value to routine blood test results through screening for dehydration in older people. Diagnostic accuracy study. Older people (≥65 years) in 5 cohorts: Dietary Strategies for Healthy Ageing in Europe (NU-AGE, living in the community), Dehydration Recognition In our Elders (DRIE, living in residential care), Fortes (admitted to acute medical care), Sjöstrand (emergency room) or Pfortmueller cohorts (hospitalised with liver cirrhosis). Directly measured serum/plasma osmolality: current dehydration (serum osmolality>300 mOsm/kg), impending/current dehydration (≥295 mOsm/kg). 39 osmolarity equations calculated using serum indices from the same blood draw as directly measured osmolality. Across 5 cohorts 595 older people were included, of whom 19% were dehydrated (directly measured osmolality>300 mOsm/kg). Of 39 osmolarity equations, 5 showed reasonable agreement with directly measured osmolality and 3 had good predictive accuracy in subgroups with diabetes and poor renal function. Two equations were characterised by narrower limits of agreement, low levels of differential bias and good diagnostic accuracy in receiver operating characteristic plots (areas under the curve>0.8). The best equation was osmolarity=1.86×(Na++K+)+1.15×glucose+urea+14 (all measured in mmol/L). It appeared useful in people aged ≥65 years with and without diabetes, poor renal function, dehydration, in men and women, with a range of ages, health, cognitive and functional status. Some commonly used osmolarity equations work poorly, and should not be used. Given costs and prevalence of dehydration in older people we suggest use of the best formula by pathology laboratories using a cutpoint of 295 mOsm/L (sensitivity 85%, specificity 59%), to report dehydration risk opportunistically when serum glucose, urea and electrolytes are measured for other reasons in

  5. Intercalation compounds of vanadium(5) phosphates with glycerol

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  6. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  7. Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016.

    Ricci, Maria Antonietta; Russo, Annamaria; Pisano, Isabella; Palmieri, Luigi; de Angelis, Maria; Agrimi, Gennaro

    2015-06-01

    Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3- propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. CO(2+) addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 μg/g of cell dry weight of vitamin B12, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to CO(2+) ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (-18%). Compared with the fermentation carried out with pure substrates, the 1,3- PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (+27%) and of the glucose consumption rate (+46%) were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B12 using industry byproducts.

  8. Apposite of pig skin preserved in glycerol

    Reyes F, M.L.; Gonzalez V, C.; Salinas A, M.

    2007-01-01

    In the Radio sterilized Tissue Bank (BTR) of the ININ apposite of pig skin are processed and preserved to low temperature (-80 C), which are sterilized by irradiation and transported to the hospitals in dry ice to avoid its unfreezing. With the purpose of making more simple the manipulation of the apposite it was carried out this work that consisted on developing the processing of the pig skin using glycerol like preservation medium, since this way the irradiation, the storage and transport of the apposite is carried out at refrigeration temperature, that makes its manage more simple. (Author)

  9. An improved synthesis of 14C labelled glycerol using sodium borohydride

    Chander, H.; Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    [1- 14 C]Glyceric acid has been reduced to [1(3)- 14 C]glycerol in high yields via the methyl ester of [1- 14 C]glyceric acid by sodium borohydride in the presence of t-butyl alcohol and methanol. The importance of the procedure is highlighted in relation to other procedures involving lithium aluminium hydride reduction. (author)

  10. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  11. Industrial glucoamylase fed‐batch benefits from oxygen limitation and high osmolarity

    Pedersen, Lasse; Hansen, Kim; Nielsen, Jens

    2012-01-01

    . In this study we have carried out a thorough characterization of a process as close as possible to the industrial reality. The results show that the oxygen‐limited phases of the process have the highest glucoamylase yields on carbon and that the byproducts are efficiently reused in late phases of the process...

  12. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol. Copyright © 2011 Wiley Periodicals, Inc.

  13. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates.

    Delabona, Priscila da Silva; Lima, Deise Juliana; Robl, Diogo; Rabelo, Sarita Cândida; Farinas, Cristiane Sanchez; Pradella, José Geraldo da Cruz

    2016-05-01

    The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.

  14. Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry

    JUN WANG

    2010-01-01

    Full Text Available As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems.

  15. Conversion of 1-alkyl-2-acetyl-sn-glycerols to platelet activating factor and related phospholipids by rabbit platelets

    Blank, M.L.; Lee, T.; Cress, E.A.; Malone, B.; Fitzgerald, V.; Snyder, F.

    1984-01-01

    The metabolic pathway for 1-alkyl-2-acetyl-sn-glycerols, a recently discovered biologically active neutral lipid class, was elucidated in experiments conducted with rabbit platelets. The total lipid extract obtained from platelets incubated with 1-[1-,2- 3 H]alkyl-2-acetyl-sn-glycerols or 1-alkyl-2-[ 3 H]acetyl-sn-glycerols contained at least six metabolic products. The six metabolites, identified on the basis of chemical and enzymatic reactions combined with thin-layer or high-performance liquid chromatographic analyses, corresponded to 1-alkyl-sn-glycerols, 1-alkyl-2-acetyl-sn-glycero-3-phosphates, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholines, and 1-alkyl-2-actyl-sn-glycero-3-phosphocholines (platelet activating factor). These results indicate that the metabolic pathway for alkylacetylglycerols involves reaction steps catalyzed by the following enzymatic activities: choline- and ethanolamine- phosphotransferases, acetyl-hydrolase, an acyltransferase, and a phosphotransferase. The step responsible for the biosynthesis of platelet activating factor would appear to be the most important reaction in this pathway and this product could explain the hypotensive activities previously described for alkylacetyl-(or propionyl)-glycerols. Of particular interest was the preference exhibited for the utilization of the 1-hexadecyl-2-acetyl-sn-glycerol species in the formation of platelet activating factor

  16. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  17. Strategies for repair of white matter: influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media.

    Kleinsimlinghaus, Karolina; Marx, Romy; Serdar, Meray; Bendix, Ivo; Dietzel, Irmgard D

    2013-01-01

    The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs) in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2) and platelet derived growth factor (PDGF) the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco's Modified Eagle Medium (DMEM), and Roswell Park Memorial Institute Medium (RPMI) compared with Neurobasal Medium (NB). A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU)-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na(+)-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation, and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-α and IFN-γ. We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically

  18. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels

    Simonetti, D.A.; Rass-Hansen, Jeppe; Kunkes, E.L.

    2007-01-01

    Liquid alkanes can be produced directly from glycerol by an integrated process involving catalytic conversion to H-2/CO gas mixtures (synthesis gas) combined with Fischer-Tropsch synthesis. Synthesis gas can be produced at high rates and selectivities suitable for Fischer-Tropsch synthesis (H-2/CO...... between 1.0 and 1.6) from concentrated glycerol feed solutions at low temperatures (548 K) and high pressures (1-17 bar) over a 10 wt% Pt-Re/C catalyst with an atomic Pt : Re ratio of 1 : 1. The primary oxygenated hydrocarbon intermediates formed during conversion of glycerol to synthesis gas are ethanol...... in the liquid organic effluent stream and increasing the selectivity to C5+ alkanes by a factor of 2 ( from 0.30 to 0.60). Catalytic conversion of glycerol and Fischer-Tropsch synthesis were coupled in a two-bed reactor system consisting of a Pt-Re/C catalyst bed followed by a Ru/TiO2 catalyst bed...

  19. Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant

    Petersen, Allan Robertson; Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter

    2018-01-01

    A vanadium‐catalysed deoxydehydration (DODH) of neat glycerol has been developed. Cheap and readily available ammonium metavanadate (NH4VO3) affords higher yields of allyl alcohol than the well‐established catalyst methyltrioxorhenium. A study in which deuterium‐labelled glycerol was used...

  20. Synthesis and applications of {sup 13}C glycerol

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  1. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  2. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  3. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder.

    Molosh, Andre I; Johnson, Philip L; Fitz, Stephanie D; Dimicco, Joseph A; Herman, James P; Shekhar, Anantha

    2010-05-01

    Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.

  4. Acute kidney damage induced by low- and iso-osmolar contrast media in rats: Comparison study with physiologic MRI and histologic-gene examination.

    Wu, Chen-Jiang; Bao, Mei-Ling; Wang, Qing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin; Zhang, Yu-Dong

    2017-01-01

    To investigate the physiopathological effects of low- and iso-osmolar contrast media (CM) on renal function with physiologic MRI and histologic-gene examination. Forty-eight rats underwent time-course DWI and DCE-MRI at 3.0 Tesla (T) before and 5-15 min after exposure of CM or saline (Iop.370: 370 mgI/mL iopromide; Iod.320: 320 mgI/mL iodixanol; Iod.270: 270 mgI/mL iodixanol; 4 gI/kg body weight). Intrarenal viscosity was reflected by apparent diffusion coefficient (ADC). Renal physiologies were evaluated by DCE-derived glomerular filtration rate (GFR), renal blood flow (RBF), and renal blood volume (RBV). Potential acute kidney injury (AKI) was determined by histology and the expression of kidney injury molecule 1 (Kim-1). Iop.370 mainly increased ADC in inner-medulla (△ADC IM : 12.3 ± 11.1%; P < 0.001). Iod.320 and Iod.270 mainly decreased ADC in outer-medulla (△ADC IM ; Iod.320: 16.8 ± 7.5%; Iod.270: 18.1 ± 9.5%; P < 0.001) and inner-medulla (△ADC IM ; Iod.320: 28.4 ± 9.3%; Iod.270: 30.3 ± 6.3%; P < 0.001). GFR, RBF and RBV were significantly decreased by Iod.320 (△GFR: 45.5 ± 24.1%; △RBF: 44.6 ± 19.0%; △RBV: 35.2 ± 10.1%; P < 0.001) and Iod.270 (33.2 ± 19.0%; 38.1 ± 15.6%; 30.1 ± 10.1%; P < 0.001), while rarely changed by Iop.370 and saline. Formation of vacuoles and increase in Kim-1 expression was prominently detected in group of Iod.320, while rarely in Iod.270 and Iop.370. Iso-osmolar iodixanol, given at high-dose, produced prominent AKI in nonhydrated rats. This renal dysfunction could be assessed noninvasively by physiologic MRI. 1 J. Magn. Reson. Imaging 2017;45:291-302. © 2016 International Society for Magnetic Resonance in Medicine.

  5. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas

    Shao-Feng Gu

    2015-02-01

    Full Text Available AIM: To report the 3mo outcomes of collagen cross-linking (CXL with a hypo-osmolar riboflavin in thin corneas with the thinnest thickness less than 400 μm without epithelium. METHODS: Eight eyes in 6 patients with age 26.2±4.8y were included in the study. All patients underwent CXL using a hypo-osmolar riboflavin solution after its de-epithelization. Best corrected visual acuity, manifest refraction, the thinnest corneal thickness, and endothelial cell density were evaluated before and 3mo after the procedure. RESULTS: The mean thinnest thickness of the cornea was 408.5±29.0 μm before treatment and reduced to 369.8±24.8 μm after the removal of epithelium. With the application of the hypo-osmolar riboflavin solution, the thickness increased to 445.0±26.5 μm before CXL and recover to 412.5±22.7 μm at 3mo after treatment, P=0.659. Before surgery, the mean K-value of the apex of the keratoconus corneas was 57.6±4.0 diopters, and slightly decreased (54.7±4.9 diopters after surgery (P=0.085. Mean best-corrected visual acuity was 0.55±0.23 logarithm of the minimal angle of resolution, and increased to 0.53±0.26 logarithm after surgery (P=0.879. The endothelial cell density was 2706.4±201.6 cells/mm2 before treatment, and slightly decreased (2641.2±218.2 cells/mm2 at last fellow up (P=0.002. CONCLUSION: Corneal collagen cross-linking with a hypo-osmolar riboflavin in thin corneas seems to be a promising treatment. Further study should be done to evaluate the safety and efficiency of CXL in thin corneas for the long-term.

  6. Microemulsion based hybrid biofuels using glycerol monooleate

    Bora, Plaban; Konwar, Lakhya Jyoti; Deka, Dhanapati

    2016-01-01

    Highlights: • Fuel quality of GMO based MHBFs. • Effect of externally added monoglyceride surfactant (GMO) on fuel characteristics of MHBF. • Structural and dynamic behaviors of GMO based MHBFs. • Can offer strong candidature for future biofuel industry. - Abstract: The present investigation aims to highlighten the effect of monoglyceride surfactant (GMO) on structure and dynamic behavior and other fuel characteristics of microemulsion based hybrid biofuels (MHBFs). Fuel quality of MHBFs formulated using purified GMO (>90%), which was prepared by esterification of glycerol, was investigated in the study. Phase behaviors, droplet size distribution, number of droplets present in the system, average droplet size and average length of surface active agents were studied as a part of structural investigations of the GMO based MHBFs. Diffusion coefficient, energy barrier to droplet coalescence and rate of coalescence of droplets were also investigated for the formulated MHBFs. The number of droplets, length of surface active agent and the diffusion co-efficient were in the ranges of 1.87 × 10"2"1–5.66 × 10"2"1/m"3, 0.92–1.07 nm and 1.00 × 10"−"1"1–1.79 × 10"−"1"1 m"2/s, respectively. The rate of droplet coalescence was obtained in the range 2.77 × 10"−"4–8.78 × 10"−"4 times the collision factor. MHBFs incorporating the glycerol derived bio-based nonionic surfactant GMO exhibited viscosity of 4.12 mm"2/s (at 40 °C), gross calorific value (GCV) of 39.17 MJ/kg and pour point of −7 °C.

  7. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Production of gaseous and liquid chemicals by aqueous phase reforming of crude glycerol: Influence of operating conditions on the process

    Remón, J.; Giménez, J.R.; Valiente, A.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Aqueous phase reforming: a tailor-made process for the valorisation of crude glycerol. • In-depth understanding of the effect of the operating conditions on the process. • Process optimisation for the selective production of valuable gas and liquid products. • Low pressure and high temperature and spatial time favour gas production. • High pressure and medium temperature maximise the production of valuable liquids. - Abstract: The present work studies the influence of the temperature (200–240 °C), pressure (38–50 bar), glycerol concentration (10–50 wt.%) and mass of catalyst/ glycerol mass flow rate ratio (W/m_g_l_y_c_e_r_o_l = 10–40 g catalyst min/g glycerol) during the aqueous phase reforming (APR) of a glycerol solution obtained from the production of biodiesel. The operating conditions exerted a statistically significant influence on the reforming results. Specifically, the global glycerol conversion and the carbon converted into gas and liquid products varied as follows: 4–100%, 1–80% and 16–93%, respectively. The gas phase was made up of H_2 (8–55 vol.%), CO_2 (34–66 vol.%), CO (0–4 vol.%) and CH_4 (6–45 vol.%). The liquid phase consisted of a mixture of alcohols (monohydric: methanol and ethanol; and polyhydric: 1,2-propanediol, 1,2-ethanediol, 2,3-butanediol), aldehydes (acetaldehyde), ketones (C3-ketones: acetone and 2-propanone-1-hydroxy; C4-ketones: 2-butanone-3-hydroxy and 2-butanone-1-hydroxy; and cyclic ketones), carboxylic acids (acetic and propionic acids) and esters (1,2,3-propanetriol-monoacetate), together with unreacted glycerol and water. The relative amount (free of water and un-reacted glycerol) of these compounds in the liquid phase was as follows: monohydric alcohols: 4–47%, polyhydric-alcohols: 14–68%, aldehydes: 0–5%, C3-ketones: 2–33%, C4-ketones: 0–10%, ciclo-ketones: 0–6%, carboxylic acids: 2–43%, and esters: 0–46%. This process turned out to be highly customisable for the

  9. Halophilic biohydrogen and 1,3-propanediol production from raw glycerol: A genomic perspective

    Kivisto, A.

    2013-11-01

    Glycerol is produced in large amounts as a by-product in biodiesel industry (10 kg per 100 kg biodiesel). By-products and waste materials are typically economical substrates for bioprocesses. Furthermore, microorganisms are able to combine the degradation of organic material with production of a wide range of metabolites and other cellular products. The current biotechnological interest of industrial glycerol lies on bioprocesses yielding environmentally friendly energy carrier molecules (hydrogen, methane, ethanol, butanol) and reduced chemicals (1,3-propanediol, dihydroxyacetone). Industrial glycerol also called as raw or crude glycerol, however, is a challenging substrate for microorganisms due to its impurities including alcohol, soaps, salts and metals. Halophiles (the salt-loving microorganisms) require salt for growth and heavy metal resistances have been characterized for numerous halophiles. Therefore, halophiles are potentially useful for the utilization of raw glycerol from biodiesel waste streams without pre-processing. Another challenge for large-scale microbial bioprocesses is a potential contamination with unfavorable microorganisms. For example, H{sub 2}-producing systems tend to get contaminated with H{sub 2}-consuming microorganisms. Extremophiles are organisms that have been adapted for life under extreme conditions, such as high salinity, high or low temperature, asidic or basic pH, dryness or high pressure. For extremophilic pure cultures contamination and thus the need to ensure a sterile environment might not be a problem due to the extreme process conditions that efficiently prevent the growth of most other bacteria. In addition, hypersaline environments (above 12 % NaCl) do not support the growth of H{sub 2} utilizing methanogens due to bioenergetic reasons. Halophilic fermentative H{sub 2} producers, on the other hand, have been shown to be active up to near salt saturation. The aims of the present study can be divided into two categories

  10. Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor.

    Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco

    2016-10-01

    Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).

  11. Development of a Regional Glycerol Dialkyl Glycerol Tetraether (GDGT) - Temperature Calibration for Antarctic and sub-Antarctic Lakes

    Roberts, S. J.; Foster, L. C.; Pearson, E. J.; Steve, J.; Hodgson, D.; Saunders, K. M.; Verleyen, E.

    2016-12-01

    Temperature calibration models based on the relative abundances of sedimentary glycerol dialkyl glycerol tetraethers (GDGTs) have been used to reconstruct past temperatures in both marine and terrestrial environments, but have not been widely applied in high latitude environments. This is mainly because the performance of GDGT-temperature calibrations at lower temperatures and GDGT provenance in many lacustrine settings remains uncertain. To address these issues, we examined surface sediments from 32 Antarctic, sub-Antarctic and Southern Chilean lakes. First, we quantified GDGT compositions present and then investigated modern-day environmental controls on GDGT composition. GDGTs were found in all 32 lakes studied. Branched GDGTs (brGDGTs) were dominant in 31 lakes and statistical analyses showed that their composition was strongly correlated with mean summer air temperature (MSAT) rather than pH, conductivity or water depth. Second, we developed the first regional brGDGT-temperature calibration for Antarctic and sub-Antarctic lakes based on four brGDGT compounds (GDGT-Ib, GDGT-II, GDGT-III and GDGT-IIIb). Of these, GDGT-IIIb proved particularly important in cold lacustrine environments. Our brGDGT-Antarctic temperature calibration dataset has an improved statistical performance at low temperatures compared to previous global calibrations (r2=0.83, RMSE=1.45°C, RMSEP-LOO=1.68°C, n=36 samples), highlighting the importance of basing palaeotemperature reconstructions on regional GDGT-temperature calibrations, especially if specific compounds lead to improved model performance. Finally, we applied the new Antarctic brGDGT-temperature calibration to two key lake records from the Antarctic Peninsula and South Georgia. In both, downcore temperature reconstructions show similarities to known Holocene warm periods, providing proof of concept for the new Antarctic calibration model.

  12. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  13. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  15. Development of ethanol production from cooking oil glycerol waste ...

    Tuoyo Aghomotsegin

    2016-10-12

    Oct 12, 2016 ... glycerol waste by mutant Enterobacter aerogenes ... wild type strain was altered for enhancing ethanol production using UV irradiation and chemical method. .... microbial medium analytical methods were of laboratory and.

  16. Glycerol extracting dealcoholization for the biodiesel separation process.

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Enhancement of glycerol production by zygosaccharomyces ruxii using strawberry wastes

    Meleigy, S.A; Taha, S.M.A.

    2010-01-01

    Glycerol is important industrial product that can be produced using osmophilic yeasts. In this study a local isolate of osmophilic yeast, zygosaccharomyces ruxii, was used for glycerol production from strawberry waste. The effects of some important parameters including glucose and urea concentrations, incubation temperature, initial ph and gamma irradiation were investigated. The optimum conditions for maximum glycerol production (126.8 g/l)by z. ruxii were occurred at 31 degree C and initial ph 5 in the presence of 250 g/l glucose and 3 g/l urea in the production medium . Under these optimizing fermentation parameters, enhancement of glycerol production (130 g/l) were recorded when the inoculum of z. ruxii was exposed to 0.25 kGy. also, the present results showed reduction in BOD 5 levels of fermented strawberry waste.

  18. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    Steinmetz, Scott; Herrington, Jason S.; Winterrowd, Chris K.; Roberts, William L.; Wendt, Jost O L; Linak, William P.

    2013-01-01

    to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA

  19. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  20. Supercritical water reformation of crude glycerol solution for hydrogen production.

    2009-12-01

    Glycerol, also known as glycerin, is a less desirable byproduct formed in the production of biodiesel via the transesterification otriglycerides and presents a nontrivial issue in terms of developing other beneficial end uses. With an inflated glycer...

  1. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Anita Rywińska

    2009-01-01

    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  2. Synthesis and characterization of poly(glycerol citrate/sebacate)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  3. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  4. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa

    Eraqi, Walaa A.; Yassin, Aymen S.; Ali, Amal E.; Amin, Magdy A.

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We...

  5. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase...

  6. Effect of urea and glycerol on the adsorption of ribonuclease A at the air-water interface.

    Hüsecken, Anne K; Evers, Florian; Czeslik, Claus; Tolan, Metin

    2010-08-17

    This study reports on the influence of nonionic cosolvents on the interfacial structure of ribonuclease A (RNase) adsorbed at the air-water interface. We applied X-ray reflectometry to obtain detailed volume fraction profiles of the adsorbed layers and to follow the effect of glycerol and urea on the adsorbate structure as a function of cosolvent concentration. Under all conditions studied, the adsorbed RNase layer maintains its compact shape, and the adsorbed RNase molecules adopt a flat-on orientation at the interface. Both kosmotropic glycerol and chaotropic urea exert profound effects on the adsorbate: The surface excess decreases linearly with glycerol content and is also reduced at low urea concentration. However, at high urea concentration, parts of the adsorbed layer are dehydrated and become exposed to air. The electron density and volume fraction profiles of the adsorbed protein provide clear evidence that these effects are ruled by different mechanisms.

  7. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films.

    Ollé Resa, Carolina P; Jagus, Rosa J; Gerschenson, Lía N

    2014-07-01

    In this paper, films based on tapioca starch and containing nisin, natamycin and glycerol were characterized in relation to their physicochemical properties, roughness and hydrophobicity. The content of glycerol affected the mechanical properties of the films studied and the roughness and it was observed an increase in WVP with the increase in glycerol content. The addition of antimicrobials affected the mechanical properties, being nisin the one that produced the greater decrease in the Young modulus. The color was highly affected by the joint presence of natamycin and nisin, which increased the yellow index. The contact angle increased with antimicrobial addition indicating a decrease in hydrophilicity. Nisin also affected the roughness of the films. Water vapor permeability was slightly reduced by the presence of natamycin. It was observed that water vapor permeability and contact angle were correlated with the roughness of the films. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Combinations of glycerol percent, glycerol equilibration time, and thawing rate upon freezability of bull spermatozoa in plastic straws.

    Wiggin, H B; Almquist, J O

    1975-03-01

    Twelve ejaculates were used in a central composite experiment to test 15 combinations of glycerol (7, 9, 11, 13, or 15%), glycerol equilibration times (1, 2, 4, 8, or 16 h) and thawing rates (water at 35 C for 15 s, 50 C for 13 s, 65 C for 11 s, 80 C for 9 s, or 95 C for 7 s). Semen was diluted in heated skim milk-glycerol, packaged in .3-ml. Continental U.S. straws and frozen in liquid nitrogen vapor. Based on post-thaw progressive sperm motility after storage at -196 C for 9 to 11 days, estimated optima from multiple regression were 10.7% for glycerol, 2.0 h for glycerol equilibration time, and 76 C for thawing bath temperature. Only the linear effect for each variable was significant. Much faster thawing rates and shorter glycerol equilibration times than those for freezing bull spermatozoa in glass ampules should be used for maximum post-thaw sperm motility in straws.

  9. Effects of Exercise Induced Dehydration and Glycerol Rehydration on Anaerobic Power in Male Collegiate Wrestlers.

    McKenna, Zachary J; Gillum, Trevor L

    2017-11-01

    McKenna, ZJ and Gillum, TL. Effects of exercise induced dehydration and glycerol rehydration on anaerobic power in male collegiate wrestlers. J Strength Cond Res 31(11): 2965-2968, 2017-Wrestlers attempting to reach a specific weight class often use rapid weight loss (RWL). Rapid weight loss is associated with high levels of dehydration, which may hinder athletic performance. Thus, there is a need for wrestlers to optimize rehydration after achieving a specific weight. We sought to observe the effects of RWL on anaerobic power and the impact of glycerol on rehydration and power in male collegiate wrestlers (n = 7, 19.75 ± 1.67 years, 76.8 ± 4.32 kg, 11.6 ± 4.32% body fat, 59.9 ± 6.42 ml·kg·min). Subjects were assessed for body mass (BM), hydration, and mean power output (Wmean) before exercise (pre), immediately after exercise (3% dehydrated), and 60 minutes after exercise (rehydrated). Participants ran at 70% of V[Combining Dot Above]O2max in a heated room (30° C) until 3% BM loss (BML). Subjects rehydrated drinking either 26 ml·kg of water (control) or a 3% glycerol (treatment) solution containing 26 ml·kg of water and 1 g·kg of glycerol. Participants lost 3.00 ± 0.31% (control) and 2.89 ± 0.26% (treatment) of their BM from the pre- to dehydrated conditions. Wmean (control: 659.29 ± 79.12, 651.43 ± 70.71, 659.71 ± 82.78; treatment: 647.71 ± 110.64, 644.57 ± 118.15, 638.14 ± 100.71) did not differ across time (p = 0.87) nor condition (p = 0.80). In addition, glycerol had no significant impact on acute hydration (control: urine-specific gravity [SG] = 1.019 ± 0.010; treatment: SG = 1.017 ± 0.017). These data show that 3% BML did not impair anaerobic performance, and furthermore that glycerol proved ineffective for rehydration in a match like scenario for the competing wrestler.

  10. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  11. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E

    2013-03-28

    Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved

  12. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  13. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    E. De Giglio

    2016-06-01

    Full Text Available This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015 600–611 [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT. Herein, an investigation about the PGT-ciprofloxacin (CIP interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR acquired in Attenuated Total Reflectance (ATR mode and Differential Scanning Calorimetry (DSC was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC at different pH values.

  14. Optimization of catalytic glycerol steam reforming to light olefins using Cu/ZSM-5 catalyst

    Zakaria, Z.Y.; Amin, N.A.S.; Linnekoski, J.

    2014-01-01

    Highlights: • Glycerol steam reforming to light olefin using Cu/ZSM-5 process was optimized. • Response surface methodology and multi-objective genetic algorithm were employed. • Second order polynomial model produced adequately fitted experimental data. • Thermodynamic study inferred high temperature requirement for ethylene formation. • Turn-over-frequency at optimized responses is higher than the non-optimized process. - Abstract: Response surface methodology (RSM) and multi-objective genetic algorithm was employed to optimize the process parameters for catalytic conversion of glycerol, a byproduct from biodiesel production, to light olefins using Cu/ZSM-5 catalyst. The effects of operating temperature, weight hourly space velocity (WHSV) and glycerol concentration on light olefins selectivity and yield were observed. Experimental results revealed the data adequately fitted into a second-order polynomial model. The linear temperature and quadratic WHSV terms gave significant effect on both responses. Optimization of both the responses indicated that temperature favouring high light olefin formation lied beyond the experimental design range. The trend in the temperature profile concurred commensurately with the thermodynamic analysis. Multi-objective genetic algorithm was performed to attain a single set of processing parameters that could produce both the highest light olefin selectivity and yield. The turn-over-frequency (TOF) of the optimized responses demonstrated a slightly higher value than the one which was not optimized. Combination of RSM, multi-objective response and thermodynamic is useful to determine the process optimal operating conditions for industrial applications

  15. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  16. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  17. Digestible energy of crude glycerol for pacu and silver catfish

    Rafael Ernesto Balen

    2014-01-01

    Full Text Available The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.

  18. Re-exposure to low osmolar iodinated contrast media in patients with prior moderate-to-severe hypersensitivity reactions: A multicentre retrospective cohort study.

    Park, Hye Jung; Park, Jung-Won; Yang, Min-Suk; Kim, Mi-Yeong; Kim, Sae-Hoon; Jang, Gwang Cheon; Nam, Young-Hee; Kim, Gun-Woo; Kim, Sujeong; Park, Hye-Kyung; Jung, Jae-Woo; Park, Jong-Sook; Kang, Hye-Ryun

    2017-07-01

    To evaluate the outcomes of re-exposure to low-osmolar iodinated contrast medium (LOCM) in patients with a history of moderate-to-severe hypersensitivity reaction (HSR). We retrospectively evaluated a cohort comprising all subjects satisfying the following conditions at 11 centres: (1) experienced a moderate-to-severe HSR to LOCM by December 2014, and (2) underwent contrast-enhanced computed tomography after the initial HSR between January 2014 and December 2014. A total of 150 patients with 328 instances of re-exposure were included; the recurrence rate of HSR was 19.5%. Patients with severe initial HSR exhibited a higher recurrence rate of severe HSR compared to patients with moderate initial HSR, despite more intensive premedication. In the multivariate analysis, the independent risk factors for recurrence of HSR were diabetes, chronic urticaria, drug allergy other than to iodinated contrast media (ICM) and severe initial HSR. The risk of recurrent HSR was 67.1% lower in cases where the implicated ICM was changed to another one (odds ratio: 0.329; P = 0.001). However, steroid premedication did not show protective effects against recurrent HSR. In high-risk patients who have previously experienced a moderate-to-severe initial HSR to LOCM, we should consider changing the implicated ICM to reduce recurrence risk. • In patients with moderate-to-severe HSR, steroid premedication only shows limited effectiveness. • Changing the implicated ICM can reduce the recurrence of HSR to ICM. • Diabetes, chronic urticaria and drug allergies increase the risk of ICM HSR.

  19. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients

    Lundholm, K.; Edstroem, S.; Karlberg, I.; Ekman, L.; Schersten, T.

    1982-01-01

    A double isotope method was used in patients with progressive malignancy and in control patients to measure: glucose turnover, conversion rate of carbon skeleton of glycerol into glucose, and the interorgan cycling of glucose carbons (Cori-cycle plus alanine-glucose cycle). [U- 14 C]glycerol and [6- 3 H]glucose were given intravenously as a single dose injection. The time course of the specific radioactivities of [6- 3 H] and [U- 14 C]glucose was followed in blood. The pool size and the turnover rate of glucose were increased in the cancer group as compared with the control patients. The net recycling of glucose carbons was not increased in the cancer group, despite the increased turnover of glucose. The alterations in the metabolism of glucose did not correlate with the plasma levels of insulin or thyroid hormones (T4, T3, rT3) neither in the entire cancer group nor in those cancer patients who were repeatedly investigated at different intervals of time. The turnover rate of glucose in the cancer patients correlated inversely to their body weight index. The gluconeogenesis rate, given as the fractional conversion rate of the injected radioactive dose of [ 14 C]glycerol, or as mol glucose . kg body weight-1 . day-1, was increased in the cancer group, but still contributed only 3% of the glucose turnover rate in both cancer and control patients. We conclude that an increased gluconeogenesis from glycerol is not significant in terms of energy expenditure in patients with progressive malignancy, as has previously been concluded for the gluconeogenesis from alanine. It seems that increased turnover of glucose may contribute to inappropriately high energy expenditure in cancer patients

  1. Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production

    Ng, Jo-Han; Leong, Swee Kim; Lam, Su Shiung; Ani, Farid Nasir; Chong, Cheng Tung

    2017-01-01

    Highlights: • Crude glycerol is pyrolysed catalytically via microwave irradiation to produce bioenergy. • Carbonaceous catalyst elevates pyrolysis temperature and promotes selectivity towards H_2 production. • Synthesis gas consisting of mainly H_2 and CH_4 was predominantly produced at long residence time and high temperature. • Production of bio-oil consisting of oxygenated compounds peaks at intermediate carrier gas flow rate. • Energy profit analysis shows positive energy gained with increasing residence time and decreasing reaction temperature. - Abstract: Biodiesel proliferation as a sustainable fuel has led to a glut of crude glycerol as co-product. This scenario made a previously lucrative co-product in the food and pharmaceutical sectors into a bioresource waste. The present study investigates the utilisation of a microwave-assisted pyrolysis technique to convert crude glycerol from biodiesel waste into usable bioenergy source. Operating conditions ranged from a temperature of 300–800 °C at carrier gas flow rates of 100–2000 mL/min, with the effects of carbonaceous catalyst on the selectivity of reaction pathway being investigated. Within the aforementioned conditions, the proportion of products phases is mainly dependent on the residence time inside the quartz reactor, followed by the reaction temperature. This is due to the combined factors of the reaction sequence and provision of activation energy to change product phases. The third factor of carbonaceous catalyst shows a predisposition towards hydrogen gas selectivity, leading to a lower overall gaseous product mass when factoring in products from all phases. An analysis of the energy content revealed that overall energy profit increases with decreasing temperature and increasing residence time. This concurs with solid energy content increasing in the same conditions, while it increases for liquid and gaseous products with decreasing temperature and flow rate, respectively. The

  2. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  3. Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties.

    Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B

    2018-04-01

    Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.

  4. Reexamination of the evolution of the dynamic susceptibility of the glass former glycerol.

    Adichtchev, S; Blochowicz, T; Tschirwitz, C; Novikov, V N; Rössler, E A

    2003-07-01

    The dielectric data of glycerol compiled by Lunkenheimer et al. [Contemp. Phys. 41, 15 (2000)] are reanalyzed within a phenomenological approach on the one hand, and within mode coupling theory (MCT), on the other. We present a complete interpolation of the dielectric data covering 17 decades in frequencies. The crossover temperature extracted from the phenomenological analysis of the slow response at low temperatures and defined by the emergence of the excess wing upon cooling agrees well with the critical temperature extracted from a MCT analysis of the dynamics at high temperatures including data that were not used in the first MCT analysis of glycerol by Lunkenheimer et al. [Phys. Rev. Lett. 77, 318 (1996)]. The crossover temperature is found to be T(c)=288+/-3 K, which is significantly higher than previously reported. Extracting the nonergodicity parameter f, the characteristic anomaly is only found when 1-f is inspected, since f is very close to 1. No difference for the evolution of the dynamic susceptibility is observed for the nonfragile system glycerol with respect to fragile glass formers provided that the evolution of the dynamics is studied as a function of the correlation time tau(alpha).

  5. Towards the sustainable production of acrolein by glycerol dehydration.

    Katryniok, Benjamin; Paul, Sébastien; Capron, Mickaël; Dumeignil, Franck

    2009-01-01

    The massive increase in biodiesel production by transesterification of vegatable oils goes hand-in-hand with the availability of a large volume of glycerol, which must be valorized. Glycerol dehydration to acrolein over acid catalysts is one of the most promising ways of valorization, because this compound is an important chemical intermediate used in, for example, the DL-methionine synthesis. In this Minireview, we give a detailed critical view of the state-of-the-art of this dehydration reaction. The processes developed in both the liquid and the gas phases are detailed and the best catalytic results obtained so far are reported as a benchmark for future developments. The advances on the understanding of the reaction mechanism are also discussed and we further focus particularly on the main obstacles for an immediate industrial application of this technology, namely catalyst coking and crude glycerol direct-use issues.

  6. Effect of laser peening with glycerol as plasma confinement layer

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  7. The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans

    Shivani Kalia

    2016-08-01

    Full Text Available In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, possesses the metabolic capability to convert glycerol into 1,3-propanediol, a valuable commodity compound, without the need for salt dilution or adjusting pH when grown on this waste. Experiments were performed with different combinations of 24 medium components to determine their impact on the production of 1,3-propanediol by using a fractional factorial design. Tested medium components were selected based on data from the organism’s genome. Analysis of HPLC data revealed enhanced production of 1,3-propanediol with additional glycerol, pH, vitamin B12, ammonium ions, sodium sulfide, cysteine, iron, and cobalt. However, other selected components; nitrate ions, phosphate ions, sulfate ions, sodium:potassium ratio, chloride, calcium, magnesium, silicon, manganese, zinc, borate, nickel, molybdenum, tungstate, copper and aluminum, did not enhance 1,3-propanediol production. The use of a fractional factorial design enabled the quick and efficient assessment of the impact of 24 different medium components on 1,3-propanediol production from glycerol from a haloalkaliphilic bacterium.

  8. The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans.

    Kalia, Shivani; Trager, Jordan; Sitton, Oliver C; Mormile, Melanie R

    2016-08-20

    In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, possesses the metabolic capability to convert glycerol into 1,3-propanediol, a valuable commodity compound, without the need for salt dilution or adjusting pH when grown on this waste. Experiments were performed with different combinations of 24 medium components to determine their impact on the production of 1,3-propanediol by using a fractional factorial design. Tested medium components were selected based on data from the organism's genome. Analysis of HPLC data revealed enhanced production of 1,3-propanediol with additional glycerol, pH, vitamin B12, ammonium ions, sodium sulfide, cysteine, iron, and cobalt. However, other selected components; nitrate ions, phosphate ions, sulfate ions, sodium:potassium ratio, chloride, calcium, magnesium, silicon, manganese, zinc, borate, nickel, molybdenum, tungstate, copper and aluminum, did not enhance 1,3-propanediol production. The use of a fractional factorial design enabled the quick and efficient assessment of the impact of 24 different medium components on 1,3-propanediol production from glycerol from a haloalkaliphilic bacterium.

  9. On the pressure dependence of the fragility of glycerol

    Pawlus, S; Paluch, M; Ziolo, J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2009-08-19

    This work was motivated by ostensibly contradictory results from different groups regarding the effect of pressure on the fragility of glycerol. We present new experimental data for an intermediate pressure regime showing that the fragility increases with pressure up to about 1.8 GPa, becoming invariant at higher pressures. There is no discrepancy among the various literature data taken in toto. The behavior of glycerol is quite distinct from that of normal liquids, a result of its substantial hydrogen bonding. (fast track communication)

  10. Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.).

    Munafo, John P; Gianfagna, Thomas J

    2015-05-20

    The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative

  11. Safety and Efficacy of Low-osmolarity ORS vs. Modified Rehydration Solution for Malnourished Children for Treatment of Children with Severe Acute Malnutrition and Diarrhea: A Randomized Controlled Trial.

    Kumar, Ruchika; Kumar, Praveen; Aneja, S; Kumar, Virendra; Rehan, Harmeet S

    2015-12-01

    World Health Organization-recommended rehydration solution for malnourished children (ReSoMal) for rehydrating severe acute malnourished children is not available in India. In present study, 110 consecutive children aged 6-59 months with severely acute malnourishment and acute diarrhea were randomized to low-osmolarity oral rehydration solution (ORS) (osmolarity: 245, sodium: 75) with added potassium (20 mmol/l) or modified ReSoMal (osmolarity: 300, sodium: 45). In all, 15.4% of modified ReSoMal group developed hyponatremia as compared with 1.9% in low-osmolarity ORS, but none developed severe hyponatremia or hypernatremia. Both groups had equal number of successful rehydration (52 each). Both types of ORS were effective in correcting hypokalemia and dehydration, but rehydration was achieved in shorter duration with modified ReSoMal. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  13. Comparing the Effect of Fasting and Physical Activity on Active and Non-active Males’ Body Composition, Serum Osmolarity Levels and Some Parameters of Electrolytes

    M Nematy

    2012-08-01

    Full Text Available Introduction: Ever since there is insufficient and incoherent information about the effect of the Ramadan Fasting together with regular exercise on levels of serum osmolarity, and electrolytes concentration. The aim of this study was to compare the effect of fasting and physical activity on active and non-active males’ body composition, serum osmolarity levels and some parameters of electrolytes. Methods: Twenty six healthy males, who were selected by convenience sampling method, were divided into two (active and non-active groups. The Active group participated in football training for three sessions per week during the fasting month. All measurements were repeated on the first and last day of fasting month and were used to analyze the test results. Results: The average differences were significantly decreased in weight, BMI, WHR, mineral, total water in two groups (P≤0.05. There was a significant difference in average of BMI, WHR, body fat, mineral and total water between two groups (P≤0.05. Within-group mean differences in glucose, potassium, urine and albumin in both groups were significant (P≤0.05. Differences of serum osmolarity in between- and within-groups were not significant in both groups. While, glucose decreased significantly, the levels of the protein decreased, and urea increased significantly only in non active fasting group. Conclusion: According to these results, regular exercise together with the Ramadan fasting result in change in some serum osmolarity index, electrolytes and water. Therefore, it is necessary to protect the athletics against the malnutrition in Ramadan fasting by using the diet schedule and enough water.

  14. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Egg yolk and glycerol requirements for freezing boar spermatozoa treated with methyl β-cyclodextrin or cholesterol-loaded cyclodextrin.

    Blanch, Eva; Tomás, Cristina; Hernández, Marta; Roca, Jordi; Martínez, Emilio A; Vázquez, Juan M; Mocé, Eva

    2014-04-24

    Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-treated sperm. This study evaluated the EY and glycerol requirements for freezing CLC-treated boar spermatozoa. Semen samples from 34 ejaculates coming from 4 boars were used. Each ejaculate was split into three aliquots: one was used untreated (control), and the other two were treated with 1 mg of CLC or methyl-β-cyclodextrin/120 × 10(6) sperm for 15 min at 22 C prior to cryopreservation. Our results indicated that reducing the concentration of EY was detrimental for sperm viability after thawing (31.57 ± 2 vs. 19.89% ± 2 for 20 and 10% EY, respectively; P semen treated with CLC. On the other hand, it was observed that the traditional concentration of glycerol (3%) was not the appropriate for freezing CLC-treated sperm (61.10 ± 3 vs. 47.87% ± 3 viable sperm for control and CLC-treated sperm, respectively; P extenders for CLC-treated sperm. Nevertheless, additional studies will be needed to evaluate alternative cryoprotectants and to determine the effect of high glycerol concentrations on sperm functionality.

  16. Techno-economic risk analysis of glycerol biorefinery concepts against market price fluctuation

    Gargalo, Carina L.; Cheali, Peam; Gernaey, Krist

    . The high-value added bio-products boost profitability, the high-volume fuel helps meet national energy targets, and the power production cuts costs and dodges greenhouse-gas emissions [1] [2] [3]. The increasing amount of biodiesel production worldwide (e.g. from vegetable oils, palm oil, animal fats......) and the associated economic risks against historical market fluctuations when assessing the economics of competing glycerol biorefinery concepts. The aim is to compare the fitness/survival of the biorefinery concepts under extreme market disturbances. To perform this analysis, we used a superstructure based...

  17. Methylene blue adsorption from glycerol solution onto the acicular ...

    The mechanism of methylene blue adsorption onto the surface of synthetic acicular habit of α-goethite from glycerol solution has been studied through batch experiment at 25, 30 and 35 0C in a glass cell of minimal dead volume. To describe the adsorption results, an attempt was made to fit the data to the Langmuir, ...

  18. Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and ...

  19. Influence of hyperosmotic agent (glycerol) in contrast enhancement

    Moriyama, Takashi; Suzuki, Shigeharu; Nakaoka, Tsutomu

    1981-01-01

    For getting a better contrast enhancement (CE) of computed tomography (CT) in brain tumors, we tried to increase the extravascular iodine concentration. A vailing ourselves of the period of returning water following intravenously administered glycerol, a drip injection of the contrast medium gave a better CE effect than the usual CE. In two benign gliomas, CE with glycerol was much better than CE without glycerol, and in two malignant gliomas and two metastatic tumors, CE with glycerol was better, but not so much better as with the benign tumors. In general, the CE effect in primary brain tumors showed a decreasing pattern, whereas in metastatic brain tumors the best time was 60 minutes after the injection of the contrast material (increasing and decreasing pattern), suggesting an increase in the extravascular iodine and a severe failure of the blood brain barrier. Two cystic malignant gliomas allowed the intravenously injected contrast medium to enter the cysts. It appears that the contrast medium passes through and/or is secreted from the wall of the cyst. (author)

  20. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-01-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol

  1. Isolation and chemical characterization of phosphatidyl glycerol from spinach leaves

    Haverkate, E.; Deenen, L.L.M. van

    1965-01-01

    Pure phosphatidyl glycerol was obtained from spinach leaves after repeated chromatography on silica columns. Ascertainment of the configuration of the hydrolysis products formed by the action of phospholipases C (EC 3.1.4.3) and D (EC 3.1.4.4) demonstrated that this phospholipid is identical with

  2. EFFECT OF GLYCEROL SEPARATION ON PALM OIL TRANSESTERIFICATION

    Budy Rahmat

    2012-12-01

    Full Text Available This research was aimed to study the effect of glycerol separation on palm oil transesterification. Objectives of this study were to suppress the use of excess methanol and shorten the processing time. This research consisted of: design-build reactor, the effect of the glycerol separation on the transesterification reaction, characterization of biodiesel, and mass balance analysis. The reactor was designed by integrating circulate stirrer pump, static mixer, and sprayer that will bring out the intense reaction in the outer tank reactor. The experiment in this research was the treatment of decreasing the quantity of methanol to 5:1 molar ratio and reducing of processing time to 20 min, which was arranged in a completely randomized factorial design. The result showed that, (i the stirring system was effectively worked outside the reactor tank, and in its reactor tank occurred glycerol separation during the process; (ii the rate of glycerol during the process followed the inverse regression equation of Ŷ = 66.44-351.17 X-1; (iii the decrease in the level of methanol to 5:1 molar ratio and the reduction of processing time to 20 min in this engineering did not influence the biodiesel yield and quality that met the SNI 04-7182-2006 standard.

  3. [Long-term storage of obligate anaerobic microorganisms in glycerol].

    Briukhanov, A I; Netrusov, A I

    2006-01-01

    We evaluated the possibility of storing the cultures of obligate anaerobic microorganisms (clostridia. acetogenic and sulfate-reducing bacteria, and methanogenic archaea) in 25% glycerol at -70 degrees C for a long time (up to 3 years). This method of storage is adequate to preserve cell viability in most obligate anaerobes.

  4. The effect of ramadan fasting and physical activity on body composition, serum osmolarity levels and some parameters of electrolytes in females.

    Attarzadeh Hosseini, Seyyed Reza; Sardar, Mohammad Ali; Hejazi, Keyvan; Farahati, Samaneh

    2013-01-01

    So far, there have been a few and incoherent results about the effects of physical activities. Fasting in Ramadan has an effect on the level of osmolarity and the concentration of serum electrolytes both in active and inactive females. The aim of this study was to observe the changes of serum electrolytes and osmolarity levels according to regular exercise during fasting. TWENTY TWO HEALTHY FEMALES WHO WERE ELECTED BY CONVENIENCE SAMPLING METHOD WERE DIVIDED INTO TWO GROUPS: 1) fasting + exercise (FE; n = 11) and 2) fasting + non exercise (FNE; n = 15). The FE group participated in aerobic training for four sessions per week during the fasting. All measurements were done once before the first day, on the second week, on the fourth week and two weeks after fasting month and these measures were used to analyze test results. THE MEAN DIFFERENCES WERE AS FOLLOWS: significant weight loss, BMI, WHR, in two groups at the end of Ramadan (P 0.05). Potassium, creatinine, urea and uric acid had been decreased significantly in both groups (P Ramadan led to some changes in serum osmolarity index, electrolytes and water. Therefore, it is important for female athletes to consider applying a suitable nutritious diet and sufficient water consumption during Ramadan.

  5. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    Microbial lipids can represent a valuable alternative feedstock for biodiesel production in the context of a viable bio-based economy. This production can be driven by cultivating some oleaginous microorganisms on crude-glycerol, a 10% (w/w) by-product produced during the transesterification process from oils into biodiesel. Despite attractive, the perspective is still economically unsustainable, mainly because impurities in crude glycerol can negatively affect microbial performances. In this view, the selection of the best cell factory, together with the development of a robust and effective production process are primary requirements. The present work compared crude versus pure glycerol as carbon sources for lipid production by three different oleaginous yeasts: Rhodosporidium toruloides (DSM 4444), Lipomyces starkeyi (DSM 70295) and Cryptococcus curvatus (DSM 70022). An efficient yet simple feeding strategy for avoiding the lag phase caused by growth on crude glycerol was developed, leading to high biomass and lipid production for all the tested yeasts. Flow-cytometry and fourier transform infrared (FTIR) microspectroscopy, supported by principal component analysis (PCA), were used as non-invasive and quick techniques to monitor, compare and analyze the lipid production over time. Gas chromatography (GC) analysis completed the quali-quantitative description. Under these operative conditions, the highest lipid content (up to 60.9% wt/wt) was measured in R. toruloides, while L. starkeyi showed the fastest glycerol consumption rate (1.05 g L(-1) h(-1)). Being productivity the most industrially relevant feature to be pursued, under the presented optimized conditions R. toruloides showed the best lipid productivity (0.13 and 0.15 g L(-1) h(-1) on pure and crude glycerol, respectively). Here we demonstrated that the development of an efficient feeding strategy is sufficient in preventing the inhibitory effect of crude glycerol, and robust enough to ensure high lipid

  6. Glycerol reforming and methanol synthesis for the production of renewable methanol

    van Bennekom, Joost Gerardus

    2013-01-01

    De productie van biodiesel is flink toegenomen in het eerste decennium van de 21ste eeuw. Bij de productie van 100 kg biodiesel komt ongeveer 10 kg aan glycerol vrij, wat heeft geleid tot een sterk gestegen glycerol aanbod. Een mogelijkheid om wat met de glycerol te doen, is het omzetten van

  7. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  8. Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation

    Watson Andrew J

    2007-01-01

    Full Text Available Abstract Background Mechanisms that confer an ability to respond positively to environmental osmolarity are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38 mitogen-activated protein kinase (MAPK occurs following exposure to hyperosmotic treatment. Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM was linked to p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM is cerebral cavernous malformation 2 (CCM2. The present study was conducted to investigate whether CCM2 is expressed during mouse preimplantation development and to determine whether this scaffolding protein is associated with p38 MAPK activation following exposure of preimplantation embryos to hyperosmotic environments. Results Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents (Map3k3, Map2k3, Map2k6, and Map2k4 are expressed throughout mouse preimplantation development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2K6 and MAP2K4 were also detected throughout preimplantation development. Embryo culture in hyperosmotic media increased p38 MAPK activity in conjunction with elevated CCM2 levels. Conclusion These results define the expression of upstream activators of p38 MAPK during preimplantation development and indicate that embryo responses to hyperosmotic environments include elevation of CCM2 and activation of p38 MAPK.

  9. Crystallization and transformation of polymorphic forms of trioleoyl glycerol and 1,2-dioleoyl-3-rac-linoleoyl glycerol.

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2013-08-08

    This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.

  10. Rheological and thermal characteristics of wheat gluten biopolymers plasticized with glycerol

    Shana Pires Ferreira

    2012-01-01

    Full Text Available The objective this work was to obtain bioplastics from mixtures of wheat gluten and glycerol by two different processes and evaluate their respective rheological properties. The mixtures and their respective bioplastics were obtained through direct batch mixing under approximately adiabatic and isothermal conditions. The bioplastics showed high values for the storage (G' and loss (G" moduli, suggesting a stronger protein network formed in both processes. The temperature onset and the percentage of weight loss to be estimated were found to be near in both bioplastics. The bioplastics have demonstrated to be materials of interesting potential of use as biodegradable barrier materials.

  11. Glycerol as source of energy in broiler chicken fattening

    Leo Kroupa

    2011-01-01

    Full Text Available The objective of this study was to verify the possibility of replacing soybean oil in a diet with glycerol, and investigate the effect of glycerol on performance indicators and health in broiler chickens. The experiment was performed on 122 one-day-old chickens that were divided based on sex into two control groups (30 females and 31 males and two experimental groups (30 females and 31 males. Half (50% of the soybean oil in diets used in the experimental groups was replaced with glycerol at a ratio of 1:2. On 15, 32 and 38 day of age chickens of both sexes in the experimental group that were fed with diets containing glycerol showed significantly higher (p ≤ 0.01 mean body weight compared to the control group. At the end of the experiment, the mean weight of chickens in the control group was 2.078 kg, whereas the mean weight of chickens in the experimental group was 2.341 kg. In females, the overall consumption of diets within 38 days of fattening was 3.588 kg in the control group and 4.011 kg in the experimental group, in males, it was 3.915 kg in the control group and 4.366 kg in the experimental group, i.e. it was higher in experimental chickens. Feed conversion in chickens in experimental groups was better, being 1.84 kg in the control group and 1.81 kg in the experimental group in females, and 1.73 kg in the control group and 1.72 kg in the experimental group in males. It follows from our results that the optimum amount of glycerol in feed for poultry is 5%.This study presents an original solution to optimize feed formula by replacing plant oil with glycerol. The results of the study can improve production indicators and economy in broiler fattening.

  12. Glycerol (byproduct of biodiesel production) as a source of fuels and chemicals : mini review

    Fan, X.; Burton, R. [Piedmont Biofuels Industrial, Pittsboro, NC (United States); Zhou, Y. [Yonezawa Hamari Chemical, Ltd., Yonezawa, Yamagata (Japan)

    2010-07-01

    Glycerol, a byproduct of biodiesel production, is a potential renewable feedstock for the production of functional chemicals. This paper reviewed recent developments in the conversion of glycerol into value-added products, including citric acid, lactic acid, 1,3-dihydroxyacetone (DHA), 1,3-propanediol (1,3-PD), dichloro-2-propanol (DCP), acrolein, hydrogen, and ethanol. The new applications of glycerol will improve the economic viability of the biodiesel industry and capitalize on the oversupply of crude glycerol that the biodiesel industry has produced. Increasing abundance and attractive pricing make glycerol an attractive feedstock for deriving value-added chemical compounds. The processes turn glycerol into chemicals, materials, and fuels and fuel additives. Whereas glycerol from first-generation biodiesel production has low purity, glycerol from second-generation biodiesel production, which uses non-edible oil as a feedstock, produces a higher purity glycerol, minimizing the related impurity problem and potentially increasing the applications of glycerol. Glycerol is also being looked at as a carbon source for algal biomass fermentation. 36 refs.

  13. Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways

    Abel Rodrigues

    2017-11-01

    Full Text Available Glycerol is a by-product of biodiesel obtained from biomass, accounting for 10% of the biodiesel production. In the context of a green economy, aiming for a reduction of the emission of atmospheric greenhouse gases emissions, the demand of biodiesel is expected to increase vastly, in parallel with a side glut supply of glycerol. Given the high cost of biodiesel compared with its fossil congener, upgrading of glycerol into added-value products can represent a secondary income source and turn the production of such alternative fuels economically sustainable in the long term. The glycerol obtained as by-product of biodiesel from biomass is in a crude form and must be purified. Some industrial solutions and applications were therein geared. The survey presented in this work, based on a reviewing of the existing literature, examines three routes for the valuing glycerol into energy carriers and chemicals, namely, carbonation, acylation, and steam reforming to hydrogen. The latter is embodied of great interest and importance, insofar that hydrogen by itself is considered as straighforward clean fuel for transportation uses, due to its high calorific power and to recent advances in fuel cells. We also have focused on the chain value from biomass to energies carriers through these pathways.

  14. Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ

    Widiyanti, Prihartini; Setya Angtika, Rara; Githanadi, Brillyana; Hanif Kharisma, Ditya; Asyraf, Tarikh Omar; Wardani, Adita

    2017-05-01

    WHO data in 2012 shows that 5.3% of world population highly suffers from hearing loss and deafness. One of the deafness causes is rupture of tympanic membrane. Tympanic membrane damage which occurs often is perforated tympanic membrane, and it is also commonly known in medical term as tympanic membrane perforation. The causes, for instance, are high frequency of using earphones, traumatic accidents, noise, bacteria, viruses, and infectious microorganism. Tympanoplasty becomes the only treatment that can be widely accepted despite of deficiencies in postoperative complications. Therefore, this research aims to create artificial tympanic membrane made of natural materials such as type I collagen composited with chitosan and made of addition of glycerol to improve its mechanical strength and biodegradability. The method included the process of dissolving acetic acid in distilled water and mixation with chitosan. The solution is next added with glycerol and stirred to be homogeneous. After that, it was minted in petri dish and aerated before characterized. The sample characterization included tensile strength of which tensile test results showed that the value of the elasticity modulus tended to decrease with an increase in collagen concentration. The elasticity modulus values in a row for the variations of 7: 3, 8: 2, and 9: 1 were 35.10 MPa, 54,52MPa, and 47,45MPa respectively. The morphological test with 1000x, 2500x, and 5000x magnification showed their interaction in the formation of pores. Cytotoxicity results, moreover, showed that those samples were non-toxic and safe for the body due to the percentage of living cells. The sound absorption coefficient was between 1000 Hz - 2000 Hz which means that it could use as sound absorbing material. The antibacterial test results showed that all the sample variations were anti-bacterial due to the diameter of the clear zone. In conclusion, collagen and chitosan composite with addition of glycerol could be used for

  15. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  16. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus

    Zacchi Guido

    2011-09-01

    Full Text Available Abstract Background Caldicellulosiruptor saccharolyticus has attracted increased interest as an industrial hydrogen (H2 producer. The aim of the present study was to develop a kinetic growth model for this extreme thermophile. The model is based on Monod kinetics supplemented with the inhibitory effects of H2 and osmotic pressure, as well as the liquid-to-gas mass transfer of H2. Results Mathematical expressions were developed to enable the simulation of microbial growth, substrate consumption and product formation. The model parameters were determined by fitting them to experimental data. The derived model corresponded well with experimental data from batch fermentations in which the stripping rates and substrate concentrations were varied. The model was used to simulate the inhibition of growth by H2 and solute concentrations, giving a critical dissolved H2 concentration of 2.2 mmol/L and an osmolarity of 0.27 to 29 mol/L. The inhibition by H2, being a function of the dissolved H2 concentration, was demonstrated to be mainly dependent on H2 productivity and mass transfer rate. The latter can be improved by increasing the stripping rate, thereby allowing higher H2 productivity. The experimentally determined degree of oversaturation of dissolved H2 was 12 to 34 times the equilibrium concentration and was comparable to the values given by the model. Conclusions The derived model is the first mechanistically based model for fermentative H2 production and provides useful information to improve the understanding of the growth behavior of C. saccharolyticus. The model can be used to determine optimal operating conditions for H2 production regarding the substrate concentration and the stripping rate.

  17. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  18. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus,14300 Nibong Tebal, Penang (Malaysia); Vakili, Mohammadtaghi, E-mail: farshid3601@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  19. Sodahvede og glycerol til malkekøer

    Hvelplund, Torben; Weisbjerg, Martin Riis

    2011-01-01

    Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold.......Et fodringsforsøg på Kvægbrugets Forsøgscenter har vist, at glycerol kan anvendes som et alternativt fodermiddel til højtydende malkekøer. De anvendte mængder gav dog en lavere EKM ydelse end sodahvede, men øgede samtidigt mælkens proteinindhold....

  20. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-01-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca 1.6 La 0.6 /MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%

  1. Antibacterial effect of glycerol as preservative on donor skin

    Van Baare, J.; Ligtvoet, E.E.J.; Middelkoop, E.

    1999-01-01

    Glycerolised cadavetic allografts have been used widely since 1984 in the treatment of bum wounds. Rejections reaction to glycerolised skin were reported to be attenuated. Structural integrity of the skin was maintained and antiviral and antibacterial effects were noted. The Euro Skin Bank has gathered approximately 2000 data since 1987 concerning bacteriology cultures of glycerolised skin. These data are presented. Bacteriological data from skin donors were examined from 1987 till 1995 (1927 data). Donor skin sent to the laboratory and found to be positive for bacteria was quarantined and another container with skin samples was sent to the laboratory at a later time point. This was repeated until all cultures were negative. In 1987, 25 donors were processed without using antibiotics. These results were compared with donor skin treated with antibiotics. The average day for first culture was 19.7 ? 17.2. The average percentage of contaminated skin was 10.1? 3.7%. Antibiotics reduced contamination of glycerolised skin from 80% to 10.1%. Glycerol treatment also showed an antibacterial effect as all contaminated skin eventually became negative. Of the contaminated skin Staphylococcus epidermidis was found most frequently: in 70.7 ? 10.8% of the cases. Not all bacteria are equally sensitive to glycerol: Staphylococcus epidennidis contaminated skin became sterile after 48?24 days, whereas for Bacillus species it took 195? 1 37.9 days. We show that glycerol preservation of donor skin has important advantages over conservative methods such as cryopreservation. Initial contamination of the skin is no longer a reason to discard the material. Prolonged storage in glycerol will eliminate bacterial contamination. This allows an increase in yield of at least 10%

  2. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

    Efterpi S. Vasiliadou

    2014-12-01

    Full Text Available Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol that can be used instead of methanol for transesterification of oils and fats. The H2 generated is consumed in the tandem reaction of glycerol hydrodeoxygenation. The reaction cycle proceeds in liquid phase at 220–250 °C and 1.5–3.5 MPa initial N2 pressure for a 2 and 4-h reaction time. Pt-, Ni- and Cu-based catalysts have been synthesized, characterized and evaluated in the reaction. Among the materials tested, Pt/Fe2O3-Al2O3 exhibited the most promising performance in terms of 1,2-propanediol productivity, while reusability tests showed a stable behavior. Structural integrity and no formation of carbonaceous deposits were verified via Temperature Programmed Desorption of hydrogen (TPD-H2 and thermogravimetric analysis of the fresh and used Pt/FeAl catalyst. A study on the effect of various operating conditions (reaction time, temperature and pressure indicated that in order to maximize 1,2-propanediol productivity and yield, milder reaction conditions should be applied. The highest 1,2-propanediol yield, 53% (1.1 g1,2-PDO gcat−1·h−1, was achieved at a lower reaction temperature of 220 °C.

  3. Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation

    Zhang, Fang; Zhang, Yan; Chen, Yun; Dai, Kun; Loosdrecht, Mark C.M. van; Zeng, Raymond J.

    2015-01-01

    Highlights: • Simultaneous production of acetate and methane from glycerol was investigated. • Acetate accounted for more than 90% of metabolites in liquid solutions. • The maximum concentration of acetate was above 13 g/L. • 93% of archaea were hydrogenotrophic methanogens. • Thermoanaerobacter was main bacterium and its percentage was 92%. - Abstract: The feasibility of simultaneous production of acetate and methane from glycerol was investigated by selective enrichment of hydrogenotrophic methanogens in an extreme-thermophilic (70 °C) fermentation. Fed-batch experiments showed acetate was produced at the concentration up to 13.0 g/L. A stable operation of the continuous stirred tank reactor (CSTR) was reached within 100 days. Acetate accounted for more than 90 w/w% of metabolites in the fermentation liquid. The yields of methane and acetate were close to the theoretical yields with 0.74–0.80 mol-methane/mol-glycerol and 0.63–0.70 mol-acetate/mol-glycerol. The obtained microbial community was characterized. Hydrogenotrophic methanogens, mainly Methanothermobacter thermautotrophicus formed 93% of the methanogenogenic community. This confirms that a high temperature (70 °C) could effectively select for hydrogenotrophic methanogenic archaea. Thermoanaerobacter spp. was the main bacterium forming 91.5% of the bacterial population. This work demonstrated the conversion of the byproduct of biodiesel production, glycerol, to acetate as a chemical and biogas for energy generation

  4. Bio-Propane from glycerol for biogas addition

    Brandin, Jan; Hulteberg, Christian; Liljegren Nilsson, Andreas (Biofuel-Solution AB, Malmoe (Sweden))

    2008-11-15

    In this report, the technical and economical feasibility to produce higher alkanes from bioglycerol has been investigated. The main purpose of producing this kind of chemicals would be to replace the fossil LPG used in upgraded biogas production. When producing biogas and exporting it to the natural gas grid, the Wobbe index and heating value does not match the existing natural gas. Therefore, the upgraded biogas that is put into the natural gas grid in Sweden today contains 8-10 vol-% of LPG. The experimental work performed in association to this report has shown that it is possible to produce propane from glycerol. However, the production of ethane from glycerol may be even more advantageous. The experimental work has included developing and testing catalysts for several intermediate reactions. The work was performed using different micro-scale reactors with a liquid feed rate of 18 g/h. The first reaction, independent on if propane or ethane is to be produced, is dehydration of glycerol to acrolein. This was showed during 60 h on an acidic catalyst with a yield of 90%. The production of propanol, the second intermediate to producing propane, was shown as well. Propanol was produced both using acrolein as the starting material as well as glycerol (combining the first and second step) with yields of 70-80% in the first case and 65-70% in the second case. The propanol produced was investigated for its dehydration to propene, with a yield of 70-75%. By using a proprietary, purposely developed catalyst the propene was hydrogenated to propane, with a yield of 85% from propanol. The formation of propane from glycerol was finally investigated, with an overall yield of 55%. The second part of the experimental work performed investigated the possibilities of decarbonylating acrolein to form ethane. This was made possible by the development of a proprietary catalyst which combines decarbonylation and water-gas shift functionality. By combining these two functionalities, no

  5. Effects of feeding dry glycerol to primiparous Holstein dairy cows on follicular development, reproductive performance and metabolic parameters related to fertility during the early post-partum period.

    Karami-Shabankareh, H; Kafilzadeh, F; Piri, V; Mohammadi, H

    2013-12-01

    received supplemented or non-supplemented diet, respectively. These results demonstrated that feeding dry glycerol as a glucogenic supply may be useful to improve negative energy balance and reproductive efficiency in young cows which calve with high requirement of energy. © 2013 Blackwell Verlag GmbH.

  6. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    Buckles, L.K.; Weijers, J.W.H.; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J.S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT–CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  7. Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK) : Implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry

    Buckles, L. K.; Weijers, J. W H; Tran, X.-M.; Waldron, S.; Sinninghe Damsté, J. S.

    2014-01-01

    The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT-CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production

  8. Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase

    Koning, W. de; Weusthuis, R.A.; Harder, W.; Dijkhuizen, L.

    Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250 mM) and an additional substrate (0.5%, w/v) to

  9. Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  10. Influence of lake water pH and alkalinity on the distribution of coreand intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes

    Schoon, P.L.; de Kluijver, A.; Middelburg, J.J.; Downing, J.A.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their

  11. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molecular packing, hydrogen bonding, and fast dynamics in lysozyme/trehalose/glycerol and trehalose/glycerol glasses at low hydration

    Lerbret, Adrien; Affouard, Frédéric

    2017-01-01

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast ($\\sim$ pico-nanosecond, ps-ns) and small-amplitude ($\\sim$ \\AA ) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme...

  13. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  14. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia and School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my [School of Chemical Engineering, Universiti Sains Malaysia, 43000, Pinang (Malaysia); Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  15. Process design, supply chain, economic and environmental analysis for chemical production in a glycerol biorefinery: Towards the sustainable design of biorefineries

    Loureiro da Costa Lira Gargalo, Carina

    are developed, where uncertainty and sensitivity analysis play a significant role. Nevertheless, in order to further advance the development and implementation of glyc-erol based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner......, considering both production as well as the logistics aspects related to the supply chain structure. Therefore, the boundaries of anal-ysis were extended to include all activities and operations involved in the glycerol-based biorefinery to bioproducts supply chain. To this end, the GlyThink model is proposed...... so as to identify operational decisions - including locations, capacity levels, technologies and product portfolio, as well as strategic decisions such as inventory levels, production amounts and transportation to the final markets. GlyThink is a multi-period, multi-stage and multi-product Mixed...

  16. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013

    Venkataramanan, Keerthi P.; Boatman, Judy J.; Taconi, Katherine A. [Alabama Univ., Huntsville, AL (United States). Dept. of Chemical and Materials Engineering; Kurniawan, Yogi; Bothun, Geoffrey D. [Rhode Island Univ., Kingston, RI (United States). Dept. of Chemical Engineering; Scholz, Carmen [Alabama Univ., Huntsville, AL (United States). Dept. of Chemistry

    2012-02-15

    During the production of biodiesel, crude glycerol is produced as a byproduct at 10% (w/w). Clostridium pasteurianum has the inherent potential to grow on glycerol and produce 1,3-propanediol and butanol as the major products. Growth and product yields on crude glycerol were reported to be slower and lower, respectively, in comparison to the results obtained from pure glycerol. In this study, we analyzed the effect of each impurity present in the biodiesel-derived crude glycerol on the growth and metabolism of glycerol by C. pasteurianum. The crude glycerol contains methanol, salts (in the form of potassium chloride or sulfate), and fatty acids that were not transesterified. Salt and methanol were found to have no negative effects on the growth and metabolism of the bacteria on glycerol. The fatty acid with a higher degree of unsaturation, linoleic acid, was found to have strong inhibitory effect on the utilization of glycerol by the bacteria. The fatty acid with lower or no degrees of unsaturation such as stearic and oleic acid were found to be less detrimental to substrate utilization. The removal of fatty acids from crude glycerol by acid precipitation resulted in a fermentation behavior that is comparable to the one on pure glycerol. These results show that the fatty acids in the crude glycerol have a negative effect by directly affecting the utilization of glycerol as the carbon source, and hence their removal from crude glycerol is an essential step towards the utilization of crude glycerol. (orig.)

  17. Insights into the biological source and environmental gradients shaping the distribution of H-shaped glycerol dialkyl glycerol tetraethers in Yellowstone National Park geothermal springs

    Jia, C.; Xie, W.; Wang, J.; Boyd, E. S.; Zhang, C.

    2013-12-01

    Archaea are ubiquitous in natural environments. The unique tetraether lipids in archaeal membranes enable the maintenance of ion permeability across broad environmental gradients. H-shaped isoprenoid glycerol dialkyl glycerol tetraethers (H-GDGTs), in which the two biphytanyl carbon skeletons are covalently bound by a carbon-carbon bond, have been recently identified in both marine and geothermal environments. Here we report the core H-GDGTs (C-H-GDGTs) and polar H-GDGTs (P-H-GDGTs) associated with sediments sampled from geothermal springs in Yellowstone National Park and investigate their abundance in relation to environmental gradients. The abundance of C- and P-H-GDGTs exhibit strong and negative correlation with pH (P = 0.007), suggesting that H-shaped GDGTs help to maintain cell membrane fluidity in acidic environments. Reanalysis of archaeal 16S rRNA gene pyrotags published previously from (Boyd E. Hamilton T. L., Wang J., He L., Zhang C. L. 2013. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Terrestrial Microbiology. 4: doi: 10.3389/fmicb.2013.00062) indicates that these H-GDGTs are associated with environments dominanted by Thermoplasmatales, which are thermoacidiphiles. Two equations were established to define the relationships between the abundance of H-GDGTs, the abundance of archaeal taxa based on 16S rRNA gene phylogenetic affiliations, and pH. Both equations have high predictive capacity in predicting the distribution of archaeal lipids in the geothermal system. These observations provide new insight into the biological source of H-GDGTs and suggest a prominent role for these lipids in the diversification of archaea into or out of acidic high temperature environments.

  18. Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors

    Dou, Binlin; Song, Yongchen; Wang, Chao; Chen, Haisheng; Yang, Mingjun; Xu, Yujie

    2014-01-01

    Highlights: • New approach on continuous high-purity H 2 produced auto-thermally with long time. • Low-cost NiO/NiAl 2 O 4 exhibited high redox performance to H 2 from glycerol. • Oxidation, steam reforming, WSG and CO 2 capture were combined into a reactor. • H 2 purity of above 90% was produced without heating at 1.5–3.0 S/C and 500–600 °C. • Sorbent regeneration and catalyst oxidization achieved simultaneously in a reactor. - Abstract: The continuous high-purity hydrogen production by the enhanced-sorption chemical looping steam reforming of glycerol based on redox reactions integrated with in situ CO 2 removal has been experimentally studied. The process was carried out by a flow of catalyst and sorbent mixture using two moving-bed reactors. Various unit operations including oxidation, steam reforming, water gas shrift reaction and CO 2 removal were combined into a single reactor for hydrogen production in an overall economic and efficient process. The low-cost NiO/NiAl 2 O 4 catalyst efficiently converted glycerol and steam to H 2 by redox reactions and the CO 2 produced in the process was simultaneously removed by CaO sorbent. The best results with an enriched hydrogen product of above 90% in auto-thermal operation for reforming reactor were achieved at initial temperatures of 500–600 °C and ratios of steam to carbon (S/C) of 1.5–3.0. The results indicated also that not all of NiO in the catalyst can be reduced to Ni by the reaction with glycerol, and the reduced Ni can be oxidized to NiO by air at 900 °C. The catalyst oxidization and sorbent regeneration were achieved under the same conditions in air reactor

  19. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  20. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  1. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  2. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A tailored catalyst for the sustainable conversion of glycerol to acrolein: mechanistic aspect of sequential dehydration.

    Yun, Danim; Kim, Tae Yong; Park, Dae Sung; Yun, Yang Sik; Han, Jeong Woo; Yi, Jongheop

    2014-08-01

    Developing a catalyst to resolve deactivation caused from coke is a primary challenge in the dehydration of glycerol to acrolein. An open-macropore-structured and Brønsted-acidic catalyst (Marigold-like silica functionalized with sulfonic acid groups, MS-FS) was synthesized for the stable and selective production of acrolein from glycerol. A high acrolein yield of 73% was achieved and maintained for 50 h in the presence of the MS-FS catalyst. The hierarchical structure of the catalyst with macropores was found to have an important effect on the stability of the catalyst because coke polymerization and pore blocking caused by coke deposition were inhibited. In addition, the behavior of 3-hydroxypropionaldehyde (3-HPA) during the sequential dehydration was studied using density functional theory (DFT) calculations because 3-HPA conversion is one of the main causes for coke formation. We found that the easily reproducible Brønsted acid sites in MS-FS permit the selective and stable production of acrolein. This is because the reactive intermediate (3-HPA) is readily adsorbed on the regenerated acid sites, which is essential for the selective production of acrolein during the sequential dehydration. The regeneration ability of the acid sites is related not only to the selective production of acrolein but also to the retardation of catalyst deactivation by suppressing the formation of coke precursors originating from 3-HPA degradation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biosynthesis of poly-3-hydroxybutyrate (PHB) from glycerol by Paracoccus denitrificans in a batch bioreactor: effect of process variables.

    Kalaiyezhini, D; Ramachandran, K B

    2015-01-01

    In this study, the kinetics of poly-3-hydroxybutyrate (PHB) biosynthesis from glycerol by Paracoccus denitrificans DSMZ 413 were explored in a batch bioreactor. Effects of inorganic and organic nitrogen source, carbon to nitrogen ratio, and other process variables such as pH, aeration, and initial glycerol concentration on PHB production were investigated in a 2.5-L bioreactor. Yeast extract was found to be the best nitrogen source compared to several organic nitrogen sources tested. At pH 6, specific growth rate, product formation rate, and accumulation of PHB within the cell were maximum. Specific growth rate increased with increase in oxygen transfer rate, but moderate oxygen transfer rate promoted PHB production. High glycerol concentration inhibited specific product formation rate but not growth. High initial carbon/nitrogen (C/N) ratio favored PHB accumulation and its productivity. At a C/N ratio of 21.4 (mol mol(-1)), 10.7 g L(-1) of PHB corresponding to 72% of cell dry weight was attained.

  5. Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & horseradish peroxidase onto plasticized polyvinyl chloride (PVC strip & its application in serum triglyceride determination

    Nidhi Chauhan

    2014-01-01

    Full Text Available Background & objectives:Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK, glycerol-3-phosphate oxidase (GPO and peroxidase (HRP directly onto plasticized polyvinyl chloride (PVC strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35 o C and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99 was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4 o C. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also.

  6. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase

    Mehrnoosh Khajehzadeh

    2016-01-01

    Conclusion: It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions.

  7. Synthesis of Acrolein From Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    Abidin, Akhmad Zainal; Afandi, Rani Guslianti; Graha, Hafis Pratama Rendra

    2016-01-01

    Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO) and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration....

  8. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.

    Elzbieta Petelenz-Kurdziel

    Full Text Available We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2 and glycerol import (Stl1 and activates a regulatory enzyme in glycolysis (Pfk26/27. In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the

  9. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  10. An Experimental Design Approach for the Analysis of Liquid Phase Products in Water for Hydrogenolysis of Glycerol using Immersed Solid-Phase Micro extraction

    Noraini Hamzah; Rozita Osman; Noraini Hamzah; Mohd Ambar Yarmo

    2013-01-01

    In this study, a response surface methodology (RSM) was applied to optimize the immersed-solid-phase micro extraction (immersed-SPME) conditions for the first time using a polyacrylate (PA) coated fiber. This was to determine liquid phase compounds in water for hydrogenolysis reaction of glycerol. There are a three-factor response surface experimental design was used to evaluate the interactive effects of extraction temperature (30-70 degree Celsius), extraction time (10-30 minutes) and desorption time (2-18 minutes) on the analysis of liquid phase compounds in water for hydrogenolysis of glycerol using immersed-solid-phase micro extraction (immersed-SPME). The extraction conditions using immersed-SPME were optimized in order to achieve high enrichment of the analytes from aqueous samples. The isolated compounds from the SPME fiber were desorbed and separated on a capillary polar column of a gas chromatography-flame ionization detector (GC-FID). The extraction time and desorption time were found significant in increasing the amount of glycerol in aqueous hydrogenolysis of glycerol. Nevertheless, the effect of extraction temperature was not significant. In terms of interactions between the effects, the relation between extraction temperature and extraction time was the most significant. The optimised immersed-SPME conditions were at extraction temperature of 27 degree Celsius, extraction time of 30 minutes and 15 minutes of desorption time. Thus, the application of SPME was found to be a rapid and effective technique in the determination of glycerol and propylene glycol compounds in aqueous hydrogenolysis glycerol. (author)

  11. From Trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: Crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffration techniques.

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2017-09-01

    The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β' 2 -2L and β' 1 -2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Etherification of Glycerol with Propylene or 1-Butene for Fuel Additives

    Chakrapong Saengarun

    2017-01-01

    Full Text Available The etherification of glycerol with propylene over acidic heterogeneous catalysts, Amberlyst-15, S100, and S200 resins, produced mono-propyl glycerol ethers (MPGEs, 1,3-di- and 1,2-di-propyl glycerol ethers (DPGEs, and tri-propyl glycerol ether (TPGE. The propylation of glycerol over Amberlyst-15 yielded only TPGE. The glycerol etherification with 1-butene over Amberlyst-15 and S200 resins produced 1-mono-, 2-mono-, 1,2-di-, and 1,3-di-butyl glycerol ethers (1-MBGE, 2-MBGE, 1,2-DBGE, and 1,3-DBGE. The use of Amberlyst-15 resulted in the propylation and butylation of glycerol with higher yields than those obtained from the S100 and S200 resins. The PGEs, TPGE, and BGEs were evaluated as cold flow improvers and octane boosters. These alkyl glycerol ethers can reduce the cloud point of blended palm biodiesels with diesel. They can increase the research octane number and the motor octane number of gasoline.

  13. Dietary Tools To Modulate Glycogen Storage in Gilthead Seabream Muscle: Glycerol Supplementation

    Silva, Tomé S.; Matos, Elisabete; Cordeiro, Odete D.

    2012-01-01

    The quality and shelf life of fish meat products depend on the skeletal muscle’s energetic state at slaughter, as meat decomposition processes can be exacerbated by energy depletion. In this study, we tested dietary glycerol as a way of replenishing muscle glycogen reserves of farmed gilthead......, and organoleptic properties (aroma and color). Proteomic analysis showed a low impact of glycerol-supplementation on muscle metabolism, with most changes probably reflecting increased stress coping capacity in glycerol-fed fish. This suggests inclusion of crude glycerol in gilthead seabream diets (particularly...

  14. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  15. Protective effects of losartan in renal dysfunction during coronary angiography and intervention caused by low osmolar non-ionic contrast media

    Chen Yueguang; Zhang Dadong; Gu Jun; Song Zhiping; Yu Qiang; Feng Xiaodi; Xiao Hongbing; Yin Guizhi; Guan Ping; Chen Chengjun; Yang Hui; Jin Xian; Dong Jian; Fan Xiaomin

    2007-01-01

    Objective: To observe the changes of renal function during simple coronary angiography (CAG)and pereutaneous coronary intervention (PCI)caused by low osmolar non-ionic contrast media and to evaluate the preventive effect of losartan on renal function(serum creatinine)in PCI. Methods: All 171 cases were divided into 3 groups, CAG negative group(N=73), PCI group (N=52)and treatment group (PCI + Losartan, N=46)according to the results given by coronary arteriography. The investigation was performed on the influences produced by the low osmolar non-ionic contrast medium(Ioversol)on renal function and minimal albumin proteinuria in the 3 groups. The minimal albumin proteinuria and renal function (serum creatinine) were tested before and 1 d, 3 d, 7 d after the procedure and followed by the comparison and evaluation of the outcoming data. Results: There were no significant changes of serum creatinine among 3 groups, but amount of minimal albumin proteinuria was increased in PCI group (P<0.05), and decreased obviously after Losartan medication (P<0.05). Conclusion: Low ormolar non-ionic contrast media produce no significant influence on renal function (serum creatinine)during CAG and/or PCI but with different degrees of increase for minimal albumin proteinuria, especially in PCI group. Losartan can decrease minimal albumin proteinuria after PCI procedure, possibly providing the prevention for contrast medium induced nephropathy. (authors)

  16. Clinical application of intravascular administration of non-ionic, low osmolar contrast agent, Ioversol (Optiray 320) and its side effects comparison with Meglumine Iothalamate (Conray 60)

    Hong, Hyun Sook; Kim, Dae Ho; Lee, Hae Kyung; Chung, Moo Chan; Choi, Deuk Lin; Kwon, Kuy Hyang; Kim, Ki Jung

    1990-01-01

    Ioversol, the non-ionic, low osmolar contrast agent has been well characterized chemically and in terms of basic toxicity testing. Ioversol has a fomula similar to that of other nonionic agent. We review the results of intravascular use of this contrast agent, compared ionic contrast media(Meglumine Iothalamate (Conray 60)). Each study was assessed for imaging quality,and patients were monitored vital signs, changes of hematology and blood chemistry and urinalysis before and after contrast administration and were observed for occurrence of side effects. A small number of side effects were reported but no clinically significant sequelae in Ioversol group and much less vital sign changes compared with Conray group. There were no significant changes in vital signs related to the use of Ioversol, and no significant alterations in the renal function parameter or other blood chemistry and hematology measurement were encountered in both contrast media. In most cases, the image qualities were good. In conclusion, Ioversol is safe, well tolerated and efficious for use in intravascular contrast agent, and less vital sign changes and side effect than ionic Meglumine Iothalamte, and Ioversol is likely to provide a useful and acceptable alternative to other low osmolar and nonionic contrast agents

  17. Effects of salinity fluctuation frequency on the osmolarity, Na+-K+-ATPase activity and HSP70 expression in juvenile chinese shrimp, Fenneropenaeus chinensis

    Ding, Sen; Wang, Fang; Sun, Hao; Guo, Biao; Dong, Shuanglin

    2009-03-01

    Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na+-K+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis with initial wet body weight of 1.460 g ± 0.091 g. The salinity in the control group (D0) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8 d, respectively. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8 d, respectively, decreased abruptly to salinity 24, lasted for another 2 d, and then was raised to its initial value 28. This was a complete salinity fluctuation cycle that afterwards repeated itself. After 32 days, the osmolarity in treatments D2, D4, D6 and D8 was significantly lower than that in treatment D0 ( P<0.05). There were significant differences in both muscle and eyestalks HSP70 expression among groups. The HSP70 expressions in muscle and eyestalks in group D4 were 61.4% and 57.0% higher, respectively, than that in the control group D0 ( P<0.05). There were, however, no significant differences in gill or hepatopancreas Na+-K+-ATPase activity between the treatments and the control.

  18. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WO x /Al 2 O 3

    García-fernández, Sara; Gandarias, Inaki; Requies, Jesús; Soulimani, Fouad|info:eu-repo/dai/nl/313889449; Arias, Pedro L.; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    Bi-functional heterogeneous catalysts combining a noble metal with an oxophilic metal (mainly W or Re) were reported to be selective for the CO hydrogenolysis of glycerol to the high added-value 1,3-propanediol. Despite intensive research work carried out, there is a great deal of controversy about

  19. Outlining adequate protocols for Lidia bull epididymal storage and sperm cryopreservation: use of glycerol, dimethylformamide and N-acetylcysteine

    Elvira Matilla

    2017-12-01

    Full Text Available The Lidia bovine breed is an important hallmark of the Spanish cattle industry. Bulls are selected based upon aggressiveness and epididymal sperm cryopreservation is the way to obtain and store their genetics. There are not specifically designed protocols yet to perform Lidia bull sperm cryopreservation. The present study aimed to determine if a tris-fructose-citrate-egg yolk (20% v/v; TFY extender supplemented with 7% glycerol (TFY1 or 3.5% glycerol plus 3.5% dimethylformamide (DMF; TFY2 are suitable media for cryopreservation of epididymal Lidia bull sperm. Moreover, the effect of N-acetylcysteine (NAC, a potent antioxidant, was evaluated. The epididymis were stored at 4°C for 24, 48, 72 or 96 h, and both freezing media were tested as such or supplemented with 1 or 2.5 mM of NAC. Our data demonstrated that post-thaw viability was well maintained (TFY1: 50.8% ± 1.9 at 24 h and 52.4% ± 0.8 at 96 h and TFY2: 52.6% ± 1.6 at 24 h and 56.1% ± 1.8 at 96 h; mean % ± SEM; p>0.05 as also were total and progressive sperm motility, high mitochondrial membrane potential, ROS production, DNA status and acrosomal intactness of Lidia bull sperm up to 96 h of epididymal storage, all extender variations being similar (p>0.05. In conclusion, the use of TFY medium supplemented either with 7% glycerol alone or the combination of 3.5% glycerol and 3.5% DMF were equally safe choices for epididymal Lidia bull sperm cryopreservation, and NAC addition did not significantly improve sperm post-thaw quality.

  20. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...... probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy...

  1. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate.

    Diaz, George A; Krivitzky, Lauren S; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O; Cederbaum, Stephen; McCandless, Shawn E; Smith, Wendy; Vockley, Gerald; Bart, Stephen A; Korson, Mark S; Kronn, David; Zori, Roberto; Merritt, J Lawrence; C S Nagamani, Sandesh; Mauney, Joseph; Lemons, Cynthia; Dickinson, Klara; Moors, Tristen L; Coakley, Dion F; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3 -AUC0-24hr ), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3 -AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short-term comparisons of glycerol phenylbutyrate versus NaPBA, NH3 -AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with the slow-release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open-label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self-monitoring, was significantly improved. Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012). Copyright © 2012 American Association for the

  2. Penggunaan H-Zeolit dan Tawas dalam Pemurnian Crude Glycerol dengan Proses Adsorpsi dan Koagulasi

    Isalmi Aziz, M.T

    2017-05-01

    Full Text Available Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation process so that the adsorption of colloidal-sized compound impurities which can be separated from the glycerol. The purpose of this research is determine optimal condition of adsorption and coagulation impurity compounds of crude glycerol by using H-zeolite and  alum and  also determine quality of glycerol  was obtained. First, crude glycerol acidified by phosphoric acid 85% (pure analysis until desired pH ±2.5. It was obtained purity of glycerol 72.797%. The next process is adsorption with activated H-zeolite and it obtained purity of glycerol 77.079%. The last process in this research is adsorption and coagulation by using H-zeolite and alum. The highest purity glycerol 93.803% was obtained from condition of adsorption and coagulation for 75 minutes; alum’s concentration 80 ppm; and temperature 60 ºC. The glycerol discharged from adsorption and coagulation process by using H-zeolite and alum is qualify Indonesia National Standard number 06-1564-1995 with 3.512% water content; 2.438% ash content; 0.247% MONG content; has no sugar; 1.259 g/mL density of glycerol; 0.2356% potassium content and 0.0410% aluminium content; and brighter color.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5143

  3. Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate.

    Usai, E M; Gualdi, E; Solinas, V; Battistel, E

    2010-10-01

    In the presence of methyl acetate triglycerides such as vegetable oils are transformed simultaneously into the corresponding fatty acid methyl esters and triacetyl glycerol (triacetin). The reaction, catalyzed by lipases, was studied as a function of some critical parameters, such as type of catalyst, enzyme hydration and immobilization support. The aim of the work was to achieve a conversion of the triglyceride as high as possible and to maximize the yield of the triacetin, the reaction end point. It was found that by using the immobilized lipase from Candida antarctica yields as high as 80% of both fatty acid esters and triacetin could be achieved. These results were obtained by carefully controlling the amount of water present in the reaction medium and the hydration level of the enzyme macromolecule. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  6. Conversion of the biodiesel by-product glycerol by the non-conventional yeast Pachysolen tannophilus

    Liu, Xiaoying

    production process. Since the volume of the glycerol by-product has exceeded the current market need, biodiesel producers are looking for new methods for sustainable glycerol management and improving the competitiveness of the biodiesel industries. The EU Commission funded GLYFINERY project is one initiative...

  7. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  8. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa.

    Eraqi, Walaa A; Yassin, Aymen S; Ali, Amal E; Amin, Magdy A

    2016-01-01

    Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We have developed a process for the production of rhamnolipid biosurfactants using glycerol as the sole carbon source by a local Pseudomonas aeruginosa isolate that was obtained from an extensive screening program. A factorial design was applied with the goal of optimizing the rhamnolipid production. The highest production yield was obtained after 2 days when cells were grown in minimal salt media at pH 6, containing 1% (v/v) glycerol and 2% (w/v) sodium nitrate as nitrogen source, at 37°C and at 180 rpm, and reached 2.164 g/L after 54 hours (0.04 g/L h). Analysis of the produced rhamnolipids by TLC, HPLC, and FTIR confirmed the nature of the biosurfactant as monorhamnolipid. Glycerol can serve as a source for the production of rhamnolipid from microbial isolates providing a cheap and reliable substrate.

  9. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  10. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  11. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  12. Upgrading Fast Pyrolysis Oil via Hydrodeoxygenation and Thermal Treatment: Effects of Catalytic Glycerol Pretreatment

    Reyhanitash, Ehsan; Tymchyshyn, M.; Yuan, Zhongshun; Albion, K.; van Rossum, G.; Xu, C.

    2014-01-01

    The effects of stabilizing fast pyrolysis oil (PO) with glycerol via catalytic glycerol pretreatment on upgrading via hydrodeoxygenation (HDO) or thermal treatment (TT) were studied. Nonstabilized (original) fast pyrolysis oil was also upgraded via HDO or TT to obtain benchmarks. Generally, HDO

  13. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  14. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  15. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  16. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik Lauritz; Granby, Kit

    2007-01-01

    Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33......Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33...

  17. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  18. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  20. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  1. Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films

    Liangjun Zhu

    2011-05-01

    Full Text Available An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0–40 wt% of glycerol sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR spectra, thermogravimetry (TGA and differential scanning calorimetry (DSC curves. Scanning Electron Microscopy (SEM observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering.

  2. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  3. Navigating Glycerol Conversion Roadmap and Heterogeneous Catalyst Selection Aided by Density Functional Theory: A Review

    Bin Liu

    2018-01-01

    Full Text Available Glycerol has been utilized in an extremely diversified manner throughout human civilization—ranging from food, to various consumer products, to pharmaceuticals, and even explosives. Large surplus in glycerol supply thanks to biodiesel production and biomass processing has created a demand to further boost its utility. One growing area is to expand the use of glycerol as an alternative feedstock to supplement fuels and chemicals production. Various catalytic processes have been developed. This review summarizes catalytic materials for glycerol reforming, hydrodeoxygenation, and oxidation. In particular, rationale for catalyst selection and new catalyst design will be discussed aided by the knowledge of reaction mechanisms. The role of theoretical density functional theory (DFT in elucidating complex glycerol conversion chemistries is particularly emphasized.

  4. Rheological properties of purified illite clays in glycerol/water suspensions

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  5. Economic Risk Assessment of Early Stage Designs for Glycerol2Valorization in Biorefinery Concepts

    Loureiro da Costa Lira Gargalo, Carina; Cheali, Peam; Posada, John A.

    2016-01-01

    , and discount rate, among others, have high impact on the project’s profitability analysis. Therefore, the profitability was tested under uncertainties by using NPV and MSP as economic metrics. The robust ranking of solutions is presented with respect to minimum economic risk of the project being nonprofitable...... (failure to achieve a positive NPV times the consequential profit loss). It was found that the best potential options for glycerol valorization is through the production of either (i) lactic acid (9 MM$ with 63% probability of failure to achieve a positive NPV); (ii) succinic acid (14 MM$ with 76......%); or finally, (iii) 1,2-propanediol (16 MM$ with 68%). As a risk reduction strategy, a multiproduct biorefinery is suggested which is capable of switching between the production of lactic acid and succinic acid. This solution comes with increased capital investment; however, it leads to more robust NPV...

  6. Characterization of polyurethane based on polyol synthesized from glycerol and hexamethylene diisocyanate

    Carvalho, Sabrina M.; Weber, Vanessa; Silva, Tailu N.; Barreto, Pedro L.M.

    2009-01-01

    A new polyol based on glycerol was synthesized and used in the production of polyurethane by reaction with hexamethylene diisocyanate. The polyol was characterized by nuclear magnetic resonance spectroscopy (NMR) and Fourier transform-infrared spectroscopy (FTIR). The polyurethane produced was characterized by FTIR, thermogravimetry (TG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The polyol was shown to be reactive with hexamethylene diisocyanate, as the FTIR spectrum showed no free isocyanate groups and identified the presence of group -C=O of urethane groups. Analysis by DSC showed that the sample of polyurethane has a glass transition temperature around -8.53 deg C and SEM micrographs showed fracture and surface continuous and not broken. The thermogravimetric analysis showed that the polyurethane produced has a high thermal stability with a temperature of maximum degradation around 430 deg C. (author)

  7. Effects of ionizing radiation on glycerolated amniotic membranes as a substract for cultured human epithelium

    Paggiaro, Andre Oliveira

    2011-01-01

    The amniotic membrane (AM) is a biomaterial with biological properties that are beneficial to tissue repair. It has been used as a temporary coverage to threat burns and chronic wounds. Recently, it has been served as a substrate for keratinocytes culture to construct a living skin equivalent. However, MA is a biological material, and its transplantation could cause infectious disease for receptors. So, it must be preserved and sterilized before clinical use. The aim of this study was to evaluate the radiation effects on glycerol-preserved MA, considering its compatibility to support human keratinocytes culture. Four MA were stored in high concentrations of glycerol (> 85%) and half of them were radio sterilized with a dose of 25 kGy. Then, we established two groups: nonirradiated MA (MA-ni) and irradiated MA (MA-i). Both groups was deepithelialized by a standardized protocol and was investigated morphologically, immunohistochemical and ultrastructural. Subsequently human keratinocytes were cultivated immersed and in air-liquid interface on denuded surface of MA-i and MA-ni. The results were compared at 14 and 21 days of culture by light and electron microscopy. After epithelial denudation, analyses demonstrated the continuity of the basement membrane in MA-ni group, whereas in the irradiated group, there was no indication of the basement membrane’s presence on the surface of MA. The cell cultures showed that in the non-irradiated group, there was growth of a multi-layered and differentiated epithelium, with a stratum corneum’s formation in air-liquid interface. In the irradiated group, the epithelium had only two or three layer, little cell differentiation, with the same results immersed or air-liquid interface system. Glycerol-preserved MA was biocompatible with the growth of a cultivated epithelium, showing its potential as a skin substitute. Irradiation at 25 kGy cause structural damage to the tissue, making changes in basement membrane, that facilitates

  8. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Zhongxiao Wan

    2016-01-01

    Full Text Available The aim of the present study is (1 to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OHD] and adiponectin, nonesterified fatty acids (NEFAs, and glycerol and (2 to determine the alterations in circulating endothelial microparticles (EMPs in Chinese male subjects with increased body mass index (BMI. A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW, and obese (OB, N=15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs, total and high-molecular weight (HMW adiponectin, 25(OHD, nonesterified fatty acids (NEFAs, and glycerol. Circulating 25(OHD levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OHD levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects.

  10. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  11. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  12. Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes.

    Lenardão, Eder J; Borges, Elton L; Stach, Guilherme; Soares, Liane K; Alves, Diego; Schumacher, Ricardo F; Bagnoli, Luana; Marini, Francesca; Perin, Gelson

    2017-03-02

    Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl solketal in short reaction times, furnishing in all cases the respective products of substitution in good yields. Some of the prepared compounds were deprotected using an acidic resin to afford new water-soluble 3-organotellanylpropane-1,2-diols. The synthetic versatility of the new chalcogenyl alkynes was demonstrated in the iodocyclization of 2,2-dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f , which afforded 3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl) selenanylbenzo[ b ]furan in 85% yield, opening a new way to access water-soluble Se-functionalized benzo[ b ]furanes.

  13. Molecular dynamics simulations of glycerol glass-forming liquid

    Blieck, J.; Affouard, F.; Bordat, P.; Lerbret, A.; Descamps, M.

    2005-01-01

    Structural and dynamical properties of liquid glycerol have been investigated by Molecular Dynamics simulations. An improved model based on a slight reparametrisation of the all-atoms AMBER force field used in [R. Chelli, P. Procacci, G. Cardini, R.G.D. Valle, S. Califano, Phys. Chem. Chem. Phys. 1 (1999) 871] is presented. The structure remains satisfactory, qualitatively similar to that obtained from the original model. This new model is also found to reproduce significantly better the diffusion coefficient and the correlations times as they can be deduced from neutron spin echo (NSE) experiments. Structural heterogeneities revealed as a pre-peak of the static structure factor S(Q) close to Q ∼ 0.6 A -1 are observed. Our results are also found compatible with predictions of the Mode Coupling Theory

  14. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  15. Surfactant-promoted reactions of Cl2 and Br2 with Br- in glycerol.

    Faust, Jennifer A; Dempsey, Logan P; Nathanson, Gilbert M

    2013-10-17

    Gas-liquid scattering experiments are used to explore reactions of gaseous Cl2 and Br2 with a 0.03 M solution of the surfactant tetrahexylammonium bromide (THABr) dissolved in glycerol. At thermal collision energies, 79 ± 2% of incident Cl2 molecules react with Br(-) to form Cl2Br(-) in the interfacial region. This reaction probability is three times greater than the reactivity of Cl2 with 3 M NaBr-glycerol, even though the interfacial Br(-) concentrations are similar in each solution. We attribute the high 79% uptake to the presence of surface THA(+) ions that stabilize the Cl2Br(-) intermediate as it is formed in the charged, hydrophobic pocket created by the hexyl chains. Cl2Br(-) generates the single exchange product BrCl in a 1% yield close to the surface, while the remaining 99% desorbs as the double exchange product Br2 over >0.1 s after diffusing deeply into the bulk. When NaCl is added to the surfactant solution in a 20:1 Cl(-)/Br(-) ratio, the Cl2 reaction probability drops from 79% to 46 ± 1%, indicating that Cl(-) in the interfacial region only partially blocks reaction with Br(-). In parallel, we observe that gaseous Br2 molecules dissolve in 0.03 M THABr for 10(4) times longer than in 3 M NaBr. We attribute this change to formation of stabilizing interfacial and bulk-phase THA(+)Br3(-) ion pairs, in analogy with the capture of Cl2 and formation of THA(+)Cl2Br(-) pairs. The THA(+) ion appears to be a powerful interfacial catalyst for promoting reaction of Cl2 and Br2 with Br(-) and for ferrying the resultant ions into solution.

  16. Glycerol gelatin for 3D-printing of implants using a paste extrusion technique

    Kempin Wiebke

    2017-09-01

    Full Text Available Fused deposition modeling as an additive manufacturing technique has gained great popularity for the fabrication of medical devices as well as pharmaceutical dosage forms over the last years. Particularly the variety of geometries that can be printed determines the attractiveness of this technique enabling a shape adaption of e.g. implants. In the presented work the soft hydrogel material glycerol gelatin was investigated towards its applicability in 3D-printing as an alternative to the commonly applied and mostly rigid polyesters. Model implants loaded with the model drug quinine and with the shape of a hollow cylinder were printed via an extrusion based technique utilizing the piston feed in a hydrogel filled heatable syringe. Glycerol gelatin hydrogels need to be crosslinked to avoid gel-sol-transition at body temperature. For this purpose three different crosslinking methods (insertion, dipping, spraying with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC and N-hydroxysuccinimide (NHS were evaluated regarding their crosslinking efficiency and drug losses during the crosslinking process. Dipping of the implant into an aqueous solution with at least 50 mM EDC and 10 mM NHS was found to be the most efficient crosslinking technique in conjunction with a smaller drug loss during processing compared to inserting. However, the use of hydrogels also causes problems as an intense and highly variable swelling of the printed structures during crosslinking (120.7 % ± 11.9 % for 10 times dipping in 50mM EDC/10 mM NHS and a great dependency of the volume on storage conditions complicate the preparation of tailor-made implants. The release of the model drug quinine from printed and crosslinked implants was fast and nearly completed within 6 hours.

  17. Lymphatic absorption of hypolipidemic compound, 1-O-[p-(myristyloxy)-alpha-methylcinnamoyl] glycerol (LK-903).

    Sugihara, J; Furuuchi, S

    1988-02-01

    The intestinal absorption process of 1-O-[p-(myristyloxy)-alpha-methylcinnamoyl] glycerol (LK-903), a new hypolipidemic compound, was studied in rats. When 3H-LK-903 or 3H-LKA [3H-p- (myristyloxy)-alpha-methyl cinnamic acid], labeled at the cinnamic acid moiety, or 14C-LK-903, labeled at the glycerol moiety, were administered orally to thoracic duct-cannulated rats at a dose of 0.233 mmol/kg, 31.1, 6.7 and 18.1% of the dose, respectively, appeared in the lymph within 24 h. In this case, radioactive compounds in the lymph lipids consisted of LKA (radioactivity was not detected in the fraction of LKA with 14C-LK-903), LK-903, diglyceride analogues and triglyceride analogues. The percentages of the triglyceride analogues were the highest, followed by the diglyceride analogues. On the other hand, when doubly labeled LK-903 (3H/14C = 1, corrected ratio) was administered orally, the values of 3H/14C for the monoglyceride, diglyceride and triglyceride analogues in the lymph were 1.2-1.5, 1.7-1.9 and 1.9-2.7, respectively. The lymphatic absorption of LK-903 was stimulated by the presence of lecithin but inhibited by a high dose of triolein. The results indicated that (1) LK-903 formed micelles in the intestine, (2) a large part of LK-903 was absorbed as such, (3) a part of LK-903 was hydrolyzed in the intestinal mucosa, and (4) a part of LKA formed by hydrolysis was again utilized to synthesize the higher glycerides and absorbed via the lymphatic absorption route for lipids.

  18. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.

    Willrodt, Christian; David, Christian; Cornelissen, Sjef; Bühler, Bruno; Julsing, Mattijs K; Schmid, Andreas

    2014-08-01

    The efficiency and productivity of cellular biocatalysts play a key role in the industrial synthesis of fine and bulk chemicals. This study focuses on optimizing the synthesis of (S)-limonene from glycerol and glucose as carbon sources using recombinant Escherichia coli. The cyclic monoterpene limonene is extensively used in the fragrance, food, and cosmetic industries. Recently, limonene also gained interest as alternative jet fuel of biological origin. Key parameters that limit the (S)-limonene yield, related to genetics, physiology, and reaction engineering, were identified. The growth-dependent production of (S)-limonene was shown for the first time in minimal media. E. coli BL21 (DE3) was chosen as the preferred host strain, as it showed low acetate formation, fast growth, and high productivity. A two-liquid phase fed-batch fermentation with glucose as the sole carbon and energy source resulted in the formation of 700 mg L(org) (-1) (S)-limonene. Specific activities of 75 mU g(cdw) (-1) were reached, but decreased relatively quickly. The use of glycerol as a carbon source resulted in a prolonged growth and production phase (specific activities of ≥50 mU g(cdw) (-1) ) leading to a final (S)-limonene concentration of 2,700 mg L(org) (-1) . Although geranyl diphosphate (GPP) synthase had a low solubility, its availability appeared not to limit (S)-limonene formation in vivo under the conditions investigated. GPP rerouting towards endogenous farnesyl diphosphate (FPP) formation also did not limit (S)-limonene production. The two-liquid phase fed-batch setup led to the highest monoterpene concentration obtained with a recombinant microbial biocatalyst to date. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  20. Glycerol, trehalose and glycerol–trehalose mixture effects on thermal stabilization of OCT

    Barreca, D., E-mail: dbarreca@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Laganà, G. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Magazù, S.; Migliardo, F. [Dipartimento di Fisica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Bellocco, E. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Trehalose influences both enzymatic activity and conformational changes of enzyme. • The results obtained by INS and QENS show a switching-off of the fast dynamics at very low glycerol content. • The diffusive dynamics is slowing down at very low glycerol concentration. • The mixtures of trehalose/glycerol lose the thermal stabilizing effects of pure compounds. - Abstract: The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  1. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  2. A population study of urine glycerol concentrations in elite athletes competing in North America.

    Kelly, Brian N; Madsen, Myke; Sharpe, Ken; Nair, Vinod; Eichner, Daniel

    2013-01-01

    Glycerol is an endogenous substance that is on the World Anti-Doping Agency's list of prohibited threshold substances due to its potential use as a plasma volume expansion agent. The WADA has set the threshold for urine glycerol, including measurement uncertainty, at 1.3 mg/mL. Glycerol in circulation largely comes from metabolism of triglycerides in order to meet energy requirements and when the renal threshold is eclipsed, glycerol is excreted into urine. In part due to ethnic differences in postprandial triglyceride concentrations, we investigated urine glycerol concentrations in a population of elite athletes competing in North America and compared the results to those of athletes competing in Europe. 959 urine samples from elite athletes competing in North America collected for anti-doping purposes were analyzed for urine glycerol concentrations by a gas chromatography mass-spectrometry method. Samples were divided into groups according to: Timing (in- or out-of-competition), Class (strength, game, or endurance sports) and Gender. 333 (34.7%) samples had undetectable amounts of glycerol (sport classes. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related ( PR ) genes ( TaPR-1, TaPR-2, TaPR-3, TaPR-4 , and TaPR-5 ), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly ( p powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.

  4. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  5. Modifying the properties of whey protein isolate edible film by incorporating palm oil and glycerol

    Vachiraya Liaotrakoon

    2018-02-01

    Full Text Available This study aimed to improve the properties of whey protein isolate (WPI films by incorporating palm oil (6, 7, and 8% w/w and glycerol (40, 50 and 60% w/w. The lightness of the films increased as glycerol levels increased, but the redness increased with the increased amount of oil content. Increasing the amounts of palm oil and glycerol improved flexibility (P<0.05, but reduced the strength of the film (P<0.05. Films with higher levels of palm oil and lower amounts of glycerol were less permeable to water vapor and oxygen, but more thermally stable. The size of particles and air bubbles in the films reduced with increased palm oil content, regardless of glycerol level. Among all formulae, the film prepared with 8% palm oil and 40% glycerol showed the best overall results. Modifying WPI films with palm oil and glycerol offers a simple technique for producing packaging with better environmental barrier properties.

  6. Trehalose in glycerol-free freezing extender enhances post-thaw survival of boar spermatozoa

    ATHURUPANA, Rukmali; TAKAHASHI, Daisen; IOKI, Sumire; FUNAHASHI, Hiroaki

    2015-01-01

    Cryopreservation of boar semen is still considered suboptimal due to lower fertility as compared with fresh samples when glycerol, a permeating cryoprotectant, is used. Trehalose is a non-permeable cryoprotectant and nonreducing disaccharide known to stabilize proteins and biologic membranes. The aim of this study was to evaluate the cryosurvival and in vitro penetrability of boar spermatozoa when glycerol was replaced with trehalose in a freezing extender. Ejaculated Berkshire semen samples were diluted in egg yolk-based freezing extender containing glycerol (100 mM) or trehalose (0, 50, 100, 150, 200 and 250 mM) and cryopreserved using a straw freezing procedure. Thawed samples were analyzed for motility, viability, mitochondrial membrane potential (MMP), and acrosome integrity. In experiment 2, penetrability of spermatozoa cryopreserved with 100 mM glycerol or trehalose was examined. Replacement of cryoprotectant glycerol (100 mM) with trehalose had no effect on sperm viability, but replacing it with 100 mM trehalose improved motility, MMP and acrosome integrity significantly. Sperm motility and MMP were considerably higher in 100 mM trehalose, whereas the acrosome integrity was substantially higher in 100–250 mM trehalose. The in vitro penetration rate was also significantly higher in spermatozoa cryopreserved with trehalose (61.3%) than in those cryopreserved with glycerol (43.6%). In conclusion, 100 mM non-permeable trehalose can be used to replace glycerol, a permeating cryoprotectant, for maintenance of better post-thaw quality of boar spermatozoa. PMID:25754239

  7. HPLC-MS Determination of Acrolein and Acetone Generated from 13C3 -Labeled Glycerol Added to Cigarette Tobacco Using Two Machine-Smoking Regimes

    Yip SH

    2014-12-01

    Full Text Available The extent of blend glycerol degradation in a burning cigarette to form acrolein and acetone has been quantitatively determined by the addition of glycerol-13C3 to three styles of a leading commercial cigarette brand. Multiple Cambridge pads soaked with a solution of 2,4-dinitrophenylhydrazine (DNPH were employed to trap hydrazone derivatives of low molecular weight carbonyl compounds in both mainstream and sidestream smoke. High performance liquid chromatography coupled with negative ion mass spectrometry was used to isolate DNPH derivatives of the volatile carbonyl products of combustion and to ascertain their concentration. Acrolein, acetone, and propionaldehyde were the principal compounds of interest. The DNPH derivatives of acrolein-13C3 and acetone-13C3 were independently synthesized, and they served as external standards for absolute quantitation. The cost of fully labeled propionaldehyde precluded its use in this study. The brand styles selected for study represent the cigarette design features that are most prevalent in the U.S. market today and afford a representative range of standardized “tar” yields (14, 10, and 5 mg/cig, respectively by the Cambridge Filter Method. The brand styles studied are part of a commercial cigarette brand family that does not contain additives to the tobacco blend, including glycerol. Mainstream smoke was generated by an automated smoking machine employing the standard Cambridge Filter Smoking Regime and a more intense regime requiring larger, more frequent puffs and 100% vent blocking that is specified for regulatory purposes by the Canadian federal government. The research indicated that only a small fraction of added glycerol (~0.25%-0.30%, w/w was converted to the two compounds of interest, with the larger portion generally observed in sidestream smoke. Less than 0.1% of the added glycerol was converted to acrolein in mainstream smoke for all cigarette designs and smoking regimes studied.

  8. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  9. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture.

    Cui, Bin; Huang, Shaobin; Xu, Fuqian; Zhang, Ruijian; Zhang, Yongqing

    2015-07-01

    A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap and widely used carbon source that can be applied in PHB production process. There are numerous advantages to operating fermentation at elevated temperatures; only several thermophilic bacteria are able to accumulate PHB when glycerol is the growth substrate. Here, we report on the possibility of increasing PHB production at low cost using thermophilic Chelatococcus daeguensis TAD1 when glycerol is the growth substrate in a fed-batch culture. We found that (1) excess glycerol inhibited PHB accumulation and (2) organic nitrogen sources, such as tryptone and yeast extract, promoted the growth of C. daeguensis TAD1. In the batch fermentation experiments, we found that using glycerol at low concentrations as the sole carbon source, along with the addition of mixed nitrate (NH4Cl, tryptone, and yeast extract), stimulated PHB accumulation in C. daeguensis TAD1. The results showed that the PHB productivity decreased in the following order: two-stage fed-batch fermentation > fed-batch fermentation > batch fermentation. In optimized culture conditions, a PHB amount of 17.4 g l(-1) was obtained using a two-stage feeding regimen, leading to a productivity rate of 0.434 g l(-1) h(-1), which is the highest productivity rate reported for PHB to date. This high PHB biosynthetic productivity could decrease the total production cost, allowing for further development of industrial applications of PHB.

  10. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  11. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O5 Catalysts.

    Lee, Kyu Am; Ryoo, HeeKyoung; Ma, Byung Chol; Kim, Youngchul

    2018-02-01

    In this study, modified niobium oxide were prepared to study the addictive effects on the catalytic performance for gas-phase glycerol dehydration. The catalysts were characterized by N2 adsorption/desorption, XRD, NH3-TPD, FT-IR. The amount of phosphoric acid was up to 50 wt% in niobium. As a result, the highest glycerol conversion was achieved over 20 wt% PO4/Nb2O5. It indicates that the optimal amount of phosphoric acid leads the catalyst to have appropriate acidity which is an important factor for gas-phase glycerol dehydration.

  12. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products

    Hong Liu

    2013-09-01

    Full Text Available Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel that is capable of being utilized by a conventional diesel engine. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated a surplus of glycerol. A value-added opportunity is needed in order to compensate for disposal-associated costs. Microbial conversions from glycerol to valuable chemicals performed by various bacteria, yeast, fungi, and microalgae are discussed in this review paper, as well as the possibility of extending these conversions to microbial electrochemical technologies.

  13. A comparative evaluation of plasma glycerol and free fatty acids in patients with ischaemic heart disease

    Singh V

    1979-01-01

    Full Text Available Plasma glycerol concentration was determined in 158 patients admitted to the hospital with acute chest pain. The patients were retrospectively divided into five groups according to their diagnosis, taking into account the presence or absence of myocardial infarc-tion and complicating arrythmias, The plasma glycerol concentra-tion was significantly higher in the group with complicating arrhythmias, irrespective of whether infarction was present or not. Therefore it is proposed that elevation of plasma glycerol may provide an important clue to determine those myocardial ischaemia cases who may develop cardiac arrythmias at a later stage.

  14. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  15. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective

    Ana ePlemenitas

    2014-05-01

    Full Text Available Molecular studies of salt tolerance of eukaryotic microorganisms have until recently been limited to the baker’s yeast Saccharomyces cerevisiae and a few other moderately halotolerant yeast. Discovery of the extremely halotolerant and adaptable fungus Hortaea werneckii and the obligate halophile Wallemia ichthyophaga introduced two new model organisms into studies on the mechanisms of salt tolerance in eukaryotes. H. werneckii is unique in its adaptability to fluctuations in salt concentrations, as it can grow without NaCl as well as in the presence of up to 5 M NaCl. On the other hand, W. ichthyophaga requires at least 1.5 M NaCl for growth, but also grows in up to 5 M NaCl. Our studies have revealed the novel and intricate molecular mechanisms used by these fungi to combat high salt concentrations, which differ in many aspects between the extremely halotolerant H. werneckii and the halophilic W. ichthyophaga. Specifically, the high osmolarity glycerol signalling pathway that is important for sensing and responding to increased salt concentrations is here compared between H. werneckii and W. ichthyophaga. In both of these fungi, the key signalling components are conserved, but there are structural and regulation differences between these pathways in H. werneckii and W. ichthyophaga. We also address differences that have been revealed from analysis of their newly sequenced genomes. The most striking characteristics associated with H. werneckii are the large genetic redundancy, the expansion of genes encoding metal cation transporters, and a relatively recent whole genome duplication. In contrast, the genome of W. ichthyophaga is very compact, as only 4,884 protein-coding genes are predicted, which cover almost three quarters of the sequence. Importantly, there has been a significant increase in their hydrophobins, cell-wall proteins that have multiple cellular functions.

  16. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol.

    Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D

    2016-08-01

    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The role of genotype in protection against gamma-radiation of E. coli cells by glycerol

    Amirtaev, K.G.; Krasavin, E.A.; Kozubek, S.; Tokarova, B.; Nyamsambuu, A.

    1984-01-01

    The protective effect of glycerol and anoxia on the survival of γ-irradiated E.coli cells of wild type, recA - , polA - mutants has been investigated. The protection by glycerol increases from recA - mutant to wild type and polA - mutant with dose modifying factors (DMF) being 2.03+-0.12, 2.52+-0.25, and 2.80+-0.26. Analogically the protection by hypoxia is genetically determined, too. The value of oxygen effect increases from 1.77+-0.23 for recA - mutant to 3.38+-0.29 for wild type cells and 4.66+-0.41 for polA - -mutant. The oxygen independent component of glycerol protection is geltically independent (DMF=2). Possible mechanisms of genetic determination of the protection by glycerol and anoxia are discussed

  18. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  19. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations

    Workman, Mhairi; Holt, Philippe; Thykær, Jette

    2013-01-01

    . Growth on glycerol proceeded at approximately 0.30 h-1, and the substrate uptake rate was 0.02 mol L-1 h-1 regardless of the starting glycerol concentration (10, 20 or 45 g L-1). Utilisation of glycerol was accompanied by higher oxygen uptake rates compared to glucose growth, indicating import......Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number...... of applications for this yeast, relatively few studies have focused on uptake and metabolism of carbon sources, and the metabolic basis for carbon flow to the different products. The focus of this work was quantification of the cellular performance of Y. lipolytica during growth on glycerol, glucose or a mixture...

  20. Synthesis and characterization of unsatured polyesters from the reaction of glycerol with fumaric acid

    Medeiros, Marina A.O.; Brioude, Michel M.; Agrela, Sara P.; Rosa, Leandro O.S.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    The biodiesel production from vegetable oils has been encouraged by the Brazilian Federal Government, since biodiesel is a renewable fuel. The utilization of glycerol (by-product of biodiesel production) has gained importance, since it corresponds to 30 wt-% of the produced biodiesel. In this context, the present work aims at preparing and characterizing polymers based on glycerol, which could have an application. In this way, the production of biodiesel could be further stimulated. Unsaturated polyesters were preparing by esterification of glycerol with fumaric acid. The reaction mixture was heated up to 240 deg C. After the polymerization was complete, the material was cast onto Teflon molds. The materials were characterized by Infrared Spectroscopy, X-ray diffraction. The thermal stability was evaluated by thermogravimetric analysis and differential scanning calorimetry. The materials showed thermal stability comparable to alkyd thermoset derived from maleic anhydride and glycerol. (author)

  1. Thermal Processing of Low-Grade Glycerol to Alcohols for Biodiesel Fuel Production, Phase II

    2010-01-01

    Conversion of crude glycerol to value added products can broaden its use and ultimately reduce the cost of biodiesel production. During the second year of the project, results from previous experiments were used to comprehensively investigate the the...

  2. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904.

    Dikshit, Pritam Kumar; Moholkar, Vijayanand S

    2016-09-01

    The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  4. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mutations and phenotype in isolated glycerol kinase deficiency

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  6. [Effects of glycerol on the spectral properties of sodium caseinate].

    Li, Yan; Chang, Fen-fen; Gao, Huan-yuan; Cao, Qing; Jin, Li-e

    2015-01-01

    Although the immigration of water molecule, and diffusion and traversing of oxygen can be prevented by the edible film prepared through sodium caseinate, which plays a good protection role for the food, the strong hydrophilicity makes its watertightness and mechanical properties become inferior. Because the toughness and water resistance of SC films can be enhanced by glycerol (G) as an additive, it is necessary to elucidate the interaction between G and SC through the spectral characteristics such as fluorescence spectra, infrared spectra and UV spectra. The results show that the fluorescence intensity of SC decreases due to the addition of G. The binding constant obtained by the double logarithmic regression curve analysis is 1. 127 x 10(3) L . mol-1 and the number of binding sites reaches 1. 161. It indicates that the weak chemical bond is primary between G and SC molecules; From IR the absorption peaks of SC are almost the same before and after adding G. However, there is a certain difference among their absorption intensities. It reveals that the secondary structure of SC is affected, β folding length decreases, α helix, random coil structure, β angle structure increases, and the intermolecular hydrogen bond is strengthened; From UV the peptide bond structure of SC is not changed after the addition of G, but the polymer with larger molecular weight, which is formed by non-covalent bond, makes the peak intensity decrease. The research gives the mode of G and SC from the molecular level.

  7. Penggunaan H-Zeolit dan Tawas dalam Pemurnian Crude Glycerol dengan Proses Adsorpsi dan Koagulasi

    Isalmi Aziz, M.T; Nur Hijjah Bayani Fadhilah; Hendrawati Hendrawati

    2017-01-01

    Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from...

  8. Penggunaan H-Zeolit Dan Tawas Dalam Pemurnian Crude Glycerol Dengan Proses Adsorpsi Dan Koagulasi

    Aziz, M.T, Isalmi; Fadhilah, Nur Hijjah Bayani; Hendrawati, Hendrawati

    2017-01-01

    Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from...

  9. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  10. Continuous fed-batch vacuum fermentation system for glycerol from molasses by the sulfite process

    Kalle, G.P.; Naik, S.C.

    1985-01-01

    A continuous fed-batch vacuum fermentation system has been described for the production of glycerol from cane molasses (and juice) by a conventional sulfite process. A glycerol concentration of 80 g/l was achieved with a productivity of 30 g/l/day at a dilution rate of 0.4/day which is twice that from a vacuum batch process (15 g/l/day) or four times that obtained without vacuum (8 g/l/day). 8 references.

  11. Platinum–Rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming

    Ciftci, A.; Eren, S.; Ligthart, D.A.J.M.; Hensen, E.J.M.

    2014-01-01

    A significant support effect was observed for the aqueous-phase reforming (APR) of glycerol over a series of Pt- and PtRe-loaded ceria-, ceria–zirconia-, zirconia-, and titania-supported catalysts. Glycerol conversion rates decreased in the order Pt/TiO2>Pt/ZrO2>Pt/CeZrO2>Pt/CeO2. Upon addition of

  12. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  13. Influence of palm oil and glycerol on properties of fish skin gelatin-based films.

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-06-01

    Properties of fish skin gelatin film incorporated with palm oil at 50 and 75 % (w/w) as affected by glycerol at 0-30 % (w/w) were investigated. Increases in water vapour permeability and elongation at break along with decrease in tensile strength were noticed when levels of glycerol were increased (p fish skin gelatin films without drastic alteration of mechanical properties.

  14. Aqueous-phase reforming of crude glycerol : effect of impurities on hydrogen production

    Boga, Dilek A.; Liu, Fang; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    The aqueous-phase reforming (APR) of a crude glycerol that originates from an industrial process and the effect of the individual components of crude glycerol on APR activity have been studied over 1 wt% Pt/Mg-Al) O, 1 wt% Pt/Al2O3, 5 wt% Pt/Al2O3 and 5 wt% Pt/C catalysts at 29 bar and 225 degrees

  15. Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol

    Rall, W.F.; Mazur, P.; Souzu, H.

    1978-07-01

    One theory of freezing damage suggests that slowly cooled cells are killed by being exposed to increasing concentrations of electrolytes as the suspending medium freezes. A corollary to this view is that protective additives such as glycerol protect cells by acting colligatively to reduce the electrolyte concentration at any subzero temperature. Recently published phase-diagram data for the ternary system glycerol-NaCl-water by M.L. Shepard et al. (Cryobiology, 13: 9-23, 1976), in combination with the data on human red cell survival vs. subzero temperature presented here and in the companion study of Souzu and Mazur (Biophys. J., 23: 89-100), permit a precise test of this theory. Appropriate liquidus phase-diagram information for the solutions used in the red cell freezing experiments was obtained by interpolation of liquidus data of Shepard and his co-workers. The results of phase-diagram analysis of red cell survival indicate that the correlation between the temperature that yields 50% hemolysis (LT/sub 50/) and the electrolyte concentration attained at that temperature in various concentrations of glycerol is poor. With increasing concentrations of glycerol, the cells were killed at progressively lower concentrations of NaCl. For example, the LT/sub 50/ for cells frozen in the absence of glycerol corresponds to a NaCl concentration of 12 weight percent (2.4 molal), while for cells frozen in 1.75 M glycerol in buffered saline the LT/sub 50/ corresponds to 3.0 weight percent NaCl (1.3 molal). The data, in combination with other findings, lead to two conclusions: (a) The protection from glycerol is due to its colligative ability to reduce the concentration of sodium chloride in the external medium, but (b) the protection is less than that expected from colligative effects; apparently glycerol itself can also be a source of damage, probably because it renders the red cells susceptible to osmotic shock during thawing.

  16. Integral process of obtaining glycerol as a by-product of biodiesel production from castor oil

    Leonel Romero

    2012-12-01

    Full Text Available The biodiesel is obtained from about 10 years ago in Europe, and now that it has taken hold as fuel for diesel engines, it is expected a clear increase in the production of this class of fuels in a the near future. The biodiesel is derived from the transesterification reaction of castor oil with methanol, which is the main by-product the glycerol with an approximate content of 10%. Besides catalyst residuals, soaps, methanol traces, mono and diglycerides in small percentages are presented. This study proposes the separation, purification and characterization of the glycerol obtained from the transesterificación reaction of the castor oil, in order to be able to market it in the national or international market, so that it fulfills the standards of quality, which means getting a pure glycerol and the appropriate physico-chemical characteristics and techniques. The glycerin-methyl esters separation is carried out by decantation being obtained a percentage of around 70% glycerol. This percentage is subsequently increased through the purification process, using hydrochloric acid. Glycerol characterization was carried out by physicochemical and organoleptic tests. The purification process allowed us to obtain a glycerol with a percentage of purity close to 98%. It was also tested by comparison with theoretical data that remnants influenced in the physiochemical properties

  17. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.

    Yang, Jiangang; Zhu, Yueming; Men, Yan; Sun, Shangshang; Zeng, Yan; Zhang, Ying; Sun, Yuanxia; Ma, Yanhe

    2016-12-21

    Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.

  18. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  19. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  20. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    Schrader, Alex M. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Cheng, Chi-Yuan [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Israelachvili, Jacob N. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Han, Songi [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  1. Dimethylformamide is not better than glycerol for cryopreservation of boar semen.

    Malo, C; Gil, L; Cano, R; Martínez, F; García, A; Jerez, R A

    2012-05-01

    To improve the boar sperm cryopreservation process, the influence of the sugar (lactose, trehalose) source and the cryoprotectant [glycerol, dimethylformamide (DMF)] on the success of freezing was investigated. Sperm samples were frozen in one of six extenders: lactose plus 3% glycerol (LG); lactose plus 1.5% glycerol and 1.5% DMF (LGD); lactose plus 3% DMF (LD); trehalose plus 3% glycerol (TG); trehalose plus 1.5% glycerol and 1.5% DMF (TGD); trehalose plus 3% DMF (TD). Effects on motility, viability, acrosome integrity and hypoosmotic test (HOST) were measured. The results showed that extender containing 3% glycerol retained the highest motility percentages. In regard to viability and acrosome integrity, all extenders yielded similar rates except for the decreasing values of TD. Endosmosis was diminished in TD and LD at 2 h (P = 0.0018), as compared with the others. The results of the study demonstrated that the use of DMF as a cryoprotectant adversely affected boar sperm quality after cryopreservation. © 2011 Blackwell Verlag GmbH.

  2. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  3. The direct asymmetric vinylogous aldol reaction of furanones with α-ketoesters: Access to chiral γ-Butenolides and glycerol derivatives

    Luo, Jie; Wang, Haifei; Han, Xiao; Xu, Liwen; Kwiatkowski, Jacek; Huang, Kuo-Wei; Lu, Yixin

    2011-01-01

    Twice as good: The title reaction using the tryptophan-derived bifunctional organic catalyst 1 has been developed. The reported method led to the synthesis of chiral γ-substituted butenolides in excellent yields, with high diastereo- and enantioselectivities. Facile synthesis of chiral glycerol derivatives containing a tertiary hydroxy group has also been demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The direct asymmetric vinylogous aldol reaction of furanones with α-ketoesters: Access to chiral γ-Butenolides and glycerol derivatives

    Luo, Jie

    2011-01-11

    Twice as good: The title reaction using the tryptophan-derived bifunctional organic catalyst 1 has been developed. The reported method led to the synthesis of chiral γ-substituted butenolides in excellent yields, with high diastereo- and enantioselectivities. Facile synthesis of chiral glycerol derivatives containing a tertiary hydroxy group has also been demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  6. Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production.

    Hama, Shinji; Tamalampudi, Sriappareddy; Yoshida, Ayumi; Tamadani, Naoki; Kuratani, Nobuyuki; Noda, Hideo; Fukuda, Hideki; Kondo, Akihiko

    2011-11-01

    A process model for efficient glycerol separation during methanolysis in an enzymatic packed-bed reactor (PBR) was developed. A theoretical glycerol removal efficiency from the reaction mixture containing over 30% methyl esters was achieved at a high flow rate of 540 ml/h. To facilitate a stable operation of the PBR system, a batch reaction prior to continuous methanolysis was conducted using oils with different acid values and immobilized lipases pretreated with methyl esters. The reaction system successfully attained the methyl ester content of over 30% along with reduced viscosity and water content. Furthermore, to obtain a high methyl ester content above 96% continuously, long-term lipase stability was confirmed by operating a bench-scale PBR system for 550 h, in which the intermediates containing methyl esters and residual glycerides were fed into the enzyme-packed columns connected in series. Therefore, the developed process model is considered useful for industrial biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance

    Gaharwar, Akhilesh K; Nikkhah, Mehdi; Sant, Shilpa; Khademhosseini, Ali

    2015-01-01

    Topographical cell guidance is utilized to engineer highly organized and aligned cellular constructs for numerous tissue engineering applications. Recently, electrospun scaffolds fabricated using poly(glycerol sebacate) (PGS) and poly(ϵ-caprolactone) (PCL) have shown a great promise to support valvular interstitial cell functions for the development of tissue engineered heart valves. However, one of the major drawbacks of PGS-PCL scaffolds is the lack of control over cellular alignment. In this work, we investigate the role of scaffold architecture on the endothelial cell alignment, proliferation and formation of organized cellular structures. In particular, PGS-PCL scaffolds with randomly oriented and highly aligned fibers with tunable mechanical properties were fabricated using electrospinning technique. After one week of culture, endothelial cells on the aligned scaffolds exhibited higher proliferation compared to those cultures on randomly oriented fibrous scaffolds. Furthermore, the endothelial cells reorganized in response to the topographical features of aligned scaffolds forming highly organized cellular constructs. Thus, topographical contact guidance, provided by aligned PGS-PCL scaffolds, is envisioned to be useful in developing cellular structures for vascular tissue engineering. (paper)

  8. Effects of ambient temperature and dietary glycerol addition on growth performance, blood parameters and immune cell populations of Korean cattle steers

    Hyeok Joong Kang

    2017-04-01

    Full Text Available Objective This study was performed to evaluate whether ambient temperature and dietary glycerol addition affect growth performance, and blood metabolic and immunological parameters, in beef cattle. Methods Twenty Korean cattle steers (405.1±7.11 kg of body weight [BW], 14.2±0.15 months of age were divided into a conventional control diet group (n = 10 and a 2% glycerol- added group (n = 10. Steers were fed 1.6% BW of a concentrate diet and 0.75% BW of a timothy hay diet for 8 weeks (4 weeks from July 28th to August 26th and 4 weeks from August 27th to September 26th. Blood was collected four times on July 28th, August 11th, August 27th, and September 26th. Results The maximum indoor ambient temperature-humidity index in August (75.8 was higher (p<0.001 than that in September (70.0, and in August was within the mild heat stress (HS category range previously reported for dairy cattle. The average daily gain (ADG; p = 0.03 and feed efficiency (p<0.001 were higher in hotter August than in September. Glycerol addition did not affect ADG and feed efficiency. Neither month nor glycerol addition affected blood concentrations of cortisol, triglyceride, or non-esterified fatty acid. Blood concentrations of cholesterol, low-density lipoprotein, high-density lipoprotein, glucose, and albumin were lower (p<0.05 on August 27th than on September 26 th, and blood phosphorus, calcium and magnesium concentrations were also lower on August 27th than on September 27th. Glycerol addition did not affect these blood parameters. Percentages of CD4+ T cells and CD8+ T cells were higher (p<0.05 on July 28th than on August 27th and September 26th. The blood CD8+ T cell population was lower in the glycerol supplemented-group compared to the control group on July 28th and August 27th. Conclusion Korean cattle may not be significantly affected by mild HS, considering that growth performance of cattle was better in hotter conditions, although some changes in blood metabolic

  9. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone

    Alvarez, M.G.; Frey, A.M.; Bitter, J.H.; Segarra, A.M.; Jong, de K.P.; Medina, F.

    2013-01-01

    Bulk and carbon nanofiber supported MgAl hydrotalcites have been investigated as solid base catalysts for the synthesis of glycerol carbonate and dicarbonate and for the self-condensation of acetone. The supported materials exhibited a 300 times higher activity compared to bulk activated

  10. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol

    Thornit, Dorte Nellemann; Vinten, Carl Martin; Sander, Birgit

    2010-01-01

    PURPOSE: To compare the changes in macular volume (MV) between healthy subjects and patients with diabetic macular edema (DME) after an osmotic load and to determine the glycerol permeability (P(gly)) of the blood-retinal barrier (BRB). METHODS: In this unmasked study, 13 patients with DME and 5...

  11. Use of glycerol-preserved corneas for corneal transplants

    Neeti Gupta

    2017-01-01

    Full Text Available Purpose: This study was carried out to see the results of glycerol-preserved cornea (GPC in emergency situation when fresh corneal tissue was not available. The aim was to study the outcome of corneal transplantation using GPC. Methods: This was a retrospective study. The medical records of all the patients were reviewed, who underwent keratoplasty using “GPC” during the period from October 2011 to December 2015. The indication of keratoplasty, duration of preservation of the GPC, and its outcome were analyzed. Descriptive statistics were applied. Results: Out of the 222 penetrating keratoplasty (PKP performed over the study period, the GPC was used in 34 patients (males = 31, 91.2% aged 15–74 years. Therapeutic keratoplasty was performed in all cases in this cohort except one in which tectonic keratoplasty was done. The primary indication of PKP (91.2% was infectious keratitis. Of these, 20 (64.5% patients presented with perforated corneal ulcers. Post-PKP, ocular anatomy was preserved in 91.2%, and visual acuity of perception of light positive and accurate projection of rays in all the quadrants was obtained in 76.5% cases. Complications included glaucoma (n = 12, 35.1%, phthisis bulbi (n = 2, 5.9%, and graft reinfection and endophthalmitis after PKP (n = 1, 2.9%. The secondary procedure post-GPC and PKP were trabeculectomy with mitomycin C (n = 7, 58.3% in patients not controlled on topical antiglaucoma medication. Optical keratoplasty was performed in (n = 3 8.8% patients and triple procedure in (n = 2 5.8% patients with good visual acuity postprocedure. Conclusions: Acellular GPCs are useful in emergency keratoplasty to avoid loss of vision and can save the eye.

  12. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    Varrone, Cristiano; Heggeset, T. M. B.; Le, S. B.

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable...... Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending...... on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1...

  13. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

    Laura Jeacock

    2017-03-01

    Full Text Available Aquaglyceroporins (AQPs transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM, octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

  14. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  15. Psychiatric comorbidity and plasma levels of 2-acyl-glycerols in outpatient treatment alcohol users. Analysis of gender differences.

    García Marchena, Nuria; Araos, Pedro; Pavón, Francisco Javier; Ponce, Guillermo; Pedraz, María; Serrano, Antonia; Arias, Francisco; Romero-Sanchiz, Pablo; Suárez, Juan; Pastor, Antoni; De la Torre, Rafael; Torrens, Marta; Rubio, Gabriel; Rodríguez de Fonseca, Fernando

    2016-09-29

    Alcohol addiction is associated with high psychiatric comorbidity. Objective stratification of patients is necessary to optimize care and improve prognosis. The present study is designed to gain insights into this challenge by addressing the following objectives: a) to estimate the prevalence of psychiatric comorbidities in a sample of outpatients seeking treatment for alcohol use disorder, b) to describe the existence of gender differences and c) to validate 2-acyl-glycerols as biomarkers of alcohol use disorder and/or psychiatric comorbidity. One hundred and sixty-two patients were recruited and evaluated with the semi-structured interview PRISM. The presence of psychopathology was associated with a greater number of criteria for alcohol abuse and dependence according to DSM-IV-TR. We found gender differences in psychiatric comorbidity, e.g., mood disorder, as well as in comorbid substance use disorders. The prevalence of lifetime psychiatric comorbidity was 68.5%, with mood disorders the most frequent (37%), followed by attention deficit disorder (24.7%) and anxiety disorders (17.9%). Substance-induced disorders were more frequent in mood and psychotic disorders, whereas the primary disorders were more prevalent in patients with comorbid anxiety disorders. We found that 2-acyl-glycerols were significantly decreased in comorbid anxiety disorders in alcohol dependent patients in the last year, which makes them a potential biomarker for this psychopathological condition.

  16. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.

    Sousa, M; Melo, V M M; Rodrigues, S; Sant'ana, H B; Gonçalves, L R B

    2012-08-01

    Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.

  17. XPS utilization in the characterization of glycerol based polyesters; Utilizacao de XPS na caracterizacao de poliesteres a base de glicerol

    Brioude, M.M.; Miranda, C.S.; Pereira, R.; Ohara, L.; Bargiela, P.; Rocha, M.G.M.C.; Jose, N.M., E-mail: mgcr@ufba.b [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Inst. de Quimica

    2010-07-01

    X-ray photoelectron spectroscopy-XPS allows the determination of all elements of the periodical table, except hydrogen and helium, and is a very used technique for the polymers characterization, its spectra constitutes a 'fingerprint' of the material. Two samples of polymers were prepared from glycerol and fumaric acid and glycerol and terephthalic acid, with a molar ratio of 1:1 and 1:1.5. The general spectra show the presence of carbon and oxygen, the main components of the polymer. From the binding energies values of the C1s and O1s high resolution spectra it was possible to determine the carbon functional groups. Their concentration were determined and the presence of the aromatic carbon in the terephthalic polyesters was observed, and also similar proportions of aliphatic carbon and ester groups in the fumaric acid polyesters. For both polyesters, an amount of carboxyl group appears, indicating the terminal non-reacted groups. These results were confirmed qualitatively by FTIR. (author)

  18. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol.

    Yang, Li-Bo; Zhan, Xiao-Bei; Zhu, Li; Gao, Min-Jie; Lin, Chi-Chung

    2016-05-18

    The production of erythritol by Yarrowia lipolytica from low-cost substitutable substrates for high yield was investigated. Crude glycerol, urea, and NaCl related to osmotic pressure were the most significant factors affecting erythritol production. An artificial neural network model and genetic algorithm were used to search the optimal composition of the significant factors and locate the resulting erythritol yield. Medium with 232.39 g/L crude glycerol, 1.57 g/L urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 110.7 g/L. The erythritol concentration improved from 50.4 g/L to 109.2 g/L with the optimized medium, which was reproducible. Erythritol fermentation kinetics were investigated in a batch system. Multistep fermentation kinetic models with hyperosmotic inhibitory effects were developed. The resulting mathematical equations provided a good description of temporal variations such as microbial growth (X), substrate consumption (S), and product formation (P) in erythritol fermentation. The accordingly derived model is the first reported model for fermentative erythritol production from glycerol, providing useful information to optimize the growth of Y. lipolytica and contributing visual description for the erythritol fermentation process under high osmotic pressure, as well as improvement of productivity and efficiency.

  19. SCREENING OF SELECTED OLEAGINOUS YEASTS FOR LIPID PRODUCTION FROM GLYCEROL AND SOME FACTORS WHICH AFFECT LIPID PRODUCTION BY YARROWIA LIPOLYTICA STRAINS

    Salinee Sriwongchai

    2013-04-01

    Full Text Available The ability of eight yeast strains to utilize glycerol as a sole carbon source and accumulate lipids in a chemically defined medium was screened. Among the yeasts, Yarrowia lipolytica strains DSM 70561 and JDC 335 grew to high cell densities on glycerol. These strains were further tested for lipid accumulation under varying nutritional conditions in Erlenmeyer flasks. The results showed that strains DSM 70561 and JDC 335 accumulated lipids up to 37.1 % and 54.4 % of total cell dry weight, respectively, when the defined medium was supplemented with 1 g/L urea and 2 g/L yeast extract. The lipids accumulated by the two yeasts contained a high proportion of C16:0, C18:1, C18:2 and C18:0 fatty acids. The results suggest that Y. lipolytica strains DSM 70561 and JDC 335 have the potential for converting crude glycerol into fatty acids which can in turn be utilized as substrate for biodiesel production.

  20. Isolation of a solventogenic Clostridium sp. strain: fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements.

    Panitz, J C; Zverlov, V V; Pham, V T T; Stürzl, S; Schieder, D; Schwarz, W H

    2014-02-01

    A new solventogenic bacterium, strain GT6, was isolated from standing water sediment. 16S-rRNA gene analysis revealed that GT6 belongs to the heterogeneous Clostridium tetanomorphum group of bacteria exhibiting 99% sequence identity with C. tetanomorphum 4474(T). GT6 can utilize a wide range of carbohydrate substrates including glucose, fructose, maltose, xylose and glycerol to produce mainly n-butanol without any acetone. Additional products of GT6 metabolism were ethanol, butyric acid, acetic acid, and trace amounts of 1,3-propanediol. Medium and substrate composition, and culture conditions such as pH and temperature influenced product formation. The major fermentation product from glycerol was n-butanol with a final concentration of up to 11.5 g/L. 3% (v/v) glycerol lead to a total solvent concentration of 14 g/L within 72 h. Growth was not inhibited by glycerol concentrations as high as 15% (v/v). The solventogenesis genes crt, bcd, etfA/B and hbd composing the bcs (butyryl-CoA synthesis) operon of C. tetanomorphum GT6 were sequenced. They occur in a genomic arrangement identical to those in other solventogenic clostridia. Furthermore, the sequence of a potential regulator gene highly similar to that of the NADH-sensing Rex family of regulatory genes was found upstream of the bcs operon. Potential binding sites for Rex have been identified in the promoter region of the bcs operon of solvent producing clostridia as well as upstream of other genes involved in NADH oxidation. This indicates a fundamental role of Rex in the regulation of fermentation products in anaerobic, and especially in solventogenic bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  2. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed

    2015-01-01

    that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array...... of evolved strains, which exhibited a significant increase in the specific growth rate and a higher glycerol consumption rate, were isolated. The best performing strains were further analyzed by classical genetics and whole genome re-sequencing in order to understand the molecular basis of glycerol...

  3. Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups.

    Venkata Srilakshmi, Gollapudi; Sen, Joyeeta; Chaudhuri, Arabinda; Ramadas, Yerramsetti; Madhusudhana Rao, Nalam

    2002-02-15

    Detailed structure-activity investigations aimed at probing the anchor chain length dependency for glycerol-based lipofectins have been reported previously. Herein, we report on the first detailed investigation on the anchor-dependent transfection biology of non-glycerol based simple monocationic cytofectins containing single 2-hydroxyethyl head group functionality using 11 new structural analogs of our previously published first generation of non-glycerol based transfection lipids (lipids 1-11). The C-14 and C-16 analogs of DOMHAC (lipids 4 and 5, respectively) were found to be remarkably efficient in transfecting COS-1 cells. In addition, the present anchor-dependency investigation also revealed that the C-14 analog of DOHEMAB (lipid 10) is significantly efficient in transfecting both COS-1 and NIH3T3 cells. Our results also indicate that too strong lipid-DNA interactions might result in weaker transfection for non-glycerol based cationic lipids. In summary, the anchor-dependence investigations presented here convincingly demonstrate that non-glycerol based cationic lipids containing a single hydroxyethyl head group and hydrophobic C-14 or C-16 anchors are promising non-toxic cationic transfection lipids for future use in liposomal gene delivery.

  4. Effect of Glycerol, as Cryoprotectant in the Encapsulation and Freeze Drying of Microspheres Containing Probiotic Cells

    Oana Lelia Pop

    2015-05-01

    Full Text Available It is reported that probiotics provide several health benefits as they help in maintaining a good balance and composition of intestinal flora, and increase the resistance against invasion of pathogens. Ensuring adequate dosages of probiotics at the time of consumption is a challenge, because several factors during processing and storage affect the viability of probiotic organisms. Major emphasis has been given to protect the microorganisms with the help of encapsulation technique, by addition of different protectants. In this study, probiotic cells (Bifidobacterium lactis 300B were entrapped in alginate/pullulan microspheres. In the encapsulation formula glycerol was used as cryoprotectant in the freeze drying process for long time storage. It was observed that the survival of Bifidobacterium lactis 300B when encapsulated without cryoprotectant was higher than the formula with glycerol in the fresh obtained microspheres. The addition of glycerol was in order to reduce the deep freezing and freeze drying damages. In the chosen formulations, glycerol did not proved protection for the entrapped probiotic cells in the freeze drying process, for which the use of glycerol as cryoprotectant for alginate/pullulan Bifidobacterium lactis 300B entrapment is not recommended.

  5. Biotechnological conversion of glycerol from biofuels to 1,3-propanediol using Escherichia coli.

    Przystałowska, Hanna; Lipiński, Daniel; Słomski, Ryszard

    2015-01-01

    In the face of shortage of fossil fuel supplies and climate warming triggered by excessive carbon dioxide emission, alternative resources for chemical industry have gained considerable attention. Renewable resources and their derivatives are of particular interest. Glycerol, which constitutes one of the by-products during biodiesel production, is such a substrate. Thus, generated excess glycerol may become an environmental problem, since it cannot be disposed of in the environment. The most promising products obtained from glycerol are polyols, including 1,3-propanediol, an important substrate in the production of synthetic materials, e.g. polyurethanes, unsaturated polyesters, and epoxy resins. Glycerol can be used as a carbon and energy source for microbial growth in industrial microbiology to produce 1,3-propanediol. This paper is a review of metabolic pathways of native producers and E. coli with the acquired ability to produce the diol via genetic manipulations. Culture conditions during 1,3-PDO production and genetic modifications of E. coli used in order to increase efficiency of glycerol bioconversion are also described in this paper.

  6. Conformational Preferences of Glycerol in the Gas Phase and in Water

    Jeong, Keun Hong [Korea Military Academy, Seoul (Korea, Republic of); Byun, Byung Jin; Kang, Young Kee [Chungbuk National University, Cheongju (Korea, Republic of)

    2012-03-15

    The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two C{sub 5} hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory

  7. Comparison of glycerol, lactamide, acetamide and dimethylsulfoxide as cryoprotectants of Japanese white rabbit spermatozoa.

    Kashiwazaki, Naomi; Okuda, Yasushi; Seita, Yasunari; Hisamatsu, Shin; Sonoki, Shigenori; Shino, Masao; Masaoka, Toshio; Inomata, Tomo

    2006-08-01

    The rabbit is considered to be a valuable laboratory animal. We compared glycerol, lactamide, acetamide, and dimethylsulfoxide (DMSO) as cryoprotectants in egg-yolk diluent of ejaculated Japanese white rabbit spermatozoa for improvement of sperm cryopreservation methods. Rabbit semen was frozen with 1.0 M glycerol, lactamide, acetamide, or DMSO in plastic straws. Forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rate of forward progressive motile spermatozoa in lactamide (37.8 +/- 3.0%) was significantly (P<0.05) higher than in glycerol (17.0 +/- 3.3%). In addition, the rates of sperm plasma membrane integrity in lactamide and acetamide (35.9 +/- 3.3% and 30.2 +/- 3.0%, respectively) were significantly (P<0.05) higher than in glycerol (17.0 +/- 2.6%). The results indicate that 1.0 M lactamide and acetamide have higher cryoprotective effects than 1.0 M glycerol for cryopreservation of Japanese white rabbit spermatozoa.

  8. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  10. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  12. Pharmacological investigations of Punica granatum in glycerol-induced acute renal failure in rats.

    Singh, Amrit Pal; Singh, Amteshwar Jaggi; Singh, Nirmal

    2011-09-01

    The present study was designed to investigate the ameliorative potential and possible mechanism of hydroalcoholic extract of flowers of P. granatum in glycerol-induced acute renal failure (ARF) in rats. The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 ml/kg) and the animals were sacrificed after 24 hours of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Pretreatment with hydroalcoholic extract of flowers of P. granatum (125 and 250 mg/kg p.o. twice daily for 3 days) significantly attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner. BADGE (Bisphenol-A-diglycidyl ether) (30 mg/kg), a peroxisome proliferator-activated receptor (PPAR)-γ antagonist, and N(omega)-nitro-l-arginine-methyl ester (L-NAME) (10, 20, and 40 mg/kg), nitric oxide synthase inhibitor, were employed to explore the mechanism of renoprotective effects of Punica granatum. Administration of BADGE (30 mg/kg) and L-NAME (40 mg/kg) abolished the beneficial effects of P. granatum in glycerol-induced renal dysfunction. Hydroalcoholic extract of flowers of P. granatum has ameliorative potential in attenuating myoglobinuric renal failure and its renoprotective effects involve activation of PPAR-γ and nitric oxide-dependent signaling pathway.

  13. Electrospun Zein Fibers Incorporating Poly(glycerol sebacate for Soft Tissue Engineering

    Lena Vogt

    2018-03-01

    Full Text Available For biomedical applications such as soft tissue engineering, plant proteins are becoming increasingly attractive. Zein, a class of prolamine proteins found in corn, offers excellent properties for application in the human body, but has inferior mechanical properties and lacks aqueous stability. In this study, electrospun scaffolds from neat zein and zein blended with prepolymer and mildly cross-linked poly(glycerol sebacate (PGS were fabricated. Less toxic solvents like acetic acid and ethanol were used. The morphological, physiochemical and degradation properties of the as-spun fiber mats were determined. Neat zein and zein-PGS fiber mats with high zein concentration (24 wt % and 27 wt % showed defect-free microstructures. The average fiber diameter decreased with increasing PGS amount from 0.7 ± 0.2 µm to 0.09 ± 0.03 µm. The addition of PGS to zein resulted in a seven-fold increase in ultimate tensile strength and a four-fold increase in failure strain, whereas the Young’s Modulus did not change significantly. Degradation tests in phosphate buffered saline revealed the morphological instability of zein containing fiber mats in contact with aqueous media. Therefore, the fibers were in situ cross-linked with N-(3-Dimethylaminopropyl-N′-ethylcarbodiimide (EDC/N-Hydroxysuccinimide (NHS, which led to improved morphological stability in aqueous environment. The novel fibers have suitable properties for application in soft tissue engineering.

  14. Plasma glucose, cholesterol, triglyceride, and glycerol concentrations in the postmature rabbit.

    Harlow, A C; Roux, J F; Shapiro, M I

    1980-02-15

    Plasma cholesterol, triglycerides, glycerol, and glucose concentrations were measured in term and postmature rabbits. The data show that the term and postmature mothers have significantly higher glycemia than their fetuses. However, triglyceride and cholesterol concentrations are lower in the postmature mother than in her fetus. Postmature fetuses are characterized by very high plasma triglyceride and cholesterol concentrations. The results demonstrate that postmaturity is accompanied by maternal and fetal lipid metabolic changes related to a decrease in the transfer of maternal fatty acids through the placenta and to a diminution in fetal liver glucose utilization. The postmature fetus is then in a relative state of fasting and must rely on its own supply of fuel (glycogen and lipids) to provide cells for growth and survival. The maternal metabolic changes can possibly be explained by a decreased utilization of maternal substrates by the fetus, the placenta becoming insufficient. The close interrelationship of fetal and maternal lipid metabolism with the activity of the placenta suggests that an accurate knowledge of the metabolic changes taking place in the fetus during alteration of the maternal environment is indispensable to the understanding of the short- and long-term effects of maternal disease on the fetus.

  15. Glycerol-3-phosphate Acyltransferase 1 Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma.

    Marchan, Rosemarie; Büttner, Bettina; Lambert, Jörg; Edlund, Karolina; Glaeser, Iris; Blaszkewicz, Meinolf; Leonhardt, Gregor; Marienhoff, Lisa; Kaszta, Darius; Anft, Moritz; Watzl, Carsten; Madjar, Katrin; Grinberg, Marianna; Rempel, Eugen; Hergenröder, Roland; Selinski, Silvia; Rahnenführer, Jörg; Lesjak, Michaela S; Stewart, Joanna D; Cadenas, Cristina; Hengstler, Jan G

    2017-09-01

    Glycerophosphodiesterase EDI3 (GPCPD1; GDE5; GDPD6) has been suggested to promote cell migration, adhesion, and spreading, but its mechanisms of action remain uncertain. In this study, we targeted the glycerol-3-phosphate acyltransferase GPAM along with choline kinase-α (CHKA), the enzymes that catabolize the products of EDI3 to determine which downstream pathway is relevant for migration. Our results clearly showed that GPAM influenced cell migration via the signaling lipid lysophosphatidic acid (LPA), linking it with GPAM to cell migration. Analysis of GPAM expression in different cancer types revealed a significant association between high GPAM expression and reduced overall survival in ovarian cancer. Silencing GPAM in ovarian cancer cells decreased cell migration and reduced the growth of tumor xenografts. In contrast to these observations, manipulating CHKA did not influence cell migration in the same set of cell lines. Overall, our findings show how GPAM influences intracellular LPA levels to promote cell migration and tumor growth. Cancer Res; 77(17); 4589-601. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. The influence of a cryoprotective medium containing glycerol on the lyophilization of lactic acid bacteria (NOTE

    JOSIP BARAS

    2001-07-01

    Full Text Available The aims of liophilization (freeze-drying of lactic acid bacteria are to preserve pure cultures or to prepare starters for the dairy industry. In both cases, the choice of the cryoprotectant is very important. In this work, samples of Bifidobacterium breve A71 and Bifidobacterium bifidum BbTD were freeze-dried in a new cryoprotective medium containing lactose, gelatine and glycerol (medium B. The reference medium contained saccharose, gelatine and skim milk (medium A. Before liophilization, the eutectic points of both media were determined, because the products must be cooled to a temperature below its freezing point. The success of the cryoprotectants was estimated in terms of the number of surviving organisms after lyophilization. Bifidobacterium breve A71 and Bifidobacterium bifidum BbTD freeze-dried in media A and B showed high survival rates. Bifidobacterium breve A71 showed a greater percentage survival in combination with medium B than with medium A. These results could be utilized in the manufacture of Bifidobacterium breve A71 as a starter in the diary industry because it is a human isolate which, except for acidification, has probiotic activity.

  17. Precious Metals Supported on Alumina and Their Application for Catalytic Aqueous Phase Reforming of Glycerol

    Kiky Corneliasari Sembiring

    2015-11-01

    Full Text Available The high cost of Pt based catalyst for aqueous phase reforming (APR reaction makes it advantageous to develop less cost of other metals for the same reaction. APR is hydrogen production process from biomass-derived source at mild condition near 500 K and firstly reported by Dumesic and co-worker. The use of hydrogen as environmentally friendly energy carrier has been massively encouraged over the last year. When hydrogen is used in fuel cell for power generation, it produces a little or no pollutants. The aim of this study is to study the effect of some precious metal catalysts for APR process. Due to investigation of metal catalysts for APR process, four precious metals (Cu, Co, Zn, Ni supported on γ-Al2O3 with 20% feeding amount have been successfully prepared by impregnation method. Those precious metals were identified as promising catalysts for APR. The catalysts were characterized by N2 physisorption at 77 K, X-Ray Diffraction (XRD and Fourier Transform-Infra Red (FT-IR. The catalytic performance was investigated at 523 K and autogenous pressure in a batch reactor with glycerol concentration of 10%. The gaseous hydrogen product was observed over the prepared catalysts by GC. It was found that performance of catalysts to yield the hydrogen product was summarized as follow Cu/γ-Al2O3 > Co/γ-Al2O3 > Zn/γ-Al2O3 > Ni/γ-Al2O3.

  18. Contrasting dynamics of fragile and non-fragile polyalcohols through the glass, and dynamical, transitions: A comparison of neutron scattering and dielectric relaxation data for sorbitol and glycerol.

    Migliardo, F; Angell, C A; Magazù, S

    2017-01-01

    Glycerol and sorbitol are glass-forming hydrogen-bonded systems characterized by intriguing properties which make these systems very interesting also from the applications point of view. The goal of this work is to relate the hydrogen-bonded features, relaxation dynamics, glass transition properties and fragility of these systems, in particular to seek insight into their very different liquid fragilities. The comparison between glycerol and sorbitol is carried out by collecting the elastic incoherent neutron scattering (EINS) intensity as a function of temperature and of the instrumental energy resolution. Intensity data vs temperature and resolution are analyzed in terms of thermal restraint and Resolution Elastic Neutron Scattering (RENS) approaches. The number of OH groups, which are related to the connecting sites, is a significant parameter both in the glass transition and in the dynamical transition. On the other hand, the disordered nature of sorbitol is confirmed by the existence of different relaxation processes. From the applications point of view, glycerol and sorbitol have remarkable bioprotectant properties which make these systems useful in different technological and industrial fields. Furthermore, polyols are rich in glassforming liquid phenomenology and highly deserving of study in their own right. The comparison of EINS and calorimetric data on glycerol and sorbitol helps provide a connection between structural relaxation, dynamical transition, glass transition, and fragility. The evaluation of the inflection point in the elastic intensity behavior as a function of temperature and instrumental energy resolution provides a confirmation of the validity of the RENS approach. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016. Published by Elsevier B.V.

  19. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    C. Varrone

    2015-01-01

    Full Text Available Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs, able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate. On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  20. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel.

    Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  1. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  2. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    Gravhølt, C H; Schmitz, Ole; Simonsen, L

    1999-01-01

    .0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...... stimulation of lipolysis abdominal adipose tissue was, in absolute but not in relative terms, stimulated more markedly than femoral adipose tissue (ANOVA: P = 0. 03 from 45 to 225 min). Peak interstitial glycerol values of 253 +/- 37 and 336 +/- 74 micromol/l were seen after 135 and 165 min in femoral...... and abdominal adipose tissue, respectively. ATBF was not statistically different in the two situations (ANOVA: P = 0.7). In conclusion, we have shown that a physiological pulse of GH increases interstitial glycerol concentrations in both femoral and abdominal adipose tissue, indicating activated lipolysis...

  3. The direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics

    Karstoft, Kristian; P. Mortensen, Stefan; H. Knudsen, Sine

    2015-01-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under eu- and hyperglycemic conditions. Young, healthy males (n=10) underwent three trials in a randomized, controlled, cross-over study. Each trial c...... hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially, however, due to increased insulin levels....... consisted of a 2-stage (eu- and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism were measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial and common carotid artery blood flow...... or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance (Rd) during GLP-1 compared to CON and GIP (Plevels, no differences between trials were seen for GIR or glucose Rd. Besides...

  4. Effect of pressure on the α relaxation in glycerol and xylitol

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  5. Modelling of pyrolysis and combustion of gluten-glycerol-based bioplastics.

    Gómez-Martínez, D; Barneto, A G; Martínez, I; Partal, P

    2011-05-01

    Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Differences in [14C]glycerol utilization in normal and familial hypercholesterolemic fibroblasts

    Shireman, R.B.; Durieux, J.

    1991-01-01

    It is known that cultured fibroblasts from familial hypercholesterolemia (FH) patients lack the normal cell receptor for low density lipoprotein (LDL) and that the absence of receptor-mediated transport of LDL cholesterol into these cells results in increased cellular synthesis of cholesterol. After 20 h perincubation in lipid-free medium, cultured FH fibroblasts incorporated significantly greater amounts of [ 14 C]glycerol into cellular lipids than did normal fibroblasts. Relative to the control medium which contained only bovine serum albumin (BSA), preincubation with 5% fetal bovine serum or 50 micrograms LDL/ml decreased [ 14 C]glycerol incorporation by both cell types. FH cells utilized more [ 14 C]glycerol for phospholipid synthesis and less for triglyceride synthesis than normal cells. This study indicates that LDL may be important in the transport of glycerides, as well as cholesterol, to cells

  7. Potential of Diverse Prokaryotic Organisms for Glycerol-based Polyhydroxyalkanoate Production

    Martin Koller

    2015-06-01

    Full Text Available The potential and performance of various Gram-negative, Gram-positive and archaeal wild type microorganisms, and bacterial mixed cultures, as well as the application of genetically engineered strains as whole-cell biocatalysts for glycerol-based polyhydroxyalkanoate production are analyzed and assessed. This encompasses the comparison of growth and polyhydroxyalkanoate accumulation kinetics, thermo-mechanical properties of isolated glycerol-based polyhydroxyalkanoate of different composition on the monomeric level, and the presentation of mathematical models developed to describe glycerol-based polyhydroxyalkanoate production processes. For all these aspects, the article provides a detailed compilation of the contemporary state of knowledge, and gives an outlook to expected future developments.

  8. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni

    2009-01-01

    Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...... to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...

  9. [Efficacy and safety of reduced osmolarity oral rehydration salts in treatment of dehydration in children with acute diarrhea--a multicenter, randomized, double blind clinical trial].

    Yang, Dao-Feng; Guo, Wei; Tian, De-Ying; Luo, Xiao-Ping; He, Yong-Wen; Dai, Yong-An; Xu, Hua-Lin

    2007-04-01

    To assess the efficacy and safety of reduced osmolarity oral rehydration salts (ROORS) in treatment of mild to moderate dehydration caused by acute diarrhea in children. A multicenter, randomized, double-blind, positive drug controlled clinical trial was conducted in 125 cases aged 1 to 17 years. These children with acute diarrhea and signs of dehydration were randomly assigned to receive either ROORS (trial group, n = 62) or oral rehydration salts II (ORS II) (control group, n = 63). The volume of intravenous infusion were recorded. The improvements of systemic symtoms and signs, diarrhea, dehydration and total scores were compared between the two groups. The adverse events and changes of electrolyte and other laboratory tests during treatment were also observed and analyzed. The overall effective rates in trial group and control group were 96.8% and 96.8%, respectively. The recovery of systemic symptoms, dehydration signs and diarrhea occurred in 96%, 97% and 78% patients in trial groups, and 96%, 98% and 85% patients in control group. The scores of symptoms and signs in both groups decreased significantly after treatment. All the above parameters and the number of cases who needed intravenous infusion (41 vs. 39) were not statistically different between two groups. However, the average volume of intravenously infused fluids in trial group was (450.98 +/- 183.07) ml, 24.5% less than that in the control group (597.30 +/- 343.37) ml (P 0.05). A case in trial group had mild abdominal distention and recovered spontaneously. ROORS was shown to be effective and safe in the treatment of mild and moderate dehydration induced by acute diarrhea. Compared to ORS II, ROORS could decrease the intravenous supplement of fluid and lower the risk of hypernatremia.

  10. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  11. Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA

    Friedmann, P.S.; Wren, F.E.; Matthews, J.N.

    1990-01-01

    Epidermal melanocytes (MC) synthesize melanin in response to ultraviolet radiation (UVR). The mechanisms mediating the UV-induced activation of melanogenesis are unknown but since UVR induces turnover of membrane phospholipids generating prostaglandins (PGs) and other products, it is possible that one of these might provide the activating signal. We have examined the effects of prostaglandins (PGs) E1, E2, D2, F2 alpha, and di-acyl glycerol upon the UV-induced responses of cultured human MC and the Cloudman S91 melanoma cell line. The PGs had little effect on unirradiated cells and did not alter the response to UVR in either human MC or S91 melanoma cells. However, a synthetic analogue of di-acyl glycerol, 1-oleyl 2-acetyl glycerol (OAG), caused a significant (P less than 0.0001), dose-related augmentation of melanin content both in human MC (seven-fold) and S91 cells (three-fold). UVR caused a significant augmentation of the OAG-induced melanogenesis of both human MC and S91 cells. Since OAG is known to activate protein kinase C, it was possible that the observed modulation of the UVR signal could be via that pathway. Di-octanoyl glycerol, another di-acyl glycerol, which activates kinase C, caused a small (70%) increase in melanogenesis in MC which was not altered by UVR. However, 12-0 tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, had no significant effect on either basal or UV-induced melanin synthesis in either cell type. These data suggest that the UV-induced signal activating melanogenesis could be mediated by di-acyl glycerol. Furthermore, they imply that the signal is transduced via an alternative, pathway that might be independent of protein kinase C

  12. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    Almeida João R M

    2012-07-01

    Full Text Available Abstract The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  13. Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia.

    da Costa, Diego Vicente; Dias, Jorge; Colen, Rita; Rosa, Priscila Vieira; Engrola, Sofia

    2017-04-01

    This study investigated the effect of dietary glycerol on the metabolism of juvenile tilapia (Oreochromis mossambicus) and to determine its metabolic fate. The experimental diets contained 0% (Group CON), 5% (Group G5) and 15% glycerol (Group G15) and were fed for 40 d to apparent satiation, three times a day. For the metabolism trials, six fish from each treatment were randomly chosen and tube-fed with five pellets labelled with 14 C-glycerol [ 14 C(U)] in order to evaluate the absorption, catabolism, retention and partition of glycerol in muscle and liver. Group G5 presented the highest 14 C-glycerol retention and the lowest catabolism, with no significant differences between Groups CON and G15. In Group CON, the highest percentage of 14 C was incorporated in muscle lipids; with no significant differences between Groups G5 and G15. Furthermore, no treatment effects were found for hepatic 14 C-lipid and for 14 C in hepatic and muscle non-lipid extract. In the non-lipid and non-protein fraction, the highest radioactivity was measured in livers of Group G5, however no significant differences were found for this fraction between Groups CON and G15 in liver and for all treatments in muscle. The results of the present study can have practical implications in diet formulations for tilapia and for other aquaculture species with similar feeding pattern since juvenile tilapia are able to metabolise dietary glycerol into lipids, protein and/or carbohydrates and to use it as energy source.

  14. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  15. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  16. Effects of 2-deoxy-D-glucose, oligomycin and theophylline on in vitro glycerol metabolism in rat adipose tissue: response to insulin and epinephrine

    Dominguez, M C; Herrera, E [Barcelona Univ. (Spain). Catedra de Fisiologia General

    1976-01-01

    The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basic or epinephrine-stimulated glycerol production but decreased the uptake of 1-/sup 14/C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basic production of glycerol, but it inhibited the affect of epinephrine on this parameter as well as the uptake and utilization of 1-/sup 14/C-glycerol. Theophylline enhanced the production of glycerol by the tissue, and this effect was not further augmented by epinephrine. Theophylline also inhibited the uptake and utilization of 1-/sup 14/C-glycerol; the most pronounced effect of theophylline was observed in the formation of /sup 14/C-fatty acids from 1-/sup 14/C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect the ability of adipose tissue to metabolize glycerol more intensely than the ability to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms for the release of glycerol from the tissue.

  17. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil

    Xu, Yuan; Nordblad, Mathias; Nielsen, Per M.

    2011-01-01

    Immobilized lipases can be used in biodiesel production to overcome many disadvantages of the conventional base-catalyzed process. However, the glycerol by-product poses a potential problem for the biocatalytic process as it is known to inhibit immobilized lipases, most likely by clogging...... of the catalyst particles. In this paper, this negative effect was further investigated and confirmed in ethanolysis of rapeseed oil. A dyeing method was developed for in situ visualization of glycerol in order to study its partitioning and accumulation during the ethanolysis reaction. The method was used...

  18. Thermal Reshaping of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures

    Al Sayed A. Al-Sherbini

    2010-01-01

    Full Text Available Gold nanorods (Nds with aspect ratios of 4, 3.5, and 2.8 were prepared by the electrochemical method. The nanorods were thermally studied in binary solvents of aqueous glycerol at different ratios (25%–75%. The results illustrated that the longitudinal surface plasmon resonance (SPL is strongly dependent on the dielectric constant. The maximum absorption is red shifted with increasing the glycerol/water ratio. This was attributed to the decreasing value of the dielectric constant of the binary solvents. Moreover, by increasing the temperatures, the results showed relative instability of the gold nanorods. This attributed to the relative instability of the micelle capping the nanorods.

  19. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol

    Vaheri, M.P.; Vaheri, M.E.O.; Kaupinen, V.S.

    1979-01-01

    Production and release of cellulolytic enzymes by T. reesei QM 9414 were studied under induced and non-induced conditions and glycerol, respectively, as the only C source. There was a base level of cell debris-bound hydrolytic activity against filter paper and p-nitrophenyl glycoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper- and CMC-hydrolyzing enzymes, which were actively released even in the early stages of cultivation. Beta-Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.

  20. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  1. Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-11-01

    The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.

  2. Study of the correlation between the temperature dependence of viscosity and excess quantities in glycerol

    Magazu, Salvatore; Migliardo, Federica

    2008-01-01

    The aim of the present paper is to investigate the behaviour of the kinematic viscosity, mean-square displacement and free volume of glycerol in order to theoretically and experimentally evaluate the fragility degree. Starting from the dependence of viscosity on temperature, the behaviour of the mean-square displacement and free volume of glycerol is analysed in order to point out the linear relationships between the logarithm of viscosity and the excess mean-square displacement and the excess free volume. As a conclusion, two fragility definitions, based on the observed links, are discussed

  3. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  4. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  6. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  7. CHANGES OF GLYCEROL CONTENT IN DIAPAUSE LARVAEOF THE ORANGE WHEAT BLOSSOM MIDGE, SITODIPLOSIS MOSELLANA (GEHIN) IN VARIOUS SEASONS

    Jun-xiangWu; FengYuan

    2004-01-01

    The glycerol contents in diapause larvae of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin), collected from various seasons, were measured. The results showed that there was less glycerol content in larvae during living on the wheat head. Content of glycerol began to increase significantly when the larvae left the wheat head and entered the soil. A change trend of upper- lower- upper- lower in larvae glycerol contents during diapause in soil was observed from June to April of next year. More glycerol could be examined in larvae collected in summer and winter than in spring and autumn. There was not more glycerol in cocooned larvae than that in non-cocooned larvae during various seasons from the point of statistics. Comparing the glycerol content of larvae being diapause in the first year with that of larvae in the second year, there was yet no obvious difference when larvae were collected in the same season belonged to different years. Therefore, it is shown that the content of glycerol in larvae of the wheat midge in diapause is affected mainly by the seasons or diapause intensity.

  8. Synthesis of bio-additives: transesterification of ethyl acetate with glycerol using homogeneous or heterogeneous acid catalysts

    Meireles, Bruno A.; Pereira, Vera Lucia P., E-mail: patrocinio@nppn.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisas de Produtos Naturais

    2013-01-15

    A new catalytic route with potential practical interest to sustainable production of bioadditives from glycerol is described. Ethyl acetate was transesterified with glycerol, in the ratio glycerol:EtOAc 1:10, at 25 or 90 deg C using 0.1 equiv.of H{sub 2}SO{sub 4} or TsOH, as homogeneous catalysts. H{sub 2}SO{sub 4} led to the total glycerol consumption in 2 h. In the equilibrium, attained in 9 h, 100% yield of a diacetin:triacetin (55:45) mixture was formed. Using Amberlyst Registered-Sign 15 dry and Amberlyst Registered-Sign 16 wet in 1:30 glycerol:EtOAc ratio and reflux at 90 Degree-Sign C the total glycerol consumption was achieved in 2 and 10h, respectively. The lower reactivity of Amberlyst-16 wet was explained in terms of deactivation of acid sites and decrease in glycerol diffusion to the inner resin pores, both factors caused by adsorbed water. The kinetics of glycerol transformation and product distribution in the equilibrium in relation to the H{sub 2}SO{sub 4}, Amberlyst-15 (dry) and Amberlyst-16 (wet) catalyzed reactions were measured. (author)

  9. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  10. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  11. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    Lu Chen

    Full Text Available Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA followed by reduction to 1,3-propandiol (1,3-PDO with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP. The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7 belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and

  12. Determination of steady state and nonsteady-state glycerol kinetics in humans using deuterium-labeled tracer

    Beylot, M.; Martin, C.; Beaufrere, B.; Riou, J.P.; Mornex, R.

    1987-01-01

    Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1

  13. Influence of osmolarity of contrast medium and saline flush on computed tomography angiography: Comparison of monomeric and dimeric iodinated contrast media with different iodine concentrations at an identical iodine delivery rate

    Kishimoto, Miori; Doi, Shoko; Shimizu, Junichiro; Lee, Ki-Ja; Iwasaki, Toshiroh; Miyake, Yoh-Ichi; Yamada, Kazutaka

    2010-01-01

    Purpose: To evaluate the influence of osmolarity of iodinated contrast media and saline flush on the contrast effect in thoracic computed tomography angiography (CTA) at an identical iodine delivery rate (IDR). Materials and methods: Seven beagles were used in a cross-over experiment. The contrast media used were iohexol 350 mgI/ml (IOH350; osmolarity 844 mmol/kg) and iodixanol 320 mgI/ml (IDX320; osmolarity 290 mmol/kg). Each contrast medium was administered to groups with and without saline flush at 40.0 mgI/kg/s for all experiments. Dynamic CT scanning was performed at the ninth thoracic vertebra level. The peak value, area under the curve (AUC), and time to peak (TTP) were calculated from the time attenuation curves of the pulmonary artery and aorta. Results: There was no significant difference between IOH350 and IDX320 with or without saline flush in the peak values for the pulmonary artery and aorta. AUC was significantly higher in groups with saline flush for both contrast media and arteries (p < 0.05) with no significant difference between contrast media. TTP was significantly longer in groups with saline flush than without saline flush for both contrast media and arteries (p < 0.05), with no significant difference between contrast media. Conclusions: There were no significant differences in the contrast effects of monomeric IOH350 and dimeric IDX320 in thoracic CTA when used at an identical IDR. Moreover, saline flush prolonged the peak duration at 600 mgI/kg.

  14. Oxidation of Glycerol and Propanediols in Methanol over Heterogeneous Gold Catalysts

    Taarning, Esben; Madsen, Anders Theilgaard; Marchetti, Jorge

    2008-01-01

    Aerobic oxidation of glycerol over metal oxide supported gold nanoparticles in methanol results in the formation of dimethyl mesoxalate in selectivities up to 89% at full conversion. The oxidative esterification takes place in methanol, acting both as solvent and reactant, and in the presence of ...

  15. Glycerol production by Oenococcus oeni during sequential and simultaneous cultures with wine yeast strains.

    Ale, Cesar E; Farías, Marta E; Strasser de Saad, Ana M; Pasteris, Sergio E

    2014-07-01

    Growth and fermentation patterns of Saccharomyces cerevisiae, Kloeckera apiculata, and Oenococcus oeni strains cultured in grape juice medium were studied. In pure, sequential and simultaneous cultures, the strains reached the stationary growth phase between 2 and 3 days. Pure and mixed K. apiculata and S. cerevisiae cultures used mainly glucose, producing ethanol, organic acids, and 4.0 and 0.1 mM glycerol, respectively. In sequential cultures, O. oeni achieved about 1 log unit at 3 days using mainly fructose and L-malic acid. Highest sugars consumption was detected in K. apiculata supernatants, lactic acid being the major end-product. 8.0 mM glycerol was found in 6-day culture supernatants. In simultaneous cultures, total sugars and L-malic acid were used at 3 days and 98% of ethanol and glycerol were detected. This study represents the first report of the population dynamics and metabolic behavior of yeasts and O. oeni in sequential and simultaneous cultures and contributes to the selection of indigenous strains to design starter cultures for winemaking, also considering the inclusion of K. apiculata. The sequential inoculation of yeasts and O. oeni would enhance glycerol production, which confers desirable organoleptic characteristics to wines, while organic acids levels would not affect their sensory profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1

    Reungsang, Alissara; Sittijunda, Sureewan; Angelidaki, Irini

    2013-01-01

    Factors affecting simultaneous hydrogen and ethanol production from waste glycerol by a newly isolated bacterium Enterobacter aerogenes KKU-S1 were investigated employing response surface methodology (RSM) with central composite design (CCD). The Plackett-Burman design was first used to screen...

  17. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Using Glycerol as Carbon Source

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The enzyme transglutaminase (TG catalyses the formation of covalent bonds between adjacent proteins, thereby improving the gel structure of proteins and has important applications for the food industry. The aims of this work were: (i to elucidate the effect of agitation speed during the biotechnological production of TG by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source; and (ii to improve TG production by optimising the composition of media based on glycerol, xylose and casein. An agitation speed of 250 rpm and a fermentation time of 72 h resulted in the optimal enzymatic activity (0.628 U/mL with a productivity of 0.087 U/(mL·h. The composition of media with glycerol, xylose and casein were optimised using an experimental design to improve TG production. The model predicts that the maximum TG activity (0.725 U/mL can be obtained using glycerol 50.5 g/L and casein 20 g/L without the addition of xylose.

  18. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    Bouchet, M I De Barros; Matta, C; Le-Mogne, Th; Martin, J Michel; Zhang, Q; III, W Goddard; Kano, M; Mabuchi, Y; Ye, J

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13 C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp 3 ) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp 2 and sp 1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp 1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  19. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J.M. Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-01-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and

  20. Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts

    Shiju, N.R.; Brown, D.R.; Wilson, K.; Rothenberg, G.

    2010-01-01

    The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption),

  1. Synthesis of Acrolein from Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration

    Akhmad Zainal Abidin

    2016-02-01

    Full Text Available Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration. The catalyst was prepared by three different methods: hydrothermal (catalyst A, deposition at Fe/P = 1.15 (catalyst B, and deposition at Fe/P = 1.20 (catalyst C. The experimental reaction temperature was varied at 220, 240 and 260 °C under constant atmospheric pressure. The results showed that catalyst C provided the best yield (91%, followed by catalyst A (90% and catalyst B (82%. The increasing reaction temperature showed a tendency to increase the yield of acrolein, while the presence of oxygen reduced the yield of acrolein and allowed the reaction to produce more side products such as glycerol propanal, acetaldehyde, and propionate. Catalyst reuse without any regeneration resulted in a yield profile of acrolein that continued to decline.

  2. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106.

    Choi, H J; Lim, B R; Park, Y J; Joo, W H

    2017-08-01

    Solvent hypertolerant Pseudomonas sp. BCNU 106 still has some underlying growth limitation in solvents. Therefore, efficient mass cultivation methods are needed to pursue its applications in biotechnology. Pseudomonas sp. BCNU 106 was cultured in a medium supplemented with 0·05 mol l -1 glycerol and cell survival was monitored during its cultivation in the presence of 1% (v/v) toluene. Exogenously supplemented glycerol provided more protection against damage caused by toluene stress and conferred higher solvent tolerance of Pseudomonas sp. BCNU 106 to toluene compared to control Pseudomonas sp. BCNU 106 without the supplementation of glycerol. This low-cost mass cultivation method can be used to efficiently apply solvent-tolerant bacteria in biotransformation and biodegradation. Protection against toluene and improvement in bacterial cell growth by supplementation of glycerol in the presence of toluene are demonstrated in this study. This result can be used to solve growth-related hindrances of solvent-tolerant bacteria and establish their low-cost mass cultivation, thereby broadening their industrial and environmental applications. © 2017 The Society for Applied Microbiology.

  3. Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

    Sugiyama, K.; Calzavarini, E.; Grossmann, S.; Lohse, Detlef

    2007-01-01

    We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed temperature difference �

  4. ETHANOL DEHYDRATION IN PACKED DISTILLATION COLUMN USING GLYCEROL AS ENTRAINER: EXPERIMENTS AND HETP EVALUATION

    W. L. R. Souza

    Full Text Available Abstract The ethanol-water separation is very important because ethanol is widely applied in the chemical industry and its use as a fuel can reduce the pollution emitted to the air. However, anhydrous ethanol production using conventional distillation is impossible, at atmospheric pressure, due to the presence of an azeotrope. In the present work, experimental tests were carried out in order to evaluate the use of glycerol as an entrainer, in substitution of ethylene glycol in an extractive distillation. The use of glycerol is motivated by the biodiesel production units, due to the fact that it is the main byproduct and a new market is necessary to consume its overproduction. The experiments were carried out in a distillation column packed with Raschig rings, varying the glycerol/feed (ethanol and water ratio, S/F, from 0.5 to 0.9. The samples were analyzed using a digital densimeter. The results showed that glycerol was effective to promote ethanol dehydration and the presence of an azeotrope was not observed using a solvent to feed ratio (S/F equal to 0.9. Some empirical correlations were investigated to evaluate the HETP (Height Equivalent to a Theoretical Plate, and the results provided a useful tool for designing a packed bed column for ethanol-water separation.

  5. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  6. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    Pérez-Torrado, R.; Oliveira, B. M.; Zemančíková, Jana; Sychrová, Hana; Querol, A.

    2016-01-01

    Roč. 7, Mar 31 (2016), s. 435 ISSN 1664-302X R&D Projects: GA ČR(CZ) GA15-03708S EU Projects: European Commission(XE) 264717 - CORNUCOPIA Institutional support: RVO:67985823 Keywords : Saccharomyces * stress tolerance * glycerol * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  7. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  8. Chiral gas chromatography for the determination of 1,2-O-isopropylidene-sn-glycerol stereoisomers

    Dröge, M.J; Bos, R.; Woerdenbag, H.J.; Quax, Wim; Droge, MJ

    2003-01-01

    A stereospecific gas chromatography (GC) method using a (6-O-tButyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin as the chiral stationary phase has been developed and validated for the determination of the enantiomers of 1,2-O-isopropylidene-sn-glycerol (IPG), an important chiral synthon, in

  9. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca

    2015-01-01

    quality were all invariant to the reaction temperature. By increasing the crude glycerol to aspen wood mass ratio from 0:1 to 3:1, char yield was decreased from 18.3% (only aspen wood) to 3.4%. Furthermore, the biocrude quality in terms of the effective hydrogen-to-carbon ratio (H/Ceff) was significantly...

  10. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  11. Synthesis of substituted 1,3-diesters of glycerol using wittig chemistry.

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Bryant, Joseph

    2014-05-01

    1,3-di-O-Cinnamoyl-glycerol is a natural compound isolated from a Jamaican medicinal plant commonly referred to as Ball moss (Tillandsia recurvata). The synthesis of this compound was achieved via a Wittig chemistry process. The synthetic approach started with acylation of a di-protected glycerol with cinnamoyl chloride, deprotection of the glycerol moiety, reaction of the primary alcohol with bromo acetylbromide followed by treatment with triphenyl phosphine to give the corresponding phosphonium bromide. The phosphonium bromide was then converted in situ to the Wittig reagent which is the basis for a novel route to 1,3-di-O-cinnamoyl glycerol. Four analogs were also synthesized, three of which are new and are being reported in this article for the first time. The new compounds include 3-(3,4-diemthoxy-phenyl)-acrylic acid 2-hydroxy-3-(3-ptolyl-acryloyloxy)-propyl ester (3), 2-acetoxy-5-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop- 1-enyl)benzoic acid (4) and 4-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (5). The compounds showed no activity in our anticancer assay.

  12. Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by alpha-tocopheryl succinate

    Rauchová, Hana; Vokurková, Martina; Drahota, Zdeněk

    2014-01-01

    Roč. 53, AUG (2014), s. 409-413 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : brown adipose tissue mitochondria * oxygen consumption * glycerol-3-phosphate * succinate * reactive oxygen species Subject RIV: ED - Physiology Impact factor: 4.046, year: 2014

  13. Edible Film from the Pectin of Papaya Skin (The Study of Cassava Starch and Glycerol Addition)

    Rosida; Sudaryati; Yahya, A. M.

    2018-01-01

    The production of edible cooking made from the pectin of papaya skin with cassava starch and glycerol adition had been studied. The usage of pectin of papaya skin was one way to use papaya skin waste in order to raise its economic value. The aim of this study was to study the effect of cassava starch and glycerol concentration on the product qualities and to determine the the best treatment in making a good quality adible film and acceptable by the consumer. This research used completely randomized design in factorial patern with two factors. The first factor was cassava starch concentration (25%, 35% and 45%) and the second factor was glycerol concentration (20 %, 15% and 10). The data were analyzed by Analysis of Variance (Anova) and Duncan’s Multiple Range Test to detect the difference between the treatment. The best treatment was 25% cassava starch addition and 10% glycerol concentration which produced edible film which had moisture content of 21.16%, thickness of 0.023 mm, tensile strength of 1.900 N, elasticity of 14.223%, and vapor transmission rate of 116.963 g/m2/24 hours. So the production of edible film from papaya skin pectin was potential to be developed.

  14. Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix

    Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...

  15. The role of glycerol transporters in yeast cells in various physiological and stress conditions

    Dušková, Michala; Borovikova, D.; Herynková, Pavla; Rapoport, A.; Sychrová, Hana

    2015-01-01

    Roč. 362, č. 3 (2015), s. 1-8 ISSN 0378-1097 R&D Projects: GA ČR(CZ) GAP503/10/0307 Institutional support: RVO:67985823 Keywords : Saccharomyces cerevisiae * glycerol transport * desiccation * osmotic stress Subject RIV: EE - Microbiology, Virology Impact factor: 1.858, year: 2015

  16. The effect of glycerol on regional cerebral blood flow, blood volume and oxygen metabolism

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Kobayashi, Akira; Yonekura, Yoshiharu; Nishizawa, Sadahiko.

    1989-01-01

    Using positron emission tomography with 15 O-labelled CO 2 , O 2 and CO gases, the effects of glycerol on regional cerebral blood flow (CBF), blood volume (CBV) and oxygen metabolism (CMRO 2 ) were investigated in 6 patients with meningioma accompanying peritumoral brain edema. The same study was done in 5 normal volunteers. The changes of blood gases, hematocrit and hemoglobin were also examined. After a drip infusion of glycerol, the regional CBF increased not only in the peritumoral cortex and white matter but also in the intact cortex and white matter on the contralateral side. The increase of CBF was extensive and substantially there were no regional differences. In contrast, the changes of CMRO 2 were not significant. This was derived from the increase in oxygen extraction fraction throughout extensive areas including the peritumoral area. There were no changes in CBV. Hematocrit and hemoglobin decreased to a small degree. In the normal volunteers, the same findings were noted. Thus, glycerol increases the functional reserve for cerebral oxygen metabolism, not only in the peritumoral regions but also in the intact regions. The effects of glycerol on hemodynamics and metabolism were discussed with reference to some differences from mannitol. (author)

  17. Mathematical modeling and experimental validation of Phaeodactylum tricornutum microalgae growth rate with glycerol addition

    Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)

    2010-07-01

    The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare

  18. Production of Microbial Transglutaminase on Media Made from Sugar Cane Molasses and Glycerol

    Manuel Vázquez

    2009-01-01

    Full Text Available Transglutaminase is an enzyme that catalyses an acyl transfer reaction between γ-carboxamide groups of glutaminyl residues and lysine residues in proteins. Due to this property, this enzyme is used for enhancing textural properties of protein-rich food. The transglutaminase used as food additive is obtained by microorganisms, mainly by Streptoverticillium ladakanum. On the other hand, sugar cane molasses is a viscous liquid rich in noncrystallized carbohydrates (saccharose, glucose and fructose. In this work, the feasibility of using sugar cane molasses as a carbon source for the production of microbial transglutaminase by Streptoverticillium ladakanum NRRL 3191 has been studied. Carbon sources including sugar cane molasses (60 g of total sugars per L, glycerol (60 g/L and their mixture in a ratio of 1:1 (30 g/L of each were evaluated. Time course of microbial growth, transglutaminase activity and carbon source consumption were determined every 24 h during 120 h of fermentations at three agitation speeds (200, 300 or 400 rpm. The results showed that with the increase in agitation speed, the biomass concentration increased up to 8.39 g/L in the medium containing sugar cane molasses alone or the mixture of molasses and glycerol. The highest transglutaminase activity was obtained at 400 rpm in the medium containing a mixture of molasses and glycerol, reaching 0.460 U/mL, while in the medium containing sugar cane molasses alone, the activity was 0.240 U/mL, and using glycerol alone it was 0.250 U/mL. These results show that sugar cane molasses is a suitable medium for transglutaminase production when it is combined with glycerol.

  19. Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties.

    Li, Xinda; Hong, Albert T-L; Naskar, Nilanjon; Chung, Hyun-Joong

    2015-05-11

    Poly(glycerol sebacate) (PGS) and its derivatives make up an attractive class of biomaterial owing to their tunable mechanical properties with programmable biodegradability. In practice, however, the application of PGS is often hampered by frequent inconsistency in reproducing process conditions. The inconsistency stems from the volatile nature of glycerol during the esterification process. In this study, we suggest that the degree of esterification (DE) can be used to predict precisely the physical status, the mechanical properties, and the degradation of the PGS materials. Young's modulus is shown to linearly increase with DE, which is in agreement with an entropic spring theory of rubbers. To provide a processing guideline for researchers, we also provide a physical status map as a function of curing temperature and time. The amount of glycerol loss, obtainable by monitoring the evolution of the total mass loss and the DE during synthesis, is shown to make the predictions even more precise. We expect that these strategies can be applicable to different categories of polymers that involve condensation polymerization with the volatility of the reactants. In addition, we demonstrate that microwave-assisted prepolymerization is a time- and energy-efficient pathway to obtain PGS. For example, 15 min of microwave time is shown to be as efficient as prepolymerization in nitrogen atmosphere for 6 h at 130 °C. The quick synthesis method, however, causes a severe evaporation of glycerol, resulting in a large distortion in the monomer ratio between glycerol and sebacic acid. Consequently, more rigid PGS is produced under a similar curing condition compared to the conventional prepolymerization method. Finally, we demonstrate that the addition of molecularly rigid cross-linking agents and network-structured inorganic nanoparticles are also effective in enhancing the mechanical properties of the PGS-derived materials.

  20. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    Galera, S.; Gutiérrez Ortiz, F.J.

    2015-01-01

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO 2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO 2 -eq/kg H 2 . • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H 2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO 2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO 2 -eq per kg H 2 produced. Additionally, the environmental profile of SCWR process was compared to other H 2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H 2 and power production by SCWR of glycerol