WorldWideScience

Sample records for high order statistical

  1. High order statistical signatures from source-driven measurements of subcritical fissile systems

    International Nuclear Information System (INIS)

    Mattingly, J.K.

    1998-01-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements

  2. Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-06-01

    The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework for the computation of the higher-order statistics of the channel capacity over generalized fading channels. As such, this novel framework for the higher-order statistics results in simple, closed-form expressions which are shown to be asymptotically tight bounds in the high signal-to-noise ratio (SNR) regime of a variety of fading environment. In addition, it reveals the existence of differences (i.e., constant capacity gaps in log-domain) among different fading environments. By asymptotically tight bound we mean that the high SNR limit of the difference between the actual higher-order statistics of the channel capacity and its asymptotic bound (i.e., lower bound) tends to zero. The mathematical formalism is illustrated with some selected numerical examples that validate the correctness of our newly derived results. © 2012 IEEE.

  3. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  4. Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Serre, Eric

    2015-01-01

    Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation

  5. Infrared maritime target detection using the high order statistic filtering in fractional Fourier domain

    Science.gov (United States)

    Zhou, Anran; Xie, Weixin; Pei, Jihong

    2018-06-01

    Accurate detection of maritime targets in infrared imagery under various sea clutter conditions is always a challenging task. The fractional Fourier transform (FRFT) is the extension of the Fourier transform in the fractional order, and has richer spatial-frequency information. By combining it with the high order statistic filtering, a new ship detection method is proposed. First, the proper range of angle parameter is determined to make it easier for the ship components and background to be separated. Second, a new high order statistic curve (HOSC) at each fractional frequency point is designed. It is proved that maximal peak interval in HOSC reflects the target information, while the points outside the interval reflect the background. And the value of HOSC relative to the ship is much bigger than that to the sea clutter. Then, search the curve's maximal target peak interval and extract the interval by bandpass filtering in fractional Fourier domain. The value outside the peak interval of HOSC decreases rapidly to 0, so the background is effectively suppressed. Finally, the detection result is obtained by the double threshold segmenting and the target region selection method. The results show the proposed method is excellent for maritime targets detection with high clutters.

  6. Morphological representation of order-statistics filters.

    Science.gov (United States)

    Charif-Chefchaouni, M; Schonfeld, D

    1995-01-01

    We propose a comprehensive theory for the morphological bounds on order-statistics filters (and their repeated iterations). Conditions are derived for morphological openings and closings to serve as bounds (lower and upper, respectively) on order-statistics filters (and their repeated iterations). Under various assumptions, morphological open-closings and close-openings are also shown to serve as (tighter) bounds (lower and upper, respectively) on iterations of order-statistics filters. Simulations of the application of the results presented to image restoration are finally provided.

  7. Δim-lacunary statistical convergence of order α

    Science.gov (United States)

    Altınok, Hıfsı; Et, Mikail; Işık, Mahmut

    2018-01-01

    The purpose of this work is to introduce the concepts of Δim-lacunary statistical convergence of order α and lacunary strongly (Δim,p )-convergence of order α. We establish some connections between lacunary strongly (Δim,p )-convergence of order α and Δim-lacunary statistical convergence of order α. It is shown that if a sequence is lacunary strongly (Δim,p )-summable of order α then it is Δim-lacunary statistically convergent of order α.

  8. Distributional Properties of Order Statistics and Record Statistics

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Khan

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Distributional properties of the order statistics, upper and lower records have been utilized to characterize distributions of interest. Further, one sided random dilation and contraction are utilized to obtain the distribution of non-adjacent ordered statistics and also their important deductions are discussed.

  9. Detection of Doppler Microembolic Signals Using High Order Statistics

    Directory of Open Access Journals (Sweden)

    Maroun Geryes

    2016-01-01

    Full Text Available Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of microemboli. The most common standard detection is achieved through the Doppler energy signal and depends on an empirically set constant threshold. On the other hand, in the past few years, higher order statistics have been an extensive field of research as they represent descriptive statistics that can be used to detect signal outliers. In this study, we propose new types of microembolic detectors based on the windowed calculation of the third moment skewness and fourth moment kurtosis of the energy signal. During energy embolus-free periods the distribution of the energy is not altered and the skewness and kurtosis signals do not exhibit any peak values. In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis signals exhibit peaks, corresponding to the latter emboli. Applied on real signals, the detection of microemboli through the skewness and kurtosis signals outperformed the detection through standard methods. The sensitivities and specificities reached 78% and 91% and 80% and 90% for the skewness and kurtosis detectors, respectively.

  10. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  11. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    Science.gov (United States)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with

  12. λ (Δim) -statistical convergence of order α

    Science.gov (United States)

    Colak, Rifat; Et, Mikail; Altin, Yavuz

    2017-09-01

    In this study, using the generalized difference operator Δim and a sequence λ = (λn) which is a non-decreasing sequence of positive numbers tending to ∞ such that λn+1 ≤ λn+1, λ1 = 1, we introduce the concepts of λ (Δim) -statistical convergence of order α (α ∈ (0, 1]) and strong λ (Δim) -Cesàro summablility of order α (α > 0). We establish some connections between λ (Δim) -statistical convergence of order α and strong λ (Δim) -Cesàro summablility of order α. It is shown that if a sequence is strongly λ (Δim) -Cesàro summable of order α, then it is λ (Δim) -statistically convergent of order β in case 0 < α ≤ β ≤ 1.

  13. The German Birth Order Register - order-specific data generated from perinatal statistics and statistics on out-of-hospital births 2001-2008

    OpenAIRE

    Michaela Kreyenfeld; Rembrandt D. Scholz; Frederik Peters; Ines Wlosnewski

    2010-01-01

    Until 2008, Germany’s vital statistics did not include information on the biological order of each birth. This resulted in a dearth of important demographic indicators, such as the mean age at first birth and the level of childlessness. Researchers have tried to fill this gap by generating order-specific birth rates from survey data, and by combining survey data with vital statistics. This paper takes a different approach by using hospital statistics on births to generate birth order-specific...

  14. Robust Combining of Disparate Classifiers Through Order Statistics

    Science.gov (United States)

    Tumer, Kagan; Ghosh, Joydeep

    2001-01-01

    Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In this article we investigate a family of combiners based on order statistics, for robust handling of situations where there are large discrepancies in performance of individual classifiers. Based on a mathematical modeling of how the decision boundaries are affected by order statistic combiners, we derive expressions for the reductions in error expected when simple output combination methods based on the the median, the maximum and in general, the ith order statistic, are used. Furthermore, we analyze the trim and spread combiners, both based on linear combinations of the ordered classifier outputs, and show that in the presence of uneven classifier performance, they often provide substantial gains over both linear and simple order statistics combiners. Experimental results on both real world data and standard public domain data sets corroborate these findings.

  15. Order-specific fertility estimates based on perinatal statistics and statistics on out-of-hospital births

    OpenAIRE

    Kreyenfeld, Michaela; Peters, Frederik; Scholz, Rembrandt; Wlosnewski, Ines

    2014-01-01

    Until 2008, German vital statistics has not provided information on biological birth order. We have tried to close part of this gap by providing order-specific fertility rates generated from Perinatal Statistics and statistics on out-of-hospital births for the period 2001-2008. This investigation has been published in Comparative Population Studies (CPoS) (see Kreyenfeld, Scholz, Peters and Wlosnewski 2010). The CPoS-paper describes how data from the Perinatal Statistics and statistics on out...

  16. Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework

  17. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  18. Order, disorder and generalized statistics

    International Nuclear Information System (INIS)

    Marino, E.C.; Swieca, J.A.

    1980-06-01

    We generalize the prescription of Kadanoff and Ceva for the computation of disorder variables correlation functions in the Ising model for continuous field theories with U(1) symmetry. By considering the product of order and disorder variables, we obtain a path integral representation for fields with generalized statistics. We discuss in detail the cases of massless Thirring and Schwinger models. (Author) [pt

  19. Order, disorder and generalized statistics

    International Nuclear Information System (INIS)

    Marino, E.C.; Swieca, J.A.; Pontificia Universidade Catolica do Rio de Janeiro

    1980-01-01

    We generalize the prescription of Kadanoff and Ceva for the computation of disorder variable correlation functions in the Ising model for continuous field theories with U(1) symmetry. By considering the product of order and disorder variables, we obtain a path integral representation for fields with generalized statistics. We discuss in detail the cases of massless Thirring and Schwinger models. (orig.)

  20. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    Science.gov (United States)

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  1. On the Limit Distribution of Lower Extreme Generalized Order Statistics

    Indian Academy of Sciences (India)

    In a wide subclass of generalized order statistics ( g O s ) , which contains most of the known and important models of ordered random variables, weak convergence of lower extremes are developed. A recent result of extreme value theory of m − g O s (as well as the classical extreme value theory of ordinary order statistics) ...

  2. Sensitivity analysis of ranked data: from order statistics to quantiles

    NARCIS (Netherlands)

    Heidergott, B.F.; Volk-Makarewicz, W.

    2015-01-01

    In this paper we provide the mathematical theory for sensitivity analysis of order statistics of continuous random variables, where the sensitivity is with respect to a distributional parameter. Sensitivity analysis of order statistics over a finite number of observations is discussed before

  3. Perspectives on the application of order-statistics in best-estimate plus uncertainty nuclear safety analysis

    International Nuclear Information System (INIS)

    Martin, Robert P.; Nutt, William T.

    2011-01-01

    Research highlights: → Historical recitation on application of order-statistics models to nuclear power plant thermal-hydraulics safety analysis. → Interpretation of regulatory language regarding 10 CFR 50.46 reference to a 'high level of probability'. → Derivation and explanation of order-statistics-based evaluation methodologies considering multi-variate acceptance criteria. → Summary of order-statistics models and recommendations to the nuclear power plant thermal-hydraulics safety analysis community. - Abstract: The application of order-statistics in best-estimate plus uncertainty nuclear safety analysis has received a considerable amount of attention from methodology practitioners, regulators, and academia. At the root of the debate are two questions: (1) what is an appropriate quantitative interpretation of 'high level of probability' in regulatory language appearing in the LOCA rule, 10 CFR 50.46 and (2) how best to mathematically characterize the multi-variate case. An original derivation is offered to provide a quantitative basis for 'high level of probability.' At root of the second question is whether one should recognize a probability statement based on the tolerance region method of Wald and Guba, et al., for multi-variate problems, one explicitly based on the regulatory limits, best articulated in the Wallis-Nutt 'Testing Method', or something else entirely. This paper reviews the origins of the different positions, key assumptions, limitations, and relationship to addressing acceptance criteria. It presents a mathematical interpretation of the regulatory language, including a complete derivation of uni-variate order-statistics (as credited in AREVA's Realistic Large Break LOCA methodology) and extension to multi-variate situations. Lastly, it provides recommendations for LOCA applications, endorsing the 'Testing Method' and addressing acceptance methods allowing for limited sample failures.

  4. f-lacunary statistical convergence of order (α, β)

    Science.gov (United States)

    Sengul, Hacer; Isik, Mahmut; Et, Mikail

    2017-09-01

    The main purpose of this paper is to introduce the concepts of f-lacunary statistical convergence of order (α, β) and strong f-lacunary summability of order (α, β) of sequences of real numbers for 0 <α ≤ β ≤ 1, where f is an unbounded modulus.

  5. Order statistics & inference estimation methods

    CERN Document Server

    Balakrishnan, N

    1991-01-01

    The literature on order statistics and inferenc eis quite extensive and covers a large number of fields ,but most of it is dispersed throughout numerous publications. This volume is the consolidtion of the most important results and places an emphasis on estimation. Both theoretical and computational procedures are presented to meet the needs of researchers, professionals, and students. The methods of estimation discussed are well-illustrated with numerous practical examples from both the physical and life sciences, including sociology,psychology,a nd electrical and chemical engineering. A co

  6. Efficient nonrigid registration using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan B.; Bab-Hadiashar, Alireza; de Bruijne, Marleen

    2013-01-01

    of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find the important regions for registration and use an appropriate sampling scheme......Non-rigid image registration techniques are widely used in medical imaging applications. Due to high computational complexities of these techniques, finding appropriate registration method to both reduce the computation burden and increase the registration accuracy has become an intense area...... to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments on registration of real lung CT images, with expert annotated landmarks, show...

  7. Exact extreme-value statistics at mixed-order transitions.

    Science.gov (United States)

    Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David

    2016-05-01

    We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.

  8. Statistical inference for the lifetime performance index based on generalised order statistics from exponential distribution

    Science.gov (United States)

    Vali Ahmadi, Mohammad; Doostparast, Mahdi; Ahmadi, Jafar

    2015-04-01

    In manufacturing industries, the lifetime of an item is usually characterised by a random variable X and considered to be satisfactory if X exceeds a given lower lifetime limit L. The probability of a satisfactory item is then ηL := P(X ≥ L), called conforming rate. In industrial companies, however, the lifetime performance index, proposed by Montgomery and denoted by CL, is widely used as a process capability index instead of the conforming rate. Assuming a parametric model for the random variable X, we show that there is a connection between the conforming rate and the lifetime performance index. Consequently, the statistical inferences about ηL and CL are equivalent. Hence, we restrict ourselves to statistical inference for CL based on generalised order statistics, which contains several ordered data models such as usual order statistics, progressively Type-II censored data and records. Various point and interval estimators for the parameter CL are obtained and optimal critical regions for the hypothesis testing problems concerning CL are proposed. Finally, two real data-sets on the lifetimes of insulating fluid and ball bearings, due to Nelson (1982) and Caroni (2002), respectively, and a simulated sample are analysed.

  9. Sub-Poissonian statistics in order-to-chaos transition

    International Nuclear Information System (INIS)

    Kryuchkyan, Gagik Yu.; Manvelyan, Suren B.

    2003-01-01

    We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q parameter and Wigner function that the statistics of oscillatory excitation numbers is drastically changed in the order-to-chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime, the system exhibits the range of sub-Poissonian and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed. The scaling invariance of the quantum statistics is demonstrated and its relation to dissipation and decoherence is studied

  10. On the limit distribution of lower extreme generalized order statistics

    Indian Academy of Sciences (India)

    Abstract. In a wide subclass of generalized order statistics (gOs), which contains most of the known and important models of ordered random variables, weak conver- gence of lower extremes are developed. A recent result of extreme value theory of m−gOs (as well as the classical extreme value theory of ordinary order ...

  11. Ordering statistics of four random walkers on a line

    Science.gov (United States)

    Helenbrook, Brian; ben-Avraham, Daniel

    2018-05-01

    We study the ordering statistics of four random walkers on the line, obtaining a much improved estimate for the long-time decay exponent of the probability that a particle leads to time t , Plead(t ) ˜t-0.91287850 , and that a particle lags to time t (never assumes the lead), Plag(t ) ˜t-0.30763604 . Exponents of several other ordering statistics for N =4 walkers are obtained to eight-digit accuracy as well. The subtle correlations between n walkers that lag jointly, out of a field of N , are discussed: for N =3 there are no correlations and Plead(t ) ˜Plag(t) 2 . In contrast, our results rule out the possibility that Plead(t ) ˜Plag(t) 3 for N =4 , although the correlations in this borderline case are tiny.

  12. Nonparametric Bayesian predictive distributions for future order statistics

    Science.gov (United States)

    Richard A. Johnson; James W. Evans; David W. Green

    1999-01-01

    We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...

  13. Tumor Classification Using High-Order Gene Expression Profiles Based on Multilinear ICA

    Directory of Open Access Journals (Sweden)

    Ming-gang Du

    2009-01-01

    Full Text Available Motivation. Independent Components Analysis (ICA maximizes the statistical independence of the representational components of a training gene expression profiles (GEP ensemble, but it cannot distinguish relations between the different factors, or different modes, and it is not available to high-order GEP Data Mining. In order to generalize ICA, we introduce Multilinear-ICA and apply it to tumor classification using high order GEP. Firstly, we introduce the basis conceptions and operations of tensor and recommend Support Vector Machine (SVM classifier and Multilinear-ICA. Secondly, the higher score genes of original high order GEP are selected by using t-statistics and tabulate tensors. Thirdly, the tensors are performed by Multilinear-ICA. Finally, the SVM is used to classify the tumor subtypes. Results. To show the validity of the proposed method, we apply it to tumor classification using high order GEP. Though we only use three datasets, the experimental results show that the method is effective and feasible. Through this survey, we hope to gain some insight into the problem of high order GEP tumor classification, in aid of further developing more effective tumor classification algorithms.

  14. On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability

    Directory of Open Access Journals (Sweden)

    Işık Mahmut

    2017-01-01

    Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.

  15. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-03-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.

  16. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  17. Higher-order scene statistics of breast images

    Science.gov (United States)

    Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.

    2009-02-01

    Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.

  18. Order statistics and energy-ordered histograms: an analytical approach to continuum gamma-ray spectra

    International Nuclear Information System (INIS)

    Urrego, J.P.; Cristancho, F.

    2001-01-01

    Full text: Fusion-evaporation heavy ion collisions have enable us to explore new regions of phase space E - I, particularly high spin and excitation energy regions, where level densities are so high that modern detectors are unable to resolve individual gamma-ray transitions and consequently the resulting spectrum is continuous and undoubtedly contains a lot of new physics. In spite of that, very few experiments have been designed to extract conclusions about behavior of nuclei in continuum, thus in order to obtain a continuum spectroscopy it is necessary to apply to numerical simulations. In this sense GAMBLE a Monte Carlo based code- is a powerful tool that with some modifications allows us to test a new method to analyze the outcome of experiments focused on the properties of phase space regions in nuclear continuum: The use of Energy-Ordered Spectra (EOS) . Let's suppose that in a experiment is collected all gamma radiation emitted by a specific nucleus in a fixed intrinsic excitation energy range and that the different EOS are constructed. Although it has been shown that comparisons between such EOS and Monte Carlo simulations give information about the level density and the strength function their interpretation is not too clear because the large number of input values needed in a code like GAMBLE. On the other hand, if we could have an analytical description of EOS, the understanding of the underlying physics would be more simple because one could control exactly the involved variables and eventually simulation would be unnecessary. Promissory advances in that direction come from mathematical theory of Order Statistics (OS) In this work it is described the modified code GAMBLE and some simulated EOS for 170 Hf are shown. The simulations are made with different formulations for both level density (Fermi Gas at constant and variable temperature) and gamma strength function (GDR, single particle). Further it is described in detail how OS are employed in the

  19. Generalized statistical convergence of order β for sequences of fuzzy numbers

    Science.gov (United States)

    Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz

    2018-01-01

    In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.

  20. Analytical model of SiPM time resolution and order statistics with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2015-01-01

    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented

  1. Analytical model of SiPM time resolution and order statistics with crosstalk

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy Prospekt 53, Moscow (Russian Federation)

    2015-07-01

    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented.

  2. Removal of impulse noise clusters from color images with local order statistics

    Science.gov (United States)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  3. Handbook of tables for order statistics from lognormal distributions with applications

    CERN Document Server

    Balakrishnan, N

    1999-01-01

    Lognormal distributions are one of the most commonly studied models in the sta­ tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma­ cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only...

  4. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  5. Connection between weighted LPC and higher-order statistics for AR model estimation

    NARCIS (Netherlands)

    Kamp, Y.; Ma, C.

    1993-01-01

    This paper establishes the relationship between a weighted linear prediction method used for robust analysis of voiced speech and the autoregressive modelling based on higher-order statistics, known as cumulants

  6. An MGF-based unified framework to determine the joint statistics of partial sums of ordered random variables

    KAUST Repository

    Nam, Sungsik

    2010-11-01

    Order statistics find applications in various areas of communications and signal processing. In this paper, we introduce an unified analytical framework to determine the joint statistics of partial sums of ordered random variables (RVs). With the proposed approach, we can systematically derive the joint statistics of any partial sums of ordered statistics, in terms of the moment generating function (MGF) and the probability density function (PDF). Our MGF-based approach applies not only when all the K ordered RVs are involved but also when only the Ks(Ks < K) best RVs are considered. In addition, we present the closed-form expressions for the exponential RV special case. These results apply to the performance analysis of various wireless communication systems over fading channels. © 2006 IEEE.

  7. Order-Specific Fertility Rates for Germany
    Estimates from Perinatal Statistics for the Period 2001-2008

    OpenAIRE

    Michaela Kreyenfeld; Rembrandt Scholz; Frederik Peters; Ines Wlosnewski

    2011-01-01

    Until 2008, Germany’s vital statistics did not include information on the biological order of each birth. This resulted in a dearth of important demographic indicators, such as the mean age at first birth and the level of childlessness. Researchers have tried to fill this gap by generating order-specific birth rates from survey data, and by combining survey data with vital statistics. This paper takes a different approach by using Perinatal Statistics to generate birth order-specific fertilit...

  8. An MGF-based unified framework to determine the joint statistics of partial sums of ordered random variables

    KAUST Repository

    Nam, Sungsik; Alouini, Mohamed-Slim; Yang, Hongchuan

    2010-01-01

    Order statistics find applications in various areas of communications and signal processing. In this paper, we introduce an unified analytical framework to determine the joint statistics of partial sums of ordered random variables (RVs

  9. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium.

    Science.gov (United States)

    Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P

    2017-04-27

    High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.

  10. Introducing Switching Ordered Statistic CFAR Type I in Different Radar Environments

    Directory of Open Access Journals (Sweden)

    Saeed Erfanian

    2009-01-01

    Full Text Available In this paper, a new CFAR detector based on a switching algorithm and OS-CFAR for nonhomogeneous background environments is introduced. The new detector is named Switching Ordered Statistic CFAR type I (SOS CFAR I. The SOS CFAR I selects a set of suitable cells and then with the help of the ordering method, estimates the unknown background noise level. The proposed detector does not require any prior information about the background environment and uses cells with similar statistical specifications to estimate the background noise. The performance of SOS CFAR I is evaluated and compared with other detectors such as CA-CFAR, GO-CFAR, SO-CFAR, and OS-CFAR for the Swerling I target model in homogeneous and nonhomogeneous noise environments such as those with multiple interference and clutter edges. The results show that SOS CFAR I detectors considerably reduce the problem of excessive false alarm probability near clutter edges while maintaining good performance in other environments. Also, simulation results confirm the achievement of an optimum detection threshold in homogenous and nonhomogeneous radar environments by the mentioned processor.

  11. A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures

    International Nuclear Information System (INIS)

    Semenova, Olga; Krachler, Regina

    2008-01-01

    Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films

  12. A Modified Jonckheere Test Statistic for Ordered Alternatives in Repeated Measures Design

    Directory of Open Access Journals (Sweden)

    Hatice Tül Kübra AKDUR

    2016-09-01

    Full Text Available In this article, a new test based on Jonckheere test [1] for  randomized blocks which have dependent observations within block is presented. A weighted sum for each block statistic rather than the unweighted sum proposed by Jonckheereis included. For Jonckheere type statistics, the main assumption is independency of observations within block. In the case of repeated measures design, the assumption of independence is violated. The weighted Jonckheere type statistic for the situation of dependence for different variance-covariance structure and the situation based on ordered alternative hypothesis structure of each block on the design is used. Also, the proposed statistic is compared to the existing test based on Jonckheere in terms of type I error rates by performing Monte Carlo simulation. For the strong correlations, circular bootstrap version of the proposed Jonckheere test provides lower rates of type I error.

  13. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    International Nuclear Information System (INIS)

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  14. High-order finite volume advection

    OpenAIRE

    Shaw, James

    2018-01-01

    The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.

  15. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    Science.gov (United States)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  16. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    International Nuclear Information System (INIS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-01-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants. (author)

  17. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  18. Second-Order Statistics for Wave Propagation through Complex Optical Systems

    DEFF Research Database (Denmark)

    Yura, H.T.; Hanson, Steen Grüner

    1989-01-01

    Closed-form expressions are derived for various statistical functions that arise in optical propagation through arbitrary optical systems that can be characterized by a complex ABCD matrix in the presence of distributed random inhomogeneities along the optical path. Specifically, within the second......-order Rytov approximation, explicit general expressions are presented for the mutual coherence function, the log-amplitude and phase correlation functions, and the mean-square irradiance that are obtained in propagation through an arbitrary paraxial ABCD optical system containing Gaussian-shaped limiting...

  19. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present

  20. f ( λ , μ $f_{(\\lambda,\\mu}$ -statistical convergence of order α̃ for double sequences

    Directory of Open Access Journals (Sweden)

    Mahmut Işik

    2017-10-01

    Full Text Available Abstract New concepts of f λ , μ $f_{\\lambda,\\mu }$ -statistical convergence for double sequences of order α̃ and strong f λ , μ $f_{\\lambda,\\mu }$ -Cesàro summability for double sequences of order α̃ are introduced for sequences of (complex or real numbers. Furthermore, we give the relationship between the spaces w α ˜ , 0 2 ( f , λ , μ $w_{\\tilde{\\alpha },0}^{2} ( f,\\lambda,\\mu $ , w α ˜ 2 ( f , λ , μ $w_{\\tilde{\\alpha }}^{2} ( f,\\lambda,\\mu $ and w α ˜ , ∞ 2 ( f , λ , μ $w_{\\tilde{\\alpha},\\infty }^{2} ( f,\\lambda,\\mu $ . Then we express the properties of strong f λ , μ $f_{\\lambda,\\mu }$ -Cesàro summability of order β̃ which is related to strong f λ , μ $f_{\\lambda,\\mu }$ -Cesàro summability of order α̃. Also, some relations between f λ , μ $f_{\\lambda,\\mu }$ -statistical convergence of order α̃ and strong f λ , μ $f_{\\lambda,\\mu }$ -Cesàro summability of order α̃ are given.

  1. Computing the Moments of Order Statistics from Truncated Pareto Distributions Based on the Conditional Expectation

    Directory of Open Access Journals (Sweden)

    Gökhan Gökdere

    2014-05-01

    Full Text Available In this paper, closed form expressions for the moments of the truncated Pareto order statistics are obtained by using conditional distribution. We also derive some results for the moments which will be useful for moment computations based on ordered data.

  2. Practical Statistics

    CERN Document Server

    Lyons, L.

    2016-01-01

    Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.

  3. Joint statistics of partial sums of ordered exponential variates and performance of GSC RAKE receivers over rayleigh fading channel

    KAUST Repository

    Nam, Sungsik; Hasna, Mazen Omar; Alouini, Mohamed-Slim

    2011-01-01

    -interference on GSC RAKE receivers. The major difficulty in these problems is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed

  4. How Much Math Do Students Need to Succeed in Business and Economics Statistics? An Ordered Probit Analysis

    Science.gov (United States)

    Green, Jeffrey J.; Stone, Courtenay C.; Zegeye, Abera; Charles, Thomas A.

    2009-01-01

    Because statistical analysis requires the ability to use mathematics, students typically are required to take one or more prerequisite math courses prior to enrolling in the business statistics course. Despite these math prerequisites, however, many students find it difficult to learn business statistics. In this study, we use an ordered probit…

  5. Statistical optics

    Science.gov (United States)

    Goodman, J. W.

    This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.

  6. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  7. Statistics of fermions in the Randall-Wilkins model for kinetics of general order

    International Nuclear Information System (INIS)

    Nieto H, B.; Azorin N, J.; Vazquez C, G.A.

    2004-01-01

    As a theoretical planning of the thermoluminescence phenomena (Tl), we study the behavior of the systems formed by fermions, which are related with this phenomenon establishing a generalization of the Randall-Wilkins model, as for first order kinetics as for general order (equation of May and Partridge) in which we consider a of Fermi-Dirac statistics. As consequence of this study a new variable is manifested: the chemical potential, also we establish its relationship with some of the other magnitudes already known in Tl. (Author)

  8. High energy behaviour of particles and unified statistics

    International Nuclear Information System (INIS)

    Chang, Y.

    1984-01-01

    Theories and experiments suggest that particles at high energy appear to possess a new statistics unifying Bose-Einstein and Fermi-Dirac statistics via the GAMMA distribution. This hypothesis can be obtained from many models, and agrees quantitatively with scaling, the multiplicty, large transverse momentum, the mass spectrum, and other data. It may be applied to scatterings at high energy, and agrees with experiments and known QED's results. The Veneziano model and other theories have implied new statistics, such as, the B distribution and the Polya distribution. They revert to the GAMMA distribution at high energy. The possible inapplicability of Pauli's exclusion principle within the unified statistics is considered and associated to the quark constituents

  9. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    Science.gov (United States)

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  10. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  11. Statistical learning in high energy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.

    2005-06-16

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot

  12. Introduction to high-dimensional statistics

    CERN Document Server

    Giraud, Christophe

    2015-01-01

    Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise.Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for ha

  13. High impact  =  high statistical standards? Not necessarily so.

    Science.gov (United States)

    Tressoldi, Patrizio E; Giofré, David; Sella, Francesco; Cumming, Geoff

    2013-01-01

    What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors.

  14. High Impact = High Statistical Standards? Not Necessarily So

    Science.gov (United States)

    Tressoldi, Patrizio E.; Giofré, David; Sella, Francesco; Cumming, Geoff

    2013-01-01

    What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors. PMID:23418533

  15. Multiscale high-order/low-order (HOLO) algorithms and applications

    International Nuclear Information System (INIS)

    Chacón, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G.

    2017-01-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  16. Multiscale high-order/low-order (HOLO) algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, L., E-mail: chacon@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Willert, J.A. [Institute for Defense Analyses, Alexandria, VA 22311 (United States); Womeldorff, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  17. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomás; Braggio, Alessandro

    2010-01-01

    Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...

  18. Quantile selection procedure and assoiated distribution of ratios of order statistics from a restricted family of probability distributions

    International Nuclear Information System (INIS)

    Gupta, S.S.; Panchapakesan, S.

    1975-01-01

    A quantile selection procedure in reliability problems pertaining to a restricted family of probability distributions is discussed. This family is assumed to be star-ordered with respect to the standard normal distribution folded at the origin. Motivation for this formulation of the problem is described. Both exact and asymptotic results dealing with the distribution of the maximum of ratios of order statistics from such a family are obtained and tables of the appropriate constants, percentiles of this statistic, are given in order to facilitate the use of the selection procedure

  19. A Separation Algorithm for Sources with Temporal Structure Only Using Second-order Statistics

    Directory of Open Access Journals (Sweden)

    J.G. Wang

    2013-09-01

    Full Text Available Unlike conventional blind source separation (BSS deals with independent identically distributed (i.i.d. sources, this paper addresses the separation from mixtures of sources with temporal structure, such as linear autocorrelations. Many sequential extraction algorithms have been reported, resulting in inevitable cumulated errors introduced by the deflation scheme. We propose a robust separation algorithm to recover original sources simultaneously, through a joint diagonalizer of several average delayed covariance matrices at positions of the optimal time delay and its integers. The proposed algorithm is computationally simple and efficient, since it is based on the second-order statistics only. Extensive simulation results confirm the validity and high performance of the algorithm. Compared with related extraction algorithms, its separation signal-to-noise rate for a desired source can reach 20dB higher, and it seems rather insensitive to the estimation error of the time delay.

  20. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-12-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  1. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  2. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  3. Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics

    Directory of Open Access Journals (Sweden)

    H. Chen

    2015-04-01

    Full Text Available Traditional direction-of-arrival (DOA estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an $ell_1$ minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal.

  4. Statistical image reconstruction for transmission tomography using relaxed ordered subset algorithms

    International Nuclear Information System (INIS)

    Kole, J S

    2005-01-01

    Statistical reconstruction methods offer possibilities for improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications in x-ray computed tomography (CT). To reduce reconstruction times, we have applied (under) relaxation to ordered subset algorithms. This enables us to use subsets consisting of only single projection angle, effectively increasing the number of image updates within an entire iteration. A second advantage of applying relaxation is that it can help improve convergence by removing the limit cycle behaviour of ordered subset algorithms, which normally do not converge to an optimal solution but rather a suboptimal limit cycle consisting of as many points as there are subsets. Relaxation suppresses the limit cycle behaviour by decreasing the stepsize for approaching the solution. A simulation study for a 2D mathematical phantom and three different ordered subset algorithms shows that all three algorithms benefit from relaxation: equal noise-to-resolution trade-off can be achieved using fewer iterations than the conventional algorithms, while a lower minimal normalized mean square error (NMSE) clearly indicates a better convergence. Two different schemes for setting the relaxation parameter are studied, and both schemes yield approximately the same minimal NMSE

  5. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    Science.gov (United States)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  6. Early prediction of lung cancer recurrence after stereotactic radiotherapy using second order texture statistics

    Science.gov (United States)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2014-03-01

    Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.

  7. How Much Math Do Students Need to Succeed in Business and Economics Statistics? An Ordered Probit Analysis

    OpenAIRE

    Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles

    2008-01-01

    Because statistical analysis requires both familiarity with and the ability to use mathematics, students typically are required to take one or more prerequisite math courses prior to enrolling in the business statistics course. Despite these math prerequisites, however, students find it extremely difficult to learn business statistics. In this study, we use an ordered probit model to examine the effect of alternative prerequisite math course sequences on the grade performance of 1,684 busines...

  8. High order depletion sensitivity analysis

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.; Morcos, H.N.

    2002-01-01

    A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations

  9. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  10. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1989-01-01

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  11. Multivariate statistics high-dimensional and large-sample approximations

    CERN Document Server

    Fujikoshi, Yasunori; Shimizu, Ryoichi

    2010-01-01

    A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic

  12. Symmetries, invariants and generating functions: higher-order statistics of biased tracers

    Science.gov (United States)

    Munshi, Dipak

    2018-01-01

    Gravitationally collapsed objects are known to be biased tracers of an underlying density contrast. Using symmetry arguments, generalised biasing schemes have recently been developed to relate the halo density contrast δh with the underlying density contrast δ, divergence of velocity θ and their higher-order derivatives. This is done by constructing invariants such as s, t, ψ,η. We show how the generating function formalism in Eulerian standard perturbation theory (SPT) can be used to show that many of the additional terms based on extended Galilean and Lifshitz symmetry actually do not make any contribution to the higher-order statistics of biased tracers. Other terms can also be drastically simplified allowing us to write the vertices associated with δh in terms of the vertices of δ and θ, the higher-order derivatives and the bias coefficients. We also compute the cumulant correlators (CCs) for two different tracer populations. These perturbative results are valid for tree-level contributions but at an arbitrary order. We also take into account the stochastic nature bias in our analysis. Extending previous results of a local polynomial model of bias, we express the one-point cumulants Script SN and their two-point counterparts, the CCs i.e. Script Cpq, of biased tracers in terms of that of their underlying density contrast counterparts. As a by-product of our calculation we also discuss the results using approximations based on Lagrangian perturbation theory (LPT).

  13. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Science.gov (United States)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a

  14. SOERP, Statistics and 2. Order Error Propagation for Function of Random Variables

    International Nuclear Information System (INIS)

    Cox, N. D.; Miller, C. F.

    1985-01-01

    1 - Description of problem or function: SOERP computes second-order error propagation equations for the first four moments of a function of independently distributed random variables. SOERP was written for a rigorous second-order error propagation of any function which may be expanded in a multivariable Taylor series, the input variables being independently distributed. The required input consists of numbers directly related to the partial derivatives of the function, evaluated at the nominal values of the input variables and the central moments of the input variables from the second through the eighth. 2 - Method of solution: The development of equations for computing the propagation of errors begins by expressing the function of random variables in a multivariable Taylor series expansion. The Taylor series expansion is then truncated, and statistical operations are applied to the series in order to obtain equations for the moments (about the origin) of the distribution of the computed value. If the Taylor series is truncated after powers of two, the procedure produces second-order error propagation equations. 3 - Restrictions on the complexity of the problem: The maximum number of component variables allowed is 30. The IBM version will only process one set of input data per run

  15. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Park, Changbom

    2009-01-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g NL . The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g NL and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g NL > 0 and less of both for g NL NL and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g NL that are clearly distinct from the quadratic order perturbations, encoded in the parameter f NL . Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g NL and f NL type non-Gaussianities

  16. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  17. A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Fujisaki, Eiichiro

    2002-01-01

    We present a statistically-hiding commitment scheme allowing commitment to arbitrary size integers, based on any (Abelian) group with certain properties, most importantly, that it is hard for the committer to compute its order. We also give efficient zero-knowledge protocols for proving knowledge...... input is chosen by the (possibly cheating) prover. -  - Our results apply to any group with suitable properties. In particular, they apply to a much larger class of RSA moduli than the safe prime products proposed in [14] - Potential examples include RSA moduli, class groups and, with a slight...

  18. Order-specific fertility rates for Germany: Estimates from perinatal statistics for the period 2001-2008

    NARCIS (Netherlands)

    M. Kreyenfeld (Michaela); Scholz, R. (Rembrandt); F. Peters (Frederick); Wlosnewski, I. (Ines)

    2010-01-01

    textabstractUntil 2008, Germany's vital statistics did not include information on the biological order of each birth. This resulted in a dearth of important demographic indicators, such as the mean age at first birth and the level of childlessness. Researchers have tried to fill this gap by

  19. Data Literacy is Statistical Literacy

    Science.gov (United States)

    Gould, Robert

    2017-01-01

    Past definitions of statistical literacy should be updated in order to account for the greatly amplified role that data now play in our lives. Experience working with high-school students in an innovative data science curriculum has shown that teaching statistical literacy, augmented by data literacy, can begin early.

  20. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.

    Science.gov (United States)

    Naves, Raphael; Barbosa, Bruno H G; Ferreira, Danton D

    2016-06-01

    Lung sound auscultation is one of the most commonly used methods to evaluate respiratory diseases. However, the effectiveness of this method depends on the physician's training. If the physician does not have the proper training, he/she will be unable to distinguish between normal and abnormal sounds generated by the human body. Thus, the aim of this study was to implement a pattern recognition system to classify lung sounds. We used a dataset composed of five types of lung sounds: normal, coarse crackle, fine crackle, monophonic and polyphonic wheezes. We used higher-order statistics (HOS) to extract features (second-, third- and fourth-order cumulants), Genetic Algorithms (GA) and Fisher's Discriminant Ratio (FDR) to reduce dimensionality, and k-Nearest Neighbors and Naive Bayes classifiers to recognize the lung sound events in a tree-based system. We used the cross-validation procedure to analyze the classifiers performance and the Tukey's Honestly Significant Difference criterion to compare the results. Our results showed that the Genetic Algorithms outperformed the Fisher's Discriminant Ratio for feature selection. Moreover, each lung class had a different signature pattern according to their cumulants showing that HOS is a promising feature extraction tool for lung sounds. Besides, the proposed divide-and-conquer approach can accurately classify different types of lung sounds. The classification accuracy obtained by the best tree-based classifier was 98.1% for classification accuracy on training, and 94.6% for validation data. The proposed approach achieved good results even using only one feature extraction tool (higher-order statistics). Additionally, the implementation of the proposed classifier in an embedded system is feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Circular contour retrieval in real-world conditions by higher order statistics and an alternating-least squares algorithm

    Science.gov (United States)

    Jiang, Haiping; Marot, Julien; Fossati, Caroline; Bourennane, Salah

    2011-12-01

    In real-world conditions, contours are most often blurred in digital images because of acquisition conditions such as movement, light transmission environment, and defocus. Among image segmentation methods, Hough transform requires a computational load which increases with the number of noise pixels, level set methods also require a high computational load, and some other methods assume that the contours are one-pixel wide. For the first time, we retrieve the characteristics of multiple possibly concentric blurred circles. We face correlated noise environment, to get closer to real-world conditions. For this, we model a blurred circle by a few parameters--center coordinates, radius, and spread--which characterize its mean position and gray level variations. We derive the signal model which results from signal generation on circular antenna. Linear antennas provide the center coordinates. To retrieve the circle radii, we adapt the second-order statistics TLS-ESPRIT method for non-correlated noise environment, and propose a novel version of TLS-ESPRIT based on higher-order statistics for correlated noise environment. Then, we derive a least-squares criterion and propose an alternating least-squares algorithm to retrieve simultaneously all spread values of concentric circles. Experiments performed on hand-made and real-world images show that the proposed methods outperform the Hough transform and a level set method dedicated to blurred contours in terms of computational load. Moreover, the proposed model and optimization method provide the information of the contour grey level variations.

  3. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  4. Th unnatural order of things: A history of the high school science sequence

    Science.gov (United States)

    Robbins, Dennis M.

    Historical studies of US high school science education are rare. This study examines the historical origins of a unique characteristic of the secondary science curriculum, the Biology-Chemistry-Physics (B-C-P) order of courses. Statements from scientists, educators and the media claim that B-C-P has been the traditional curriculum sequence for over a century and can be traced back to the influential educational commission known as the Committee of Ten (CoT) of 1893. This study examines the history of the ordering of high school science subjects over the last 150 years. The reports and primary documents of important national educational commissions, such as the CoT, were searched for their recommendations on secondary science, particularly on course ordering. These recommendations were then compared to national, state and local statistical data on subject offerings and student enrollments to measure the effect of these national commissions on school policy. This study concludes that the Committee of Ten did not create B-P-C. The CoT made six recommendations, five placed Chemistry before Physics (P-C). One recommendation for C-P met with strong disagreement because it was thought an illogical order. Biology as a "uniform" course did not exist at this time and so the CoT made no recommendations for its grade placement. Statistical data shows that B-C-P evolved over many decades. From 1860 up to 1920 most schools used a P-C curriculum believing Physics was a foundational prerequisite of Chemistry. Biology was introduced in the early 1900s and it assumed a position before the physical sciences. Through the 1920s Chemistry and Physics were placed equally likely in 11th or 12 th grades and Biology was in the 10th grade. After World War II, B-C-P became the dominant pattern, exhibited in over 90% of schools. But up to this point in time no educational body or national commission had recommended B-C-P. The Biology-Chemistry-Physics order of courses is a product of many

  5. Statistical learning methods in high-energy and astrophysics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2004-11-21

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.

  6. Statistical learning methods in high-energy and astrophysics analysis

    International Nuclear Information System (INIS)

    Zimmermann, J.; Kiesling, C.

    2004-01-01

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application

  7. Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations

    International Nuclear Information System (INIS)

    Arimescu, V.E.; Heins, L.

    2001-01-01

    Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect

  8. Higher order statistical moment application for solar PV potential analysis

    Science.gov (United States)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  9. Statistical behavior of high doses in medical radiodiagnosis

    International Nuclear Information System (INIS)

    Barboza, Adriana Elisa

    2014-01-01

    This work has as main purpose statistically estimating occupational exposure in medical diagnostic radiology in cases of high doses recorded in 2011 at national level. For statistical survey of this study, doses of 372 IOE's diagnostic radiology in different Brazilian states were evaluated. Data were extracted from the work of monograph (Research Methodology Of High Doses In Medical Radiodiagnostic) that contains the database's information Sector Management doses of IRD/CNEN-RJ, Brazil. The identification of these states allows the Sanitary Surveillance (VISA) responsible, becomes aware of events and work with programs to reduce these events. (author)

  10. High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission

    Energy Technology Data Exchange (ETDEWEB)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)

    2017-07-20

    Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.

  11. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  12. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  13. Airfoil noise computation use high-order schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    High-order finite difference schemes with at least 4th-order spatial accuracy are used to simulate aerodynamically generated noise. The aeroacoustic solver with 4th-order up to 8th-order accuracy is implemented into the in-house flow solver, EllipSys2D/3D. Dispersion-Relation-Preserving (DRP) fin...

  14. An MGF-based unified framework to determine the joint statistics of partial sums of ordered i.n.d. random variables

    KAUST Repository

    Nam, Sungsik

    2014-08-01

    The joint statistics of partial sums of ordered random variables (RVs) are often needed for the accurate performance characterization of a wide variety of wireless communication systems. A unified analytical framework to determine the joint statistics of partial sums of ordered independent and identically distributed (i.i.d.) random variables was recently presented. However, the identical distribution assumption may not be valid in several real-world applications. With this motivation in mind, we consider in this paper the more general case in which the random variables are independent but not necessarily identically distributed (i.n.d.). More specifically, we extend the previous analysis and introduce a new more general unified analytical framework to determine the joint statistics of partial sums of ordered i.n.d. RVs. Our mathematical formalism is illustrated with an application on the exact performance analysis of the capture probability of generalized selection combining (GSC)-based RAKE receivers operating over frequency-selective fading channels with a non-uniform power delay profile. © 1991-2012 IEEE.

  15. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  16. Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada

    Science.gov (United States)

    Wiley, Jeffrey B.; Curran, Janet H.

    2003-01-01

    Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow

  17. Official Statistics and Statistics Education: Bridging the Gap

    Directory of Open Access Journals (Sweden)

    Gal Iddo

    2017-03-01

    Full Text Available This article aims to challenge official statistics providers and statistics educators to ponder on how to help non-specialist adult users of statistics develop those aspects of statistical literacy that pertain to official statistics. We first document the gap in the literature in terms of the conceptual basis and educational materials needed for such an undertaking. We then review skills and competencies that may help adults to make sense of statistical information in areas of importance to society. Based on this review, we identify six elements related to official statistics about which non-specialist adult users should possess knowledge in order to be considered literate in official statistics: (1 the system of official statistics and its work principles; (2 the nature of statistics about society; (3 indicators; (4 statistical techniques and big ideas; (5 research methods and data sources; and (6 awareness and skills for citizens’ access to statistical reports. Based on this ad hoc typology, we discuss directions that official statistics providers, in cooperation with statistics educators, could take in order to (1 advance the conceptualization of skills needed to understand official statistics, and (2 expand educational activities and services, specifically by developing a collaborative digital textbook and a modular online course, to improve public capacity for understanding of official statistics.

  18. A Framework for Assessing High School Students' Statistical Reasoning.

    Science.gov (United States)

    Chan, Shiau Wei; Ismail, Zaleha; Sumintono, Bambang

    2016-01-01

    Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students' statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students' statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework's cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments.

  19. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging

    International Nuclear Information System (INIS)

    Juang, K.-W.; Lee, D.-Y.; Teng, Y.-L.

    2005-01-01

    Correctly classifying 'contaminated' areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the 'contaminated' areas. - A sampling approach was derived for drawing additional samples while kriging

  20. Automated breast tissue density assessment using high order regional texture descriptors in mammography

    Science.gov (United States)

    Law, Yan Nei; Lieng, Monica Keiko; Li, Jingmei; Khoo, David Aik-Aun

    2014-03-01

    Breast cancer is the most common cancer and second leading cause of cancer death among women in the US. The relative survival rate is lower among women with a more advanced stage at diagnosis. Early detection through screening is vital. Mammography is the most widely used and only proven screening method for reliably and effectively detecting abnormal breast tissues. In particular, mammographic density is one of the strongest breast cancer risk factors, after age and gender, and can be used to assess the future risk of disease before individuals become symptomatic. A reliable method for automatic density assessment would be beneficial and could assist radiologists in the evaluation of mammograms. To address this problem, we propose a density classification method which uses statistical features from different parts of the breast. Our method is composed of three parts: breast region identification, feature extraction and building ensemble classifiers for density assessment. It explores the potential of the features extracted from second and higher order statistical information for mammographic density classification. We further investigate the registration of bilateral pairs and time-series of mammograms. The experimental results on 322 mammograms demonstrate that (1) a classifier using features from dense regions has higher discriminative power than a classifier using only features from the whole breast region; (2) these high-order features can be effectively combined to boost the classification accuracy; (3) a classifier using these statistical features from dense regions achieves 75% accuracy, which is a significant improvement from 70% accuracy obtained by the existing approaches.

  1. High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano; Huser, Raphaë l; Genton, Marc G.

    2015-01-01

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  2. High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano

    2015-09-29

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  3. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  4. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  5. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  6. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  7. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

    International Nuclear Information System (INIS)

    Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

    2000-01-01

    Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

  8. Statistical thermodynamics of long straight rigid rods on triangular lattices: nematic order and adsorption thermodynamic functions.

    Science.gov (United States)

    Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J

    2012-09-04

    The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.

  9. The use of Monte-Carlo simulation and order statistics for uncertainty analysis of a LBLOCA transient (LOFT-L2-5)

    International Nuclear Information System (INIS)

    Chojnacki, E.; Benoit, J.P.

    2007-01-01

    Best estimate computer codes are increasingly used in nuclear industry for the accident management procedures and have been planned to be used for the licensing procedures. Contrary to conservative codes which are supposed to give penalizing results, best estimate codes attempt to calculate accidental transients in a realistic way. It becomes therefore of prime importance, in particular for technical organization as IRSN in charge of safety assessment, to know the uncertainty on the results of such codes. Thus, CSNI has sponsored few years ago (published in 1998) the Uncertainty Methods Study (UMS) program on uncertainty methodologies used for a SBLOCA transient (LSTF-CL-18) and is now supporting the BEMUSE program for a LBLOCA transient (LOFT-L2-5). The large majority of BEMUSE participants (9 out of 10) use uncertainty methodologies based on a probabilistic modelling and all of them use Monte-Carlo simulations to propagate the uncertainties through their computer codes. Also, all of 'probabilistic participants' intend to use order statistics to determine the sampling size of the Monte-Carlo simulation and to derive the uncertainty ranges associated to their computer calculations. The first aim of this paper is to remind the advantages and also the assumptions of the probabilistic modelling and more specifically of order statistics (as Wilks' formula) in uncertainty methodologies. Indeed Monte-Carlo methods provide flexible and extremely powerful techniques for solving many of the uncertainty propagation problems encountered in nuclear safety analysis. However it is important to keep in mind that probabilistic methods are data intensive. That means, probabilistic methods cannot produce robust results unless a considerable body of information has been collected. A main interest of the use of order statistics results is to allow to take into account an unlimited number of uncertain parameters and, from a restricted number of code calculations to provide statistical

  10. High-order nonlinear susceptibilities of He

    International Nuclear Information System (INIS)

    Liu, W.C.; Clark, C.W.

    1996-01-01

    High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals

  11. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  12. A Reduced-Order Controller Considering High-Order Modal Information of High-Rise Buildings for AMD Control System with Time-Delay

    Directory of Open Access Journals (Sweden)

    Zuo-Hua Li

    2017-01-01

    Full Text Available Time-delays of control force calculation, data acquisition, and actuator response will degrade the performance of Active Mass Damper (AMD control systems. To reduce the influence, model reduction method is used to deal with the original controlled structure. However, during the procedure, the related hierarchy information of small eigenvalues will be directly discorded. As a result, the reduced-order model ignores the information of high-order mode, which will reduce the design accuracy of an AMD control system. In this paper, a new reduced-order controller based on the improved Balanced Truncation (BT method is designed to reduce the calculation time and to retain the abandoned high-order modal information. It includes high-order natural frequency, damping ratio, and vibration modal information of the original structure. Then, a control gain design method based on Guaranteed Cost Control (GCC algorithm is presented to eliminate the adverse effects of data acquisition and actuator response time-delays in the design process of the reduced-order controller. To verify its effectiveness, the proposed methodology is applied to a numerical example of a ten-storey frame and an experiment of a single-span four-storey steel frame. Both numerical and experimental results demonstrate that the reduced-order controller with GCC algorithm has an excellent control effect; meanwhile it can compensate time-delays effectively.

  13. High-order nonuniformly correlated beams

    Science.gov (United States)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  14. How daylight influences high-order chromatic descriptors in natural images.

    Science.gov (United States)

    Ojeda, Juan; Nieves, Juan Luis; Romero, Javier

    2017-07-01

    Despite the global and local daylight changes naturally occurring in natural scenes, the human visual system usually adapts quite well to those changes, developing a stable color perception. Nevertheless, the influence of daylight in modeling natural image statistics is not fully understood and has received little attention. The aim of this work was to analyze the influence of daylight changes in different high-order chromatic descriptors (i.e., color volume, color gamut, and number of discernible colors) derived from 350 color images, which were rendered under 108 natural illuminants with Correlated Color Temperatures (CCT) from 2735 to 25,889 K. Results suggest that chromatic and luminance information is almost constant and does not depend on the CCT of the illuminant for values above 14,000 K. Nevertheless, differences between the red-green and blue-yellow image components were found below that CCT, with most of the statistical descriptors analyzed showing local extremes in the range 2950 K-6300 K. Uniform regions and areas of the images attracting observers' attention were also considered in this analysis and were characterized by their patchiness index and their saliency maps. Meanwhile, the results of the patchiness index do not show a clear dependence on CCT, and it is remarkable that a significant reduction in the number of discernible colors (58% on average) was found when the images were masked with their corresponding saliency maps. Our results suggest that chromatic diversity, as defined in terms of the discernible colors, can be strongly reduced when an observer scans a natural scene. These findings support the idea that a reduction in the number of discernible colors will guide visual saliency and attention. Whatever the modeling is mediating the neural representation of natural images, natural image statistics, it is clear that natural image statistics should take into account those local maxima and minima depending on the daylight illumination and

  15. Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2008-01-01

    Full Text Available In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.

  16. Multivariate Statistical Process Control

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2013-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control (SPC) and monitoring for which the aim...... is to identify “out-of-control” state of a process using control charts in order to reduce the excessive variation caused by so-called assignable causes. In practice, the most common method of monitoring multivariate data is through a statistic akin to the Hotelling’s T2. For high dimensional data with excessive...... amount of cross correlation, practitioners are often recommended to use latent structures methods such as Principal Component Analysis to summarize the data in only a few linear combinations of the original variables that capture most of the variation in the data. Applications of these control charts...

  17. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel

    2015-01-01

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search

  18. Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014

    CERN Document Server

    Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina

    2016-01-01

    This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...

  19. Generation of High-order Group-velocity-locked Vector Solitons

    OpenAIRE

    Jin, X. X.; Wu, Z. C.; Zhang, Q.; Li, L.; Tang, D. Y.; Shen, D. Y.; Fu, S. N.; Liu, D. M.; Zhao, L. M.

    2015-01-01

    We report numerical simulations on the high-order group-velocity-locked vector soliton (GVLVS) generation based on the fundamental GVLVS. The high-order GVLVS generated is characterized with a two-humped pulse along one polarization while a single-humped pulse along the orthogonal polarization. The phase difference between the two humps could be 180 degree. It is found that by appropriate setting the time separation between the two components of the fundamental GVLVS, the high-order GVLVS wit...

  20. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  1. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  2. GPR Raw-Data Order Statistic Filtering and Split-Spectrum Processing to Detect Moisture

    Directory of Open Access Journals (Sweden)

    Gokhan Kilic

    2014-05-01

    Full Text Available Considerable research into the area of bridge health monitoring has been undertaken; however, information is still lacking on the effects of certain defects, such as moisture ingress, on the results of ground penetrating radar (GPR surveying. In this paper, this issue will be addressed by examining the results of a GPR bridge survey, specifically the effect of moisture in the predicted position of the rebars. It was found that moisture ingress alters the radargram to indicate distortion or skewing of the steel reinforcements, when in fact destructive testing was able to confirm that no such distortion or skewing had occurred. Additionally, split-spectrum processing with order statistic filters was utilized to detect moisture ingress from the GPR raw data.

  3. Automatic Assessment of Pathological Voice Quality Using Higher-Order Statistics in the LPC Residual Domain

    Directory of Open Access Journals (Sweden)

    JiYeoun Lee

    2009-01-01

    Full Text Available A preprocessing scheme based on linear prediction coefficient (LPC residual is applied to higher-order statistics (HOSs for automatic assessment of an overall pathological voice quality. The normalized skewness and kurtosis are estimated from the LPC residual and show statistically meaningful distributions to characterize the pathological voice quality. 83 voice samples of the sustained vowel /a/ phonation are used in this study and are independently assessed by a speech and language therapist (SALT according to the grade of the severity of dysphonia of GRBAS scale. These are used to train and test classification and regression tree (CART. The best result is obtained using an optima l decision tree implemented by a combination of the normalized skewness and kurtosis, with an accuracy of 92.9%. It is concluded that the method can be used as an assessment tool, providing a valuable aid to the SALT during clinical evaluation of an overall pathological voice quality.

  4. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  5. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.

  6. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  7. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  8. A Novel Method for Decoding Any High-Order Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-01-01

    Full Text Available This paper proposes a novel method for decoding any high-order hidden Markov model. First, the high-order hidden Markov model is transformed into an equivalent first-order hidden Markov model by Hadar’s transformation. Next, the optimal state sequence of the equivalent first-order hidden Markov model is recognized by the existing Viterbi algorithm of the first-order hidden Markov model. Finally, the optimal state sequence of the high-order hidden Markov model is inferred from the optimal state sequence of the equivalent first-order hidden Markov model. This method provides a unified algorithm framework for decoding hidden Markov models including the first-order hidden Markov model and any high-order hidden Markov model.

  9. High Order Differential Frequency Hopping: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-01-01

    Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.

  10. Analysis and Design of High-Order Parallel Resonant Converters

    Science.gov (United States)

    Batarseh, Issa Eid

    1990-01-01

    In this thesis, a special state variable transformation technique has been derived for the analysis of high order dc-to-dc resonant converters. Converters comprised of high order resonant tanks have the advantage of utilizing the parasitic elements by making them part of the resonant tank. A new set of state variables is defined in order to make use of two-dimensional state-plane diagrams in the analysis of high order converters. Such a method has been successfully used for the analysis of the conventional Parallel Resonant Converters (PRC). Consequently, two -dimensional state-plane diagrams are used to analyze the steady state response for third and fourth order PRC's when these converters are operated in the continuous conduction mode. Based on this analysis, a set of control characteristic curves for the LCC-, LLC- and LLCC-type PRC are presented from which various converter design parameters are obtained. Various design curves for component value selections and device ratings are given. This analysis of high order resonant converters shows that the addition of the reactive components to the resonant tank results in converters with better performance characteristics when compared with the conventional second order PRC. Complete design procedure along with design examples for 2nd, 3rd and 4th order converters are presented. Practical power supply units, normally used for computer applications, were built and tested by using the LCC-, LLC- and LLCC-type commutation schemes. In addition, computer simulation results are presented for these converters in order to verify the theoretical results.

  11. Pattern statistics on Markov chains and sensitivity to parameter estimation

    Directory of Open Access Journals (Sweden)

    Nuel Grégory

    2006-10-01

    Full Text Available Abstract Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,.... Results: In the particular case where pattern statistics (overlap counting only computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  12. A rigorous analysis of high-order electromagnetic invisibility cloaks

    International Nuclear Information System (INIS)

    Weder, Ricardo

    2008-01-01

    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al that are based on the transformation approach. They obtained their results using first-order transformations. In recent papers, Hendi et al and Cai et al considered invisibility cloaks with high-order transformations. In this paper, we study high-order electromagnetic invisibility cloaks in transformation media obtained by high-order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite-energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks cannot be detected in any scattering experiment with electromagnetic waves in high-order transformation media, and in particular in the first-order transformation media of Pendry et al. We also prove that the high-order invisibility cloaks, as well as the first-order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects cannot leave the concealed regions and vice versa, the electromagnetic waves outside the cloaked objects cannot go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals

  13. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-08-20

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  14. Educational needs of women in relation to postpartum religious orders

    Directory of Open Access Journals (Sweden)

    Marjan Beigi

    2017-01-01

    Full Text Available Introduction: Religious orders are one of the educational needs of the postpartum period. This study was conducted to determine the educational needs of postpartum religious orders.Materials and Methods: This cross-sectional study was conducted among 421 postpartum women and 15 specialists. Quota random sampling was conducted from January to March 2014 in Isfahan, Iran. Data analysis was performed using the Statistical Package for the Social Sciences software and statistical methods.Results: From the perspective of women and specialists, the results showed that the educational needs of women in postpartum religious orders is high.Conclusion: Considering the high educational need in the field of postpartum religious orders, it is necessary to integrate education in prenatal and postnatal health education programs.

  15. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  16. Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms

    International Nuclear Information System (INIS)

    Li Liyong; Tchelepi, Hamdi A.; Zhang Dongxiao

    2003-01-01

    We present detailed comparisons between high-resolution Monte Carlo simulation (MCS) and low-order numerical solutions of stochastic moment equations (SMEs) for the first and second statistical moments of pressure. The objective is to quantify the difference between the predictions obtained from MCS and SME. Natural formations with high permeability variability and large spatial correlation scales are of special interest for underground resources (e.g. oil and water). Consequently, we focus on such formations. We investigated fields with variance of log-permeability, σ Y 2 , from 0.1 to 3.0 and correlation scales (normalized by domain length) of 0.05 to 0.5. In order to avoid issues related to statistical convergence and resolution level, we used 9000 highly resolved realizations of permeability for MCS. We derive exact discrete forms of the statistical moment equations. Formulations based on equations written explicitly in terms of permeability (K-based) and log-transformed permeability (Y-based) are considered. The discrete forms are applicable to systems of arbitrary variance and correlation scales. However, equations governing a particular statistical moment depend on higher moments. Thus, while the moment equations are exact, they are not closed. In particular, the discrete form of the second moment of pressure includes two triplet terms that involve log-permeability (or permeability) and pressure. We combined MCS computations with full discrete SME equations to quantify the importance of the various terms that make up the moment equations. We show that second-moment solutions obtained using a low-order Y-based SME formulation are significantly better than those from K-based formulations, especially when σ Y 2 >1. As a result, Y-based formulations are preferred. The two triplet terms are complex functions of the variance level and correlation length. The importance (contribution) of these triplet terms increases dramatically as σ Y 2 increases above one. We

  17. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  18. Focus in High School Mathematics: Statistics and Probability

    Science.gov (United States)

    National Council of Teachers of Mathematics, 2009

    2009-01-01

    Reasoning about and making sense of statistics and probability are essential to students' future success. This volume belongs to a series that supports National Council of Teachers of Mathematics' (NCTM's) "Focus in High School Mathematics: Reasoning and Sense Making" by providing additional guidance for making reasoning and sense making part of…

  19. De-trending of wind speed variance based on first-order and second-order statistical moments only

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    The lack of efficient methods for de-trending of wind speed resource data may lead to erroneous wind turbine fatigue and ultimate load predictions. The present paper presents two models, which quantify the effect of an assumed linear trend on wind speed standard deviations as based on available...... statistical data only. The first model is a pure time series analysis approach, which quantifies the effect of non-stationary characteristics of ensemble mean wind speeds on the estimated wind speed standard deviations as based on mean wind speed statistics only. This model is applicable to statistics...... of arbitrary types of time series. The second model uses the full set of information and includes thus additionally observed wind speed standard deviations to estimate the effect of ensemble mean non-stationarities on wind speed standard deviations. This model takes advantage of a simple physical relationship...

  20. One step replica symmetry breaking and extreme order statistics of logarithmic REMs

    Directory of Open Access Journals (Sweden)

    Xiangyu Cao, Yan V. Fyodorov, Pierre Le Doussal

    2016-12-01

    Full Text Available Building upon the one-step replica symmetry breaking formalism, duly understood and ramified, we show that the sequence of ordered extreme values of a general class of Euclidean-space logarithmically correlated random energy models (logREMs behave in the thermodynamic limit as a randomly shifted decorated exponential Poisson point process. The distribution of the random shift is determined solely by the large-distance ("infra-red", IR limit of the model, and is equal to the free energy distribution at the critical temperature up to a translation. the decoration process is determined solely by the small-distance ("ultraviolet", UV limit, in terms of the biased minimal process. Our approach provides connections of the replica framework to results in the probability literature and sheds further light on the freezing/duality conjecture which was the source of many previous results for log-REMs. In this way we derive the general and explicit formulae for the joint probability density of depths of the first and second minima (as well its higher-order generalizations in terms of model-specific contributions from UV as well as IR limits. In particular, we show that the second min statistics is largely independent of details of UV data, whose influence is seen only through the mean value of the gap. For a given log-correlated field this parameter can be evaluated numerically, and we provide several numerical tests of our theory using the circular model of $1/f$-noise.

  1. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  2. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  3. An MGF-based unified framework to determine the joint statistics of partial sums of ordered i.n.d. random variables

    KAUST Repository

    Nam, Sungsik; Yang, Hongchuan; Alouini, Mohamed-Slim; Kim, Dongin

    2014-01-01

    framework to determine the joint statistics of partial sums of ordered i.n.d. RVs. Our mathematical formalism is illustrated with an application on the exact performance analysis of the capture probability of generalized selection combining (GSC)-based RAKE

  4. A Statistical Primer: Understanding Descriptive and Inferential Statistics

    OpenAIRE

    Gillian Byrne

    2007-01-01

    As libraries and librarians move more towards evidence‐based decision making, the data being generated in libraries is growing. Understanding the basics of statistical analysis is crucial for evidence‐based practice (EBP), in order to correctly design and analyze researchas well as to evaluate the research of others. This article covers the fundamentals of descriptive and inferential statistics, from hypothesis construction to sampling to common statistical techniques including chi‐square, co...

  5. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  6. Higher-order statistical moments and a procedure that detects potentially anomalous years as two alternative methods describing alterations in continuous environmental data

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.

    2015-01-01

    Statistics of central tendency and dispersion may not capture relevant or desired characteristics of the distribution of continuous phenomena and, thus, they may not adequately describe temporal patterns of change. Here, we present two methodological approaches that can help to identify temporal changes in environmental regimes. First, we use higher-order statistical moments (skewness and kurtosis) to examine potential changes of empirical distributions at decadal extents. Second, we adapt a statistical procedure combining a non-metric multidimensional scaling technique and higher density region plots to detect potentially anomalous years. We illustrate the use of these approaches by examining long-term stream temperature data from minimally and highly human-influenced streams. In particular, we contrast predictions about thermal regime responses to changing climates and human-related water uses. Using these methods, we effectively diagnose years with unusual thermal variability and patterns in variability through time, as well as spatial variability linked to regional and local factors that influence stream temperature. Our findings highlight the complexity of responses of thermal regimes of streams and reveal their differential vulnerability to climate warming and human-related water uses. The two approaches presented here can be applied with a variety of other continuous phenomena to address historical changes, extreme events, and their associated ecological responses.

  7. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  8. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...

  9. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    Science.gov (United States)

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  10. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    Science.gov (United States)

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  11. Design of a high order Campbelling mode measurement system using open source hardware

    Energy Technology Data Exchange (ETDEWEB)

    Izarra, G. de [CEA, DEN,DER, Experimental Programs Laboratory, Cadarache F-13108 Saint-Paul-lez-Durance (France); Elter, Zs. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); CEA, DEN,DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache F-13108 Saint-Paul-lez-Durance (France); Jammes, C. [CEA, DEN,DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache F-13108 Saint-Paul-lez-Durance (France)

    2016-12-11

    This paper reviews a new real-time measurement instrument dedicated for online neutron monitoring with fission chambers in nuclear reactors. The instrument implements the higher order Campbelling methods and self-monitoring capabilities on an open source development board. The board includes an CPU/FPGA System on a Chip. The feasibility of the measurement instrument was tested both in laboratory with a signal generator and in the Minerve reactor. It is shown that the instrument provides reliable and robust count rate estimation over a wide reactor power range based on the third order statistics of the fission chamber signal. In addition, the system is able to identify whether the measured count rate change is due to the malfunction of the detector or due to the change in the neutron flux. The applied self-monitoring method is based on the spectral properties of the fission chamber signal. During the experimental verification, the considered malfunction was the change of the polarization voltage. - Highlights: • A new online High Order Campelling measurement system is proposed. • It includes a fission chamber failure detection system. • The complete architecture of the measurement system is given. • Test on reactor show its accuracy over a wide count rate range.

  12. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  13. Intra-cavity generation of high order LGpl modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-08-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gaussian beam and force the laser to operate on a higher order LGpl Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  14. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  15. Convergency analysis of the high-order mimetic finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, Konstantin [Los Alamos National Laboratory; Veiga Da Beirao, L [UNIV DEGLI STUDI; Manzini, G [NON LANL

    2008-01-01

    We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments.

  16. Computational Aero-Acoustic Using High-order Finite-Difference Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...

  17. Development of a three-dimensional high-order strand-grids approach

    Science.gov (United States)

    Tong, Oisin

    Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening

  18. Ordered random variables theory and applications

    CERN Document Server

    Shahbaz, Muhammad Qaiser; Hanif Shahbaz, Saman; Al-Zahrani, Bander M

    2016-01-01

    Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).

  19. Retrieval of high-order susceptibilities of nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wang Zhi-Yu; Qiu Jin-Peng; Chen Hua; Mo Jiong-Jiong; Yu Fa-Xin

    2017-01-01

    Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime. However, existing S -parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived. Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power, high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposedapproach can be widely used in the research of active metamaterials. (paper)

  20. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  1. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  2. High Order Semi-Lagrangian Advection Scheme

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  3. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  4. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  5. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    International Nuclear Information System (INIS)

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-01

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow

  6. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  7. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  8. Are medical articles highlighting detailed statistics more cited?

    Directory of Open Access Journals (Sweden)

    Mike Thelwall

    2015-06-01

    Full Text Available When conducting a literature review, it is natural to search for articles and read their abstracts in order to select papers to read fully. Hence, informative abstracts are important to ensure that research is read. The description of a paper's methods may help to give confidence that a study is of high quality. This article assesses whether medical articles that mention three statistical methods, each of which is arguably indicative of a more detailed statistical analysis than average, are more highly cited. The results show that medical articles mentioning Bonferroni corrections, bootstrapping and effect size tend to be 7%, 8% and 15% more highly ranked for citations than average, respectively. Although this is consistent with the hypothesis that mentioning more detailed statistical techniques generate more highly cited research, these techniques may also tend to be used in more highly cited areas of Medicine.

  9. Time-Frequency Analysis Using Warped-Based High-Order Phase Modeling

    Directory of Open Access Journals (Sweden)

    Ioana Cornel

    2005-01-01

    Full Text Available The high-order ambiguity function (HAF was introduced for the estimation of polynomial-phase signals (PPS embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross-terms when multicomponents PPS are analyzed. In order to improve the performances of the HAF, the multi-lag HAF concept was proposed. Based on this approach, several advanced methods (e.g., product high-order ambiguity function (PHAF have been recently proposed. Nevertheless, performances of these new methods are affected by the error propagation effect which drastically limits the order of the polynomial approximation. This phenomenon acts especially when a high-order polynomial modeling is needed: representation of the digital modulation signals or the acoustic transient signals. This effect is caused by the technique used for polynomial order reduction, common for existing approaches: signal multiplication with the complex conjugated exponentials formed with the estimated coefficients. In this paper, we introduce an alternative method to reduce the polynomial order, based on the successive unitary signal transformation, according to each polynomial order. We will prove that this method reduces considerably the effect of error propagation. Namely, with this order reduction method, the estimation error at a given order will depend only on the performances of the estimation method.

  10. Caregiver Statistics: Demographics

    Science.gov (United States)

    ... You are here Home Selected Long-Term Care Statistics Order this publication Printer-friendly version What is ... needs and services are wide-ranging and complex, statistics may vary from study to study. Sources for ...

  11. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.

    2016-01-01

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  12. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell

    2016-06-14

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  13. Technical Note: Higher-order statistical moments and a procedure that detects potentially anomalous years as two alternative methods describing alterations in continuous environmental data

    Science.gov (United States)

    I. Arismendi; S. L. Johnson; J. B. Dunham

    2015-01-01

    Statistics of central tendency and dispersion may not capture relevant or desired characteristics of the distribution of continuous phenomena and, thus, they may not adequately describe temporal patterns of change. Here, we present two methodological approaches that can help to identify temporal changes in environmental regimes. First, we use higher-order statistical...

  14. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    KAUST Repository

    De Basabe, Jonás D.

    2010-04-01

    We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively. © 2010 The Authors Journal compilation © 2010 RAS.

  15. Wind Statistics from a Forested Landscape

    DEFF Research Database (Denmark)

    Arnqvist, Johan; Segalini, Antonio; Dellwik, Ebba

    2015-01-01

    An analysis and interpretation of measurements from a 138-m tall tower located in a forested landscape is presented. Measurement errors and statistical uncertainties are carefully evaluated to ensure high data quality. A 40(Formula presented.) wide wind-direction sector is selected as the most...... representative for large-scale forest conditions, and from that sector first-, second- and third-order statistics, as well as analyses regarding the characteristic length scale, the flux-profile relationship and surface roughness are presented for a wide range of stability conditions. The results are discussed...

  16. Quantum-path control in high-order harmonic generation at high photon energies

    International Nuclear Information System (INIS)

    Zhang Xiaoshi; Lytle, Amy L; Cohen, Oren; Murnane, Margaret M; Kapteyn, Henry C

    2008-01-01

    We show through experiment and calculations how all-optical quasi-phase-matching of high-order harmonic generation can be used to selectively enhance emission from distinct quantum trajectories at high photon energies. Electrons rescattered in a strong field can traverse short and long quantum trajectories that exhibit differing coherence lengths as a result of variations in intensity of the driving laser along the direction of propagation. By varying the separation of the pulses in a counterpropagating pulse train, we selectively enhance either the long or the short quantum trajectory, and observe distinct spectral signatures in each case. This demonstrates a new type of coupling between the coherence of high-order harmonic beams and the attosecond time-scale quantum dynamics inherent in the process

  17. High-order harmonic conversion efficiency in helium

    International Nuclear Information System (INIS)

    Crane, J.K.

    1992-01-01

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L coh =πb/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N q =[(π z n z b 3 τ q |d q | z )/4h]{(p/q)(2l/b) z }. N q - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; τ q - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature)

  18. New method for eliminating the statistical bias in highly turbulent flow measurements

    International Nuclear Information System (INIS)

    Nakao, S.I.; Terao, Y.; Hirata, K.I.; Kitakyushu Industrial Research Institute, Fukuoka, Japan)

    1987-01-01

    A simple method was developed for eliminating statistical bias which can be applied to highly turbulent flows with the sparse and nonuniform seeding conditions. Unlike the method proposed so far, a weighting function was determined based on the idea that the statistical bias could be eliminated if the asymmetric form of the probability density function of the velocity data were corrected. Moreover, the data more than three standard deviations away from the mean were discarded to remove the apparent turbulent intensity resulting from noise. The present method was applied to data obtained in the wake of a block, which provided local turbulent intensities up to about 120 percent, it was found to eliminate the statistical bias with high accuracy. 9 references

  19. High performance statistical computing with parallel R: applications to biology and climate modelling

    International Nuclear Information System (INIS)

    Samatova, Nagiza F; Branstetter, Marcia; Ganguly, Auroop R; Hettich, Robert; Khan, Shiraj; Kora, Guruprasad; Li, Jiangtian; Ma, Xiaosong; Pan, Chongle; Shoshani, Arie; Yoginath, Srikanth

    2006-01-01

    Ultrascale computing and high-throughput experimental technologies have enabled the production of scientific data about complex natural phenomena. With this opportunity, comes a new problem - the massive quantities of data so produced. Answers to fundamental questions about the nature of those phenomena remain largely hidden in the produced data. The goal of this work is to provide a scalable high performance statistical data analysis framework to help scientists perform interactive analyses of these raw data to extract knowledge. Towards this goal we have been developing an open source parallel statistical analysis package, called Parallel R, that lets scientists employ a wide range of statistical analysis routines on high performance shared and distributed memory architectures without having to deal with the intricacies of parallelizing these routines

  20. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  1. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,

    2013-01-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  2. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  3. Higher-Order Moment Characterisation of Rogue Wave Statistics in Supercontinuum Generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Bang, Ole; Wetzel, Benjamin

    2012-01-01

    The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour.......The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour....

  4. Modeling the basic superconductor thermodynamical-statistical characteristics

    International Nuclear Information System (INIS)

    Palenskis, V.; Maknys, K.

    1999-01-01

    In accordance with the Landau second-order phase transition and other thermodynamical-statistical relations for superconductors, and using the energy gap as an order parameter in the electron free energy presentation, the fundamental characteristics of electrons, such as the free energy, the total energy, the energy gap, the entropy, and the heat capacity dependences on temperature were obtained. The obtained modeling results, in principle, well reflect the basic low- and high-temperature superconductor characteristics

  5. Joint statistics of partial sums of ordered exponential variates and performance of GSC RAKE receivers over rayleigh fading channel

    KAUST Repository

    Nam, Sungsik

    2011-08-01

    Spread spectrum receivers with generalized selection combining (GSC) RAKE reception were proposed and have been studied as alternatives to the classical two fundamental schemes: maximal ratio combining and selection combining because the number of diversity paths increases with the transmission bandwidth. Previous work on performance analyses of GSC RAKE receivers based on the signal to noise ratio focused on the development of methodologies to derive exact closed-form expressions for various performance measures. However, some open problems related to the performance evaluation of GSC RAKE receivers still remain to be solved such as the exact performance analysis of the capture probability and an exact assessment of the impact of self-interference on GSC RAKE receivers. The major difficulty in these problems is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for the capture probability and outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading channels, and compare it to that of partial RAKE receivers. © 2011 IEEE.

  6. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  7. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Science.gov (United States)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  8. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    International Nuclear Information System (INIS)

    Hao-Xin, Zhao; Bing, Xu; Li-Xia, Xue; Yun, Dai; Qian, Liu; Xue-Jun, Rao

    2008-01-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory

  9. Sound statistical model checking for MDP using partial order and confluence reduction

    NARCIS (Netherlands)

    Hartmanns, Arnd; Timmer, Mark

    Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound

  10. Benchmarking with high-order nodal diffusion methods

    International Nuclear Information System (INIS)

    Tomasevic, D.; Larsen, E.W.

    1993-01-01

    Significant progress in the solution of multidimensional neutron diffusion problems was made in the late 1970s with the introduction of nodal methods. Modern nodal reactor analysis codes provide significant improvements in both accuracy and computing speed over earlier codes based on fine-mesh finite difference methods. In the past, the performance of advanced nodal methods was determined by comparisons with fine-mesh finite difference codes. More recently, the excellent spatial convergence of nodal methods has permitted their use in establishing reference solutions for some important bench-mark problems. The recent development of the self-consistent high-order nodal diffusion method and its subsequent variational formulation has permitted the calculation of reference solutions with one node per assembly mesh size. In this paper, we compare results for four selected benchmark problems to those obtained by high-order response matrix methods and by two well-known state-of-the-art nodal methods (the open-quotes analyticalclose quotes and open-quotes nodal expansionclose quotes methods)

  11. Statistical convergence of a non-positive approximation process

    International Nuclear Information System (INIS)

    Agratini, Octavian

    2011-01-01

    Highlights: → A general class of approximation processes is introduced. → The A-statistical convergence is studied. → Applications in quantum calculus are delivered. - Abstract: Starting from a general sequence of linear and positive operators of discrete type, we associate its r-th order generalization. This construction involves high order derivatives of a signal and it looses the positivity property. Considering that the initial approximation process is A-statistically uniform convergent, we prove that the property is inherited by the new sequence. Also, our result includes information about the uniform convergence. Two applications in q-Calculus are presented. We study q-analogues both of Meyer-Koenig and Zeller operators and Stancu operators.

  12. Eliminating high-order scattering effects in optical microbubble sizing.

    Science.gov (United States)

    Qiu, Huihe

    2003-04-01

    Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

  13. Nonextensive statistical mechanics of ionic solutions

    International Nuclear Information System (INIS)

    Varela, L.M.; Carrete, J.; Munoz-Sola, R.; Rodriguez, J.R.; Gallego, J.

    2007-01-01

    Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q

  14. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  15. Vague Sets Security Measure for Steganographic System Based on High-Order Markov Model

    Directory of Open Access Journals (Sweden)

    Chun-Juan Ouyang

    2017-01-01

    Full Text Available Security measure is of great importance in both steganography and steganalysis. Considering that statistical feature perturbations caused by steganography in an image are always nondeterministic and that an image is considered nonstationary, in this paper, the steganography is regarded as a fuzzy process. Here a steganographic security measure is proposed. This security measure evaluates the similarity between two vague sets of cover images and stego images in terms of n-order Markov chain to capture the interpixel correlation. The new security measure has proven to have the properties of boundedness, commutativity, and unity. Furthermore, the security measures of zero order, first order, second order, third order, and so forth are obtained by adjusting the order value of n-order Markov chain. Experimental results indicate that the larger n is, the better the measuring ability of the proposed security measure will be. The proposed security measure is more sensitive than other security measures defined under a deterministic distribution model, when the embedding is low. It is expected to provide a helpful guidance for designing secure steganographic algorithms or reliable steganalytic methods.

  16. Eulerian and Lagrangian statistics from high resolution numerical simulations of weakly compressible turbulence

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.

    2009-01-01

    We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data

  17. Temperature dependence of the short-range order parameter and the concentration dependence of the order disorder temperature for Ni-Pt and Ni-Fe systems in the improved statistical pseudopotential approximation

    International Nuclear Information System (INIS)

    Khwaja, F.A.

    1980-08-01

    The calculations for the temperature dependence of the first shell short-range order (SRO) parameter for Ni 3 Fe using the cubic approximation of Tahir Kheli, and the concentration dependence of order-disorder temperature Tsub(c) for Ni-Fe and Ni-Pt systems using the linear approximation, have been carried out in the framework of pseudopotential theory. It is shown that the cubic approximation yields a good agreement between the theoretical prediction of the α 1 and the experimental data. Results for the concentration dependence of the Tsub(c) show that improvements in the statistical pseudo-potential approach are essential to achieve a good agreement with experiment. (author)

  18. A perceptual space of local image statistics.

    Science.gov (United States)

    Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M

    2015-12-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Decomposition of conditional probability for high-order symbolic Markov chains

    Science.gov (United States)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  20. High order corrections to the renormalon

    International Nuclear Information System (INIS)

    Faleev, S.V.

    1997-01-01

    High order corrections to the renormalon are considered. Each new type of insertion into the renormalon chain of graphs generates a correction to the asymptotics of perturbation theory of the order of ∝1. However, this series of corrections to the asymptotics is not the asymptotic one (i.e. the mth correction does not grow like m.). The summation of these corrections for the UV renormalon may change the asymptotics by a factor N δ . For the traditional IR renormalon the mth correction diverges like (-2) m . However, this divergence has no infrared origin and may be removed by a proper redefinition of the IR renormalon. On the other hand, for IR renormalons in hadronic event shapes one should naturally expect these multiloop contributions to decrease like (-2) -m . Some problems expected upon reaching the best accuracy of perturbative QCD are also discussed. (orig.)

  1. Reduced order modeling, statistical analysis and system identification for a bladed rotor with geometric mistuning

    Science.gov (United States)

    Vishwakarma, Vinod

    Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from

  2. High Mortality in Severe Sepsis and Septic Shock Patients with Do-Not-Resuscitate Orders in East Asia.

    Science.gov (United States)

    Huang, Chun-Ta; Chuang, Yu-Chung; Tsai, Yi-Ju; Ko, Wen-Je; Yu, Chong-Jen

    2016-01-01

    Severe sepsis is a potentially deadly illness and always requires intensive care. Do-not-resuscitate (DNR) orders remain a debated issue in critical care and limited data exist about its impact on care of septic patients, particularly in East Asia. We sought to assess outcome of severe sepsis patients with regard to DNR status in Taiwan. A retrospective cohort study was conducted in intensive care units (ICUs) between 2008 and 2010. All severe sepsis patients were included for analysis. Primary outcome was association between DNR orders and ICU mortality. Volume of interventions was used as proxy indicator to indicate aggressiveness of care. Sixty-seven (9.4%) of 712 patients had DNR orders on ICU admission, and these patients were older and had higher disease severity compared with patients without DNR orders. Notably, DNR patients experienced high ICU mortality (90%). Multivariate analysis revealed that the presence of DNR orders was independently associated with ICU mortality (odds ratio: 6.13; 95% confidence interval: 2.66-14.10). In propensity score-matched cohort, ICU mortality rate (91%) in the DNR group was statistically higher than that (62%) in the non-DNR group (p central venous catheterization were more commonly used in DNR patients than in non-DNR patients. From the Asian perspective, septic patients placed on DNR orders on ICU admission had exceptionally high mortality. In contrast to Western reports, DNR patients received more ICU interventions, reflecting more aggressive approach to dealing with this patient population. The findings in some ways reflect differences between East and West cultures and suggest that DNR status is an important confounder in ICU studies involving severely septic patients.

  3. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  4. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    Science.gov (United States)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  5. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  6. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  7. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  8. Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: angelrdz@gmail.com; De Leon, J. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: drjleon@gmail.com; Fridman, L. [Department of Control, Division of Electrical Engineering, Engineering Faculty, National Autonomous University of Mexico, 04510 Mexico City (Mexico)], E-mail: lfridman@servidor.unam.mx

    2009-12-15

    The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

  9. Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

    International Nuclear Information System (INIS)

    Rodriguez, A.; De Leon, J.; Fridman, L.

    2009-01-01

    The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

  10. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  11. Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

    KAUST Repository

    Xiao, Lei; Wang, Jue; Heidrich, Wolfgang; Hirsch, Michael

    2016-01-01

    by small-scale high-order structures, we propose to learn a multi-scale, interleaved cascade of shrinkage fields model, which contains a series of high-order filters to facilitate joint recovery of blur kernel and latent image. With extensive experiments

  12. Statistical issues in searches for new phenomena in High Energy Physics

    Science.gov (United States)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.

  13. International Conference on Spectral and High-Order Methods

    CERN Document Server

    Dumont, Ney; Hesthaven, Jan

    2017-01-01

    This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

  14. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    Science.gov (United States)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  15. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2017-08-01

    Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  17. Examining the effects of birth order on personality.

    Science.gov (United States)

    Rohrer, Julia M; Egloff, Boris; Schmukle, Stefan C

    2015-11-17

    This study examined the long-standing question of whether a person's position among siblings has a lasting impact on that person's life course. Empirical research on the relation between birth order and intelligence has convincingly documented that performances on psychometric intelligence tests decline slightly from firstborns to later-borns. By contrast, the search for birth-order effects on personality has not yet resulted in conclusive findings. We used data from three large national panels from the United States (n = 5,240), Great Britain (n = 4,489), and Germany (n = 10,457) to resolve this open research question. This database allowed us to identify even very small effects of birth order on personality with sufficiently high statistical power and to investigate whether effects emerge across different samples. We furthermore used two different analytical strategies by comparing siblings with different birth-order positions (i) within the same family (within-family design) and (ii) between different families (between-family design). In our analyses, we confirmed the expected birth-order effect on intelligence. We also observed a significant decline of a 10th of a SD in self-reported intellect with increasing birth-order position, and this effect persisted after controlling for objectively measured intelligence. Most important, however, we consistently found no birth-order effects on extraversion, emotional stability, agreeableness, conscientiousness, or imagination. On the basis of the high statistical power and the consistent results across samples and analytical designs, we must conclude that birth order does not have a lasting effect on broad personality traits outside of the intellectual domain.

  18. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  19. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  20. Higher-Order Statistics for the Detection of Small Objects in a Noisy Background Application on Sonar Imaging

    Directory of Open Access Journals (Sweden)

    M. Amate

    2007-01-01

    Full Text Available An original algorithm for the detection of small objects in a noisy background is proposed. Its application to underwater objects detection by sonar imaging is addressed. This new method is based on the use of higher-order statistics (HOS that are locally estimated on the images. The proposed algorithm is divided into two steps. In a first step, HOS (skewness and kurtosis are estimated locally using a square sliding computation window. Small deterministic objects have different statistical properties from the background they are thus highlighted. The influence of the signal-to-noise ratio (SNR on the results is studied in the case of Gaussian noise. Mathematical expressions of the estimators and of the expected performances are derived and are experimentally confirmed. In a second step, the results are focused by a matched filter using a theoretical model. This enables the precise localization of the regions of interest. The proposed method generalizes to other statistical distributions and we derive the theoretical expressions of the HOS estimators in the case of a Weibull distribution (both when only noise is present or when a small deterministic object is present within the filtering window. This enables the application of the proposed technique to the processing of synthetic aperture sonar data containing underwater mines whose echoes have to be detected and located. Results on real data sets are presented and quantitatively evaluated using receiver operating characteristic (ROC curves.

  1. Official statistics and Big Data

    Directory of Open Access Journals (Sweden)

    Peter Struijs

    2014-07-01

    Full Text Available The rise of Big Data changes the context in which organisations producing official statistics operate. Big Data provides opportunities, but in order to make optimal use of Big Data, a number of challenges have to be addressed. This stimulates increased collaboration between National Statistical Institutes, Big Data holders, businesses and universities. In time, this may lead to a shift in the role of statistical institutes in the provision of high-quality and impartial statistical information to society. In this paper, the changes in context, the opportunities, the challenges and the way to collaborate are addressed. The collaboration between the various stakeholders will involve each partner building on and contributing different strengths. For national statistical offices, traditional strengths include, on the one hand, the ability to collect data and combine data sources with statistical products and, on the other hand, their focus on quality, transparency and sound methodology. In the Big Data era of competing and multiplying data sources, they continue to have a unique knowledge of official statistical production methods. And their impartiality and respect for privacy as enshrined in law uniquely position them as a trusted third party. Based on this, they may advise on the quality and validity of information of various sources. By thus positioning themselves, they will be able to play their role as key information providers in a changing society.

  2. Statistics of high-level scene context.

    Science.gov (United States)

    Greene, Michelle R

    2013-01-01

    CONTEXT IS CRITICAL FOR RECOGNIZING ENVIRONMENTS AND FOR SEARCHING FOR OBJECTS WITHIN THEM: contextual associations have been shown to modulate reaction time and object recognition accuracy, as well as influence the distribution of eye movements and patterns of brain activations. However, we have not yet systematically quantified the relationships between objects and their scene environments. Here I seek to fill this gap by providing descriptive statistics of object-scene relationships. A total of 48, 167 objects were hand-labeled in 3499 scenes using the LabelMe tool (Russell et al., 2008). From these data, I computed a variety of descriptive statistics at three different levels of analysis: the ensemble statistics that describe the density and spatial distribution of unnamed "things" in the scene; the bag of words level where scenes are described by the list of objects contained within them; and the structural level where the spatial distribution and relationships between the objects are measured. The utility of each level of description for scene categorization was assessed through the use of linear classifiers, and the plausibility of each level for modeling human scene categorization is discussed. Of the three levels, ensemble statistics were found to be the most informative (per feature), and also best explained human patterns of categorization errors. Although a bag of words classifier had similar performance to human observers, it had a markedly different pattern of errors. However, certain objects are more useful than others, and ceiling classification performance could be achieved using only the 64 most informative objects. As object location tends not to vary as a function of category, structural information provided little additional information. Additionally, these data provide valuable information on natural scene redundancy that can be exploited for machine vision, and can help the visual cognition community to design experiments guided by statistics

  3. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  4. The Developing Infant Creates a Curriculum for Statistical Learning.

    Science.gov (United States)

    Smith, Linda B; Jayaraman, Swapnaa; Clerkin, Elizabeth; Yu, Chen

    2018-04-01

    New efforts are using head cameras and eye-trackers worn by infants to capture everyday visual environments from the point of view of the infant learner. From this vantage point, the training sets for statistical learning develop as the sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual learning that differ in content and structure between timepoints but are highly selective at each timepoint. These changing environments may constitute a developmentally ordered curriculum that optimizes learning across many domains. Future advances in computational models will be necessary to connect the developmentally changing content and statistics of infant experience to the internal machinery that does the learning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Nodal DG-FEM solution of high-order Boussinesq-type equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Hesthaven, Jan S.; Bingham, Harry B.

    2006-01-01

    We present a discontinuous Galerkin finite element method (DG-FEM) solution to a set of high-order Boussinesq-type equations for modelling highly nonlinear and dispersive water waves in one and two horizontal dimensions. The continuous equations are discretized using nodal polynomial basis...... functions of arbitrary order in space on each element of an unstructured computational domain. A fourth order explicit Runge-Kutta scheme is used to advance the solution in time. Methods for introducing artificial damping to control mild nonlinear instabilities are also discussed. The accuracy...... and convergence of the model with both h (grid size) and p (order) refinement are verified for the linearized equations, and calculations are provided for two nonlinear test cases in one horizontal dimension: harmonic generation over a submerged bar; and reflection of a steep solitary wave from a vertical wall...

  6. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  7. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  8. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  9. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  10. Statistical approach for calculating opacities of high-Z plasmas

    International Nuclear Information System (INIS)

    Nishikawa, Takeshi; Nakamura, Shinji; Takabe, Hideaki; Mima, Kunioki

    1992-01-01

    For simulating the X-ray radiation from laser produced high-Z plasma, an appropriate atomic modeling is necessary. Based on the average ion model, we have used a rather simple atomic model for opacity calculation in a hydrodynamic code and obtained a fairly good agreement with the experiment on the X-ray spectra from the laser-produced plasmas. We have investigated the accuracy of the atomic model used in the hydrodynamic code. It is found that transition energies of 4p-4d, 4d-4f, 4p-5d, 4d-5f and 4f-5g, which are important in laser produced high-Z plasma, can be given within an error of 15 % compared to the values by the Hartree-Fock-Slater (HFS) calculation and their oscillator strengths obtained by HFS calculation vary by a factor two according to the difference of charge state. We also propose a statistical method to carry out detail configuration accounting for electronic state by use of the population of bound electrons calculated with the average ion model. The statistical method is relatively simple and provides much improvement in calculating spectral opacities of line radiation, when we use the average ion model to determine electronic state. (author)

  11. Fractional statistics and the butterfly effect

    International Nuclear Information System (INIS)

    Gu, Yingfei; Qi, Xiao-Liang

    2016-01-01

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  12. Fractional statistics and the butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yingfei; Qi, Xiao-Liang [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-08-23

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  13. The (mis)reporting of statistical results in psychology journals

    OpenAIRE

    Bakker, Marjan; Wicherts, Jelte M.

    2011-01-01

    In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature...

  14. Analysis of statistical properties of laser speckles, forming in skin and mucous of colon: potential application in laser surgery

    Science.gov (United States)

    Rubtsov, Vladimir; Kapralov, Sergey; Chalyk, Iuri; Ulianova, Onega; Ulyanov, Sergey

    2013-02-01

    Statistical properties of laser speckles, formed in skin and mucous of colon have been analyzed and compared. It has been demonstrated that first and second order statistics of "skin" speckles and "mucous" speckles are quite different. It is shown that speckles, formed in mucous, are not Gaussian one. Layered structure of colon mucous causes formation of speckled biospeckles. First- and second- order statistics of speckled speckles have been reviewed in this paper. Statistical properties of Fresnel and Fraunhofer doubly scattered and cascade speckles are described. Non-gaussian statistics of biospeckles may lead to high localization of intensity of coherent light in human tissue during the laser surgery. Way of suppression of highly localized non-gaussian speckles is suggested.

  15. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  16. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  17. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  18. Exact Sampling and Decoding in High-Order Hidden Markov Models

    NARCIS (Netherlands)

    Carter, S.; Dymetman, M.; Bouchard, G.

    2012-01-01

    We present a method for exact optimization and sampling from high order Hidden Markov Models (HMMs), which are generally handled by approximation techniques. Motivated by adaptive rejection sampling and heuristic search, we propose a strategy based on sequentially refining a lower-order language

  19. Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions.

    Science.gov (United States)

    Chen, Wen Li Kelly; Likhitpanichkul, Morakot; Ho, Anthony; Simmons, Craig A

    2010-03-01

    Cell-substrate interactions are multifaceted, involving the integration of various physical and biochemical signals. The interactions among these microenvironmental factors cannot be facilely elucidated and quantified by conventional experimentation, and necessitate multifactorial strategies. Here we describe an approach that integrates statistical design and analysis of experiments with automated microscopy to systematically investigate the combinatorial effects of substrate-derived stimuli (substrate stiffness and matrix protein concentration) on mesenchymal stem cell (MSC) spreading, proliferation and osteogenic differentiation. C3H10T1/2 cells were grown on type I collagen- or fibronectin-coated polyacrylamide hydrogels with tunable mechanical properties. Experimental conditions, which were defined according to central composite design, consisted of specific permutations of substrate stiffness (3-144 kPa) and adhesion protein concentration (7-520 microg/mL). Spreading area, BrdU incorporation and Runx2 nuclear translocation were quantified using high-content microscopy and modeled as mathematical functions of substrate stiffness and protein concentration. The resulting response surfaces revealed distinct patterns of protein-specific, substrate stiffness-dependent modulation of MSC proliferation and differentiation, demonstrating the advantage of statistical modeling in the detection and description of higher-order cellular responses. In a broader context, this approach can be adapted to study other types of cell-material interactions and can facilitate the efficient screening and optimization of substrate properties for applications involving cell-material interfaces. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. FEA identification of high order generalized equivalent circuits for MF high voltage transformers

    CERN Document Server

    Candolfi, Sylvain; Cros, Jérôme; Aguglia, Davide

    2015-01-01

    This paper presents a specific methodology to derive high order generalized equivalent circuits from electromagnetic finite element analysis for high voltage medium frequency and pulse transformers by splitting the main windings in an arbitrary number of elementary windings. With this modeling approach, the dynamic model of the transformer over a large bandwidth is improved and the order of the generalized equivalent circuit can be adapted to a specified bandwidth. This efficient tool can be used by the designer to quantify the influence of the local structure of transformers on their dynamic behavior. The influence of different topologies and winding configurations is investigated. Several application examples and an experimental validation are also presented.

  1. Quantifying and modeling birth order effects in autism.

    Directory of Open Access Journals (Sweden)

    Tychele Turner

    Full Text Available Autism is a complex genetic disorder with multiple etiologies whose molecular genetic basis is not fully understood. Although a number of rare mutations and dosage abnormalities are specific to autism, these explain no more than 10% of all cases. The high heritability of autism and low recurrence risk suggests multifactorial inheritance from numerous loci but other factors also intervene to modulate risk. In this study, we examine the effect of birth rank on disease risk which is not expected for purely hereditary genetic models. We analyzed the data from three publicly available autism family collections in the USA for potential birth order effects and studied the statistical properties of three tests to show that adequate power to detect these effects exist. We detect statistically significant, yet varying, patterns of birth order effects across these collections. In multiplex families, we identify V-shaped effects where middle births are at high risk; in simplex families, we demonstrate linear effects where risk increases with each additional birth. Moreover, the birth order effect is gender-dependent in the simplex collection. It is currently unknown whether these patterns arise from ascertainment biases or biological factors. Nevertheless, further investigation of parental age-dependent risks yields patterns similar to those observed and could potentially explain part of the increased risk. A search for genes considering these patterns is likely to increase statistical power and uncover novel molecular etiologies.

  2. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  3. Overlay control methodology comparison: field-by-field and high-order methods

    Science.gov (United States)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  4. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Energy Technology Data Exchange (ETDEWEB)

    Vermeire, B.C., E-mail: brian.vermeire@concordia.ca; Witherden, F.D.; Vincent, P.E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  5. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Science.gov (United States)

    Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  6. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    International Nuclear Information System (INIS)

    Vermeire, B.C.; Witherden, F.D.; Vincent, P.E.

    2017-01-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  7. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    Science.gov (United States)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  8. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  9. Challenges and Approaches to Statistical Design and Inference in High Dimensional Investigations

    Science.gov (United States)

    Garrett, Karen A.; Allison, David B.

    2015-01-01

    Summary Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other “omic” data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology, and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative. PMID:19588106

  10. Challenges and approaches to statistical design and inference in high-dimensional investigations.

    Science.gov (United States)

    Gadbury, Gary L; Garrett, Karen A; Allison, David B

    2009-01-01

    Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other "omic" data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative.

  11. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  12. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  13. High order scheme for the non-local transport in ICF plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feugeas, J.L.; Nicolai, Ph.; Schurtz, G. [Bordeaux-1 Univ., Centre Lasers Intenses et Applications (UMR 5107), 33 - Talence (France); Charrier, P.; Ahusborde, E. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    A high order practical scheme for a model of non-local transport is here proposed to be used in multidimensional radiation hydrodynamic codes. A high order scheme is necessary to solve non-local problems on strongly deformed meshes that are on hot point or ablation front zones. It is shown that the errors made by a classical 5 point scheme on a disturbed grid can be of the same order of magnitude as the non-local effects. The use of a 9 point scheme in a simulation of inertial confinement fusion appears to be essential.

  14. Statistical identification with hidden Markov models of large order splitting strategies in an equity market

    Science.gov (United States)

    Vaglica, Gabriella; Lillo, Fabrizio; Mantegna, Rosario N.

    2010-07-01

    Large trades in a financial market are usually split into smaller parts and traded incrementally over extended periods of time. We address these large trades as hidden orders. In order to identify and characterize hidden orders, we fit hidden Markov models to the time series of the sign of the tick-by-tick inventory variation of market members of the Spanish Stock Exchange. Our methodology probabilistically detects trading sequences, which are characterized by a significant majority of buy or sell transactions. We interpret these patches of sequential buying or selling transactions as proxies of the traded hidden orders. We find that the time, volume and number of transaction size distributions of these patches are fat tailed. Long patches are characterized by a large fraction of market orders and a low participation rate, while short patches have a large fraction of limit orders and a high participation rate. We observe the existence of a buy-sell asymmetry in the number, average length, average fraction of market orders and average participation rate of the detected patches. The detected asymmetry is clearly dependent on the local market trend. We also compare the hidden Markov model patches with those obtained with the segmentation method used in Vaglica et al (2008 Phys. Rev. E 77 036110), and we conclude that the former ones can be interpreted as a partition of the latter ones.

  15. The (mis)reporting of statistical results in psychology journals

    NARCIS (Netherlands)

    Bakker, M.; Wicherts, J.M.

    2011-01-01

    In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the

  16. Statistics for High Energy Physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The lectures emphasize the frequentist approach used for Dark Matter search and the Higgs search, discovery and measurements of its properties. An emphasis is put on hypothesis test using the asymptotic formulae formalism and its derivation, and on the derivation of the trial factor formulae in one and two dimensions. Various test statistics and their applications are discussed.  Some keywords: Profile Likelihood, Neyman Pearson, Feldman Cousins, Coverage, CLs. Nuisance Parameters Impact, Look Elsewhere Effect... Selected Bibliography: G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys.\\ Rev.\\ D {\\bf 57}, 3873 (1998). A. L. Read, Presentation of search results: The CL(s) technique,'' J.\\ Phys.\\ G {\\bf 28}, 2693 (2002). G. Cowan, K. Cranmer, E. Gross and O. Vitells,  Asymptotic formulae for likelihood-based tests of new physics,' Eur.\\ Phys.\\ J.\\ C {\\bf 71}, 1554 (2011) Erratum: [Eur.\\ Phys.\\ J.\\ C {\\bf 73}...

  17. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    Science.gov (United States)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  18. Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions

    Science.gov (United States)

    Wen, Xiao-Gang

    2017-05-01

    We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.

  19. New Closed-Form Results on Ordered Statistics of Partial Sums of Gamma Random Variables and its Application to Performance Evaluation in the Presence of Nakagami Fading

    KAUST Repository

    Nam, Sung Sik

    2017-06-19

    Complex wireless transmission systems require multi-dimensional joint statistical techniques for performance evaluation. Here, we first present the exact closed-form results on order statistics of any arbitrary partial sums of Gamma random variables with the closedform results of core functions specialized for independent and identically distributed Nakagami-m fading channels based on a moment generating function-based unified analytical framework. These both exact closed-form results have never been published in the literature. In addition, as a feasible application example in which our new offered derived closed-form results can be applied is presented. In particular, we analyze the outage performance of the finger replacement schemes over Nakagami fading channels as an application of our method. Note that these analysis results are directly applicable to several applications, such as millimeter-wave communication systems in which an antenna diversity scheme operates using an finger replacement schemes-like combining scheme, and other fading scenarios. Note also that the statistical results can provide potential solutions for ordered statistics in any other research topics based on Gamma distributions or other advanced wireless communications research topics in the presence of Nakagami fading.

  20. Statistical mechanics of flux lines in high-temperature superconductors

    International Nuclear Information System (INIS)

    Dasgupta, C.

    1992-01-01

    The shortness of the low temperature coherence lengths of high T c materials leads to new mechanisms of pinning of flux lines. Lattice periodic modulations of the order parameters itself acts to pin vortex lines in regions of the unit cell were the order parameter is small. A presentation of flux creep and flux noise at low temperature and magnetic fields in terms of motion of simple metastable defects on flux lines is made, with a calculation of flux lattice melting. 12 refs

  1. A Fractional Lower Order Statistics-Based MIMO Detection Method in Impulse Noise for Power Line Channel

    Directory of Open Access Journals (Sweden)

    CHEN, Z.

    2014-11-01

    Full Text Available Impulse noise in power line communication (PLC channel seriously degrades the performance of Multiple-Input Multiple-Output (MIMO system. To remedy this problem, a MIMO detection method based on fractional lower order statistics (FLOS for PLC channel with impulse noise is proposed in this paper. The alpha stable distribution is used to model impulse noise, and FLOS is applied to construct the criteria of MIMO detection. Then the optimal detection solution is obtained by recursive least squares algorithm. Finally, the transmitted signals in PLC MIMO system are restored with the obtained detection matrix. The proposed method does not require channel estimation and has low computational complexity. The simulation results show that the proposed method has a better PLC MIMO detection performance than the existing ones under impulsive noise environment.

  2. Prediction and reconstruction of future and missing unobservable modified Weibull lifetime based on generalized order statistics

    Directory of Open Access Journals (Sweden)

    Amany E. Aly

    2016-04-01

    Full Text Available When a system consisting of independent components of the same type, some appropriate actions may be done as soon as a portion of them have failed. It is, therefore, important to be able to predict later failure times from earlier ones. One of the well-known failure distributions commonly used to model component life, is the modified Weibull distribution (MWD. In this paper, two pivotal quantities are proposed to construct prediction intervals for future unobservable lifetimes based on generalized order statistics (gos from MWD. Moreover, a pivotal quantity is developed to reconstruct missing observations at the beginning of experiment. Furthermore, Monte Carlo simulation studies are conducted and numerical computations are carried out to investigate the efficiency of presented results. Finally, two illustrative examples for real data sets are analyzed.

  3. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    Science.gov (United States)

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  4. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  5. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  6. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  7. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  8. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    Science.gov (United States)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  9. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    Science.gov (United States)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  10. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming.

    Science.gov (United States)

    Nunkesser, Robin; Bernholt, Thorsten; Schwender, Holger; Ickstadt, Katja; Wegener, Ingo

    2007-12-15

    Not individual single nucleotide polymorphisms (SNPs), but high-order interactions of SNPs are assumed to be responsible for complex diseases such as cancer. Therefore, one of the major goals of genetic association studies concerned with such genotype data is the identification of these high-order interactions. This search is additionally impeded by the fact that these interactions often are only explanatory for a relatively small subgroup of patients. Most of the feature selection methods proposed in the literature, unfortunately, fail at this task, since they can either only identify individual variables or interactions of a low order, or try to find rules that are explanatory for a high percentage of the observations. In this article, we present a procedure based on genetic programming and multi-valued logic that enables the identification of high-order interactions of categorical variables such as SNPs. This method called GPAS cannot only be used for feature selection, but can also be employed for discrimination. In an application to the genotype data from the GENICA study, an association study concerned with sporadic breast cancer, GPAS is able to identify high-order interactions of SNPs leading to a considerably increased breast cancer risk for different subsets of patients that are not found by other feature selection methods. As an application to a subset of the HapMap data shows, GPAS is not restricted to association studies comprising several 10 SNPs, but can also be employed to analyze whole-genome data. Software can be downloaded from http://ls2-www.cs.uni-dortmund.de/~nunkesser/#Software

  11. High order modes in Project-X linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A., E-mail: ais@fnal.gov; Lunin, A.; Yakovlev, V.; Awida, M.; Champion, M.; Ginsburg, C.; Gonin, I.; Grimm, C.; Khabiboulline, T.; Nicol, T.; Orlov, Yu.; Saini, A.; Sergatskov, D.; Solyak, N.; Vostrikov, A.

    2014-01-11

    Project-X, a multi-MW proton source, is now under development at Fermilab. In this paper we present study of high order modes (HOM) excited in continues-wave (CW) superconducting linac of Project-X. We investigate effects of cryogenic losses caused by HOMs and influence of HOMs on beam dynamics. We find that these effects are small. We conclude that HOM couplers/dampers are not needed in the Project-X SC RF cavities.

  12. On high-order perturbative calculations at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)

    2017-02-15

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  13. Is there a statistical mechanics of turbulence?

    International Nuclear Information System (INIS)

    Kraichnan, R.H.; Chen, S.Y.

    1988-09-01

    The statistical-mechanical treatment of turbulence is made questionable by strong nonlinearity and strong disequilibrium that result in the creation of ordered structures imbedded in disorder. Model systems are described which may provide some hope that a compact, yet faithful, statistical description of turbulence nevertheless is possible. Some essential dynamic features of the models are captured by low-order statistical approximations despite strongly non-Gaussian behavior. 31 refs., 5 figs

  14. Test the Overall Significance of p-values by Using Joint Tail Probability of Ordered p-values as Test Statistic

    OpenAIRE

    Fang, Yongxiang; Wit, Ernst

    2008-01-01

    Fisher’s combined probability test is the most commonly used method to test the overall significance of a set independent p-values. However, it is very obviously that Fisher’s statistic is more sensitive to smaller p-values than to larger p-value and a small p-value may overrule the other p-values and decide the test result. This is, in some cases, viewed as a flaw. In order to overcome this flaw and improve the power of the test, the joint tail probability of a set p-values is proposed as a ...

  15. High-order harmonic propagation in gases within the discrete dipole approximation

    International Nuclear Information System (INIS)

    Hernandez-Garcia, C.; Perez-Hernandez, J. A.; Ramos, J.; Jarque, E. Conejero; Plaja, L.; Roso, L.

    2010-01-01

    We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we avoid the numerical integration of the wave equation, as Maxwell's equations have an analytical solution for an elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with the relative position between the beam focus and the gas jet.

  16. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  17. Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

    KAUST Repository

    Xiao, Lei

    2016-09-16

    Photographs of text documents taken by hand-held cameras can be easily degraded by camera motion during exposure. In this paper, we propose a new method for blind deconvolution of document images. Observing that document images are usually dominated by small-scale high-order structures, we propose to learn a multi-scale, interleaved cascade of shrinkage fields model, which contains a series of high-order filters to facilitate joint recovery of blur kernel and latent image. With extensive experiments, we show that our method produces high quality results and is highly efficient at the same time, making it a practical choice for deblurring high resolution text images captured by modern mobile devices. © Springer International Publishing AG 2016.

  18. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  19. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  20. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  1. Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance.

    Science.gov (United States)

    Mausfeld, Rainer; Andres, Johannes

    2002-01-01

    We argue, from an ethology-inspired perspective, that the internal concepts 'surface colours' and 'illumination colours' are part of the data format of two different representational primitives. Thus, the internal concept of 'colour' is not a unitary one but rather refers to two different types of 'data structure', each with its own proprietary types of parameters and relations. The relation of these representational structures is modulated by a class of parameterised transformations whose effects are mirrored in the idealised computational achievements of illumination invariance of colour codes, on the one hand, and scene invariance, on the other hand. Because the same characteristics of a light array reaching the eye can be physically produced in many different ways, the visual system, then, has to make an 'inference' whether a chromatic deviation of the space-averaged colour codes from the neutral point is due to a 'non-normal', ie chromatic, illumination or due to an imbalanced spectral reflectance composition. We provide evidence that the visual system uses second-order statistics of chromatic codes of a single view of a scene in order to modulate corresponding transformations. In our experiments we used centre surround configurations with inhomogeneous surrounds given by a random structure of overlapping circles, referred to as Seurat configurations. Each family of surrounds has a fixed space-average of colour codes, but differs with respect to the covariance matrix of colour codes of pixels that defines the chromatic variance along some chromatic axis and the covariance between luminance and chromatic channels. We found that dominant wavelengths of red-green equilibrium settings of the infield exhibited a stable and strong dependence on the chromatic variance of the surround. High variances resulted in a tendency towards 'scene invariance', low variances in a tendency towards 'illumination invariance' of the infield.

  2. An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries

    Science.gov (United States)

    Dyson, Rodger W.; Goodrich, John W.

    2000-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  3. Study of a high-order-mode gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2010-01-01

    Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.

  4. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2012-03-01

    Full Text Available The high-order decoupled direct method in three dimensions for particulate matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ sensitivities simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates poorly understood nonlinear responses of secondary inorganic aerosols to their precursors and competing species. Adding second-order sensitivity terms to the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 emissions rates improves the prediction with statistical significance.

  5. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  6. Enhancement of high-order harmonic generation in the presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, I; Altun, Z [Department of Physics, Marmara University, 34722 Ziverbey, Istanbul (Turkey); Topcu, T, E-mail: ilhan.yavuz@marmara.edu.tr [Department of Physics, Auburn University, AL 36849-5311 (United States)

    2011-07-14

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  7. Enhancement of high-order harmonic generation in the presence of noise

    International Nuclear Information System (INIS)

    Yavuz, I; Altun, Z; Topcu, T

    2011-01-01

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  8. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  9. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  10. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  11. Order no 000004/PRN/ME/P/DS from January 21, 2014 provides for the organization and attributions of divisions and departments of the Statistics Directorate of the Ministry of Energy and Oil

    International Nuclear Information System (INIS)

    Foumakoye, Gado

    2014-01-01

    This order provides for the organization and attributions of divisions and departments of the Statistics Directorate of the Ministry of Energy and Oil. This direction has two divisions namely Division for Energy Statistics and Division for Oil Statistics . Energy Statistics Division includes the following services: Service collection and data analysis for energy statistics and the service of production, dissemination and conservation of energy statics. The division for Oil Statistics includes the Service collection and data analysis for energy statistics and the service of production, dissemination and conservation of energy statistics. [fr

  12. Statistical mechanics and Lorentz violation

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick

    2004-01-01

    The theory of statistical mechanics is studied in the presence of Lorentz-violating background fields. The analysis is performed using the Standard-Model Extension (SME) together with a Jaynesian formulation of statistical inference. Conventional laws of thermodynamics are obtained in the presence of a perturbed hamiltonian that contains the Lorentz-violating terms. As an example, properties of the nonrelativistic ideal gas are calculated in detail. To lowest order in Lorentz violation, the scalar thermodynamic variables are only corrected by a rotationally invariant combination of parameters that mimics a (frame dependent) effective mass. Spin-couplings can induce a temperature-independent polarization in the classical gas that is not present in the conventional case. Precision measurements in the residual expectation values of the magnetic moment of Fermi gases in the limit of high temperature may provide interesting limits on these parameters

  13. Integer Set Compression and Statistical Modeling

    DEFF Research Database (Denmark)

    Larsson, N. Jesper

    2014-01-01

    enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...

  14. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  15. HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS

    Directory of Open Access Journals (Sweden)

    Jiameng Wu

    2018-01-01

    Full Text Available The infinite depth free surface Green function (GF and its high order derivatives for diffraction and radiation of water waves are considered. Especially second order derivatives are essential requirements in high-order panel method. In this paper, concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, not only the GF and its first order derivatives but also second order derivatives are derived from four kinds of analytical series expansion and refined division of whole calculation domain. The approximations of special functions, particularly the hypergeometric function and the algorithmic applicability with different subdomains are implemented. As a result, the computation accuracy can reach 10-9 in whole domain compared with conventional methods based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent to that with the classical method.

  16. High order P-G finite elements for convection-dominated problems

    International Nuclear Information System (INIS)

    Carmo, E.D. do; Galeao, A.C.

    1989-06-01

    From the error analysis presented in this paper it is shown that de CCAU method derived by Dutra do Carmo and Galeao [3] preserves the same order of approximation obtained with SUPH (cf. Books and Hughes [2]) when advection-diffusion regular solutions are considered, and improves the accuracy of the approximate boundary layer solution when high order interpolating polynomials are used near sharp layers [pt

  17. 2nd Conference of the International Society for Nonparametric Statistics

    CERN Document Server

    Manteiga, Wenceslao; Romo, Juan

    2016-01-01

    This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers...

  18. Small violations of particle statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1992-01-01

    This paper reports on the particle statistics menagerie for identical particles (in 3 + 1 dimensions) which consists of fermions (all states totally antisymmetric), bosons (all states totally symmetric), parafermions of order p (all representations of the symmetric group with Young tableaux having at most p boxes in a row) and parabosons of order p (all representations with at most p boxes in a column). p = 1 for parafermions is the same as Fermi, and p = 1 for parabosons is the same as Bose. These possibilities were derived in a general way by Doplicher, Haag and Roberts, who found one other case, infinite statistics for which all representations of the symmetric group occur, but did not give an algebra which leads to this statistics

  19. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces

    International Nuclear Information System (INIS)

    Zhao Shan; Wei, G.W.

    2004-01-01

    This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved, respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method, to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell's equations with material interfaces

  20. Very high order lattice perturbation theory for Wilson loops

    International Nuclear Information System (INIS)

    Horsley, R.

    2010-10-01

    We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)

  1. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    A. Korth

    2005-07-01

    Full Text Available The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE and high-latitude (from 70 to ~90 deg invariant latitude, ILAT polar region. The principal results are: (1 Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2 at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft; (3 however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

  2. A statistical study towards high-mass BGPS clumps with the MALT90 survey

    Science.gov (United States)

    Liu, Xiao-Lan; Xu, Jin-Long; Ning, Chang-Chun; Zhang, Chuan-Peng; Liu, Xiao-Tao

    2018-01-01

    In this work, we perform a statistical investigation towards 50 high-mass clumps using data from the Bolocam Galactic Plane Survey (BGPS) and Millimetre Astronomy Legacy Team 90-GHz survey (MALT90). Eleven dense molecular lines (N2H+(1–0), HNC(1–0), HCO+(1–0), HCN(1–0), HN13C(1–0), H13CO+(1–0), C2H(1–0), HC3N(10–9), SiO(2–1), 13CS(2–1)and HNCO(44,0 ‑ 30,3)) are detected. N2H+ and HNC are shown to be good tracers for clumps in various evolutionary stages since they are detected in all the fields. The detection rates of N-bearing molecules decrease as the clumps evolve, but those of O-bearing species increase with evolution. Furthermore, the abundance ratios [N2H+]/[HCO+] and log([HC3N]/[HCO+]) decline with log([HCO+]) as two linear functions, respectively. This suggests that N2H+ and HC3N transform to HCO+ as the clumps evolve. We also find that C2H is the most abundant molecule with an order of magnitude 10‑8. In addition, three new infall candidates, G010.214–00.324, G011.121–00.128 and G012.215–00.118(a), are discovered to have large-scale infall motions and infall rates with an order of magnitude 10‑3 M ⊙ yr‑1.

  3. On the computation of the higher order statistics of the channel capacity for amplify-and-forward multihop transmission

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2014-01-01

    Higher order statistics (HOS) of the channel capacity provide useful information regarding the level of reliability of signal transmission at a particular rate. In this paper, we propose a novel and unified analysis, which is based on the moment-generating function (MGF) approach, to efficiently and accurately compute the HOS of the channel capacity for amplify-and-forward (AF) multihop transmission over generalized fading channels. More precisely, our easy-to-use and tractable mathematical formalism requires only the reciprocal MGFs of the transmission hop signal-to-noise ratio (SNR). Numerical and simulation results, which are performed to exemplify the usefulness of the proposed MGF-based analysis, are shown to be in perfect agreement. © 2013 IEEE.

  4. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2012-01-01

    This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....

  5. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermi's equation. Approximate calculus methods are found from analytic study of the T-Fermi's equation for non zero temperature. T-Fermi's equation is solved with the code ''Golem''written in Fortran V (Univac). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (author) [es

  6. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs

  7. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  8. High temperature color conductivity at next-to-leading log order

    International Nuclear Information System (INIS)

    Arnold, Peter; Yaffe, Laurence G.

    2000-01-01

    The non-Abelian analogue of electrical conductivity at high temperature has previously been known only at leading logarithmic order -- that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate

  9. Multivariate statistical analysis a high-dimensional approach

    CERN Document Server

    Serdobolskii, V

    2000-01-01

    In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

  10. Statistics for non-statisticians

    CERN Document Server

    Madsen, Birger Stjernholm

    2016-01-01

    This book was written for those who need to know how to collect, analyze and present data. It is meant to be a first course for practitioners, a book for private study or brush-up on statistics, and supplementary reading for general statistics classes. The book is untraditional, both with respect to the choice of topics and the presentation: Topics were determined by what is most useful for practical statistical work, and the presentation is as non-mathematical as possible. The book contains many examples using statistical functions in spreadsheets. In this second edition, new topics have been included e.g. within the area of statistical quality control, in order to make the book even more useful for practitioners working in industry. .

  11. Capturing rogue waves by multi-point statistics

    International Nuclear Information System (INIS)

    Hadjihosseini, A; Wächter, Matthias; Peinke, J; Hoffmann, N P

    2016-01-01

    As an example of a complex system with extreme events, we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows the grasping of extreme rogue wave events in a highly satisfactory statistical manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales, for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker–Planck equation. Conditional probabilities as well as the Fokker–Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated, which makes it possible to work out arbitrary statistical features of the complex sea state in general, and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics. (paper)

  12. The (mis)reporting of statistical results in psychology journals.

    Science.gov (United States)

    Bakker, Marjan; Wicherts, Jelte M

    2011-09-01

    In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature are incorrectly reported. Inconsistencies were more common in low-impact journals than in high-impact journals. Moreover, around 15% of the articles contained at least one statistical conclusion that proved, upon recalculation, to be incorrect; that is, recalculation rendered the previously significant result insignificant, or vice versa. These errors were often in line with researchers' expectations. We classified the most common errors and contacted authors to shed light on the origins of the errors.

  13. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  14. Event characterization and high order flow components of Au-Au collisions at 1.23 AGeV with HADES

    Energy Technology Data Exchange (ETDEWEB)

    Kardan, Behruz; Blume, Christoph; Subotic, Maja [Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: HADES-Collaboration

    2015-07-01

    HADES provides a large acceptance combined with a high mass resolution and therefor allows to study dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the high statistics of seven billion Au-Au collisions at 1.23 AGeV recorded in April/May 2012 also the investigation of higher order flow harmonics is possible. Collective flow is a sensitive probe for the properties of extreme QCD matter. However, its interpretation relies on the understanding of the initial conditions e.g. the eccentricity of the fireball created in the nuclear overlap region. Based on Glauber Monte Carlo calculations the initial conditions of nuclear collisions, with special emphasis on the correlations between participating nucleons, were examined. Observables of event-by-event flow fluctuations with respect to the reaction centrality are deduced from geometrical properties of the initial state and compared to the measured data.

  15. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    of high-order linear time invariant (LTI) models. Firstly, the high-order LTI models are locally approximated using modal and balanced truncation and residualization. Then, an appropriate coordinate transformation is applied to allow interpolation of the model matrices between points on the parameter...

  16. A Stochastic Fractional Dynamics Model of Rainfall Statistics

    Science.gov (United States)

    Kundu, Prasun; Travis, James

    2013-04-01

    Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.

  17. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  18. 77 FR 51693 - Milk in the Mideast Marketing Area; Order Amending the Order

    Science.gov (United States)

    2012-08-27

    ... can be supplied without data processing equipment or a trained statistical staff. Thus, the... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 1033 [Doc. No. AO-11-0333; AMS-DA-11-0067; DA-11-04] Milk in the Mideast Marketing Area; Order Amending the Order AGENCY...

  19. Propagation effects in the generation process of high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  20. A High-Order CFS Algorithm for Clustering Big Data

    Directory of Open Access Journals (Sweden)

    Fanyu Bu

    2016-01-01

    Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.

  1. A high order multi-resolution solver for the Poisson equation with application to vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik Juul; Walther, Jens Honore

    A high order method is presented for solving the Poisson equation subject to mixed free-space and periodic boundary conditions by using fast Fourier transforms (FFT). The high order convergence is achieved by deriving mollified Green’s functions from a high order regularization function which...

  2. Theoretical description of high-order harmonic generation in solids

    International Nuclear Information System (INIS)

    Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K

    2013-01-01

    We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)

  3. High-order conservative discretizations for some cases of the rigid body motion

    International Nuclear Information System (INIS)

    Kozlov, Roman

    2008-01-01

    Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases

  4. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  5. Two sample Bayesian prediction intervals for order statistics based on the inverse exponential-type distributions using right censored sample

    Directory of Open Access Journals (Sweden)

    M.M. Mohie El-Din

    2011-10-01

    Full Text Available In this paper, two sample Bayesian prediction intervals for order statistics (OS are obtained. This prediction is based on a certain class of the inverse exponential-type distributions using a right censored sample. A general class of prior density functions is used and the predictive cumulative function is obtained in the two samples case. The class of the inverse exponential-type distributions includes several important distributions such the inverse Weibull distribution, the inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential model and the inverse Rayleigh model are considered.

  6. Statistical classification techniques in high energy physics (SDDT algorithm)

    International Nuclear Information System (INIS)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2016-01-01

    We present our proposal of the supervised binary divergence decision tree with nested separation method based on the generalized linear models. A key insight we provide is the clustering driven only by a few selected physical variables. The proper selection consists of the variables achieving the maximal divergence measure between two different classes. Further, we apply our method to Monte Carlo simulations of physics processes corresponding to a data sample of top quark-antiquark pair candidate events in the lepton+jets decay channel. The data sample is produced in pp̅ collisions at √S = 1.96 TeV. It corresponds to an integrated luminosity of 9.7 fb"-"1 recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. The efficiency of our algorithm achieves 90% AUC in separating signal from background. We also briefly deal with the modification of statistical tests applicable to weighted data sets in order to test homogeneity of the Monte Carlo simulations and measured data. The justification of these modified tests is proposed through the divergence tests. (paper)

  7. High order effects in cross section sensitivity analysis

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.; Gilai, D.

    1978-01-01

    Two types of high order effects associated with perturbations in the flux shape are considered: Spectral Fine Structure Effects (SFSE) and non-linearity between changes in performance parameters and data uncertainties. SFSE are investigated in Part I using a simple single resonance model. Results obtained for each of the resolved and for representative unresolved resonances of 238 U in a ZPR-6/7 like environment indicate that SFSE can have a significant contribution to the sensitivity of group constants to resonance parameters. Methods to account for SFSE both for the propagation of uncertainties and for the adjustment of nuclear data are discussed. A Second Order Sensitivity Theory (SOST) is presented, and its accuracy relative to that of the first order sensitivity theory and of the direct substitution method is investigated in Part II. The investigation is done for the non-linear problem of the effect of changes in the 297 keV sodium minimum cross section on the transport of neutrons in a deep-penetration problem. It is found that the SOST provides a satisfactory accuracy for cross section uncertainty analysis. For the same degree of accuracy, the SOST can be significantly more efficient than the direct substitution method

  8. Strategies for Reduced-Order Models in Uncertainty Quantification of Complex Turbulent Dynamical Systems

    Science.gov (United States)

    Qi, Di

    Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are

  9. Phase matching of high-order harmonics in a semi-infinite gas cell

    International Nuclear Information System (INIS)

    Steingrube, Daniel S.; Vockerodt, Tobias; Schulz, Emilia; Morgner, Uwe; Kovacev, Milutin

    2009-01-01

    Phase matching of high-order harmonic generation is investigated experimentally for various parameters in a semi-infinite gas-cell (SIGC) geometry. The optimized harmonic yield is identified using two different noble gases (Xe and He) and its parameter dependence is studied in a systematic way. Beside the straightforward setup of the SIGC, this geometry promises a high photon flux due to a large interaction region. Moreover, since the experimental parameters within this cell are known accurately, direct comparison to simulations is performed. Spectral splitting and blueshift of high-order harmonics are observed.

  10. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  11. Strong laws for L- and U-statistics

    NARCIS (Netherlands)

    Aaronson, J; Burton, R; Dehling, H; Gilat, D; Hill, T; Weiss, B

    Strong laws of large numbers are given for L-statistics (linear combinations of order statistics) and for U-statistics (averages of kernels of random samples) for ergodic stationary processes, extending classical theorems; of Hoeffding and of Helmers for lid sequences. Examples are given to show

  12. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  13. High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition

    International Nuclear Information System (INIS)

    Zhong Xiaolin; Tatineni, Mahidhar

    2003-01-01

    The direct numerical simulation of receptivity, instability and transition of hypersonic boundary layers requires high-order accurate schemes because lower-order schemes do not have an adequate accuracy level to compute the large range of time and length scales in such flow fields. The main limiting factor in the application of high-order schemes to practical boundary-layer flow problems is the numerical instability of high-order boundary closure schemes on the wall. This paper presents a family of high-order non-uniform grid finite difference schemes with stable boundary closures for the direct numerical simulation of hypersonic boundary-layer transition. By using an appropriate grid stretching, and clustering grid points near the boundary, high-order schemes with stable boundary closures can be obtained. The order of the schemes ranges from first-order at the lowest, to the global spectral collocation method at the highest. The accuracy and stability of the new high-order numerical schemes is tested by numerical simulations of the linear wave equation and two-dimensional incompressible flat plate boundary layer flows. The high-order non-uniform-grid schemes (up to the 11th-order) are subsequently applied for the simulation of the receptivity of a hypersonic boundary layer to free stream disturbances over a blunt leading edge. The steady and unsteady results show that the new high-order schemes are stable and are able to produce high accuracy for computations of the nonlinear two-dimensional Navier-Stokes equations for the wall bounded supersonic flow

  14. Topics in statistical data analysis for high-energy physics

    International Nuclear Information System (INIS)

    Cowan, G.

    2011-01-01

    These lectures concert two topics that are becoming increasingly important in the analysis of high-energy physics data: Bayesian statistics and multivariate methods. In the Bayesian approach, we extend the interpretation of probability not only to cover the frequency of repeatable outcomes but also to include a degree of belief. In this way we are able to associate probability with a hypothesis and thus to answer directly questions that cannot be addressed easily with traditional frequentist methods. In multivariate analysis, we try to exploit as much information as possible from the characteristics that we measure for each event to distinguish between event types. In particular we will look at a method that has gained popularity in high-energy physics in recent years: the boosted decision tree. Finally, we give a brief sketch of how multivariate methods may be applied in a search for a new signal process. (author)

  15. [Comment on] Statistical discrimination

    Science.gov (United States)

    Chinn, Douglas

    In the December 8, 1981, issue of Eos, a news item reported the conclusion of a National Research Council study that sexual discrimination against women with Ph.D.'s exists in the field of geophysics. Basically, the item reported that even when allowances are made for motherhood the percentage of female Ph.D.'s holding high university and corporate positions is significantly lower than the percentage of male Ph.D.'s holding the same types of positions. The sexual discrimination conclusion, based only on these statistics, assumes that there are no basic psychological differences between men and women that might cause different populations in the employment group studied. Therefore, the reasoning goes, after taking into account possible effects from differences related to anatomy, such as women stopping their careers in order to bear and raise children, the statistical distributions of positions held by male and female Ph.D.'s ought to be very similar to one another. Any significant differences between the distributions must be caused primarily by sexual discrimination.

  16. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  17. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  18. Excel 2016 in applied statistics for high school students a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2018-01-01

    This textbook is a step-by-step guide for high school, community college, or undergraduate students who are taking a course in applied statistics and wish to learn how to use Excel to solve statistical problems. All of the statistics problems in this book will come from the following fields of study: business, education, psychology, marketing, engineering and advertising. Students will learn how to perform key statistical tests in Excel without being overwhelmed by statistical theory. Each chapter briefly explains a topic and then demonstrates how to use Excel commands and formulas to solve specific statistics problems. This book gives practice in using Excel in two different ways: (1) writing formulas (e.g., confidence interval about the mean, one-group t-test, two-group t-test, correlation) and (2) using Excel’s drop-down formula menus (e.g., simple linear regression, multiple correlations and multiple regression, and one-way ANOVA). Three practice problems are provided at the end of each chapter, along w...

  19. Coaxial higher-order mode damper employing a high-pass filter

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.

    1997-01-01

    Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed

  20. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  1. Scattering of a high-order Bessel beam by a spheroidal particle

    Science.gov (United States)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  2. Overshooting Effects in Nonequilibrium Ordering Dynamics

    DEFF Research Database (Denmark)

    Gilhøj, Henriette; Jeppesen, Claus; Mouritsen, Ole G.

    1995-01-01

    Using Monte Carlo simulation on the simplest possible statistical mechanical model, the two-dimensional, nonconserved kinetic Ising model that undergoes an order-disorder transition, we show that the local order of the ordering domains, subsequent to a temperature quench, transiently overshoots...

  3. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.

    2010-09-17

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  4. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.; Pasquetti, R.

    2010-01-01

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  5. [The research protocol VI: How to choose the appropriate statistical test. Inferential statistics].

    Science.gov (United States)

    Flores-Ruiz, Eric; Miranda-Novales, María Guadalupe; Villasís-Keever, Miguel Ángel

    2017-01-01

    The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  6. The research protocol VI: How to choose the appropriate statistical test. Inferential statistics

    Directory of Open Access Journals (Sweden)

    Eric Flores-Ruiz

    2017-10-01

    Full Text Available The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  7. Oxygen ordering and superconductivity in the high Tc superconductor YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Friis Poulsen, H.

    1991-12-01

    This report contains the result of an experimental and theoretical investigation of the oxygen ordering process in the High T c superconductor Y Ba 2 Cu 3 O 6+x . Neutron scattering is used in connection with in situ monitoring of the oxygen in-diffusion in a gas-volumetric equipment. Information on the variations of the structural phases, the twin domain sizes, the elastic forces, the chemical potential og oxygen as well as diffusion are provided. Using Monte Carlo simulations we find that a simple two-dimentional lattice gas model of the oxygen ordering process, the ASYNNNI model, gives an excellent description of the vast majority of these data. A systematic study of the relationship between the static and dynamic variations of the superconducting transition temperature, T c , and the corresponding variations of the low temperature oxygen ordering process is performed. Statistics from Monte Carlo simulations based on the ASYNNNI model are combined with experimental data from the literature. The combined static and dynamic analysis makes it evident that within a charge transfer model, a linear T c versus charge transfer relationship can only be rationalized if the description is based on extended coherent ordered domains and if the dynamic co-existence between the Ortho-I and the Ortho-II type of domains inherent to the ASYNNNI model is taken into account. A minimal model is proposed, where the total charge transfer is found as a weighted sum over the areas of the Ortho-I and the Ortho-II domains, and the minimal size of the two types of domains are given by a doubling og their unit cells in both directions. (au) 5 tabs., 35 ills., 108 refs

  8. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-04

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.

  9. Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones

    Science.gov (United States)

    Kuznetsov, Eduard; Zakharova, Polina

    Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high-order

  10. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  11. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  12. High-dimensional data: p >> n in mathematical statistics and bio-medical applications

    OpenAIRE

    Van De Geer, Sara A.; Van Houwelingen, Hans C.

    2004-01-01

    The workshop 'High-dimensional data: p >> n in mathematical statistics and bio-medical applications' was held at the Lorentz Center in Leiden from 9 to 20 September 2002. This special issue of Bernoulli contains a selection of papers presented at that workshop. ¶ The introduction of high-throughput micro-array technology to measure gene-expression levels and the publication of the pioneering paper by Golub et al. (1999) has brought to life a whole new branch of data analysis under the name of...

  13. [Statistics for statistics?--Thoughts about psychological tools].

    Science.gov (United States)

    Berger, Uwe; Stöbel-Richter, Yve

    2007-12-01

    Statistical methods take a prominent place among psychologists' educational programs. Being known as difficult to understand and heavy to learn, students fear of these contents. Those, who do not aspire after a research carrier at the university, will forget the drilled contents fast. Furthermore, because it does not apply for the work with patients and other target groups at a first glance, the methodological education as a whole was often questioned. For many psychological practitioners the statistical education makes only sense by enforcing respect against other professions, namely physicians. For the own business, statistics is rarely taken seriously as a professional tool. The reason seems to be clear: Statistics treats numbers, while psychotherapy treats subjects. So, does statistics ends in itself? With this article, we try to answer the question, if and how statistical methods were represented within the psychotherapeutical and psychological research. Therefore, we analyzed 46 Originals of a complete volume of the journal Psychotherapy, Psychosomatics, Psychological Medicine (PPmP). Within the volume, 28 different analyse methods were applied, from which 89 per cent were directly based upon statistics. To be able to write and critically read Originals as a backbone of research, presumes a high degree of statistical education. To ignore statistics means to ignore research and at least to reveal the own professional work to arbitrariness.

  14. Selective suppression of high-order harmonics within phase-matched spectral regions.

    Science.gov (United States)

    Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren

    2017-04-01

    Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

  15. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    Science.gov (United States)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  16. Statistical Optics

    Science.gov (United States)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  17. A high-order SPH method by introducing inverse kernels

    Directory of Open Access Journals (Sweden)

    Le Fang

    2017-02-01

    Full Text Available The smoothed particle hydrodynamics (SPH method is usually expected to be an efficient numerical tool for calculating the fluid-structure interactions in compressors; however, an endogenetic restriction is the problem of low-order consistency. A high-order SPH method by introducing inverse kernels, which is quite easy to be implemented but efficient, is proposed for solving this restriction. The basic inverse method and the special treatment near boundary are introduced with also the discussion of the combination of the Least-Square (LS and Moving-Least-Square (MLS methods. Then detailed analysis in spectral space is presented for people to better understand this method. Finally we show three test examples to verify the method behavior.

  18. Highly Robust Statistical Methods in Medical Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 32, č. 2 (2012), s. 3-16 ISSN 0208-5216 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust statistics * classification * faces * robust image analysis * forensic science Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.208, year: 2012 http://www.ibib.waw.pl/bbe/bbefulltext/BBE_32_2_003_FT.pdf

  19. Parallel auto-correlative statistics with VTK.

    Energy Technology Data Exchange (ETDEWEB)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  20. Comparative analysis of positive and negative attitudes toward statistics

    Science.gov (United States)

    Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah

    2015-02-01

    Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.

  1. Quality in statistics education : Determinants of course outcomes in methods & statistics education at universities and colleges

    NARCIS (Netherlands)

    Verhoeven, P.S.

    2009-01-01

    Although Statistics is not a very popular course according to most students, a majority of students still take it, as it is mandatory at most Social Science departments. Therefore it takes special teacher’s skills to teach statistics. In order to do so it is essential for teachers to know what

  2. Electrochemical synthesis of highly ordered polypyrrole on copper modified aluminium substrates

    International Nuclear Information System (INIS)

    Siddaramanna, Ashoka; Saleema, N.; Sarkar, D.K.

    2014-01-01

    Fabrication of highly ordered conducting polymers on metal surfaces has received a significant interest owing to their potential applications in organic electronic devices. In this context, we have developed a simple method for the synthesis of highly ordered polypyrrole (PPy) on copper modified aluminium surfaces via electrochemical polymerization process. A series of characteristic peaks of PPy evidenced on the infrared spectra of these surfaces confirm the formation of PPy. The X-ray diffraction (XRD) pattern of PPy deposited on copper modified aluminium surfaces also confirmed the deposition of PPy as a sharp and intense peak at 2θ angle of 23° attributable to PPy is observed while this peak is absent on PPy deposited on as-received aluminium surfaces. An atomic model of the interface of PPy/Cu has been presented based on the inter-atomic distance of copper–copper of (1 0 0) plane and the inter-monomer distance of PPy, to describe the ordering of PPy on Cu modified Al surfaces.

  3. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  4. Global stability of stochastic high-order neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Wang Zidong; Fang Jianan; Liu Xiaohui

    2008-01-01

    High-order neural networks can be considered as an expansion of Hopfield neural networks, and have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks. In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with discrete and distributed time-delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived, which guarantee the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the stochastic high-order delayed neural networks under consideration are globally asymptotically stable in the mean square if two linear matrix inequalities (LMIs) are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also shown that the main results in this paper cover some recently published works. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria

  5. Statistical mechanics in the context of special relativity.

    Science.gov (United States)

    Kaniadakis, G

    2002-11-01

    the ordinary statistical mechanics and is suitable to describe a very large class of experimentally observed phenomena in low and high energy physics and in natural, economic, and social sciences. Finally, in order to test the correctness and predictability of the theory, as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades in flux, finding a high quality agreement between our predictions and observed data.

  6. Aspects of modern fracture statistics

    International Nuclear Information System (INIS)

    Tradinik, W.; Pabst, R.F.; Kromp, K.

    1981-01-01

    This contribution begins with introductory general remarks about fracture statistics. Then the fundamentals of the distribution of fracture probability are described. In the following part the application of the Weibull Statistics is justified. In the fourth chapter the microstructure of the material is considered in connection with calculations made in order to determine the fracture probability or risk of fracture. (RW) [de

  7. Second order statistics of bilinear forms of robust scatter estimators

    KAUST Repository

    Kammoun, Abla; Couillet, Romain; Pascal, Fré dé ric

    2015-01-01

    . In particular, we analyze the fluctuations of bilinear forms of the robust shrinkage estimator of covariance matrix. We show that this result can be leveraged in order to improve the design of robust detection methods. As an example, we provide an improved

  8. The statistical mechanics of financial markets

    CERN Document Server

    Voit, Johannes

    2003-01-01

    From the reviews of the first edition - "Provides an excellent introduction for physicists interested in the statistical properties of financial markets. Appropriately early in the book the basic financial terms such as shorts, limit orders, puts, calls, and other terms are clearly defined. Examples, often with graphs, augment the reader’s understanding of what may be a plethora of new terms and ideas… [This is] an excellent starting point for the physicist interested in the subject. Some of the book’s strongest features are its careful definitions, its detailed examples, and the connection it establishes to physical systems." PHYSICS TODAY "This book is excellent at illustrating the similarities of financial markets with other non-equilibrium physical systems. [...] In summary, a very good book that offers more than just qualitative comparisons of physics and finance." (www.quantnotes.com) This highly-praised introductory treatment describes parallels between statistical physics and finance - both thos...

  9. Energy statistics manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.

  10. High order aberrations calculation of a hexapole corrector using a differential algebra method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yongfeng, E-mail: yfkang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao, Jingyi, E-mail: jingyi.zhao@foxmail.com [School of Science, Chang’an University, Xi’an 710064 (China); Tang, Tiantong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-02-21

    A differential algebraic (DA) method is proved as an unusual and effective tool in numerical analysis. It implements conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order of a practical hexapole corrector including round lenses and hexapole lenses. The program has been developed and tested as well. The electro-magnetic fields of arbitrary point are obtained by local analytic expressions, then field potentials are transformed into new forms which can be operated in the DA calculation. In this paper, the geometric and chromatic aberrations up to fifth order of a practical hexapole corrector system are calculated by the developed program.

  11. Guiding of low-energy electrons by highly ordered Al2 O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Víkor, G.; Pešić, Z.D.

    2007-01-01

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al2 O3 nanocapillaries with large aspect ratio (140 nm diameter and 15 μm length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization...... process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12°. As seen for highly charged ions, the guiding efficiency increases with decreasing...

  12. A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish.

    Directory of Open Access Journals (Sweden)

    Guozhu Zhang

    Full Text Available Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS of all 1,060 Toxicity Forecaster (ToxCast™ chemicals across 5 concentrations at 120 hours post-fertilization (hpf. Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses.

  13. Simulation of statistical γ-spectra of highly excited rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.

    1997-05-01

    The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs

  14. The statistical bandwidth of Butterworth filters

    Science.gov (United States)

    Davy, J. L.; Dunn, I. P.

    1987-06-01

    The precision of standard architectural acoustic measurements is a function of the statistical bandwidth of the band pass filters used in the measurements. The International and United States Standards on octave and fractional octave-band filters which specify the band pass filters used in architectural acoustics measurements give the effective bandwidth, but unfortunately not the statistical bandwidth of the filters. Both these Standards are currently being revised and both revisions require the use of Butterworth filter characteristics. In this paper it is shown theoretically that the ratio of statistical bandwidth to effective bandwidth for an nth order Butterworth band pass filter is {2n}/{(2n-1)}. This is verified experimentally for third-octave third-order Butterworth band pass filters. It is also shown experimentally that this formula is approximately correct for some non-Butterworth third-octave third-order band pass filters. Because of the importance of Butterworth filters in the revised Standards, the theory of Butterworth filters is reviewed and the formulae for Butterworth filters given in both revised Standards are derived.

  15. Level set methods for detonation shock dynamics using high-order finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grogan, F. C. [Univ. of California, San Diego, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, T. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tomov, V. Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-26

    Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two- and three-dimensional benchmark problems as well as applications to DSD.

  16. Development of a high-order finite volume method with multiblock partition techniques

    Directory of Open Access Journals (Sweden)

    E. M. Lemos

    2012-03-01

    Full Text Available This work deals with a new numerical methodology to solve the Navier-Stokes equations based on a finite volume method applied to structured meshes with co-located grids. High-order schemes used to approximate advective, diffusive and non-linear terms, connected with multiblock partition techniques, are the main contributions of this paper. Combination of these two techniques resulted in a computer code that involves high accuracy due the high-order schemes and great flexibility to generate locally refined meshes based on the multiblock approach. This computer code has been able to obtain results with higher or equal accuracy in comparison with results obtained using classical procedures, with considerably less computational effort.

  17. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  18. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias; Choi, Joshua J.; Smilgies, Detlef-M.

    2009-01-01

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  19. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  20. Effective high-order solver with thermally perfect gas model for hypersonic heating prediction

    International Nuclear Information System (INIS)

    Jiang, Zhenhua; Yan, Chao; Yu, Jian; Qu, Feng; Ma, Libin

    2016-01-01

    Highlights: • Design proper numerical flux for thermally perfect gas. • Line-implicit LUSGS enhances efficiency without extra memory consumption. • Develop unified framework for both second-order MUSCL and fifth-order WENO. • The designed gas model can be applied to much wider temperature range. - Abstract: Effective high-order solver based on the model of thermally perfect gas has been developed for hypersonic heat transfer computation. The technique of polynomial curve fit coupling to thermodynamics equation is suggested to establish the current model and particular attention has been paid to the design of proper numerical flux for thermally perfect gas. We present procedures that unify five-order WENO (Weighted Essentially Non-Oscillatory) scheme in the existing second-order finite volume framework and a line-implicit method that improves the computational efficiency without increasing memory consumption. A variety of hypersonic viscous flows are performed to examine the capability of the resulted high order thermally perfect gas solver. Numerical results demonstrate its superior performance compared to low-order calorically perfect gas method and indicate its potential application to hypersonic heating predictions for real-life problem.

  1. Sb2Te3 and Its Superlattices: Optimization by Statistical Design.

    Science.gov (United States)

    Behera, Jitendra K; Zhou, Xilin; Ranjan, Alok; Simpson, Robert E

    2018-05-02

    The objective of this work is to demonstrate the usefulness of fractional factorial design for optimizing the crystal quality of chalcogenide van der Waals (vdW) crystals. We statistically analyze the growth parameters of highly c axis oriented Sb 2 Te 3 crystals and Sb 2 Te 3 -GeTe phase change vdW heterostructured superlattices. The statistical significance of the growth parameters of temperature, pressure, power, buffer materials, and buffer layer thickness was found by fractional factorial design and response surface analysis. Temperature, pressure, power, and their second-order interactions are the major factors that significantly influence the quality of the crystals. Additionally, using tungsten rather than molybdenum as a buffer layer significantly enhances the crystal quality. Fractional factorial design minimizes the number of experiments that are necessary to find the optimal growth conditions, resulting in an order of magnitude improvement in the crystal quality. We highlight that statistical design of experiment methods, which is more commonly used in product design, should be considered more broadly by those designing and optimizing materials.

  2. factor high order fuzzy time series with applications to temperature

    African Journals Online (AJOL)

    HOD

    In this paper, a novel two – factor highorder fuzzy time series forecasting method based on .... to balance between local and global exploitations of the swarms. While, .... Although, there were a number of outliers but, the spread at the spot in ...

  3. Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays

    KAUST Repository

    Sturino, Joseph

    2010-01-24

    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform.

  4. Default settings of computerized physician order entry system order sets drive ordering habits.

    Science.gov (United States)

    Olson, Jordan; Hollenbeak, Christopher; Donaldson, Keri; Abendroth, Thomas; Castellani, William

    2015-01-01

    Computerized physician order entry (CPOE) systems are quickly becoming ubiquitous, and groups of orders ("order sets") to allow for easy order input are a common feature. This provides a streamlined mechanism to view, modify, and place groups of related orders. This often serves as an electronic equivalent of a specialty requisition. A characteristic, of these order sets is that specific orders can be predetermined to be "preselected" or "defaulted-on" whenever the order set is used while others are "optional" or "defaulted-off" (though there is typically the option is to "deselect" defaulted-on tests in a given situation). While it seems intuitive that the defaults in an order set are often accepted, additional study is required to understand the impact of these "default" settings in an order set on ordering habits. This study set out to quantify the effect of changing the default settings of an order set. For quality improvement purposes, order sets dealing with transfusions were recently reviewed and modified to improve monitoring of outcome. Initially, the order for posttransfusion hematocrits and platelet count had the default setting changed from "optional" to "preselected." The default settings for platelet count was later changed back to "optional," allowing for a natural experiment to study the effect of the default selections of an order set on clinician ordering habits. Posttransfusion hematocrit values were ordered for 8.3% of red cell transfusions when the default order set selection was "off" and for 57.4% of transfusions when the default selection was "preselected" (P default order set selection was "optional," increased to 59.4% when the default was changed to "preselected" (P default selection was returned to "optional." The posttransfusion platelet count rates during the two "optional" periods: 7.0% versus 7.5% - were not statistically different (P = 0.620). Default settings in CPOE order sets can significantly influence physician selection of

  5. STATISTICS IN SERVICE QUALITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Dragana Gardašević

    2012-09-01

    Full Text Available For any quality evaluation in sports, science, education, and so, it is useful to collect data to construct a strategy to improve the quality of services offered to the user. For this purpose, we use statistical software packages for data processing data collected in order to increase customer satisfaction. The principle is demonstrated by the example of the level of student satisfaction ratings Belgrade Polytechnic (as users the quality of institutions (Belgrade Polytechnic. Here, the emphasis on statistical analysis as a tool for quality control in order to improve the same, and not the interpretation of results. Therefore, the above can be used as a model in sport to improve the overall results.

  6. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.

    2010-01-01

    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  7. Application of long-range ordering in the synthesis of a nanoscale Ni2 (Cr,Mo) superlattice with high strength and high ductility

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2009-01-01

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni 2 (Cr,Mo) isomorphous with Pt 2 Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility

  8. Statistical conditional sampling for variable-resolution video compression.

    Directory of Open Access Journals (Sweden)

    Alexander Wong

    Full Text Available In this study, we investigate a variable-resolution approach to video compression based on Conditional Random Field and statistical conditional sampling in order to further improve compression rate while maintaining high-quality video. In the proposed approach, representative key-frames within a video shot are identified and stored at full resolution. The remaining frames within the video shot are stored and compressed at a reduced resolution. At the decompression stage, a region-based dictionary is constructed from the key-frames and used to restore the reduced resolution frames to the original resolution via statistical conditional sampling. The sampling approach is based on the conditional probability of the CRF modeling by use of the constructed dictionary. Experimental results show that the proposed variable-resolution approach via statistical conditional sampling has potential for improving compression rates when compared to compressing the video at full resolution, while achieving higher video quality when compared to compressing the video at reduced resolution.

  9. SAPS, Crime statistics

    African Journals Online (AJOL)

    incidents' refer to 'incidents such as labour disputes and dissatisfaction with service delivery in which violence erupted and SAPS action was required to restore peace and order'.26. It is apparent from both the SAPS statistics and those provided by the Municipal IQ Hotspots. Monitor, that public protests and gatherings are.

  10. Statistical mechanics of high-density bond percolation

    Science.gov (United States)

    Timonin, P. N.

    2018-05-01

    High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.

  11. Practical statistics a handbook for business projects

    CERN Document Server

    Buglear, John

    2013-01-01

    Practical Statistics is a hands-on guide to statistics, progressing by complexity of data (univariate, bivariate, multivariate) and analysis (portray, summarise, generalise) in order to give the reader a solid understanding of the fundamentals and how to apply them.

  12. Statistical modelling for social researchers principles and practice

    CERN Document Server

    Tarling, Roger

    2008-01-01

    This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-l...

  13. Analisis Kemampuan Siswa dalam Menyelesaikan Soal High Order Thinking Ditinjau dari Kemampuan Awal Matematis Siswa

    OpenAIRE

    Gais, Zakkina; Afriansyah, Ekasatya Aldila

    2017-01-01

    This research aims to know the effect of prior mathematical students ability to solve on high order thinking questions looked by analysis question, evaluation question, creating question and genera question.This research also aims to know about students ability in solving high order thinking question and to know about the factors that cause students to be wrong in solving high order thinking questions. The research method that used is mixed method with embedded concurrent type. From the resu...

  14. Wilson loops in very high order lattice perturbation theory

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.

    2009-10-01

    We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)

  15. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  16. Calculation of neutron flux and reactivity by perturbation theory at high order

    International Nuclear Information System (INIS)

    Silva, W.L.P. da; Silva, F.C. da; Thome Filho, Z.D.

    1982-01-01

    A high order pertubation theory is studied, independent of time, applied to integral parameter calculation of a nuclear reactor. A pertubative formulation, based on flux difference technique, which gives directy the reactivity and neutron flux up to the aproximation order required, is presented. As an application of the method, global pertubations represented by fuel temperature variations, are used. Tests were done aiming to verify the relevancy of the approximation order for several intensities of the pertubations considered. (E.G.) [pt

  17. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  18. European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs

    CERN Document Server

    Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario

    2014-01-01

    This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.

  19. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  20. Radiation ordering in quenched alloys observed 'in situ' in the high voltage microscope

    International Nuclear Information System (INIS)

    Tendeloo, G. van; Landuyt, J. van; Amelinckx, S.

    1979-01-01

    Different alloys with a face centered cubic disordered structure have been electron irradiated in the quenched or short range order state under direct observation in a high voltage electron microscope. Ordering due to 1 MeV irradiation has been observed in Au 4 MN, Ni 4 Mo and Cu 3 Pd. Care has been taken to avoid ordering due to the thermal effect of the electron beam. It has been demonstrated that although similar states of order can be achieved by thermal and irradiation ordering, the path followed can be different. (author)

  1. Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States

    Science.gov (United States)

    Pan, Ziwen; Cai, Jiarui; Wang, Chuan

    2017-08-01

    The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.

  2. Statistical behavior of high doses in medical radiodiagnosis; Comportamento estatistico das altas doses em radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Adriana Elisa, E-mail: adrianaebarboza@gmail.com, E-mail: elisa@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This work has as main purpose statistically estimating occupational exposure in medical diagnostic radiology in cases of high doses recorded in 2011 at national level. For statistical survey of this study, doses of 372 IOE's diagnostic radiology in different Brazilian states were evaluated. Data were extracted from the work of monograph (Research Methodology Of High Doses In Medical Radiodiagnostic) that contains the database's information Sector Management doses of IRD/CNEN-RJ, Brazil. The identification of these states allows the Sanitary Surveillance (VISA) responsible, becomes aware of events and work with programs to reduce these events. (author)

  3. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes

    International Nuclear Information System (INIS)

    Jiang, Junhua; Zhang, Lei; Wang, Xinying; Holm, Nancy; Rajagopalan, Kishore; Chen, Fanglin; Ma, Shuguo

    2013-01-01

    Woody biochar monolith with ultra-high carbon content and highly ordered macropores has been prepared via one-pot pyrolysis and carbonization of red cedar wood at 750 °C without the need of post-treatment. Energy-dispersive spectroscope (EDX) and scanning electron microscope (SEM) studies show that the original biochar has a carbon content of 98 wt% with oxygen as the only detectable impurity and highly ordered macroporous texture characterized by alternating regular macroporous regions and narrow porous regions. Moreover, the hierarchically porous biochar monolith has a high BET specific surface area of approximately 400 m 2 g −1 . We have studied the monolith material as supercapacitor electrodes under acidic environment using electrochemical and surface characterization techniques. Electrochemical measurements show that the original biochar electrodes have a potential window of about 1.3 V and exhibit typical rectangular-shape voltammetric responses and fast charging–discharging behavior with a gravimetric capacitance of about 14 F g −1 . Simple activation of biochar in diluted nitric acid at room temperature leads to 7 times increase in the capacitance (115 F g −1 ). Because the HNO 3 -activation slightly decreases rather than increases the BET surface area of the biochar, an increase in the coverage of surface oxygen groups is the most likely origin of the substantial capacitance improvement. This is supported by EDX, X-ray photoelectron spectroscopy (XPS), and Raman measurements. Preliminary life-time studies show that biochar supercapacitors using the original and HNO 3 -activated electrodes are stable over 5000 cycles without performance decays. These facts indicate that the use of woody biochar is promising for its low cost and it can be a good performance electrode with low environmental impacts for supercapacitor applications

  4. Suppression of intensity transition artifacts in statistical x-ray computer tomography reconstruction through Radon inversion initialization

    International Nuclear Information System (INIS)

    Zbijewski, Wojciech; Beekman, Freek J.

    2004-01-01

    Statistical reconstruction (SR) methods provide a general and flexible framework for obtaining tomographic images from projections. For several applications SR has been shown to outperform analytical algorithms in terms of resolution-noise trade-off achieved in the reconstructions. A disadvantage of SR is the long computational time required to obtain the reconstructions, in particular when large data sets characteristic for x-ray computer tomography (CT) are involved. As was shown recently, by combining statistical methods with block iterative acceleration schemes [e.g., like in the ordered subsets convex (OSC) algorithm], the reconstruction time for x-ray CT applications can be reduced by about two orders of magnitude. There are, however, some factors lengthening the reconstruction process that hamper both accelerated and standard statistical algorithms to similar degree. In this simulation study based on monoenergetic and scatter-free projection data, we demonstrate that one of these factors is the extremely high number of iterations needed to remove artifacts that can appear around high-contrast structures. We also show (using the OSC method) that these artifacts can be adequately suppressed if statistical reconstruction is initialized with images generated by means of Radon inversion algorithms like filtered back projection (FBP). This allows the reconstruction time to be shortened by even as much as one order of magnitude. Although the initialization of the statistical algorithm with FBP image introduces some additional noise into the first iteration of OSC reconstruction, the resolution-noise trade-off and the contrast-to-noise ratio of final images are not markedly compromised

  5. Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, Elvis

    2015-01-01

    The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…

  6. J.F. Schouten revisited : pitch of complex tones having many high-order harmonics

    NARCIS (Netherlands)

    Smurzynski, J.; Houtsma, A.J.M.

    1988-01-01

    Four experiments are reported which deal with pitch perception of harmonic complex tones containing many high-order, aurally unresolvable partials. Melodic-interval identilication performance ill the case of sounds with increasing harmonic order remains significantly above chalice level, even if the

  7. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry

    International Nuclear Information System (INIS)

    Izyumov, Yurii A

    1999-01-01

    The notion that electrons in high-T c cuprates pair via antiferromagnetic spin fluctuations is discussed and the symmetry of the superconducting order parameter is analyzed. Three approaches to the problem, one phenomenological (with an experimental dynamic magnetic susceptibility) and two microscopic (involving, respectively, the Hubbard model and the tJ-model) are considered and it is shown that in each case strong-coupling theory leads to a d-wave order parameter with zeros at the Fermi surface. The review then proceeds to consider experimental techniques in which the d-symmetry of the order parameter may manifest itself. These include low-temperature thermodynamic measurements, measurements of the penetration depth and the upper critical field, Josephson junction experiments to obtain the phase of the superconducting order parameter, and various spectroscopic methods. The experimental data suggest that the order parameter in cuprates is d x 2 -y 2 -wave. Ginzburg-Landau theory for a superconductor with a d-wave order parameter is outlined and both an isolated vortex and a vortex lattice are investigated. Finally, some theoretical aspects of the effects of nonmagnetic impurities on a d-wave superconductor are considered. (reviews of topical problems)

  8. Birth Order and Psychopathology

    Directory of Open Access Journals (Sweden)

    Ajay Risal

    2012-01-01

    Full Text Available Context: Ordinal position the child holds within the sibling ranking of a family is related to intellectual functioning, personality, behavior, and development of psychopathology. Aim: To study the association between birth order and development of psychopathology in patients attending psychiatry services in a teaching hospital. Settings and Design: Hospital-based cross-sectional study. Materials and Methods: Retrospective file review of three groups of patients was carried out. Patient-related variables like age of onset, birth order, family type, and family history of mental illness were compared with psychiatry diagnosis (ICD-10 generated. Statistical Analysis: SPSS 13; descriptive statistics and one-way analysis of variance (ANOVA were used. Results: Mean age of onset of mental illness among the adult general psychiatry patients (group I, n = 527 was found to be 33.01 ± 15.073, while it was 11.68 ± 4.764 among the child cases (group II, n = 47 and 26.74 ± 7.529 among substance abuse cases (group III, n = 110. Among group I patients, commonest diagnosis was depression followed by anxiety and somatoform disorders irrespective of birth order. Dissociative disorders were most prevalent in the first born child (36.7% among group II patients. Among group III patients, alcohol dependence was maximum diagnosis in all birth orders. Conclusions: Depression and alcohol dependence was the commonest diagnosis in adult group irrespective of birth order.

  9. Statistics of fermions in the Randall-Wilkins model for kinetics of general order; Estadistica de fermiones en el modelo de Randall-Wilkins para cinetica de orden general

    Energy Technology Data Exchange (ETDEWEB)

    Nieto H, B; Azorin N, J; Vazquez C, G A [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    As a theoretical planning of the thermoluminescence phenomena (Tl), we study the behavior of the systems formed by fermions, which are related with this phenomenon establishing a generalization of the Randall-Wilkins model, as for first order kinetics as for general order (equation of May and Partridge) in which we consider a of Fermi-Dirac statistics. As consequence of this study a new variable is manifested: the chemical potential, also we establish its relationship with some of the other magnitudes already known in Tl. (Author)

  10. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes

    KAUST Repository

    Yoon, Seyoon; Monteiro, Paulo J.M.; Macphee, Donald E.; Glasser, Fredrik P.; Imbabi, Mohammed Salah-Eldin

    2014-01-01

    the authors experimentally and statistically investigated the effects of mix-design factors on the mechanical properties of high-volume class F fly ash concretes. A total of 240 and 32 samples were produced and tested in the laboratory to measure compressive

  11. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    Science.gov (United States)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  12. Pricing Exotic Options under a High-Order Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2007-10-01

    Full Text Available We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM. We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.

  13. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hui, E-mail: huiqiaoz@163.com [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Department of Electrical Engineering and Computer Sciences, South Dakota State University, Brookings, SD 57007 (United States); Xia, Zhaokang; Liu, Yanhua [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Cui, Rongrong, E-mail: cuirong3243@sina.com [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Fei, Yaqian; Cai, Yibing; Wei, Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Yao, Qingxia [School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000 (China); Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [Department of Electrical Engineering and Computer Sciences, South Dakota State University, Brookings, SD 57007 (United States)

    2017-04-01

    Graphical abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The lithium storage properties demonstrated that ordered Co/CMK-3 nanocomposites possessed high reversible capacity and cycling stability. Moreover, the ordered Co/CMK-3 nanocomposites electrode also exhibits high capacity at higher charge/discharge rate. - Highlights: • A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. • The lithium storage properties shows that the ordered Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g{sup −1} after 50 cycles. • The ordered Co/CMK-3 nanocomposites also showed high capacity at higher discharge and charge rate. - Abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The ordered Co/CMK-3 nanocomposite were characterized by X-ray diffraction, transmission electron microscopy and N{sub 2} adsorption–desorption analysis techniques. The lithium storage properties shows that the Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g{sup −1} after 50 cycles at a current rate of 50 mA g{sup −1}, much higher than that of original CMK-3 electrode. The Co/CMK-3 nanocomposites also demonstrates an excellent rate capability with capacity of 479 mAh g{sup −1} even at a current density of 1000 mA g{sup −1} after 50 cycles. The improved lithium storage properties of ordered Co/CMK-3 nanocomposites can be attributed to the CMK-3 could restrain the aggregation of Co nanoparticles, the large surface area of the mesopores in which the Co nanoparticles are formed, as well as presence of Co which played the role of catalyst could promote the lithium storage reaction.

  14. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites

    International Nuclear Information System (INIS)

    Qiao, Hui; Xia, Zhaokang; Liu, Yanhua; Cui, Rongrong; Fei, Yaqian; Cai, Yibing; Wei, Qufu; Yao, Qingxia; Qiao, Qiquan

    2017-01-01

    Graphical abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The lithium storage properties demonstrated that ordered Co/CMK-3 nanocomposites possessed high reversible capacity and cycling stability. Moreover, the ordered Co/CMK-3 nanocomposites electrode also exhibits high capacity at higher charge/discharge rate. - Highlights: • A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. • The lithium storage properties shows that the ordered Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g"−"1 after 50 cycles. • The ordered Co/CMK-3 nanocomposites also showed high capacity at higher discharge and charge rate. - Abstract: A novel ordered Co/CMK-3 nanocomposite was successfully synthesized via the sonochemical method followed by carbonization process. The ordered Co/CMK-3 nanocomposite were characterized by X-ray diffraction, transmission electron microscopy and N_2 adsorption–desorption analysis techniques. The lithium storage properties shows that the Co/CMK-3 nanocomposites exhibit a large reversible capacity and good cycle stability with the capacity of 720 mAh g"−"1 after 50 cycles at a current rate of 50 mA g"−"1, much higher than that of original CMK-3 electrode. The Co/CMK-3 nanocomposites also demonstrates an excellent rate capability with capacity of 479 mAh g"−"1 even at a current density of 1000 mA g"−"1 after 50 cycles. The improved lithium storage properties of ordered Co/CMK-3 nanocomposites can be attributed to the CMK-3 could restrain the aggregation of Co nanoparticles, the large surface area of the mesopores in which the Co nanoparticles are formed, as well as presence of Co which played the role of catalyst could promote the lithium storage reaction.

  15. Statistical inference for financial engineering

    CERN Document Server

    Taniguchi, Masanobu; Ogata, Hiroaki; Taniai, Hiroyuki

    2014-01-01

    This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering. This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.

  16. High-order harmonic generation in a capillary discharge

    Science.gov (United States)

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  17. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hybrid overlay metrology for high order correction by using CDSEM

    Science.gov (United States)

    Leray, Philippe; Halder, Sandip; Lorusso, Gian; Baudemprez, Bart; Inoue, Osamu; Okagawa, Yutaka

    2016-03-01

    Overlay control has become one of the most critical issues for semiconductor manufacturing. Advanced lithographic scanners use high-order corrections or correction per exposure to reduce the residual overlay. It is not enough in traditional feedback of overlay measurement by using ADI wafer because overlay error depends on other process (etching process and film stress, etc.). It needs high accuracy overlay measurement by using AEI wafer. WIS (Wafer Induced Shift) is the main issue for optical overlay, IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). We design dedicated SEM overlay targets for dual damascene process of N10 by i-ArF multi-patterning. The pattern is same as device-pattern locally. Optical overlay tools select segmented pattern to reduce the WIS. However segmentation has limit, especially the via-pattern, for keeping the sensitivity and accuracy. We evaluate difference between the viapattern and relaxed pitch gratings which are similar to optical overlay target at AEI. CDSEM can estimate asymmetry property of target from image of pattern edge. CDSEM can estimate asymmetry property of target from image of pattern edge. We will compare full map of SEM overlay to full map of optical overlay for high order correction ( correctables and residual fingerprints).

  19. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei, E-mail: pei.zhang@desy.de [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Jones, Roger M. [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom)

    2014-01-11

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  20. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.

    Science.gov (United States)

    Huang, Yongxiang; Biferale, Luca; Calzavarini, Enrico; Sun, Chao; Toschi, Federico

    2013-04-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-order Hilbert spectra (HS). We show that such quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].

  1. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-09-21

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  2. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan; Chaaban, Anas; Rezki, Zouheir; Abdallah, Mohamed; Qaraqe, Khalid; Alouini, Mohamed-Slim

    2017-01-01

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  3. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    Science.gov (United States)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  4. Statistics available for site studies in registers and surveys at Statistics Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Haldorson, Marie [Statistics Sweden, Oerebro (Sweden)

    2000-03-01

    Statistics Sweden (SCB) has produced this report on behalf of the Swedish Nuclear Fuel and Waste Management Company (SKB), as part of the data to be used by SKB in conducting studies of potential sites. The report goes over the statistics obtainable from SCB in the form of registers and surveys. The purpose is to identify the variables that are available, and to specify their degree of geographical detail and the time series that are available. Chapter two describes the statistical registers available at SCB, registers that share the common feature that they provide total coverage, i.e. they contain all 'objects' of a given type, such as population, economic activities (e.g. from statements of employees' earnings provided to the tax authorities), vehicles, enterprises or real estate. SCB has exclusive responsibility for seven of the nine registers included in the chapter, while two registers are ordered by public authorities with statistical responsibilities. Chapter three describes statistical surveys that are conducted by SCB, with the exception of the National Forest Inventory, which is carried out by the Swedish University of Agricultural Sciences. In terms of geographical breakdown, the degree of detail in the surveys varies, but all provide some possibility of reporting data at lower than the national level. The level involved may be county, municipality, yield district, coastal district or category of enterprises, e.g. aquaculture. Six of the nine surveys included in the chapter have been ordered by public authorities with statistical responsibilities, while SCB has exclusive responsibility for the others. Chapter four presents an overview of the statistics on land use maintained by SCB. This chapter does not follow the same pattern as chapters two and three but instead gives a more general account. The conclusion can be drawn that there are good prospects that SKB can make use of SCB's data as background information or in other ways when

  5. Statistics available for site studies in registers and surveys at Statistics Sweden

    International Nuclear Information System (INIS)

    Haldorson, Marie

    2000-03-01

    Statistics Sweden (SCB) has produced this report on behalf of the Swedish Nuclear Fuel and Waste Management Company (SKB), as part of the data to be used by SKB in conducting studies of potential sites. The report goes over the statistics obtainable from SCB in the form of registers and surveys. The purpose is to identify the variables that are available, and to specify their degree of geographical detail and the time series that are available. Chapter two describes the statistical registers available at SCB, registers that share the common feature that they provide total coverage, i.e. they contain all 'objects' of a given type, such as population, economic activities (e.g. from statements of employees' earnings provided to the tax authorities), vehicles, enterprises or real estate. SCB has exclusive responsibility for seven of the nine registers included in the chapter, while two registers are ordered by public authorities with statistical responsibilities. Chapter three describes statistical surveys that are conducted by SCB, with the exception of the National Forest Inventory, which is carried out by the Swedish University of Agricultural Sciences. In terms of geographical breakdown, the degree of detail in the surveys varies, but all provide some possibility of reporting data at lower than the national level. The level involved may be county, municipality, yield district, coastal district or category of enterprises, e.g. aquaculture. Six of the nine surveys included in the chapter have been ordered by public authorities with statistical responsibilities, while SCB has exclusive responsibility for the others. Chapter four presents an overview of the statistics on land use maintained by SCB. This chapter does not follow the same pattern as chapters two and three but instead gives a more general account. The conclusion can be drawn that there are good prospects that SKB can make use of SCB's data as background information or in other ways when undertaking future

  6. Statistics available for site studies in registers and surveys at Statistics Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Haldorson, Marie [Statistics Sweden, Oerebro (Sweden)

    2000-03-01

    Statistics Sweden (SCB) has produced this report on behalf of the Swedish Nuclear Fuel and Waste Management Company (SKB), as part of the data to be used by SKB in conducting studies of potential sites. The report goes over the statistics obtainable from SCB in the form of registers and surveys. The purpose is to identify the variables that are available, and to specify their degree of geographical detail and the time series that are available. Chapter two describes the statistical registers available at SCB, registers that share the common feature that they provide total coverage, i.e. they contain all 'objects' of a given type, such as population, economic activities (e.g. from statements of employees' earnings provided to the tax authorities), vehicles, enterprises or real estate. SCB has exclusive responsibility for seven of the nine registers included in the chapter, while two registers are ordered by public authorities with statistical responsibilities. Chapter three describes statistical surveys that are conducted by SCB, with the exception of the National Forest Inventory, which is carried out by the Swedish University of Agricultural Sciences. In terms of geographical breakdown, the degree of detail in the surveys varies, but all provide some possibility of reporting data at lower than the national level. The level involved may be county, municipality, yield district, coastal district or category of enterprises, e.g. aquaculture. Six of the nine surveys included in the chapter have been ordered by public authorities with statistical responsibilities, while SCB has exclusive responsibility for the others. Chapter four presents an overview of the statistics on land use maintained by SCB. This chapter does not follow the same pattern as chapters two and three but instead gives a more general account. The conclusion can be drawn that there are good prospects that SKB can make use of SCB's data as background information or in other ways when undertaking future

  7. High-order quantum algorithm for solving linear differential equations

    International Nuclear Information System (INIS)

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  8. Surfaces allowing for fractional statistics

    International Nuclear Information System (INIS)

    Aneziris, Charilaos.

    1992-07-01

    In this paper we give a necessary condition in order for a geometrical surface to allow for Abelian fractional statistics. In particular, we show that such statistics is possible only for two-dimentional oriented surfaces of genus zero, namely the sphere S 2 , the plane R 2 and the cylindrical surface R 1 *S 1 , and in general the connected sum of n planes R 2 -R 2 -R 2 -...-R 2 . (Author)

  9. Application of long-range ordering in the synthesis of a nanoscale Ni{sub 2} (Cr,Mo) superlattice with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1639, Dhahran 31261 (Saudi Arabia)], E-mail: tawancy@kfupm.edu.sa; Aboelfotoh, M.O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States)

    2009-01-25

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni{sub 2}(Cr,Mo) isomorphous with Pt{sub 2}Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility.

  10. High-throughput optimization by statistical designs: example with rat liver slices cryopreservation.

    Science.gov (United States)

    Martin, H; Bournique, B; Blanchi, B; Lerche-Langrand, C

    2003-08-01

    The purpose of this study was to optimize cryopreservation conditions of rat liver slices in a high-throughput format, with focus on reproducibility. A statistical design of 32 experiments was performed and intracellular lactate dehydrogenase (LDHi) activity and antipyrine (AP) metabolism were evaluated as biomarkers. At freezing, modified University of Wisconsin solution was better than Williams'E medium, and pure dimethyl sulfoxide was better than a cryoprotectant mixture. The best cryoprotectant concentrations were 10% for LDHi and 20% for AP metabolism. Fetal calf serum could be used at 50 or 80%, and incubation of slices with the cryoprotectant could last 10 or 20 min. At thawing, 42 degrees C was better than 22 degrees C. After thawing, 1h was better than 3h of preculture. Cryopreservation increased the interslice variability of the biomarkers. After cryopreservation, LDHi and AP metabolism levels were up to 84 and 80% of fresh values. However, these high levels were not reproducibly achieved. Two factors involved in the day-to-day variability of LDHi were identified: the incubation time with the cryoprotectant and the preculture time. In conclusion, the statistical design was very efficient to quickly determine optimized conditions by simultaneously measuring the role of numerous factors. The cryopreservation procedure developed appears suitable for qualitative metabolic profiling studies.

  11. Magnetron with smooth anode. Statistical theory and ordered oscillations; Magnetron a anode lisse. Theorie statistique et oscillations ordonnees

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.

    1961-03-15

    We have to investigate the equilibrium regime that appears between a hot cathode and the electronic cloud that is confined around the cathode by a magnetic field parallel to its axis. The densities being high enough to involve the effect of space charge. The challenge of the magnetron theory is to face 2 issues: first the structure of the electronic cloud in a diode submitted to a magnetic field and secondly the oscillations that are likely to appear in this cloud. In this work we have made 2 attempts to clarify the situation, we have extended the classical theory of the static charge of space through a study of its oscillation modes on one hand and on the other hand we have tackled the issue of the structure of the electronic cloud with the tool of statistics. This document is divided into 2 chapters. In the first chapter we present a static study of the magnetron in which we take a statistical approach deliberately. We give answers to the issue of the thermodynamical equilibrium of the electronic cloud and we have found a mode very close to the Brillouin mode. The statistical approach has made us discuss the boundary conditions on the cathode, it means the coupling between the cathode and the electronic cloud. In the second chapter we present the theoretical study of the oscillations in a magnetron operating in the Brillouin mode. The resonances that appear in experimental data stay difficult to explain.

  12. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  13. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    International Nuclear Information System (INIS)

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-01-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave

  14. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  15. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    Science.gov (United States)

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  16. High-order computer-assisted estimates of topological entropy

    Science.gov (United States)

    Grote, Johannes

    The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.

  17. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  18. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  19. A Statistic Analysis Of Romanian Seaside Hydro Tourism

    OpenAIRE

    Secara Mirela

    2011-01-01

    Tourism represents one of the ways of spending spare time for rest, recreation, treatment and entertainment, and the specific aspect of Constanta County economy is touristic and spa capitalization of Romanian seaside. In order to analyze hydro tourism on Romanian seaside we have used statistic indicators within tourism as well as statistic methods such as chronological series, interdependent statistic series, regression and statistic correlation. The major objective of this research is to rai...

  20. High-dimensional statistical inference: From vector to matrix

    Science.gov (United States)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The

  1. Analysis method of high-order collective-flow correlations based on the concept of correlative degree

    International Nuclear Information System (INIS)

    Zhang Weigang

    2000-01-01

    Based on the concept of correlative degree, a new method of high-order collective-flow measurement is constructed, with which azimuthal correlations, correlations of final state transverse momentum magnitude and transverse correlations can be inspected respectively. Using the new method the contributions of the azimuthal correlations of particles distribution and the correlations of transverse momentum magnitude of final state particles to high-order collective-flow correlations are analyzed respectively with 4π experimental events for 1.2 A GeV Ar + BaI 2 collisions at the Bevalac stream chamber. Comparing with the correlations of transverse momentum magnitude, the azimuthal correlations of final state particles distribution dominate high-order collective-flow correlations in experimental samples. The contributions of correlations of transverse momentum magnitude of final state particles not only enhance the strength of the high-order correlations of particle group, but also provide important information for the measurement of the collectivity of collective flow within the more constraint district

  2. Hybrid High-Order methods for finite deformations of hyperelastic materials

    Science.gov (United States)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  3. Oxygen order-disorder phase transition in PrBaCo2O5.48 at high temperature

    International Nuclear Information System (INIS)

    Streule, S.; Podlesnyak, A.; Pomjakushina, E.; Conder, K.; Sheptyakov, D.; Medarde, M.; Mesot, J.

    2006-01-01

    We have investigated the PrBaCo 2 O 5.48 compound by means of neutron powder diffraction at temperatures 300K OD =776K, which we associate with an oxygen order-disorder transition: the well-known room temperature ordered crystal structure, in which slabs of CoO 6 octahedra and CoO 5 pyramids interleave (Pmmm symmetry) gets lost at temperatures T>T OD , resulting in a statistical distribution of octahedra and pyramids in the sample. The new phase can be described by the tetragonal P4/mmm space group. The transition is caused by displacement of apical oxygen ions and is an indication that ionic conductivity, which has been observed in 3D cobaltites, may also exist in layered cobaltites

  4. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  5. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  6. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    KAUST Repository

    De Basabe, Joná s D.; Sen, Mrinal K.

    2010-01-01

    popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM

  7. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  8. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  9. Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows

    International Nuclear Information System (INIS)

    Wang Wei; Yee, H.C.; Sjoegreen, Bjoern; Magin, Thierry; Shu, Chi-Wang

    2011-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) , Sjoegreen and Yee (2004) and Yee and Sjoegreen (2007) consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor-corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  10. Statistical wave function

    International Nuclear Information System (INIS)

    Levine, R.D.

    1988-01-01

    Statistical considerations are applied to quantum mechanical amplitudes. The physical motivation is the progress in the spectroscopy of highly excited states. The corresponding wave functions are strongly mixed. In terms of a basis set of eigenfunctions of a zeroth-order Hamiltonian with good quantum numbers, such wave functions have contributions from many basis states. The vector x is considered whose components are the expansion coefficients in that basis. Any amplitude can be written as a dagger x x. It is argued that the components of x and hence other amplitudes can be regarded as random variables. The maximum entropy formalism is applied to determine the corresponding distribution function. Two amplitudes a dagger x x and b dagger x x are independently distributed if b dagger x a = 0. It is suggested that the theory of quantal measurements implies that, in general, one can one determine the distribution of amplitudes and not the amplitudes themselves

  11. High-order dispersion control of 10-petawatt Ti:sapphire laser facility.

    Science.gov (United States)

    Li, Shuai; Wang, Cheng; Liu, Yanqi; Xu, Yi; Li, Yanyan; Liu, Xingyan; Gan, Zebiao; Yu, Lianghong; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin

    2017-07-24

    A grism pair is utilized to control the high-order dispersion of the Shanghai Superintense Ultrafast Lasers Facility, which is a large-scale project aimed at delivering 10-PW laser pulses. We briefly present the characteristics of the laser system and calculate the cumulative B-integral, which determines the nonlinear phase shift influence on material dispersion. Three parameters are selected, grism separation, angle of incidence and slant distance of grating compressor, to determine their optimal values through an iterative searching procedure. Both the numerical and experimental results confirm that the spectral phase distortion is controlled, and the recompressed pulse with a duration of 24 fs is obtained in the single-shot mode. The distributions and stabilities of the pulse duration at different positions of the recompressed beam are also investigated. This approach offers a new feasible solution for the high-order dispersion compensation of femtosecond petawatt laser systems.

  12. CONFIDENCE LEVELS AND/VS. STATISTICAL HYPOTHESIS TESTING IN STATISTICAL ANALYSIS. CASE STUDY

    Directory of Open Access Journals (Sweden)

    ILEANA BRUDIU

    2009-05-01

    Full Text Available Estimated parameters with confidence intervals and testing statistical assumptions used in statistical analysis to obtain conclusions on research from a sample extracted from the population. Paper to the case study presented aims to highlight the importance of volume of sample taken in the study and how this reflects on the results obtained when using confidence intervals and testing for pregnant. If statistical testing hypotheses not only give an answer "yes" or "no" to some questions of statistical estimation using statistical confidence intervals provides more information than a test statistic, show high degree of uncertainty arising from small samples and findings build in the "marginally significant" or "almost significant (p very close to 0.05.

  13. Image statistics and nonlinear artifacts in composed transmission x-ray tomography

    International Nuclear Information System (INIS)

    Duerinckx, A.J.G.

    1979-01-01

    Knowledge of the image quality and image statistics in Computed Tomography (CT) images obtained with transmission x-ray CT scanners can increase the amount of clinically useful information that can be retrieved. Artifacts caused by nonlinear shadows are strongly object-dependent and are visible over larger areas of the image. No simple technique exists for their complete elimination. One source of artifacts in the first order statistics is the nonlinearities in the measured shadow or projection data used to reconstruct the image. One of the leading causes is the polychromaticity of the x-ray beam used in transmission CT scanners. Ways to improve the resulting image quality and techniques to extract additional information using dual energy scanning are discussed. A unique formalism consisting of a vector representation of the material dependence of the photon-tissue interactions is generalized to allow an in depth analysis. Poly-correction algorithms are compared using this analytic approach. Both quantum and detector electronic noise decrease the quality or information content of first order statistics. Preliminary results are presented using an heuristic adaptive nonlinear noise filter system for projection data. This filter system can be improved and/or modified to remove artifacts in both first and second order image statistics. Artifacts in the second order image statistics arise from the contribution of quantum noise. This can be described with a nonlinear detection equivalent model, similar to the model used to study artifacts in first order statistics. When analyzing these artifacts in second order statistics, one can divide them into linear artifacts, which do not present any problem of interpretation, and nonlinear artifacts, referred to as noise artifacts. A study of noise artifacts is presented together with a discussion of their relative importance in diagnostic radiology

  14. Design and high order optimization of the ATF2 lattices

    CERN Document Server

    Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R

    2013-01-01

    The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....

  15. Narcissism and birth order.

    Science.gov (United States)

    Eyring, W E; Sobelman, S

    1996-04-01

    The purpose of this investigation was to clarify the relationship between birth-order position and the development of narcissism, while refining research and theory. The relationship between birth-order status and narcissism was examined with a sample of 79 undergraduate students (55 women and 24 men). These subjects were placed in one of the four following birth-order categories of firstborn, second-born, last-born, and only children. These categories were chosen given their significance in Adlerian theory. Each subject completed the Narcissistic Personality Inventory and a demographic inventory. Based on psychodynamic theory, it was hypothesized that firstborn children were expected to score highest, but statistical significance was not found for an association between narcissism and birth order. Further research is urged to investigate personality theory as it relates to parenting style and birth order.

  16. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

    DEFF Research Database (Denmark)

    Arvesú, J.; Esposito, Chiara

    2012-01-01

    A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

  17. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable

  18. High-Order Quadratures for the Solution of Scattering Problems in Two Dimensions

    National Research Council Canada - National Science Library

    Duan, Ran; Rokhlin, Vladimir

    2008-01-01

    .... The scheme is based on the combination of high-order quadrature formulae, fast application of integral operators in Lippmann-Schwinger equations, and the stabilized biconjugate gradient method (BI-CGSTAB...

  19. Statistical properties of superimposed stationary spike trains.

    Science.gov (United States)

    Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan

    2012-06-01

    The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.

  20. Statistical physics of an anyon gas

    International Nuclear Information System (INIS)

    Dasnieres de Veigy, A.

    1994-01-01

    In quantum two-dimensional physics, anyons are particles which have an intermediate statistics between Bose-Einstein and Fermi-Dirac statistics. The wave amplitude can change by an arbitrary phase under particle exchanges. Contrary to bosons or fermions, the permutation group cannot uniquely characterize this phase and one must introduce the braid group. One shows that the statistical ''interaction'' is equivalent to an Aharonov-Bohm interaction which derives from a Chern-Simons lagrangian. The main subject of this thesis is the thermodynamics of an anyon gas. Since the complete spectrum of N anyons seems out of reach, we have done a perturbative computation of the equation of state at second order near Bose or Fermi statistics. One avoids ultraviolet divergences by noticing that the short-range singularities of the statistical interaction enforce the wave functions to vanish when two particles approach each other (statistical exclusion). The gas is confined in a harmonic well in order to obtain the thermodynamics limit when the harmonic attraction goes to zero. Infrared divergences thus cancel in this limit and a finite virial expansion is obtained. The complexity of the anyon model appears in this result. We have also computed the equation of state of an anyon gas in a magnetic field strong enough to project the system in its degenerate groundstate. This result concerns anyons with any statistics. One then finds an exclusion principle generalizing the Pauli principle to anyons. On the other hand, we have defined a model of two-dimensional particles topologically interacting at a distance. The anyon model is recovered as a particular case where all particles are identical. (orig.)

  1. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  2. An instrument for the high-statistics measurement of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Buontempo, S.; Ereditato, A.; Marchetti-Stasi, F.; Riccardi, F.; Strolin, P.

    1994-01-01

    There is today widespread use of plastic scintillating fibers in particle physics, mainly for calorimetric and tracking applications. In the case of calorimeters, we have to cope with very massive detectors and a large quantity of scintillating fibers. The CHORUS Collaboration has built a new detector to search for ν μ -ν τ oscillations in the CERN neutrino beam. A crucial task of the detector is ruled by the high-energy resolution calorimeter. For its construction more than 400 000 scintillating plastic fibers have been used. In this paper we report on the design and performance of a new instrument for the high-statistics measurement of the fiber properties, in terms of light yield and light attenuation length. The instrument has been successfully used to test about 3% of the total number of fibers before the construction of the calorimeter. ((orig.))

  3. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  4. Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes

    Science.gov (United States)

    Song, Ningning; Wang, Wucong; Wu, Yue; Xiao, Ding; Zhao, Yaping

    2018-04-01

    The hybrids of pristine graphene with polyaniline were synthesized by in situ polymerizations for making a high-performance supercapacitor. The formed high-ordered PANI nanocones were vertically aligned on the graphene sheets. The length of the PANI nanocones increased with the concentration of aniline monomer. The specific capacitance of the hybrids electrode in the three-electrode system was measured as high as 481 F/g at a current density of 0.1 A/g, and its stability remained 87% after constant charge-discharge 10000 cycles at a current density of 1 A/g. This outstanding performance is attributed to the coupling effects of the pristine graphene and the hierarchical structure of the PANI possessing high specific surface area. The unique structure of the PANI provided more charge transmission pathways and fast charge-transfer speed of electrons to the pristine graphene because of its large specific area exposed to the electrolyte. The hybrid is expected to have potential applications in supercapacitor electrodes.

  5. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  6. A multiresolution method for solving the Poisson equation using high order regularization

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Walther, Jens Honore

    2016-01-01

    We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates...

  7. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  8. Statistics: The stethoscope of a thinking urologist

    Directory of Open Access Journals (Sweden)

    Arun S Sivanandam

    2009-01-01

    Full Text Available Understanding statistical terminology and the ability to appraise clinical research findings and statistical tests are critical to the practice of evidence-based medicine. Urologists require statistics in their toolbox of skills in order to successfully sift through increasingly complex studies and realize the drawbacks of statistical tests. Currently, the level of evidence in urology literature is low and the majority of research abstracts published for the American Urological Association (AUA meetings lag behind for full-text publication because of a lack of statistical reporting. Underlying these issues is a distinct deficiency in solid comprehension of statistics in the literature and a discomfort with the application of statistics for clinical decision-making. This review examines the plight of statistics in urology and investigates the reason behind the white-coat aversion to biostatistics. Resources such as evidence-based medicine websites, primers in statistics, and guidelines for statistical reporting exist for quick reference by urologists. Ultimately, educators should take charge of monitoring statistical knowledge among trainees by bolstering competency requirements and creating sustained opportunities for statistics and methodology exposure.

  9. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    Science.gov (United States)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  10. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    Science.gov (United States)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  11. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    Science.gov (United States)

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  12. On the efficiency of high-energy particle identification statistical methods

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1982-01-01

    An attempt is made to analyze the statistical methods of making decisions on the high-energy particle identification. The Bayesian approach is shown to provide the most complete account of the primary discriminative information between the particles of various tupes. It does not impose rigid requirements on the density form of the probability function and ensures the account of the a priori information as compared with the Neyman-Pearson approach, the mimimax technique and the heristic rules of the decision limits construction in the variant region of the specially chosen parameter. The methods based on the concept of the nearest neighbourhood are shown to be the most effective one among the local methods of the probability function density estimation. The probability distances between the training sample classes are suggested to make a decision on selecting the high-energy particle detector optimal parameters. The method proposed and the software constructed are tested on the problem of the cosmic radiation hadron identification by means of transition radiation detectors (the ''PION'' experiment)

  13. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  14. A high performance totally ordered multicast protocol

    Science.gov (United States)

    Montgomery, Todd; Whetten, Brian; Kaplan, Simon

    1995-01-01

    This paper presents the Reliable Multicast Protocol (RMP). RMP provides a totally ordered, reliable, atomic multicast service on top of an unreliable multicast datagram service such as IP Multicasting. RMP is fully and symmetrically distributed so that no site bears un undue portion of the communication load. RMP provides a wide range of guarantees, from unreliable delivery to totally ordered delivery, to K-resilient, majority resilient, and totally resilient atomic delivery. These QoS guarantees are selectable on a per packet basis. RMP provides many communication options, including virtual synchrony, a publisher/subscriber model of message delivery, an implicit naming service, mutually exclusive handlers for messages, and mutually exclusive locks. It has commonly been held that a large performance penalty must be paid in order to implement total ordering -- RMP discounts this. On SparcStation 10's on a 1250 KB/sec Ethernet, RMP provides totally ordered packet delivery to one destination at 842 KB/sec throughput and with 3.1 ms packet latency. The performance stays roughly constant independent of the number of destinations. For two or more destinations on a LAN, RMP provides higher throughput than any protocol that does not use multicast or broadcast.

  15. Effect of third-order aberrations on dynamic accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Rucker, Frances J; Stark, Lawrence R; Badar, Mustanser; Borgovan, Theodore; Burke, Sean; Kruger, Philip B

    2007-03-01

    We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1-3D, 0.2Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 microm) and coma (0.34, 0.94 microm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

  16. Comparing higher order models for the EORTC QLQ-C30

    DEFF Research Database (Denmark)

    Gundy, Chad M; Fayers, Peter M; Grønvold, Mogens

    2012-01-01

    To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire.......To investigate the statistical fit of alternative higher order models for summarizing the health-related quality of life profile generated by the EORTC QLQ-C30 questionnaire....

  17. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  18. Statistical Techniques for Project Control

    CERN Document Server

    Badiru, Adedeji B

    2012-01-01

    A project can be simple or complex. In each case, proven project management processes must be followed. In all cases of project management implementation, control must be exercised in order to assure that project objectives are achieved. Statistical Techniques for Project Control seamlessly integrates qualitative and quantitative tools and techniques for project control. It fills the void that exists in the application of statistical techniques to project control. The book begins by defining the fundamentals of project management then explores how to temper quantitative analysis with qualitati

  19. Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory †

    Directory of Open Access Journals (Sweden)

    Gábor Bíró

    2017-02-01

    Full Text Available The analysis of high-energy particle collisions is an excellent testbed for the non-extensive statistical approach. In these reactions we are far from the thermodynamical limit. In small colliding systems, such as electron-positron or nuclear collisions, the number of particles is several orders of magnitude smaller than the Avogadro number; therefore, finite-size and fluctuation effects strongly influence the final-state one-particle energy distributions. Due to the simple characterization, the description of the identified hadron spectra with the Boltzmann–Gibbs thermodynamical approach is insufficient. These spectra can be described very well with Tsallis–Pareto distributions instead, derived from non-extensive thermodynamics. Using the q-entropy formula, we interpret the microscopic physics in terms of the Tsallis q and T parameters. In this paper we give a view on these parameters, analyzing identified hadron spectra from recent years in a wide center-of-mass energy range. We demonstrate that the fitted Tsallis-parameters show dependency on the center-of-mass energy and particle species (mass. Our findings are described well by a QCD (Quantum Chromodynamics inspired parton evolution ansatz. Based on this comprehensive study, apart from the evolution, both mesonic and baryonic components found to be non-extensive ( q > 1 , besides the mass ordered hierarchy observed in the parameter T. We also study and compare in details the theory-obtained parameters for the case of PYTHIA8 Monte Carlo Generator, perturbative QCD and quark coalescence models.

  20. Ordered GeSi nanorings grown on patterned Si (001 substrates

    Directory of Open Access Journals (Sweden)

    Ma Yingjie

    2011-01-01

    Full Text Available Abstract An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001 substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings. PACS code1·PACS code2·more Mathematics Subject Classification (2000 MSC code1·MSC code2·more